Numerous complex systems, both natural and artificial, are characterized by the presence of intertwined supply and/or drainage networks. Here we present a minimalist model of such co-evolving networks in a spatially continuous domain, where the obtained networks can be interpreted as a part of either the counter-flowing drainage or co-flowing supply and drainage mechanisms. The model consists of three coupled, nonlinear partial differential equations that describe spatial density patterns of input and output materials by modifying a mediating scalar field, on which supply and drainage networks are carved. In the 2-dimensional case, the scalar field can be viewed as the elevation of a hypothetical landscape, of which supply and drainage networks are ridges and valleys, respectively. In the 3-dimensional case, the scalar field serves as the chemical signal strength, in which vascularization of the supply and drainage networks occurs above a critical 'erosion' strength. The steady-state solutions are presented as a function of non-dimensional channelization indices for both materials. The spatial patterns of the emerging networks are classified within the branched and congested extreme regimes, within which the resulting networks are characterized based on the absolute as well as the relative values of two non-dimensional indices.

In 1665, Huygens observed that two pendulum clocks hanging from the same beam became synchronized in antiphase after hundreds of swings. On the other hand, modern experiments with metronomes placed on a movable platform show that they tend to synchronize in phase, not antiphase. Here, using a simple model of coupled clocks and metronomes, we calculate the regimes where in-phase and antiphase synchronization are stable. Unusual features of our approach include its treatment of the escapement mechanism, a small-angle approximation up to cubic order, and a three-time scale asymptotic analysis.

The open XXZ spin chain with the anisotropy parameter $\Delta=-\frac12$ and diagonal boundary magnetic fields that depend on a parameter $x$ is studied. For real $x>0$, the exact finite-size ground-state eigenvalue of the spin-chain Hamiltonian is explicitly computed. In a suitable normalisation, the ground-state components are characterised as polynomials in $x$ with integer coefficients. Linear sum rules and special components of this eigenvector are explicitly computed in terms of determinant formulas. These results follow from the construction of a contour-integral solution to the boundary quantum Knizhnik-Zamolodchikov equations associated with the $R$-matrix and diagonal $K$-matrices of the six-vertex model. A relation between this solution and a weighted enumeration of totally-symmetric alternating sign matrices is conjectured.