New articles on Computer Science


[1] 2404.09996

Biomimicry in Radiation Therapy: Optimizing Patient Scheduling for Improved Treatment Outcomes

In the realm of medical science, the pursuit of enhancing treatment efficacy and patient outcomes continues to drive innovation. This study delves into the integration of biomimicry principles within the domain of Radiation Therapy (RT) to optimize patient scheduling, ultimately aiming to augment treatment results. RT stands as a vital medical technique for eradicating cancer cells and diminishing tumor sizes. Yet, the manual scheduling of patients for RT proves both laborious and intricate. In this research, the focus is on automating patient scheduling for RT through the application of optimization methodologies. Three bio-inspired algorithms are employed for optimization to tackle the complex online stochastic scheduling problem. These algorithms include the Genetic Algorithm (GA), Firefly Optimization (FFO), and Wolf Optimization (WO). These algorithms are harnessed to address the intricate challenges of online stochastic scheduling. Through rigorous evaluation, involving the scrutiny of convergence time, runtime, and objective values, the comparative performance of these algorithms is determined. The results of this study unveil the effectiveness of the applied bio-inspired algorithms in optimizing patient scheduling for RT. Among the algorithms examined, WO emerges as the frontrunner, consistently delivering superior outcomes across various evaluation criteria. The optimization approach showcased in this study holds the potential to streamline processes, reduce manual intervention, and ultimately improve treatment outcomes for patients undergoing RT.


[2] 2404.09997

An Efficient Evolutionary Algorithm for Diversified Top-k (Weight) Clique Search Problems

In many real-world problems and applications, finding only a single element, even though the best, among all possible candidates, cannot fully meet the requirements. We may wish to have a collection where each individual is not only outstanding but also distinctive. Diversified Top-k (DTk) problems are a kind of combinatorial optimization problem for finding such a promising collection of multiple sub-structures, such as subgraphs like cliques and social communities. In this paper, we address two representative and practical DTk problems, DTk Clique search (DTkC) and DTk Weight Clique search (DTkWC), and propose an efficient algorithm called Diversified Top-k Evolutionary AlgorithM (DiverTEAM) for these two problems. DiverTEAM consists of a local search algorithm, which focuses on generating high-quality and diverse individuals and sub-structures, and a genetic algorithm that makes individuals work as a team and converge to (near-)optima efficiently. Extensive experiments show that DiverTEAM exhibits an excellent and robust performance across various benchmarks of DTkC and DTkWC.


[3] 2404.10002

The Ballmer Peak: An Empirical Search

The concept of a 'Ballmer Peak' was first proposed in 2007, postulating that there exists a very specific blood alcohol content which confers superhuman programming ability. More generally, there is a commonly held belief among software engineers that coding is easier and more productive after a few drinks. Using the industry standard for assessment of coding ability, we conducted a search for such a peak and more generally investigated the effect of different amounts of alcohol on performance. We conclusively refute the existence of a specific peak with large magnitude, but with p < 0.001 find that there was a significant positive effect to a low amount of alcohol - slightly less than two drinks - on programming ability.


[4] 2404.10004

A Strategy Transfer and Decision Support Approach for Epidemic Control in Experience Shortage Scenarios

Epidemic outbreaks can cause critical health concerns and severe global economic crises. For countries or regions with new infectious disease outbreaks, it is essential to generate preventive strategies by learning lessons from others with similar risk profiles. A Strategy Transfer and Decision Support Approach (STDSA) is proposed based on the profile similarity evaluation. There are four steps in this method: (1) The similarity evaluation indicators are determined from three dimensions, i.e., the Basis of National Epidemic Prevention & Control, Social Resilience, and Infection Situation. (2) The data related to the indicators are collected and preprocessed. (3) The first round of screening on the preprocessed dataset is conducted through an improved collaborative filtering algorithm to calculate the preliminary similarity result from the perspective of the infection situation. (4) Finally, the K-Means model is used for the second round of screening to obtain the final similarity values. The approach will be applied to decision-making support in the context of COVID-19. Our results demonstrate that the recommendations generated by the STDSA model are more accurate and aligned better with the actual situation than those produced by pure K-means models. This study will provide new insights into preventing and controlling epidemics in regions that lack experience.


[5] 2404.10012

Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security

In recent years, networked IoT systems have revo- lutionized connectivity, portability, and functionality, offering a myriad of advantages. However, these systems are increasingly targeted by adversaries due to inherent security vulnerabilities and limited computational and storage resources. Malicious applications, commonly known as malware, pose a significant threat to IoT devices and networks. While numerous malware detection techniques have been proposed, existing approaches often overlook the resource constraints inherent in IoT environ- ments, assuming abundant resources for detection tasks. This oversight is compounded by ongoing workloads such as sens- ing and on-device computations, further diminishing available resources for malware detection. To address these challenges, we present a novel resource- and workload-aware malware detection framework integrated with distributed computing for IoT networks. Our approach begins by analyzing available resources for malware detection using a lightweight regression model. Depending on resource availability, ongoing workload executions, and communication costs, the malware detection task is dynamically allocated either on-device or offloaded to neighboring IoT nodes with sufficient resources. To safeguard data integrity and user privacy, rather than transferring the entire malware detection task, the classifier is partitioned and distributed across multiple nodes, and subsequently integrated at the parent node for comprehensive malware detection. Experimental analysis demonstrates the efficacy of our proposed technique, achieving a remarkable speed-up of 9.8x compared to on-device inference, while maintaining a high malware detection accuracy of 96.7%.


[6] 2404.10014

A biologically inspired computational trust model for open multi-agent systems which is resilient to trustor population changes

Current trust and reputation models continue to have significant limitations, such as the inability to deal with agents constantly entering or exiting open multi-agent systems (open MAS), as well as continuously changing behaviors. Our study is based on CA, a previously proposed decentralized computational trust model from the trustee's point of view, inspired by synaptic plasticity and the formation of assemblies in the human brain. It is designed to meet the requirements of highly dynamic and open MAS, and its main difference with most conventional trust and reputation models is that the trustor does not select a trustee to delegate a task; instead, the trustee determines whether it is qualified to successfully execute it. We ran a series of simulations to compare CA model to FIRE, a well-established, decentralized trust and reputation model for open MAS under conditions of continuous trustee and trustor population replacement, as well as continuous change of trustees' abilities to perform tasks. The main finding is that FIRE is superior to changes in the trustee population, whereas CA is resilient to the trustor population changes. When the trustees switch performance profiles FIRE clearly outperforms despite the fact that both models' performances are significantly impacted by this environmental change. Findings lead us to conclude that learning to use the appropriate trust model, according to the dynamic conditions in effect could maximize the trustor's benefits.


[7] 2404.10018

A Linear MPC with Control Barrier Functions for Differential Drive Robots

The need for fully autonomous mobile robots has surged over the past decade, with the imperative of ensuring safe navigation in a dynamic setting emerging as a primary challenge impeding advancements in this domain. In this paper, a Safety Critical Model Predictive Control based on Dynamic Feedback Linearization tailored to the application of differential drive robots with two wheels is proposed to generate control signals that result in obstacle-free paths. A barrier function introduces a safety constraint to the optimization problem of the Model Predictive Control (MPC) to prevent collisions. Due to the intrinsic nonlinearities of the differential drive robots, computational complexity while implementing a Nonlinear Model Predictive Control (NMPC) arises. To facilitate the real-time implementation of the optimization problem and to accommodate the underactuated nature of the robot, a combination of Linear Model Predictive Control (LMPC) and Dynamic Feedback Linearization (DFL) is proposed. The MPC problem is formulated on a linear equivalent model of the differential drive robot rendered by the DFL controller. The analysis of the closed-loop stability and recursive feasibility of the proposed control design is discussed. Numerical experiments illustrate the robustness and effectiveness of the proposed control synthesis in avoiding obstacles with respect to the benchmark of using Euclidean distance constraints. Keywords: Model Predictive Control, MPC, Autonomous Ground Vehicles, Nonlinearity, Dynamic Feedback Linearization, Optimal Control, Differential Robots.


[8] 2404.10021

Monitoring Based Fatigue Damage Prognosis of Wind Turbine Composite Blades under Uncertain Wind Loads

Lifecycle assessment of wind turbines is essential to improve their design and to optimum maintenance plans for preventing failures during the design life. A critical element of wind turbines is the composite blade due to uncertain cyclic wind loads with relatively high frequency and amplitude in offshore environments. It is critical to detect the wind fatigue damage evolution in composite blades before they fail catastrophically and destroy the entire wind turbines. This study presents a methodology for analysing the fatigue failure probability of a wind turbine composite blade by using monitoring stochastic deterioration modelling. On the basis of 5 minutes mean wind speed measurements, the internal stresses can be accurately obtained from finite element analysis, and failure probabilities are predicted by stochastic gamma process fatigue damage model in design service life. A numerical example of a wind turbine composite blade is investigated to show the applicability of the proposed model. The results show that the stochastic fatigue damage model can give reliable results for time-dependent reliability analysis for composite blades of wind turbines.


[9] 2404.10022

COBRAPRO: A MATLAB toolbox for Physics-based Battery Modeling and Co-simulation Parameter Optimization

COBRAPRO is a new open-source physics-based battery modeling software with the capability to conduct closed-loop parameter optimization using experimental data. Physics-based battery models require systematic parameter calibration to accurately predict battery behavior across different usage scenarios. While parameter calibration is essential to predict the dynamic behavior of batteries, many existing open-source DFN tools lack parameter identification features. COBRAPRO addresses this gap by featuring an embedded parameter optimization routines that optimizes the model parameters by minimizing the error between the simulated and experimentally observed current-voltage data. With COBRAPRO, users can non-invasively identify unknown battery model parameters for any given battery chemistry.


[10] 2404.10023

Kernelization Algorithms for the Eigenvalue Deletion Problems

Given a graph $G=(V,E)$ and an integer $k\in \mathbb{N}$, we study {\sc 2-Eigenvalue Vertex Deletion} (2-EVD), where the goal is to remove at most $k$ vertices such that the adjacency matrix of the resulting graph has at most 2 eigenvalues. It is known that the adjacency matrix of a graph has at most 2 eigenvalues if and only if the graph is a collection of equal sized cliques. So {\sc 2-Eigenvalue Vertex Deletion} amounts to removing a set of at most $k$ vertices such that the resulting graph is a collection of equal sized cliques. The {\sc 2-Eigenvalue Edge Editing} (2-EEE), {\sc 2-Eigenvalue Edge Deletion} (2-EED) and {\sc 2-Eigenvalue Edge Addition} (2-EEA) problems are defined analogously. We provide a kernel of size $\mathcal{O}(k^{3})$ for {\sc $2$-EVD}. For the problems {\sc $2$-EEE} and {\sc $2$-EED}, we provide kernels of size $\mathcal{O}(k^{2})$. Finally, we provide a linear kernel of size $6k$ for {\sc $2$-EEA}. We thereby resolve three open questions listed by Misra et al. (ISAAC 2023) concerning the complexity of these problems parameterized by the solution size.


[11] 2404.10024

ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs

Climate and weather prediction traditionally relies on complex numerical simulations of atmospheric physics. Deep learning approaches, such as transformers, have recently challenged the simulation paradigm with complex network forecasts. However, they often act as data-driven black-box models that neglect the underlying physics and lack uncertainty quantification. We address these limitations with ClimODE, a spatiotemporal continuous-time process that implements a key principle of advection from statistical mechanics, namely, weather changes due to a spatial movement of quantities over time. ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow, which also enables estimating the uncertainty in predictions. Our approach outperforms existing data-driven methods in global and regional forecasting with an order of magnitude smaller parameterization, establishing a new state of the art.


