We study emergent dynamics of the Lohe hermitian sphere(LHS) model which can be derived from the Lohe tensor model \cite{H-P2} as a complex counterpart of the Lohe sphere(LS) model. The Lohe hermitian sphere model describes aggregate dynamics of point particles on the hermitian sphere $\bbh\bbs^d$ lying in ${\mathbb C}^{d+1}$, and the coupling terms in the LHS model consist of two coupling terms. For identical ensemble with the same free flow dynamics, we provide a sufficient framework leading to the complete aggregation in which all point particles form a giant one-point cluster asymptotically. In contrast, for non-identical ensemble, we also provide a sufficient framework for the practical aggregation. Our sufficient framework is formulated in terms of coupling strengths and initial data. We also provide several numerical examples and compare them with our analytical results.

In this paper, time-independent Hamiltonian systems are investigated via a Lie-group/algebra formalism. The (unknown) solution linked with the Hamiltonian is considered to be a Lie-group transformation of the initial data, where the group parameter acts as the time. The time-evolution generator (i.e. the Lie algebra associated to the group transformation) is constructed at an algebraic level, hence avoiding discretization of the time-derivatives for the discrete case. This formalism makes it possible to investigate the continuous and discrete versions of time for time-independent Hamiltonian systems and no additional information on the system is required (besides the Hamiltonian itself and the initial conditions of the solution). When the time-independent Hamiltonian system is integrable in the sense of Liouville, one can use the action-angle coordinates to straighten the time-evolution generator and construct an exact scheme (i.e. a scheme without errors). In addition, a method to analyse the errors of approximative/numerical schemes is provided. These considerations are applied to well-known examples associated with the one-dimensional harmonic oscillator.

It is found that $15$ different types of two-qubit $X$-states split naturally into two sets (of cardinality $9$ and $6$) once their entanglement properties are taken into account. We {characterize both the validity and entangled nature of the $X$-states with maximally-mixed subsystems in terms of certain parameters} and show that their properties are related to a special class of geometric hyperplanes of the symplectic polar space of order two and rank two. Finally, we introduce the concept of hyperplane-states and briefly address their non-local properties.

The open XXZ spin chain with the anisotropy parameter $\Delta=-\frac12$ and diagonal boundary magnetic fields that depend on a parameter $x$ is studied. For real $x>0$, the exact finite-size ground-state eigenvalue of the spin-chain Hamiltonian is explicitly computed. In a suitable normalisation, the ground-state components are characterised as polynomials in $x$ with integer coefficients. Linear sum rules and special components of this eigenvector are explicitly computed in terms of determinant formulas. These results follow from the construction of a contour-integral solution to the boundary quantum Knizhnik-Zamolodchikov equations associated with the $R$-matrix and diagonal $K$-matrices of the six-vertex model. A relation between this solution and a weighted enumeration of totally-symmetric alternating sign matrices is conjectured.

S-Heun operators on linear and $q$-linear grids are introduced. These operators are special cases of Heun operators and are related to Sklyanin-like algebras. The Continuous Hahn and Big $q$-Jacobi polynomials are functions on which these S-Heun operators have natural actions. We show that the S-Heun operators encompass both the bispectral operators and Kalnins and Miller's structure operators. These four structure operators realize special limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-dimensional representations of these algebras are obtained from a truncation condition. The corresponding representation bases are finite families of polynomials: the para-Krawtchouk and $q$-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials that had been missing is thus obtained. We also recover the Heun operators attached to the corresponding bispectral problems as quadratic combinations of the S-Heun operators

We further develop the method of dressing the boundary for the focusing nonlinear Schr\"odinger equation (NLS) on the half-line to include the new boundary condition presented by Zambon. Additionally, the foundation to compare the solutions to the ones produced by the mirror-image technique is laid by explicitly computing the change of scattering data under the Darboux transformation. In particular, the developed method is applied to insert pure soliton solutions.

Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that are missing a finite number of "exceptional" degrees. In this note we sketch the construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question.

We construct the free Lagrangian of the magnetic sector of Carrollian electrodynamics, which surprisingly, is not obtainable as an ultra-relativistic limit of Maxwellian Electrodynamics. The construction relies on Helmholtz integrability condition for differential equations in a self consistent algorithm working hand in hand with imposing invariance under infinite dimensional Conformal Carroll algebra (CCA). It requires inclusion of new fields in the dynamics and the system in free of gauge redundancies. We calculate two-point functions in the free theory based entirely on symmetry principles. We next add interaction (quartic) terms to the free Lagrangian, strictly constrained by conformal invariance and Carrollian symmetry. Finally, a successful dynamical realization of infinite dimensional CCA is presented at the level of charges, for the interacting theory. In conclusion, we calculate the Poisson brackets for these charges.

We have previously studied -in part I- the quantization of a mixed bulk-boundary system describing the coupled dynamics between a bulk quantum field confined to a spacetime with finite space slice and with timelike boundary, and a boundary observable defined on the boundary. Our bulk system is a quantum field in a spacetime with timelike boundary and a dynamical boundary condition -the boundary observable's equation of motion. Owing to important physical motivations, in part I, we have computed the renormalized local state polarization and local Casimir energy for both the bulk quantum field and the boundary observable in the ground state and in a Gibbs state at finite, positive temperature. In this work, we introduce an appropriate notion of coherent and thermal coherent states for this mixed bulk-boundary system, and extend our previous study of the renormalized local state polarization and local Casimir energy to coherent and thermal coherent states.