[12] 2404.10032

Detecting AI Generated Text Based on NLP and Machine Learning Approaches

Recent advances in natural language processing (NLP) may enable artificial intelligence (AI) models to generate writing that is identical to human written form in the future. This might have profound ethical, legal, and social repercussions. This study aims to address this problem by offering an accurate AI detector model that can differentiate between electronically produced text and human-written text. Our approach includes machine learning methods such as XGB Classifier, SVM, BERT architecture deep learning models. Furthermore, our results show that the BERT performs better than previous models in identifying information generated by AI from information provided by humans. Provide a comprehensive analysis of the current state of AI-generated text identification in our assessment of pertinent studies. Our testing yielded positive findings, showing that our strategy is successful, with the BERT emerging as the most probable answer. We analyze the research's societal implications, highlighting the possible advantages for various industries while addressing sustainability issues pertaining to morality and the environment. The XGB classifier and SVM give 0.84 and 0.81 accuracy in this article, respectively. The greatest accuracy in this research is provided by the BERT model, which provides 0.93% accuracy.


[13] 2404.10034

Realistic Model Selection for Weakly Supervised Object Localization

Weakly Supervised Object Localization (WSOL) allows for training deep learning models for classification and localization, using only global class-level labels. The lack of bounding box (bbox) supervision during training represents a considerable challenge for hyper-parameter search and model selection. Earlier WSOL works implicitly observed localization performance over a test set which leads to biased performance evaluation. More recently, a better WSOL protocol has been proposed, where a validation set with bbox annotations is held out for model selection. Although it does not rely on the test set, this protocol is unrealistic since bboxes are not available in real-world applications, and when available, it is better to use them directly to fit model weights. Our initial empirical analysis shows that the localization performance of a model declines significantly when using only image-class labels for model selection (compared to using bounding-box annotations). This suggests that adding bounding-box labels is preferable for selecting the best model for localization. In this paper, we introduce a new WSOL validation protocol that provides a localization signal without the need for manual bbox annotations. In particular, we leverage noisy pseudo boxes from an off-the-shelf ROI proposal generator such as Selective-Search, CLIP, and RPN pretrained models for model selection. Our experimental results with several WSOL methods on ILSVRC and CUB-200-2011 datasets show that our noisy boxes allow selecting models with performance close to those selected using ground truth boxes, and better than models selected using only image-class labels.


[14] 2404.10054

AIGeN: An Adversarial Approach for Instruction Generation in VLN

In the last few years, the research interest in Vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previously unknown environment to reach a specified goal. Recent work in literature focuses on different ways to augment the available datasets of instructions for improving navigation performance by exploiting synthetic training data. In this work, we propose AIGeN, a novel architecture inspired by Generative Adversarial Networks (GANs) that produces meaningful and well-formed synthetic instructions to improve navigation agents' performance. The model is composed of a Transformer decoder (GPT-2) and a Transformer encoder (BERT). During the training phase, the decoder generates sentences for a sequence of images describing the agent's path to a particular point while the encoder discriminates between real and fake instructions. Experimentally, we evaluate the quality of the generated instructions and perform extensive ablation studies. Additionally, we generate synthetic instructions for 217K trajectories using AIGeN on Habitat-Matterport 3D Dataset (HM3D) and show an improvement in the performance of an off-the-shelf VLN method. The validation analysis of our proposal is conducted on REVERIE and R2R and highlights the promising aspects of our proposal, achieving state-of-the-art performance.


[15] 2404.10064

The Feasibility of Constrained Reinforcement Learning Algorithms: A Tutorial Study

Satisfying safety constraints is a priority concern when solving optimal control problems (OCPs). Due to the existence of infeasibility phenomenon, where a constraint-satisfying solution cannot be found, it is necessary to identify a feasible region before implementing a policy. Existing feasibility theories built for model predictive control (MPC) only consider the feasibility of optimal policy. However, reinforcement learning (RL), as another important control method, solves the optimal policy in an iterative manner, which comes with a series of non-optimal intermediate policies. Feasibility analysis of these non-optimal policies is also necessary for iteratively improving constraint satisfaction; but that is not available under existing MPC feasibility theories. This paper proposes a feasibility theory that applies to both MPC and RL by filling in the missing part of feasibility analysis for an arbitrary policy. The basis of our theory is to decouple policy solving and implementation into two temporal domains: virtual-time domain and real-time domain. This allows us to separately define initial and endless, state and policy feasibility, and their corresponding feasible regions. Based on these definitions, we analyze the containment relationships between different feasible regions, which enables us to describe the feasible region of an arbitrary policy. We further provide virtual-time constraint design rules along with a practical design tool called feasibility function that helps to achieve the maximum feasible region. We review most of existing constraint formulations and point out that they are essentially applications of feasibility functions in different forms. We demonstrate our feasibility theory by visualizing different feasible regions under both MPC and RL policies in an emergency braking control task.


[16] 2404.10065

Enhanced Low-Complexity Receiver Design for Short Block Transmission Systems

This paper presents a comprehensive analysis and performance enhancement of short block length channel detection incorporating training information. The current communication systems' short block length channel detection typically consists of least squares channel estimation followed by quasi-coherent detection. By investigating the receiver structure, specifically the estimator-correlator, we show that the non-coherent term, often disregarded in conventional detection metrics, results in significant losses in performance and sensitivity in typical operating regimes of 5G and 6G systems. A comparison with the fully non-coherent receiver in multi-antenna configurations reveals substantial losses in low spectral efficiency operating areas. Additionally, we demonstrate that by employing an adaptive DMRS-data power adjustment, it is possible to reduce the performance loss gap, which is amenable to a more sensitive quasi-coherent receiver. However, both of the aforementioned ML detection strategies can result in substantial computational complexity when processing long bit-length codes. We propose an approach to tackle this challenge by introducing the principle of block or segment coding using First-Order RM Codes, which is amenable to low-cost decoding through block-based fast Hadamard transforms. The Block-based FHT has demonstrated to be cost-efficient with regards to decoding time, as it evolves from quadric to quasi-linear complexity with a manageable decline in performance. Additionally, by incorporating an adaptive DMRS-data power adjustment technique, we are able to bridge/reduce the performance gap with respect to the conventional maximum likelihood receiver and attain high sensitivity, leading to a good trade-off between performance and complexity to efficiently handle small payloads.


[17] 2404.10071

Dynamic Complex-Frequency Control of Grid-Forming Converters

Complex droop control, alternatively known as dispatchable virtual oscillator control (dVOC), stands out for its unique capabilities in synchronization and voltage stabilization among existing control strategies for grid-forming converters. Complex droop control leverages the novel concept of ``complex frequency'', thereby establishing a coupled connection between active and reactive power inputs and frequency and rate-of-change-of voltage outputs. However, its reliance on static droop gains limits its ability to exhibit crucial dynamic response behaviors required in future power systems. To address this limitation, this paper introduces \textit{dynamic complex-frequency control}, upgrading static droop gains with dynamic transfer functions to enhance the richness and flexibility in dynamic responses for frequency and voltage control. Unlike existing approaches, the complex-frequency control framework treats frequency and voltage dynamics collectively, ensuring small-signal stability for frequency synchronization and voltage stabilization simultaneously. The control framework is validated through detailed numerical case studies on the IEEE nine-bus system, also showcasing its applicability in multi-converter setups.


[18] 2404.10072

Debunking Robot Rights Metaphysically, Ethically, and Legally

In this work we challenge arguments for robot rights on metaphysical, ethical and legal grounds. Metaphysically, we argue that machines are not the kinds of things that may be denied or granted rights. Building on theories of phenomenology and post-Cartesian approaches to cognitive science, we ground our position in the lived reality of actual humans in an increasingly ubiquitously connected, controlled, digitized, and surveilled society. Ethically, we argue that, given machines current and potential harms to the most marginalized in society, limits on (rather than rights for) machines should be at the centre of current AI ethics debate. From a legal perspective, the best analogy to robot rights is not human rights but corporate rights, a highly controversial concept whose most important effect has been the undermining of worker, consumer, and voter rights by advancing the power of capital to exercise outsized influence on politics and law. The idea of robot rights, we conclude, acts as a smoke screen, allowing theorists and futurists to fantasize about benevolently sentient machines with unalterable needs and desires protected by law. While such fantasies have motivated fascinating fiction and art, once they influence legal theory and practice articulating the scope of rights claims, they threaten to immunize from legal accountability the current AI and robotics that is fuelling surveillance capitalism, accelerating environmental destruction, and entrenching injustice and human suffering.


[19] 2404.10073

Explainable Light-Weight Deep Learning Pipeline for Improved Drought Stres

Early identification of drought stress in crops is vital for implementing effective mitigation measures and reducing yield loss. Non-invasive imaging techniques hold immense potential by capturing subtle physiological changes in plants under water deficit. Sensor based imaging data serves as a rich source of information for machine learning and deep learning algorithms, facilitating further analysis aimed at identifying drought stress. While these approaches yield favorable results, real-time field applications requires algorithms specifically designed for the complexities of natural agricultural conditions. Our work proposes a novel deep learning framework for classifying drought stress in potato crops captured by UAVs in natural settings. The novelty lies in the synergistic combination of a pretrained network with carefully designed custom layers. This architecture leverages feature extraction capabilities of the pre-trained network while the custom layers enable targeted dimensionality reduction and enhanced regularization, ultimately leading to improved performance. A key innovation of our work involves the integration of Gradient-Class Activation Mapping (Grad-CAM), an explainability technique. Grad-CAM sheds light on the internal workings of the deep learning model, typically referred to as a black box. By visualizing the focus areas of the model within the images, Grad-CAM fosters interpretability and builds trust in the decision-making process of the model. Our proposed framework achieves superior performance, particularly with the DenseNet121 pre-trained network, reaching a precision of 98% to identify the stressed class with an overall accuracy of 90%. Comparative analysis of existing state-of-the-art object detection algorithms reveals the superiority of our approach in significantly higher precision and accuracy.


[20] 2404.10076

Field-Programmable Gate Array Architecture for Deep Learning: Survey & Future Directions

Deep learning (DL) is becoming the cornerstone of numerous applications both in datacenters and at the edge. Specialized hardware is often necessary to meet the performance requirements of state-of-the-art DL models, but the rapid pace of change in DL models and the wide variety of systems integrating DL make it impossible to create custom computer chips for all but the largest markets. Field-programmable gate arrays (FPGAs) present a unique blend of reprogrammability and direct hardware execution that make them suitable for accelerating DL inference. They offer the ability to customize processing pipelines and memory hierarchies to achieve lower latency and higher energy efficiency compared to general-purpose CPUs and GPUs, at a fraction of the development time and cost of custom chips. Their diverse high-speed IOs also enable directly interfacing the FPGA to the network and/or a variety of external sensors, making them suitable for both datacenter and edge use cases. As DL has become an ever more important workload, FPGA architectures are evolving to enable higher DL performance. In this article, we survey both academic and industrial FPGA architecture enhancements for DL. First, we give a brief introduction on the basics of FPGA architecture and how its components lead to strengths and weaknesses for DL applications. Next, we discuss different styles of DL inference accelerators on FPGA, ranging from model-specific dataflow styles to software-programmable overlay styles. We survey DL-specific enhancements to traditional FPGA building blocks such as logic blocks, arithmetic circuitry, and on-chip memories, as well as new in-fabric DL-specialized blocks for accelerating tensor computations. Finally, we discuss hybrid devices that combine processors and coarse-grained accelerator blocks with FPGA-like interconnect and networks-on-chip, and highlight promising future research directions.


[21] 2404.10078

Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets

This study addresses the evolving challenges in urban traffic monitoring detection systems based on fisheye lens cameras by proposing a framework that improves the efficacy and accuracy of these systems. In the context of urban infrastructure and transportation management, advanced traffic monitoring systems have become critical for managing the complexities of urbanization and increasing vehicle density. Traditional monitoring methods, which rely on static cameras with narrow fields of view, are ineffective in dynamic urban environments, necessitating the installation of multiple cameras, which raises costs. Fisheye lenses, which were recently introduced, provide wide and omnidirectional coverage in a single frame, making them a transformative solution. However, issues such as distorted views and blurriness arise, preventing accurate object detection on these images. Motivated by these challenges, this study proposes a novel approach that combines a ransformer-based image enhancement framework and ensemble learning technique to address these challenges and improve traffic monitoring accuracy, making significant contributions to the future of intelligent traffic management systems. Our proposed methodological framework won 5th place in the 2024 AI City Challenge, Track 4, with an F1 score of 0.5965 on experimental validation data. The experimental results demonstrate the effectiveness, efficiency, and robustness of the proposed system. Our code is publicly available at https://github.com/daitranskku/AIC2024-TRACK4-TEAM15.


[22] 2404.10085

The Average Spectrum Norm and Near-Optimal Tensor Completion

We introduce a new tensor norm, the average spectrum norm, to study sample complexity of tensor completion problems based on the canonical polyadic decomposition (CPD). Properties of the average spectrum norm and its dual norm are investigated, demonstrating their utility for low-rank tensor recovery analysis. Our novel approach significantly reduces the provable sample rate for CPD-based noisy tensor completion, providing the best bounds to date on the number of observed noisy entries required to produce an arbitrarily accurate estimate of an underlying mean value tensor. Under Poisson and Bernoulli multivariate distributions, we show that an $N$-way CPD rank-$R$ parametric tensor $\boldsymbol{\mathscr{M}}\in\mathbb{R}^{I\times \cdots\times I}$ generating noisy observations can be approximated by large likelihood estimators from $\mathcal{O}(IR^2\log^{N+2}(I))$ revealed entries. Furthermore, under nonnegative and orthogonal versions of the CPD we improve the result to depend linearly on the rank, achieving the near-optimal rate $\mathcal{O}(IR\log^{N+2}(I))$.


[23] 2404.10086

Empowering Enterprise Development by Building and Deploying Admin Dashboard using Refine Framework

This project proposes the development of an advanced admin dashboard tailored for enterprise development, leveraging the Refine framework, Ant Design, and GraphQL API. It promises heightened operational efficiency by optimizing backend integration and employing GraphQL's dynamic data subscription for real-time insights. With an emphasis on modern aesthetics and user-centric design, it ensures seamless data visualization and management. Key functionalities encompass user administration, data visualization, CRUD operations, real-time notifications, and seamless integration with existing systems. The deliverable includes a deployable dashboard alongside comprehensive documentation, aiming to empower enterprise teams with a cutting-edge, data-driven solution.


[24] 2404.10087

cuFastTuckerPlus: A Stochastic Parallel Sparse FastTucker Decomposition Using GPU Tensor Cores

Sparse tensors are prevalent in real-world applications, often characterized by their large-scale, high-order, and high-dimensional nature. Directly handling raw tensors is impractical due to the significant memory and computational overhead involved. The current mainstream approach involves compressing or decomposing the original tensor. One popular tensor decomposition algorithm is the Tucker decomposition. However, existing state-of-the-art algorithms for large-scale Tucker decomposition typically relax the original optimization problem into multiple convex optimization problems to ensure polynomial convergence. Unfortunately, these algorithms tend to converge slowly. In contrast, tensor decomposition exhibits a simple optimization landscape, making local search algorithms capable of converging to a global (approximate) optimum much faster. In this paper, we propose the FastTuckerPlus algorithm, which decomposes the original optimization problem into two non-convex optimization problems and solves them alternately using the Stochastic Gradient Descent method. Furthermore, we introduce cuFastTuckerPlus, a fine-grained parallel algorithm designed for GPU platforms, leveraging the performance of tensor cores. This algorithm minimizes memory access overhead and computational costs, surpassing the state-of-the-art algorithms. Our experimental results demonstrate that our method achieves a speedup of $3X$ to $5X$ compared to state-of-the-art algorithms.


[25] 2404.10089

CFlow: Supporting Semantic Flow Analysis of Students' Code in Programming Problems at Scale

The high demand for computer science education has led to high enrollments, with thousands of students in many introductory courses. In such large courses, it can be overwhelmingly difficult for instructors to understand class-wide problem-solving patterns or issues, which is crucial for improving instruction and addressing important pedagogical challenges. In this paper, we propose a technique and system, CFlow, for creating understandable and navigable representations of code at scale. CFlow is able to represent thousands of code samples in a visualization that resembles a single code sample. CFlow creates scalable code representations by (1) clustering individual statements with similar semantic purposes, (2) presenting clustered statements in a way that maintains semantic relationships between statements, (3) representing the correctness of different variations as a histogram, and (4) allowing users to navigate through solutions interactively using semantic filters. With a multi-level view design, users can navigate high-level patterns, and low-level implementations. This is in contrast to prior tools that either limit their focus on isolated statements (and thus discard the surrounding context of those statements) or cluster entire code samples (which can lead to large numbers of clusters -- for example, if there are n code features and m implementations of each, there can be m^n clusters). We evaluated the effectiveness of CFlow with a comparison study, found participants using CFlow spent only half the time identifying mistakes and recalled twice as many desired patterns from over 6,000 submissions.


[26] 2404.10091

Empowering Federated Learning with Implicit Gossiping: Mitigating Connection Unreliability Amidst Unknown and Arbitrary Dynamics

Federated learning is a popular distributed learning approach for training a machine learning model without disclosing raw data. It consists of a parameter server and a possibly large collection of clients (e.g., in cross-device federated learning) that may operate in congested and changing environments. In this paper, we study federated learning in the presence of stochastic and dynamic communication failures wherein the uplink between the parameter server and client $i$ is on with unknown probability $p_i^t$ in round $t$. Furthermore, we allow the dynamics of $p_i^t$ to be arbitrary. We first demonstrate that when the $p_i^t$'s vary across clients, the most widely adopted federated learning algorithm, Federated Average (FedAvg), experiences significant bias. To address this observation, we propose Federated Postponed Broadcast (FedPBC), a simple variant of FedAvg. FedPBC differs from FedAvg in that the parameter server postpones broadcasting the global model till the end of each round. Despite uplink failures, we show that FedPBC converges to a stationary point of the original non-convex objective. On the technical front, postponing the global model broadcasts enables implicit gossiping among the clients with active links in round $t$. Despite the time-varying nature of $p_i^t$, we can bound the perturbation of the global model dynamics using techniques to control gossip-type information mixing errors. Extensive experiments have been conducted on real-world datasets over diversified unreliable uplink patterns to corroborate our analysis.


[27] 2404.10092

Integration of Federated Learning and Blockchain in Healthcare: A Tutorial

Wearable devices and medical sensors revolutionize health monitoring, raising concerns about data privacy in ML for healthcare. This tutorial explores FL and BC integration, offering a secure and privacy-preserving approach to healthcare analytics. FL enables decentralized model training on local devices at healthcare institutions, keeping patient data localized. This facilitates collaborative model development without compromising privacy. However, FL introduces vulnerabilities. BC, with its tamper-proof ledger and smart contracts, provides a robust framework for secure collaborative learning in FL. After presenting a taxonomy for the various types of data used in ML in medical applications, and a concise review of ML techniques for healthcare use cases, this tutorial explores three integration architectures for balancing decentralization, scalability, and reliability in healthcare data. Furthermore, it investigates how BCFL enhances data security and collaboration in disease prediction, medical image analysis, patient monitoring, and drug discovery. By providing a tutorial on FL, blockchain, and their integration, along with a review of BCFL applications, this paper serves as a valuable resource for researchers and practitioners seeking to leverage these technologies for secure and privacy-preserving healthcare ML. It aims to accelerate advancements in secure and collaborative healthcare analytics, ultimately improving patient outcomes.


[28] 2404.10094

Towards DNA-Encoded Library Generation with GFlowNets

DNA-encoded libraries (DELs) are a powerful approach for rapidly screening large numbers of diverse compounds. One of the key challenges in using DELs is library design, which involves choosing the building blocks that will be combinatorially combined to produce the final library. In this paper we consider the task of protein-protein interaction (PPI) biased DEL design. To this end, we evaluate several machine learning algorithms on the PPI modulation task and use them as a reward for the proposed GFlowNet-based generative approach. We additionally investigate the possibility of using structural information about building blocks to design a hierarchical action space for the GFlowNet. The observed results indicate that GFlowNets are a promising approach for generating diverse combinatorial library candidates.


[29] 2404.10095

Synthetic Census Data Generation via Multidimensional Multiset Sum

The US Decennial Census provides valuable data for both research and policy purposes. Census data are subject to a variety of disclosure avoidance techniques prior to release in order to preserve respondent confidentiality. While many are interested in studying the impacts of disclosure avoidance methods on downstream analyses, particularly with the introduction of differential privacy in the 2020 Decennial Census, these efforts are limited by a critical lack of data: The underlying "microdata," which serve as necessary input to disclosure avoidance methods, are kept confidential. In this work, we aim to address this limitation by providing tools to generate synthetic microdata solely from published Census statistics, which can then be used as input to any number of disclosure avoidance algorithms for the sake of evaluation and carrying out comparisons. We define a principled distribution over microdata given published Census statistics and design algorithms to sample from this distribution. We formulate synthetic data generation in this context as a knapsack-style combinatorial optimization problem and develop novel algorithms for this setting. While the problem we study is provably hard, we show empirically that our methods work well in practice, and we offer theoretical arguments to explain our performance. Finally, we verify that the data we produce are "close" to the desired ground truth.


[30] 2404.10096

Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD)

Despite significant advancements in sequence prediction, current methods lack attention-based mechanisms for next-frame prediction. Our work introduces VAPAAD or Vision Augmentation Prediction Autoencoder with Attention Design, an innovative model that enhances predictive performance by integrating attention designs, allowing for nuanced understanding and handling of temporal dynamics in video sequences. We demonstrate using the famous Moving MNIST dataset the robust performance of the proposed model and potential applicability of such design in the literature.


[31] 2404.10097

LegalPro-BERT: Classification of Legal Provisions by fine-tuning BERT Large Language Model

A contract is a type of legal document commonly used in organizations. Contract review is an integral and repetitive process to avoid business risk and liability. Contract analysis requires the identification and classification of key provisions and paragraphs within an agreement. Identification and validation of contract clauses can be a time-consuming and challenging task demanding the services of trained and expensive lawyers, paralegals or other legal assistants. Classification of legal provisions in contracts using artificial intelligence and natural language processing is complex due to the requirement of domain-specialized legal language for model training and the scarcity of sufficient labeled data in the legal domain. Using general-purpose models is not effective in this context due to the use of specialized legal vocabulary in contracts which may not be recognized by a general model. To address this problem, we propose the use of a pre-trained large language model which is subsequently calibrated on legal taxonomy. We propose LegalPro-BERT, a BERT transformer architecture model that we fine-tune to efficiently handle classification task for legal provisions. We conducted experiments to measure and compare metrics with current benchmark results. We found that LegalPro-BERT outperforms the previous benchmark used for comparison in this research.


[32] 2404.10100

LLM-based Test-driven Interactive Code Generation: User Study and Empirical Evaluation

Large language models (LLMs) have shown great potential in automating significant aspects of coding by producing natural code from informal natural language (NL) intent. However, given NL is informal, it does not lend easily to checking that the generated code correctly satisfies the user intent. In this paper, we propose a novel interactive workflow TiCoder for guided intent clarification (i.e., partial formalization) through tests to support the generation of more accurate code suggestions. Through a mixed methods user study with 15 programmers, we present an empirical evaluation of the effectiveness of the workflow to improve code generation accuracy. We find that participants using the proposed workflow are significantly more likely to correctly evaluate AI generated code, and report significantly less task-induced cognitive load. Furthermore, we test the potential of the workflow at scale with four different state-of-the-art LLMs on two python datasets, using an idealized proxy for a user feedback. We observe an average absolute improvement of 38.43% in the pass@1 code generation accuracy for both datasets and across all LLMs within 5 user interactions, in addition to the automatic generation of accompanying unit tests.