We formulate a new approach to solving the initial value problem of the shallow water-wave equations utilizing the famous Carrier-Greenspan transformation [G. Carrier and H. Greenspan, J. Fluid Mech. 01, 97 (1957)]. We use a Taylor series approximation to deal with the difficulty associated with the initial conditions given on a curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions, large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami wave inundation models in a more realistic 2-D setting.

Unbalanced optimal mass transport (OMT) seeks to remove the conservation of mass constraint by adding a source term to the standard continuity equation in the Benamou-Brenier formulation of OMT. In this note, we show how the addition of the source fits into the vector-valued OMT framework.

We give a definition of quaternion Lie algebra and of the quaternification of a complex or a real Lie algebra. so*(2n), sp(n) and sl(n,H) become quaternion Lie algebras. Then we shall prove that a simple Lie algebra has the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is 2-dimensional. For example the quaternion special linear algebra sl(n,H) is the quaternification of the complex special Lie algebra sl(n,C).

In $L_2({\mathbb R}^3;{\mathbb C}^3)$, we consider a selfadjoint operator ${\mathcal L}_\varepsilon$, $\varepsilon >0$, given by the differential expression $\mu_0^{-1/2}\operatorname{curl} \eta(\mathbf{x}/\varepsilon)^{-1} \operatorname{curl} \mu_0^{-1/2} - \mu_0^{1/2}\nabla \nu(\mathbf{x}/\varepsilon) \operatorname{div} \mu_0^{1/2}$, where $\mu_0$ is a constant positive matrix, a matrix-valued function $\eta(\mathbf{x})$ and a real-valued function $\nu(\mathbf{x})$ are periodic with respect to some lattice, positive definite and bounded. We study the behavior of the operator-valued functions $\cos (\tau {\mathcal L}_\varepsilon^{1/2})$ and ${\mathcal L}_\varepsilon^{-1/2} \sin (\tau {\mathcal L}_\varepsilon^{1/2})$ for $\tau \in {\mathbb R}$ and small $\varepsilon$. It is shown that these operators converge to the corresponding operator-valued functions of the operator ${\mathcal L}^0$ in the norm of operators acting from the Sobolev space $H^s$ (with a suitable $s$) to $L_2$. Here ${\mathcal L}^0$ is the effective operator with constant coefficients. Also, an approximation with corrector in the $(H^s \to H^1)$-norm for the operator ${\mathcal L}_\varepsilon^{-1/2} \sin (\tau {\mathcal L}_\varepsilon^{1/2})$ is obtained. We prove error estimates and study the sharpness of the results regarding the type of the operator norm and regarding the dependence of the estimates on $\tau$. The results are applied to homogenization of the Cauchy problem for the nonstationary Maxwell system in the case where the magnetic permeability is equal to $\mu_0$, and the dielectric permittivity is given by the matrix $\eta(\mathbf{x}/\varepsilon)$.

In this paper we have chosen to work with two different approaches to solving the inverse problem of the calculus of variation. The first approach is based on an integral representation of the Lagrangian function that uses the first integral of the equation of motion while the second one relies on a generalization of the well known Noether's theorem and constructs the Lagrangian directly from the equation of motion. As an application of the integral representation of the Lagrangian function we first provide some useful remarks for the Lagrangian of the modified Emden-type equation and then obtain results for Lagrangian functions of (i) cubic-quintic Duffing oscillator, (ii) Li\'{e}nard-type oscillator and (iii) Mathews-Lakshmanan oscillator. As with the modified Emden-type equation these oscillators were found to be characterized by nonstandard Lagrangians except that one could also assign a standard Lagrangian to the Duffing oscillator. We used the second approach to find indirect analytic (Lagrangian) representation for three velocity-dependent equations for (iv) Abraham-Lorentz oscillator, (v) Lorentz oscillator and (vi) Van der Pol oscillator. For each of the dynamical systems from (i)-(vi) we calculated the result for Jacobi integral and thereby provided a method to obtain the Hamiltonian function without taking recourse to the use of the so-called Legendre transformation.

Bit threads are curves in holographic spacetimes that manifest boundary entanglement, and are represented mathematically by continuum analogues of network flows or multiflows. Subject to a density bound, the maximum number of threads connecting a boundary region to its complement computes the Ryu-Takayanagi entropy. When considering several regions at the same time, for example in proving entropy inequalities, there are various inequivalent density bounds that can be imposed. We investigate for which choices of bound a given set of boundary regions can be "locked", in other words can have their entropies computed by a single thread configuration. We show that under the most stringent bound, which requires the threads to be locally parallel, non-crossing regions can in general be locked, but crossing regions cannot, where two regions are said to cross if they partially overlap and do not cover the entire boundary. We also show that, under a certain less stringent density bound, a crossing pair can be locked, and conjecture that any set of regions not containing a pairwise crossing triple can be locked, analogously to the situation for networks.