[33] 2404.10102

Chinchilla Scaling: A replication attempt

Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al.


[34] 2404.10107

Design and Implementation of a Java-Based Client-Server Application

This report details the development of a networked distributed system named Group Communication System (GCS), implemented in Java to exemplify socket programming and communication protocols. GCS facilitates group-based client-server communication through a command-line interface (CLI), enabling seamless group interaction and management. The project emphasizes fault tolerance, design patterns, and version control system (VCS) utilization. The report offers insights into system architecture, implementation, and practical considerations, providing a comprehensive understanding of distributed systems' technical background and operational aspects.


[35] 2404.10108

GeoAI Reproducibility and Replicability: a computational and spatial perspective

GeoAI has emerged as an exciting interdisciplinary research area that combines spatial theories and data with cutting-edge AI models to address geospatial problems in a novel, data-driven manner. While GeoAI research has flourished in the GIScience literature, its reproducibility and replicability (R&R), fundamental principles that determine the reusability, reliability, and scientific rigor of research findings, have rarely been discussed. This paper aims to provide an in-depth analysis of this topic from both computational and spatial perspectives. We first categorize the major goals for reproducing GeoAI research, namely, validation (repeatability), learning and adapting the method for solving a similar or new problem (reproducibility), and examining the generalizability of the research findings (replicability). Each of these goals requires different levels of understanding of GeoAI, as well as different methods to ensure its success. We then discuss the factors that may cause the lack of R&R in GeoAI research, with an emphasis on (1) the selection and use of training data; (2) the uncertainty that resides in the GeoAI model design, training, deployment, and inference processes; and more importantly (3) the inherent spatial heterogeneity of geospatial data and processes. We use a deep learning-based image analysis task as an example to demonstrate the results' uncertainty and spatial variance caused by different factors. The findings reiterate the importance of knowledge sharing, as well as the generation of a "replicability map" that incorporates spatial autocorrelation and spatial heterogeneity into consideration in quantifying the spatial replicability of GeoAI research.


[36] 2404.10110

Communication-Efficient Hybrid Federated Learning for E-health with Horizontal and Vertical Data Partitioning

E-health allows smart devices and medical institutions to collaboratively collect patients' data, which is trained by Artificial Intelligence (AI) technologies to help doctors make diagnosis. By allowing multiple devices to train models collaboratively, federated learning is a promising solution to address the communication and privacy issues in e-health. However, applying federated learning in e-health faces many challenges. First, medical data is both horizontally and vertically partitioned. Since single Horizontal Federated Learning (HFL) or Vertical Federated Learning (VFL) techniques cannot deal with both types of data partitioning, directly applying them may consume excessive communication cost due to transmitting a part of raw data when requiring high modeling accuracy. Second, a naive combination of HFL and VFL has limitations including low training efficiency, unsound convergence analysis, and lack of parameter tuning strategies. In this paper, we provide a thorough study on an effective integration of HFL and VFL, to achieve communication efficiency and overcome the above limitations when data is both horizontally and vertically partitioned. Specifically, we propose a hybrid federated learning framework with one intermediate result exchange and two aggregation phases. Based on this framework, we develop a Hybrid Stochastic Gradient Descent (HSGD) algorithm to train models. Then, we theoretically analyze the convergence upper bound of the proposed algorithm. Using the convergence results, we design adaptive strategies to adjust the training parameters and shrink the size of transmitted data. Experimental results validate that the proposed HSGD algorithm can achieve the desired accuracy while reducing communication cost, and they also verify the effectiveness of the adaptive strategies.


[37] 2404.10112

PRODIS - a speech database and a phoneme-based language model for the study of predictability effects in Polish

We present a speech database and a phoneme-level language model of Polish. The database and model are designed for the analysis of prosodic and discourse factors and their impact on acoustic parameters in interaction with predictability effects. The database is also the first large, publicly available Polish speech corpus of excellent acoustic quality that can be used for phonetic analysis and training of multi-speaker speech technology systems. The speech in the database is processed in a pipeline that achieves a 90% degree of automation. It incorporates state-of-the-art, freely available tools enabling database expansion or adaptation to additional languages.


[38] 2404.10115

Multiple-Input Fourier Neural Operator (MIFNO) for source-dependent 3D elastodynamics

Numerical simulations are essential tools to evaluate the solution of the wave equation in complex settings, such as three-dimensional (3D) domains with heterogeneous properties. However, their application is limited by high computational costs and existing surrogate models lack the flexibility of numerical solvers. This work introduces the Multiple-Input Fourier Neural Operator (MIFNO) to deal with structured 3D fields representing material properties as well as vectors describing the source characteristics. The MIFNO is applied to the problem of elastic wave propagation in the Earth's crust. It is trained on the HEMEW^S-3D database containing 30000 earthquake simulations in different heterogeneous domains with random source positions and orientations. Outputs are time- and space-dependent surface wavefields. The MIFNO predictions are assessed as good to excellent based on Goodness-Of-Fit (GOF) criteria. Wave arrival times and wave fronts' propagation are very accurate since 80% of the predictions have an excellent phase GOF. The fluctuations amplitudes are good for 87% of the predictions. The envelope score is hindered by the small-scale fluctuations that are challenging to capture due to the complex physical phenomena associated with high-frequency features. Nevertheless, the MIFNO can generalize to sources located outside the training domain and it shows good generalization ability to a real complex overthrust geology. When focusing on a region of interest, transfer learning improves the accuracy with limited additional costs, since GOF scores improved by more than 1 GOF unit with only 500 additional specific samples. The MIFNO is the first surrogate model offering the flexibility of an earthquake simulator with varying sources and material properties. Its good accuracy and massive speed-up offer new perspectives to replace numerical simulations in many-query problems.


[39] 2404.10117

Random sampling and polynomial-free interpolation by Generalized MultiQuadrics

We prove that interpolation matrices for Generalized MultiQuadrics (GMQ) of order greater than one are almost surely nonsingular without polynomial addition, in any dimension and with any continuous random distribution of sampling points. We also include a new class of generalized MultiQuadrics recently proposed by Buhmann and Ortmann.


[40] 2404.10123

Numerical methods for solving the linearized model of a hinged-free reduced plate arising in flow structure interactions

The problem of partially hinged and partially free rectangular plate that aims to represent a suspension bridge subject to some external forces (for example the wind) is considered in order to model and simulate the unstable end behavior. Such a problem can be modeled by a plate evolution equation, which is nonlinear with a nonlocal stretching effect in the spanwise direction. The external forces are periodic in time and cause the vortex shedding on the structure (on the surface of the plate) and thus it may cause damage to the material. Numerical study of the behavior of steady state solutions for different values of the force velocity are provided with two finite element methods of different type.


[41] 2404.10124

Epistemic Uncertainty Quantification For Pre-trained Neural Network

Epistemic uncertainty quantification (UQ) identifies where models lack knowledge. Traditional UQ methods, often based on Bayesian neural networks, are not suitable for pre-trained non-Bayesian models. Our study addresses quantifying epistemic uncertainty for any pre-trained model, which does not need the original training data or model modifications and can ensure broad applicability regardless of network architectures or training techniques. Specifically, we propose a gradient-based approach to assess epistemic uncertainty, analyzing the gradients of outputs relative to model parameters, and thereby indicating necessary model adjustments to accurately represent the inputs. We first explore theoretical guarantees of gradient-based methods for epistemic UQ, questioning the view that this uncertainty is only calculable through differences between multiple models. We further improve gradient-driven UQ by using class-specific weights for integrating gradients and emphasizing distinct contributions from neural network layers. Additionally, we enhance UQ accuracy by combining gradient and perturbation methods to refine the gradients. We evaluate our approach on out-of-distribution detection, uncertainty calibration, and active learning, demonstrating its superiority over current state-of-the-art UQ methods for pre-trained models.


[42] 2404.10130

NOISe: Nuclei-Aware Osteoclast Instance Segmentation for Mouse-to-Human Domain Transfer

Osteoclast cell image analysis plays a key role in osteoporosis research, but it typically involves extensive manual image processing and hand annotations by a trained expert. In the last few years, a handful of machine learning approaches for osteoclast image analysis have been developed, but none have addressed the full instance segmentation task required to produce the same output as that of the human expert led process. Furthermore, none of the prior, fully automated algorithms have publicly available code, pretrained models, or annotated datasets, inhibiting reproduction and extension of their work. We present a new dataset with ~2*10^5 expert annotated mouse osteoclast masks, together with a deep learning instance segmentation method which works for both in vitro mouse osteoclast cells on plastic tissue culture plates and human osteoclast cells on bone chips. To our knowledge, this is the first work to automate the full osteoclast instance segmentation task. Our method achieves a performance of 0.82 mAP_0.5 (mean average precision at intersection-over-union threshold of 0.5) in cross validation for mouse osteoclasts. We present a novel nuclei-aware osteoclast instance segmentation training strategy (NOISe) based on the unique biology of osteoclasts, to improve the model's generalizability and boost the mAP_0.5 from 0.60 to 0.82 on human osteoclasts. We publish our annotated mouse osteoclast image dataset, instance segmentation models, and code at github.com/michaelwwan/noise to enable reproducibility and to provide a public tool to accelerate osteoporosis research.


[43] 2404.10133

WB LUTs: Contrastive Learning for White Balancing Lookup Tables

Automatic white balancing (AWB), one of the first steps in an integrated signal processing (ISP) pipeline, aims to correct the color cast induced by the scene illuminant. An incorrect white balance (WB) setting or AWB failure can lead to an undesired blue or red tint in the rendered sRGB image. To address this, recent methods pose the post-capture WB correction problem as an image-to-image translation task and train deep neural networks to learn the necessary color adjustments at a lower resolution. These low resolution outputs are post-processed to generate high resolution WB corrected images, forming a bottleneck in the end-to-end run time. In this paper we present a 3D Lookup Table (LUT) based WB correction model called WB LUTs that can generate high resolution outputs in real time. We introduce a contrastive learning framework with a novel hard sample mining strategy, which improves the WB correction quality of baseline 3D LUTs by 25.5%. Experimental results demonstrate that the proposed WB LUTs perform competitively against state-of-the-art models on two benchmark datasets while being 300 times faster using 12.7 times less memory. Our model and code are available at https://github.com/skrmanne/3DLUT_sRGB_WB.


[44] 2404.10135

Using Long Short-term Memory (LSTM) to merge precipitation data over mountainous area in Sierra Nevada

Obtaining reliable precipitation estimation with high resolutions in time and space is of great importance to hydrological studies. However, accurately estimating precipitation is a challenging task over high mountainous complex terrain. The three widely used precipitation measurement approaches, namely rainfall gauge, precipitation radars, and satellite-based precipitation sensors, have their own pros and cons in producing reliable precipitation products over complex areas. One way to decrease the detection error probability and improve data reliability is precipitation data merging. With the rapid advancements in computational capabilities and the escalating volume and diversity of earth observational data, Deep Learning (DL) models have gained considerable attention in geoscience. In this study, a deep learning technique, namely Long Short-term Memory (LSTM), was employed to merge a radar-based and a satellite-based Global Precipitation Measurement (GPM) precipitation product Integrated Multi-Satellite Retrievals for GPM (IMERG) precipitation product at hourly scale. The merged results are compared with the widely used reanalysis precipitation product, Multi-Radar Multi-Sensor (MRMS), and assessed against gauge observational data from the California Data Exchange Center (CDEC). The findings indicated that the LSTM-based merged precipitation notably underestimated gauge observations and, at times, failed to provide meaningful estimates, showing predominantly near-zero values. Relying solely on individual Quantitative Precipitation Estimates (QPEs) without additional meteorological input proved insufficient for generating reliable merged QPE. However, the merged results effectively captured the temporal trends of the observations, outperforming MRMS in this aspect. This suggested that incorporating bias correction techniques could potentially enhance the accuracy of the merged product.


[45] 2404.10136

Language Model Cascades: Token-level uncertainty and beyond

Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks, but at the expense of increased inference costs. Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs: here, a small model is invoked for most "easy" instances, while a few "hard" instances are deferred to the large model. While the principles underpinning cascading are well-studied for classification tasks - with deferral based on predicted class uncertainty favored theoretically and practically - a similar understanding is lacking for generative LM tasks. In this work, we initiate a systematic study of deferral rules for LM cascades. We begin by examining the natural extension of predicted class uncertainty to generative LM tasks, namely, the predicted sequence uncertainty. We show that this measure suffers from the length bias problem, either over- or under-emphasizing outputs based on their lengths. This is because LMs produce a sequence of uncertainty values, one for each output token; and moreover, the number of output tokens is variable across examples. To mitigate this issue, we propose to exploit the richer token-level uncertainty information implicit in generative LMs. We argue that naive predicted sequence uncertainty corresponds to a simple aggregation of these uncertainties. By contrast, we show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform such simple aggregation strategies, via experiments on a range of natural language benchmarks with FLAN-T5 models. We further show that incorporating embeddings from the smaller model and intermediate layers of the larger model can give an additional boost in the overall cost-quality tradeoff.


[46] 2404.10140

A Probabilistic-based Drift Correction Module for Visual Inertial SLAMs

Positioning is a prominent field of study, notably focusing on Visual Inertial Odometry (VIO) and Simultaneous Localization and Mapping (SLAM) methods. Despite their advancements, these methods often encounter dead-reckoning errors that leads to considerable drift in estimated platform motion especially during long traverses. In such cases, the drift error is not negligible and should be rectified. Our proposed approach minimizes the drift error by correcting the estimated motion generated by any SLAM method at each epoch. Our methodology treats positioning measurements rendered by the SLAM solution as random variables formulated jointly in a multivariate distribution. In this setting, The correction of the drift becomes equivalent to finding the mode of this multivariate distribution which jointly maximizes the likelihood of a set of relevant geo-spatial priors about the platform motion and environment. Our method is integrable into any SLAM/VIO method as an correction module. Our experimental results shows the effectiveness of our approach in minimizing the drift error by 10x in long treverses.


[47] 2404.10141

ANCHOR: LLM-driven News Subject Conditioning for Text-to-Image Synthesis

Text-to-Image (T2I) Synthesis has made tremendous strides in enhancing synthesized image quality, but current datasets evaluate model performance only on descriptive, instruction-based prompts. Real-world news image captions take a more pragmatic approach, providing high-level situational and Named-Entity (NE) information and limited physical object descriptions, making them abstractive. To evaluate the ability of T2I models to capture intended subjects from news captions, we introduce the Abstractive News Captions with High-level cOntext Representation (ANCHOR) dataset, containing 70K+ samples sourced from 5 different news media organizations. With Large Language Models (LLM) achieving success in language and commonsense reasoning tasks, we explore the ability of different LLMs to identify and understand key subjects from abstractive captions. Our proposed method Subject-Aware Finetuning (SAFE), selects and enhances the representation of key subjects in synthesized images by leveraging LLM-generated subject weights. It also adapts to the domain distribution of news images and captions through custom Domain Fine-tuning, outperforming current T2I baselines on ANCHOR. By launching the ANCHOR dataset, we hope to motivate research in furthering the Natural Language Understanding (NLU) capabilities of T2I models.


[48] 2404.10142

Shaping Realities: Enhancing 3D Generative AI with Fabrication Constraints

Generative AI tools are becoming more prevalent in 3D modeling, enabling users to manipulate or create new models with text or images as inputs. This makes it easier for users to rapidly customize and iterate on their 3D designs and explore new creative ideas. These methods focus on the aesthetic quality of the 3D models, refining them to look similar to the prompts provided by the user. However, when creating 3D models intended for fabrication, designers need to trade-off the aesthetic qualities of a 3D model with their intended physical properties. To be functional post-fabrication, 3D models have to satisfy structural constraints informed by physical principles. Currently, such requirements are not enforced by generative AI tools. This leads to the development of aesthetically appealing, but potentially non-functional 3D geometry, that would be hard to fabricate and use in the real world. This workshop paper highlights the limitations of generative AI tools in translating digital creations into the physical world and proposes new augmentations to generative AI tools for creating physically viable 3D models. We advocate for the development of tools that manipulate or generate 3D models by considering not only the aesthetic appearance but also using physical properties as constraints. This exploration seeks to bridge the gap between digital creativity and real-world applicability, extending the creative potential of generative AI into the tangible domain.


[49] 2404.10143

Computing with Hypergeometric-Type Terms

Take a multiplicative monoid of sequences in which the multiplication is given by Hadamard product. The set of linear combinations of interleaving monoid elements then yields a ring. We consider such a construction for the monoid of hypergeometric sequences, yielding what we call the ring of hypergeometric-type sequences -- a subring of the ring of holonomic sequences. We present two algorithms in this setting: one for computing holonomic recurrence equations from hypergeometric-type normal forms and the other for finding products of hypergeometric-type terms. These are newly implemented commands in our Maple package $\texttt{HyperTypeSeq}$, which we also describe.


[50] 2404.10146

Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels

Large-scale vision 2D vision language models, such as CLIP can be aligned with a 3D encoder to learn generalizable (open-vocabulary) 3D vision models. However, current methods require supervised pre-training for such alignment, and the performance of such 3D zero-shot models remains sub-optimal for real-world adaptation. In this work, we propose an optimization framework: Cross-MoST: Cross-Modal Self-Training, to improve the label-free classification performance of a zero-shot 3D vision model by simply leveraging unlabeled 3D data and their accompanying 2D views. We propose a student-teacher framework to simultaneously process 2D views and 3D point clouds and generate joint pseudo labels to train a classifier and guide cross-model feature alignment. Thereby we demonstrate that 2D vision language models such as CLIP can be used to complement 3D representation learning to improve classification performance without the need for expensive class annotations. Using synthetic and real-world 3D datasets, we further demonstrate that Cross-MoST enables efficient cross-modal knowledge exchange resulting in both image and point cloud modalities learning from each other's rich representations.


[51] 2404.10147

Eyes on the Streets: Leveraging Street-Level Imaging to Model Urban Crime Dynamics

This study addresses the challenge of urban safety in New York City by examining the relationship between the built environment and crime rates using machine learning and a comprehensive dataset of street view im- ages. We aim to identify how urban landscapes correlate with crime statistics, focusing on the characteristics of street views and their association with crime rates. The findings offer insights for urban planning and crime pre- vention, highlighting the potential of environmental de- sign in enhancing public safety.


[52] 2404.10148

Node Similarities under Random Projections: Limits and Pathological Cases

Random Projections have been widely used to generate embeddings for various graph tasks due to their computational efficiency. The majority of applications have been justified through the Johnson-Lindenstrauss Lemma. In this paper, we take a step further and investigate how well dot product and cosine similarity are preserved by Random Projections. Our analysis provides new theoretical results, identifies pathological cases, and tests them with numerical experiments. We find that, for nodes of lower or higher degrees, the method produces especially unreliable embeddings for the dot product, regardless of whether the adjacency or the (normalized version) transition is used. With respect to the statistical noise introduced by Random Projections, we show that cosine similarity produces remarkably more precise approximations.


[53] 2404.10150

TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition

Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.


[54] 2404.10151

Distributing Context-Aware Shared Memory Data Structures: A Case Study on Unordered Linked List

In this paper, we focus on partitioning a context-aware shared memory data structure so that it can be implemented as a distributed data structure running on multiple machines. By context-aware data structures, we mean that the result of an operation not only depends upon the value of the shared data but also upon the previous operations performed by the same client. While there is substantial work on designing distributed data structures that are not context-aware (e.g., hash tables), designing distributed context-aware data structures has not received much attention. We focus on the unordered list as a case study of the context- aware data structure. We start with a shared memory context-aware lock-free unordered linked list and show how it can be transformed into a distributed lock-free context-aware unordered linked list. The main challenge in such a transformation is to preserve properties of client-visible operations of the underlying data structure. We present two protocols that preserve these properties of client-visible operations of the linked list. In the first protocol, the distribution is done in the background as a low priority task, while in the second protocol the client-visible operations help the task of distribution without affecting client latency. In both protocols, the client-visible operations remain lock-free. Also, our transformation approach does not utilize any hardware primitives (except a compare-and-swap operation on a single word). We note that our transformation is generic and can be used for other lock-free context-aware data structures.


[55] 2404.10152

Epigraphics: Message-Driven Infographics Authoring

The message a designer wants to convey plays a pivotal role in directing the design of an infographic, yet most authoring workflows start with creating the visualizations or graphics first without gauging whether they fit the message. To address this gap, we propose Epigraphics, a web-based authoring system that treats an "epigraph" as the first-class object, and uses it to guide infographic asset creation, editing, and syncing. The system uses the text-based message to recommend visualizations, graphics, data filters, color palettes, and animations. It further supports between-asset interactions and fine-tuning such as recoloring, highlighting, and animation syncing that enhance the aesthetic cohesiveness of the assets. A gallery and case studies show that our system can produce infographics inspired by existing popular ones, and a task-based usability study with 10 designers show that a text-sourced workflow can standardize content, empower users to think more about the big picture, and facilitate rapid prototyping.


[56] 2404.10153

How Users Experience Closed Captions on Live Television: Quality Metrics Remain a Challenge

This paper presents a mixed methods study on how deaf, hard of hearing and hearing viewers perceive live TV caption quality with captioned video stimuli designed to mirror TV captioning experiences. To assess caption quality, we used four commonly-used quality metrics focusing on accuracy: word error rate, weighted word error rate, automated caption evaluation (ACE), and its successor ACE2. We calculated the correlation between the four quality metrics and viewer ratings for subjective quality and found that the correlation was weak, revealing that other factors besides accuracy affect user ratings. Additionally, even high-quality captions are perceived to have problems, despite controlling for confounding factors. Qualitative analysis of viewer comments revealed three major factors affecting their experience: Errors within captions, difficulty in following captions, and caption appearance. The findings raise questions as to how objective caption quality metrics can be reconciled with the user experience across a diverse spectrum of viewers.


[57] 2404.10155

Quality Assessment of Prompts Used in Code Generation

Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code-generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models possibly have data contamination issues.


[58] 2404.10156

SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation

The adoption of Vision Transformers (ViTs) based architectures represents a significant advancement in 3D Medical Image (MI) segmentation, surpassing traditional Convolutional Neural Network (CNN) models by enhancing global contextual understanding. While this paradigm shift has significantly enhanced 3D segmentation performance, state-of-the-art architectures require extremely large and complex architectures with large scale computing resources for training and deployment. Furthermore, in the context of limited datasets, often encountered in medical imaging, larger models can present hurdles in both model generalization and convergence. In response to these challenges and to demonstrate that lightweight models are a valuable area of research in 3D medical imaging, we present SegFormer3D, a hierarchical Transformer that calculates attention across multiscale volumetric features. Additionally, SegFormer3D avoids complex decoders and uses an all-MLP decoder to aggregate local and global attention features to produce highly accurate segmentation masks. The proposed memory efficient Transformer preserves the performance characteristics of a significantly larger model in a compact design. SegFormer3D democratizes deep learning for 3D medical image segmentation by offering a model with 33x less parameters and a 13x reduction in GFLOPS compared to the current state-of-the-art (SOTA). We benchmark SegFormer3D against the current SOTA models on three widely used datasets Synapse, BRaTs, and ACDC, achieving competitive results. Code: https://github.com/OSUPCVLab/SegFormer3D.git


[59] 2404.10157

Salient Object-Aware Background Generation using Text-Guided Diffusion Models

Generating background scenes for salient objects plays a crucial role across various domains including creative design and e-commerce, as it enhances the presentation and context of subjects by integrating them into tailored environments. Background generation can be framed as a task of text-conditioned outpainting, where the goal is to extend image content beyond a salient object's boundaries on a blank background. Although popular diffusion models for text-guided inpainting can also be used for outpainting by mask inversion, they are trained to fill in missing parts of an image rather than to place an object into a scene. Consequently, when used for background creation, inpainting models frequently extend the salient object's boundaries and thereby change the object's identity, which is a phenomenon we call "object expansion." This paper introduces a model for adapting inpainting diffusion models to the salient object outpainting task using Stable Diffusion and ControlNet architectures. We present a series of qualitative and quantitative results across models and datasets, including a newly proposed metric to measure object expansion that does not require any human labeling. Compared to Stable Diffusion 2.0 Inpainting, our proposed approach reduces object expansion by 3.6x on average with no degradation in standard visual metrics across multiple datasets.


[60] 2404.10159

New Asymptotic Preserving, Hybrid Discontinuous Galerkin Methods the Radiation Transport Equation with Isotropic Scattering and Diffusive Scaling

Discontinuous Galerkin (DG) methods are widely adopted to discretize the radiation transport equation (RTE) with diffusive scalings. One of the most important advantages of the DG methods for RTE is their asymptotic preserving (AP) property, in the sense that they preserve the diffusive limits of the equation in the discrete setting, without requiring excessive refinement of the discretization. However, compared to finite element methods or finite volume methods, the employment of DG methods also increases the number of unknowns, which requires more memory and computational time to solve the problems. In this paper, when the spherical harmonic method is applied for the angular discretization, we perform an asymptotic analysis which shows that to retain the uniform convergence, it is only necessary to employ non-constant elements for the degree zero moment only in the DG spatial discretization. Based on this observation, we propose a heterogeneous DG method that employs polynomial spaces of different degrees for the degree zero and remaining moments respectively. To improve the convergence order, we further develop a spherical harmonics hybrid DG finite volume method, which preserves the AP property and convergence rate while tremendously reducing the number of unknowns. Numerical examples are provided to illustrate the effectiveness and accuracy of the proposed scheme.


[61] 2404.10160

Deceiving to Enlighten: Coaxing LLMs to Self-Reflection for Enhanced Bias Detection and Mitigation

Large Language Models (LLMs) embed complex biases and stereotypes that can lead to detrimental user experiences and societal consequences, often without conscious awareness from the models themselves. This paper emphasizes the importance of equipping LLMs with mechanisms for better self-reflection and bias recognition. Our experiments demonstrate that by informing LLMs that their generated content does not represent their own views and questioning them about bias, their capability to identify and address biases improves. This enhancement is attributed to the internal attention mechanisms and potential internal sensitivity policies of LLMs. Building upon these findings, we propose a novel method to diminish bias in LLM outputs. This involves engaging LLMs in multi-role scenarios acting as different roles where they are tasked for bias exposure, with a role of an impartial referee in the end of each loop of debate. A ranking scoring mechanism is employed to quantify bias levels, enabling more refined reflections and superior output quality. Comparative experimental results confirm that our method outperforms existing approaches in reducing bias, making it a valuable contribution to efforts towards more ethical AI systems.


[62] 2404.10162

Optimal Kernel Tuning Parameter Prediction using Deep Sequence Models

GPU kernels have come to the forefront of comput- ing due to their utility in varied fields, from high-performance computing to machine learning. A typical GPU compute kernel is invoked millions, if not billions of times in a typical application, which makes their performance highly critical. Due to the unknown nature of the optimization surface, an exhaustive search is required to discover the global optimum, which is infeasible due to the possible exponential number of parameter combinations. In this work, we propose a methodology that uses deep sequence- to-sequence models to predict the optimal tuning parameters governing compute kernels. This work considers the prediction of kernel parameters as a sequence to the sequence translation problem, borrowing models from the Natural Language Process- ing (NLP) domain. Parameters describing the input, output and weight tensors are considered as the input language to the model that emits the corresponding kernel parameters. In essence, the model translates the problem parameter language to kernel parameter language. The core contributions of this work are: a) Proposing that a sequence to sequence model can accurately learn the performance dynamics of a GPU compute kernel b) A novel network architecture which predicts the kernel tuning parameters for GPU kernels, c) A constrained beam search which incorporates the physical limits of the GPU hardware as well as other expert knowledge reducing the search space. The proposed algorithm can achieve more than 90% accuracy on various convolutional kernels in MIOpen, the AMD machine learning primitives library. As a result, the proposed technique can reduce the development time and compute resources required to tune unseen input configurations, resulting in shorter development cycles, reduced development costs, and better user experience.


[63] 2404.10163

EyeFormer: Predicting Personalized Scanpaths with Transformer-Guided Reinforcement Learning

From a visual perception perspective, modern graphical user interfaces (GUIs) comprise a complex graphics-rich two-dimensional visuospatial arrangement of text, images, and interactive objects such as buttons and menus. While existing models can accurately predict regions and objects that are likely to attract attention ``on average'', so far there is no scanpath model capable of predicting scanpaths for an individual. To close this gap, we introduce EyeFormer, which leverages a Transformer architecture as a policy network to guide a deep reinforcement learning algorithm that controls gaze locations. Our model has the unique capability of producing personalized predictions when given a few user scanpath samples. It can predict full scanpath information, including fixation positions and duration, across individuals and various stimulus types. Additionally, we demonstrate applications in GUI layout optimization driven by our model. Our software and models will be publicly available.


[64] 2404.10166

Self-Supervised Learning Featuring Small-Scale Image Dataset for Treatable Retinal Diseases Classification

Automated medical diagnosis through image-based neural networks has increased in popularity and matured over years. Nevertheless, it is confined by the scarcity of medical images and the expensive labor annotation costs. Self-Supervised Learning (SSL) is an good alternative to Transfer Learning (TL) and is suitable for imbalanced image datasets. In this study, we assess four pretrained SSL models and two TL models in treatable retinal diseases classification using small-scale Optical Coherence Tomography (OCT) images ranging from 125 to 4000 with balanced or imbalanced distribution for training. The proposed SSL model achieves the state-of-art accuracy of 98.84% using only 4,000 training images. Our results suggest the SSL models provide superior performance under both the balanced and imbalanced training scenarios. The SSL model with MoCo-v2 scheme has consistent good performance under the imbalanced scenario and, especially, surpasses the other models when the training set is less than 500 images.


[65] 2404.10170

High-Resolution Detection of Earth Structural Heterogeneities from Seismic Amplitudes using Convolutional Neural Networks with Attention layers

Earth structural heterogeneities have a remarkable role in the petroleum economy for both exploration and production projects. Automatic detection of detailed structural heterogeneities is challenging when considering modern machine learning techniques like deep neural networks. Typically, these techniques can be an excellent tool for assisted interpretation of such heterogeneities, but it heavily depends on the amount of data to be trained. We propose an efficient and cost-effective architecture for detecting seismic structural heterogeneities using Convolutional Neural Networks (CNNs) combined with Attention layers. The attention mechanism reduces costs and enhances accuracy, even in cases with relatively noisy data. Our model has half the parameters compared to the state-of-the-art, and it outperforms previous methods in terms of Intersection over Union (IoU) by 0.6% and precision by 0.4%. By leveraging synthetic data, we apply transfer learning to train and fine-tune the model, addressing the challenge of limited annotated data availability.


[66] 2404.10172

Forensic Iris Image-Based Post-Mortem Interval Estimation

Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup. One factor that may be useful in conditioning iris recognition methods is the tissue decomposition level, which is correlated with the post-mortem interval (PMI), i.g., the number of hours that have elapsed since death. PMI, however, is not always available, and its precise estimation remains one of the core challenges in forensic examination. This paper presents the first known to us method of PMI estimation directly from forensic iris images. To assess the feasibility of the iris-based PMI estimation, convolutional neural networks-based models (VGG19, DenseNet121, ResNet152, and Inception_v3) were trained to predict the PMI from (a) near-infrared (NIR), (b) visible (RGB), and (c) multispectral forensic iris images. Models were evaluated following a 10-fold cross-validation in (S1) sample-disjoint, (S2) subject-disjoint, and (S3) cross-dataset scenarios. We found that using the multispectral data offers a spectacularly low mean absolute error (MAE) of approximately 3.5 hours in scenario (S1), a bit worse MAE of approximately 17.5 hours in scenario (S2), and an MAE of approximately 69.0 hours of in the scenario (S3). This suggests that if the environmental conditions are favorable (e.g., bodies are kept in low temperatures), forensic iris images provide features that are indicative of the PMI and can be automatically estimated. The source codes and model weights are made available with the paper.


[67] 2404.10174

On the Effects of Fine-tuning Language Models for Text-Based Reinforcement Learning

Text-based reinforcement learning involves an agent interacting with a fictional environment using observed text and admissible actions in natural language to complete a task. Previous works have shown that agents can succeed in text-based interactive environments even in the complete absence of semantic understanding or other linguistic capabilities. The success of these agents in playing such games suggests that semantic understanding may not be important for the task. This raises an important question about the benefits of LMs in guiding the agents through the game states. In this work, we show that rich semantic understanding leads to efficient training of text-based RL agents. Moreover, we describe the occurrence of semantic degeneration as a consequence of inappropriate fine-tuning of language models in text-based reinforcement learning (TBRL). Specifically, we describe the shift in the semantic representation of words in the LM, as well as how it affects the performance of the agent in tasks that are semantically similar to the training games. We believe these results may help develop better strategies to fine-tune agents in text-based RL scenarios.


[68] 2404.10175

PD-L1 Classification of Weakly-Labeled Whole Slide Images of Breast Cancer

Specific and effective breast cancer therapy relies on the accurate quantification of PD-L1 positivity in tumors, which appears in the form of brown stainings in high resolution whole slide images (WSIs). However, the retrieval and extensive labeling of PD-L1 stained WSIs is a time-consuming and challenging task for pathologists, resulting in low reproducibility, especially for borderline images. This study aims to develop and compare models able to classify PD-L1 positivity of breast cancer samples based on WSI analysis, relying only on WSI-level labels. The task consists of two phases: identifying regions of interest (ROI) and classifying tumors as PD-L1 positive or negative. For the latter, two model categories were developed, with different feature extraction methodologies. The first encodes images based on the colour distance from a base color. The second uses a convolutional autoencoder to obtain embeddings of WSI tiles, and aggregates them into a WSI-level embedding. For both model types, features are fed into downstream ML classifiers. Two datasets from different clinical centers were used in two different training configurations: (1) training on one dataset and testing on the other; (2) combining the datasets. We also tested the performance with or without human preprocessing to remove brown artefacts Colour distance based models achieve the best performances on testing configuration (1) with artefact removal, while autoencoder-based models are superior in the remaining cases, which are prone to greater data variability.


[69] 2404.10176

Multi-objective evolutionary GAN for tabular data synthesis

Synthetic data has a key role to play in data sharing by statistical agencies and other generators of statistical data products. Generative Adversarial Networks (GANs), typically applied to image synthesis, are also a promising method for tabular data synthesis. However, there are unique challenges in tabular data compared to images, eg tabular data may contain both continuous and discrete variables and conditional sampling, and, critically, the data should possess high utility and low disclosure risk (the risk of re-identifying a population unit or learning something new about them), providing an opportunity for multi-objective (MO) optimization. Inspired by MO GANs for images, this paper proposes a smart MO evolutionary conditional tabular GAN (SMOE-CTGAN). This approach models conditional synthetic data by applying conditional vectors in training, and uses concepts from MO optimisation to balance disclosure risk against utility. Our results indicate that SMOE-CTGAN is able to discover synthetic datasets with different risk and utility levels for multiple national census datasets. We also find a sweet spot in the early stage of training where a competitive utility and extremely low risk are achieved, by using an Improvement Score. The full code can be downloaded from https://github.com/HuskyNian/SMO\_EGAN\_pytorch.


[70] 2404.10177

Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data

Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data. Both Ambient Diffusion and alternative SURE-based approaches for learning diffusion models from corrupted data resort to approximations which deteriorate performance. We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data, solving an open problem in this space. Our key technical contribution is a method that uses a double application of Tweedie's formula and a consistency loss function that allows us to extend sampling at noise levels below the observed data noise. We also provide further evidence that diffusion models memorize from their training sets by identifying extremely corrupted images that are almost perfectly reconstructed, raising copyright and privacy concerns. Our method for training using corrupted samples can be used to mitigate this problem. We demonstrate this by fine-tuning Stable Diffusion XL to generate samples from a distribution using only noisy samples. Our framework reduces the amount of memorization of the fine-tuning dataset, while maintaining competitive performance.


[71] 2404.10179

Scaling Instructable Agents Across Many Simulated Worlds

Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.


[72] 2404.10180

Deferred NAM: Low-latency Top-K Context Injection via DeferredContext Encoding for Non-Streaming ASR

Contextual biasing enables speech recognizers to transcribe important phrases in the speaker's context, such as contact names, even if they are rare in, or absent from, the training data. Attention-based biasing is a leading approach which allows for full end-to-end cotraining of the recognizer and biasing system and requires no separate inference-time components. Such biasers typically consist of a context encoder; followed by a context filter which narrows down the context to apply, improving per-step inference time; and, finally, context application via cross attention. Though much work has gone into optimizing per-frame performance, the context encoder is at least as important: recognition cannot begin before context encoding ends. Here, we show the lightweight phrase selection pass can be moved before context encoding, resulting in a speedup of up to 16.1 times and enabling biasing to scale to 20K phrases with a maximum pre-decoding delay under 33ms. With the addition of phrase- and wordpiece-level cross-entropy losses, our technique also achieves up to a 37.5% relative WER reduction over the baseline without the losses and lightweight phrase selection pass.


[73] 2404.10185

Insights from the Field: Exploring Students' Perspectives on Bad Unit Testing Practices

Educating students about software testing practices is integral to the curricula of many computer science-related courses and typically involves students writing unit tests. Similar to production/source code, students might inadvertently deviate from established unit testing best practices, and introduce problematic code, referred to as test smells, into their test suites. Given the extensive catalog of test smells, it becomes challenging for students to identify test smells in their code, especially for those who lack experience with testing practices. In this experience report, we aim to increase students' awareness of bad unit testing practices, and detail the outcomes of having 184 students from three higher educational institutes utilize an IDE plugin to automatically detect test smells in their code. Our findings show that while students report on the plugin's usefulness in learning about and detecting test smells, they also identify specific test smells that they consider harmless. We anticipate that our findings will support academia in refining course curricula on unit testing and enabling educators to support students with code review strategies of test code.


[74] 2404.10187

SoK (or SoLK?): On the Quantitative Study of Sociodemographic Factors and Computer Security Behaviors

Researchers are increasingly exploring how gender, culture, and other sociodemographic factors correlate with user computer security and privacy behaviors. To more holistically understand relationships between these factors and behaviors, we make two contributions. First, we broadly survey existing scholarship on sociodemographics and secure behavior (151 papers) before conducting a focused literature review of 47 papers to synthesize what is currently known and identify open questions for future research. Second, by incorporating contemporary social and critical theories, we establish guidelines for future studies of sociodemographic factors and security behaviors that address how to overcome common pitfalls. We present a case study to demonstrate our guidelines in action, at-scale, that conduct a measurement study of the relationships between sociodemographics and de-identified, aggregated log data of security and privacy behaviors among 16,829 users on Facebook across 16 countries. Through these contributions, we position our work as a systemization of a lack of knowledge (SoLK). Overall, we find contradictory results and vast unknowns about how identity shapes security behavior. Through our guidelines and discussion, we chart new directions to more deeply examine how and why sociodemographic factors affect security behaviors.


[75] 2404.10188

Smart Pilot Assignment for IoT in Massive MIMO Systems: A Path Towards Scalable IoT Infrastructure

5G sets the foundation for an era of creativity with its faster speeds, increased data throughput, reduced latency, and enhanced IoT connectivity, all enabled by Massive MIMO (M-MIMO) technology. M-MIMO boosts network efficiency and enhances user experience by employing intelligent user scheduling. This paper presents a user scheduling scheme and pilot assignment strategy designed for IoT devices, emphasizing mitigating pilot contamination, a key obstacle to improving spectral efficiency (SE) and system scalability in M-MIMO networks. We utilize a user clustering-based pilot allocation scheme to boost IoT device scalability in M-MIMO systems. Additionally, our smart pilot allocation minimizes interference and enhances SE by treating pilot assignment as a graph coloring problem, optimizing it through integer linear programming (ILP). Recognizing the computational complexity of ILP, we introduced a binary search-based heuristic predicated on interference threshold to expedite the computation, while maintaining a near-optimal solution. The simulation results show a significant decrease in the required pilot overhead (about 17%), and substantial enhancement in SE (about 8-14%).


[76] 2404.10193

Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box Vision-Language Models for Selective Visual Question Answering

The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction typically require access to the internals of a model, require retraining a model or study only unimodal models. However, the most powerful models (e.g. GPT-4) are typically only available as black boxes with inaccessible internals, are not retrainable by end-users, and are frequently used for multimodal tasks. We study the possibility of selective prediction for vision-language models in a realistic, black-box setting. We propose using the principle of \textit{neighborhood consistency} to identify unreliable responses from a black-box vision-language model in question answering tasks. We hypothesize that given only a visual question and model response, the consistency of the model's responses over the neighborhood of a visual question will indicate reliability. It is impossible to directly sample neighbors in feature space in a black-box setting. Instead, we show that it is possible to use a smaller proxy model to approximately sample from the neighborhood. We find that neighborhood consistency can be used to identify model responses to visual questions that are likely unreliable, even in adversarial settings or settings that are out-of-distribution to the proxy model.


[77] 2404.10194

Impostor Syndrome in Final Year Computer Science Students: An Eye Tracking and Biometrics Study

Imposter syndrome is a psychological phenomenon that affects individuals who doubt their skills and abilities, despite possessing the necessary competencies. This can lead to a lack of confidence and poor performance. While research has explored the impacts of imposter syndrome on students and professionals in various fields, there is limited knowledge on how it affects code comprehension in software engineering. In this exploratory study, we investigate the prevalence of imposter syndrome among final-year undergraduate computer science students and its effects on their code comprehension cognition using an eye tracker and heart rate monitor. Key findings demonstrate that students identifying as male exhibit lower imposter syndrome levels when analyzing code, and higher imposter syndrome is associated with increased time reviewing a code snippet and a lower likelihood of solving it correctly. This study provides initial data on this topic and establishes a foundation for further research to support student academic success and improve developer productivity and mental well-being.


[78] 2404.10198

How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior

Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.


[79] 2404.10199

CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting

As the utilization of large language models (LLMs) has proliferated worldwide, it is crucial for them to have adequate knowledge and fair representation for diverse global cultures. In this work, we uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations, and extract symbols from these generations that are associated to each culture by the LLM. We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures. We also discover that LLMs have an uneven degree of diversity in the culture symbols, and that cultures from different geographic regions have different presence in LLMs' culture-agnostic generation. Our findings promote further research in studying the knowledge and fairness of global culture perception in LLMs. Code and Data can be found in: https://github.com/huihanlhh/Culture-Gen/


[80] 2404.10200

TEL'M: Test and Evaluation of Language Models

Language Models have demonstrated remarkable capabilities on some tasks while failing dramatically on others. The situation has generated considerable interest in understanding and comparing the capabilities of various Language Models (LMs) but those efforts have been largely ad hoc with results that are often little more than anecdotal. This is in stark contrast with testing and evaluation processes used in healthcare, radar signal processing, and other defense areas. In this paper, we describe Test and Evaluation of Language Models (TEL'M) as a principled approach for assessing the value of current and future LMs focused on high-value commercial, government and national security applications. We believe that this methodology could be applied to other Artificial Intelligence (AI) technologies as part of the larger goal of "industrializing" AI.


[81] 2404.10201

Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages

We study the problem of private vector mean estimation in the shuffle model of privacy where $n$ users each have a unit vector $v^{(i)} \in\mathbb{R}^d$. We propose a new multi-message protocol that achieves the optimal error using $\tilde{\mathcal{O}}\left(\min(n\varepsilon^2,d)\right)$ messages per user. Moreover, we show that any (unbiased) protocol that achieves optimal error requires each user to send $\Omega(\min(n\varepsilon^2,d)/\log(n))$ messages, demonstrating the optimality of our message complexity up to logarithmic factors. Additionally, we study the single-message setting and design a protocol that achieves mean squared error $\mathcal{O}(dn^{d/(d+2)}\varepsilon^{-4/(d+2)})$. Moreover, we show that any single-message protocol must incur mean squared error $\Omega(dn^{d/(d+2)})$, showing that our protocol is optimal in the standard setting where $\varepsilon = \Theta(1)$. Finally, we study robustness to malicious users and show that malicious users can incur large additive error with a single shuffler.


[82] 2404.10202

Towards a Novel Perspective on Adversarial Examples Driven by Frequency

Enhancing our understanding of adversarial examples is crucial for the secure application of machine learning models in real-world scenarios. A prevalent method for analyzing adversarial examples is through a frequency-based approach. However, existing research indicates that attacks designed to exploit low-frequency or high-frequency information can enhance attack performance, leading to an unclear relationship between adversarial perturbations and different frequency components. In this paper, we seek to demystify this relationship by exploring the characteristics of adversarial perturbations within the frequency domain. We employ wavelet packet decomposition for detailed frequency analysis of adversarial examples and conduct statistical examinations across various frequency bands. Intriguingly, our findings indicate that significant adversarial perturbations are present within the high-frequency components of low-frequency bands. Drawing on this insight, we propose a black-box adversarial attack algorithm based on combining different frequency bands. Experiments conducted on multiple datasets and models demonstrate that combining low-frequency bands and high-frequency components of low-frequency bands can significantly enhance attack efficiency. The average attack success rate reaches 99\%, surpassing attacks that utilize a single frequency segment. Additionally, we introduce the normalized disturbance visibility index as a solution to the limitations of $L_2$ norm in assessing continuous and discrete perturbations.


[83] 2404.10204

The Impact of Machine Learning on Society: An Analysis of Current Trends and Future Implications

The Machine learning (ML) is a rapidly evolving field of technology that has the potential to greatly impact society in a variety of ways. However, there are also concerns about the potential negative effects of ML on society, such as job displacement and privacy issues. This research aimed to conduct a comprehensive analysis of the current and future impact of ML on society. The research included a thorough literature review, case studies, and surveys to gather data on the economic impact of ML, ethical and privacy implications, and public perceptions of the technology. The survey was conducted on 150 respondents from different areas. The case studies conducted were on the impact of ML on healthcare, finance, transportation, and manufacturing. The findings of this research revealed that the majority of respondents have a moderate level of familiarity with the concept of ML, believe that it has the potential to benefit society, and think that society should prioritize the development and use of ML. Based on these findings, it was recommended that more research is conducted on the impact of ML on society, stronger regulations and laws to protect the privacy and rights of individuals when it comes to ML should be developed, transparency and accountability in ML decision-making processes should be increased, and public education and awareness about ML should be enhanced.


[84] 2404.10206

Research and Practice of Delivering Tabletop Exercises

Tabletop exercises are used to train personnel in the efficient mitigation and resolution of incidents. They are applied in practice to support the preparedness of organizations and to highlight inefficient processes. Since tabletop exercises train competencies required in the workplace, they have been introduced into computing courses at universities as an innovation, especially within cybersecurity curricula. To help computing educators adopt this innovative method, we survey academic publications that deal with tabletop exercises. From 140 papers we identified and examined, we selected 14 papers for a detailed review. The results show that the existing research deals predominantly with exercises that follow a linear format and exercises that do not systematically collect data about trainees' learning. Computing education researchers can investigate novel approaches to instruction and assessment in the context of tabletop exercises to maximize the impact of this teaching method. Due to the relatively low number of published papers, the potential for future research is immense. Our review provides researchers, tool developers, and educators with an orientation in the area, a synthesis of trends, and implications for further work.


[85] 2404.10208

Forecasting Tech Sector Market Downturns based on Macroeconomic Indicators

Predicting stock price movements is a pivotal element of investment strategy, providing insights into potential trends and market volatility. This study specifically examines the predictive capacity of historical stock prices and technical indicators within the Global Industry Classification Standard (GICS) Information Technology Sector, focusing on companies established before 1980. We aim to identify patterns that precede significant, non-transient downturns - defined as declines exceeding 10% from peak values. Utilizing a combination of machine learning techniques, including multiple regression analysis, logistic regression, we analyze an enriched dataset comprising both macroeconomic indicators and market data. Our findings suggest that certain clusters of technical indicators, when combined with broader economic signals, offer predictive insights into forthcoming sector-specific downturns. This research not only enhances our understanding of the factors driving market dynamics in the tech sector but also provides portfolio managers and investors with a sophisticated tool for anticipating and mitigating potential losses from market downturns. Through a rigorous validation process, we demonstrate the robustness of our models, contributing to the field of financial analytics by offering a novel approach to predicting market downturns with significant implications for investment strategies and economic policy planning.


[86] 2404.10209

Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models

The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. The technologies of interacting with data particularly have an important entanglement with LLMs as efficient and intuitive data interactions are paramount. In this paper, we present DB-GPT, a revolutionary and product-ready Python library that integrates LLMs into traditional data interaction tasks to enhance user experience and accessibility. DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs, making it an indispensable tool for users ranging from novice to expert. Its system design supports deployment across local, distributed, and cloud environments. Beyond handling basic data interaction tasks like Text-to-SQL with LLMs, it can handle complex tasks like generative data analysis through a Multi-Agents framework and the Agentic Workflow Expression Language (AWEL). The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs. Additionally, DB-GPT offers a series of product-ready features designed to enable users to integrate DB-GPT within their product environments easily. The code of DB-GPT is available at Github(https://github.com/eosphoros-ai/DB-GPT) which already has over 10.7k stars.


[87] 2404.10210

MK-SGN: A Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation for Skeleton-based Action Recognition

In recent years, skeleton-based action recognition, leveraging multimodal Graph Convolutional Networks (GCN), has achieved remarkable results. However, due to their deep structure and reliance on continuous floating-point operations, GCN-based methods are energy-intensive. To address this issue, we propose an innovative Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation (MK-SGN). By merging the energy efficiency of Spiking Neural Network (SNN) with the graph representation capability of GCN, the proposed MK-SGN reduces energy consumption while maintaining recognition accuracy. Firstly, we convert GCN into Spiking Graph Convolutional Network (SGN) and construct a foundational Base-SGN for skeleton-based action recognition, establishing a new benchmark and paving the way for future research exploration. Secondly, we further propose a Spiking Multimodal Fusion module (SMF), leveraging mutual information to process multimodal data more efficiently. Additionally, we introduce a spiking attention mechanism and design a Spatio Graph Convolution module with a Spatial Global Spiking Attention mechanism (SA-SGC), enhancing feature learning capability. Furthermore, we delve into knowledge distillation methods from multimodal GCN to SGN and propose a novel, integrated method that simultaneously focuses on both intermediate layer distillation and soft label distillation to improve the performance of SGN. On two challenging datasets for skeleton-based action recognition, MK-SGN outperforms the state-of-the-art GCN-like frameworks in reducing computational load and energy consumption. In contrast, typical GCN methods typically consume more than 35mJ per action sample, while MK-SGN reduces energy consumption by more than 98%.


[88] 2404.10211

Anomaly Correction of Business Processes Using Transformer Autoencoder

Event log records all events that occur during the execution of business processes, so detecting and correcting anomalies in event log can provide reliable guarantee for subsequent process analysis. The previous works mainly include next event prediction based methods and autoencoder-based methods. These methods cannot accurately and efficiently detect anomalies and correct anomalies at the same time, and they all rely on the set threshold to detect anomalies. To solve these problems, we propose a business process anomaly correction method based on Transformer autoencoder. By using self-attention mechanism and autoencoder structure, it can efficiently process event sequences of arbitrary length, and can directly output corrected business process instances, so that it can adapt to various scenarios. At the same time, the anomaly detection is transformed into a classification problem by means of selfsupervised learning, so that there is no need to set a specific threshold in anomaly detection. The experimental results on several real-life event logs show that the proposed method is superior to the previous methods in terms of anomaly detection accuracy and anomaly correction results while ensuring high running efficiency.


[89] 2404.10212

LWIRPOSE: A novel LWIR Thermal Image Dataset and Benchmark

Human pose estimation faces hurdles in real-world applications due to factors like lighting changes, occlusions, and cluttered environments. We introduce a unique RGB-Thermal Nearly Paired and Annotated 2D Pose Dataset, comprising over 2,400 high-quality LWIR (thermal) images. Each image is meticulously annotated with 2D human poses, offering a valuable resource for researchers and practitioners. This dataset, captured from seven actors performing diverse everyday activities like sitting, eating, and walking, facilitates pose estimation on occlusion and other challenging scenarios. We benchmark state-of-the-art pose estimation methods on the dataset to showcase its potential, establishing a strong baseline for future research. Our results demonstrate the dataset's effectiveness in promoting advancements in pose estimation for various applications, including surveillance, healthcare, and sports analytics. The dataset and code are available at https://github.com/avinres/LWIRPOSE


[90] 2404.10213

GaitPoint+: A Gait Recognition Network Incorporating Point Cloud Analysis and Recycling

Gait is a behavioral biometric modality that can be used to recognize individuals by the way they walk from a far distance. Most existing gait recognition approaches rely on either silhouettes or skeletons, while their joint use is underexplored. Features from silhouettes and skeletons can provide complementary information for more robust recognition against appearance changes or pose estimation errors. To exploit the benefits of both silhouette and skeleton features, we propose a new gait recognition network, referred to as the GaitPoint+. Our approach models skeleton key points as a 3D point cloud, and employs a computational complexity-conscious 3D point processing approach to extract skeleton features, which are then combined with silhouette features for improved accuracy. Since silhouette- or CNN-based methods already require considerable amount of computational resources, it is preferable that the key point learning module is faster and more lightweight. We present a detailed analysis of the utilization of every human key point after the use of traditional max-pooling, and show that while elbow and ankle points are used most commonly, many useful points are discarded by max-pooling. Thus, we present a method to recycle some of the discarded points by a Recycling Max-Pooling module, during processing of skeleton point clouds, and achieve further performance improvement. We provide a comprehensive set of experimental results showing that (i) incorporating skeleton features obtained by a point-based 3D point cloud processing approach boosts the performance of three different state-of-the-art silhouette- and CNN-based baselines; (ii) recycling the discarded points increases the accuracy further. Ablation studies are also provided to show the effectiveness and contribution of different components of our approach.


[91] 2404.10218

Autonomous Implicit Indoor Scene Reconstruction with Frontier Exploration

Implicit neural representations have demonstrated significant promise for 3D scene reconstruction. Recent works have extended their applications to autonomous implicit reconstruction through the Next Best View (NBV) based method. However, the NBV method cannot guarantee complete scene coverage and often necessitates extensive viewpoint sampling, particularly in complex scenes. In the paper, we propose to 1) incorporate frontier-based exploration tasks for global coverage with implicit surface uncertainty-based reconstruction tasks to achieve high-quality reconstruction. and 2) introduce a method to achieve implicit surface uncertainty using color uncertainty, which reduces the time needed for view selection. Further with these two tasks, we propose an adaptive strategy for switching modes in view path planning, to reduce time and maintain superior reconstruction quality. Our method exhibits the highest reconstruction quality among all planning methods and superior planning efficiency in methods involving reconstruction tasks. We deploy our method on a UAV and the results show that our method can plan multi-task views and reconstruct a scene with high quality.


[92] 2404.10220

Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V

Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. We present COME-robot, the first closed-loop framework utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios. We meticulously construct a library of action primitives for robot exploration, navigation, and manipulation, serving as callable execution modules for GPT-4V in task planning. On top of these modules, GPT-4V serves as the brain that can accomplish multimodal reasoning, generate action policy with code, verify the task progress, and provide feedback for replanning. Such design enables COME-robot to (i) actively perceive the environments, (ii) perform situated reasoning, and (iii) recover from failures. Through comprehensive experiments involving 8 challenging real-world tabletop and manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~25%) compared to state-of-the-art baseline methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.


[93] 2404.10221

On $τ$-preconditioners for a quasi-compact difference scheme to Riesz fractional diffusion equations with variable coefficients

In the present study, we consider the numerical method for Toeplitz-like linear systems arising from the $d$-dimensional Riesz space fractional diffusion equations (RSFDEs). We apply the Crank-Nicolson (CN) technique to discretize the temporal derivative and apply a quasi-compact finite difference method to discretize the Riesz space fractional derivatives. For the $d$-dimensional problem, the corresponding coefficient matrix is the sum of a product of a (block) tridiagonal matrix multiplying a diagonal matrix and a $d$-level Toeplitz matrix. We develop a sine transform based preconditioner to accelerate the convergence of the GMRES method. Theoretical analyses show that the upper bound of relative residual norm of the preconditioned GMRES method with the proposed preconditioner is mesh-independent, which leads to a linear convergence rate. Numerical results are presented to confirm the theoretical results regarding the preconditioned matrix and to illustrate the efficiency of the proposed preconditioner.


[94] 2404.10225

Rethinking Software Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers

The advent of Foundation Models (FMs) and AI-powered copilots has transformed the landscape of software development, offering unprecedented code completion capabilities and enhancing developer productivity. However, the current task-driven nature of these copilots falls short in addressing the broader goals and complexities inherent in software engineering (SE). In this paper, we propose a paradigm shift towards goal-driven AI-powered pair programmers that collaborate with human developers in a more holistic and context-aware manner. We envision AI pair programmers that are goal-driven, human partners, SE-aware, and self-learning. These AI partners engage in iterative, conversation-driven development processes, aligning closely with human goals and facilitating informed decision-making. We discuss the desired attributes of such AI pair programmers and outline key challenges that must be addressed to realize this vision. Ultimately, our work represents a shift from AI-augmented SE to AI-transformed SE by replacing code completion with a collaborative partnership between humans and AI that enhances both productivity and software quality.


[95] 2404.10226

Find The Gap: Knowledge Base Reasoning For Visual Question Answering

We analyze knowledge-based visual question answering, for which given a question, the models need to ground it into the visual modality and retrieve the relevant knowledge from a given large knowledge base (KB) to be able to answer. Our analysis has two folds, one based on designing neural architectures and training them from scratch, and another based on large pre-trained language models (LLMs). Our research questions are: 1) Can we effectively augment models by explicit supervised retrieval of the relevant KB information to solve the KB-VQA problem? 2) How do task-specific and LLM-based models perform in the integration of visual and external knowledge, and multi-hop reasoning over both sources of information? 3) Is the implicit knowledge of LLMs sufficient for KB-VQA and to what extent it can replace the explicit KB? Our results demonstrate the positive impact of empowering task-specific and LLM models with supervised external and visual knowledge retrieval models. Our findings show that though LLMs are stronger in 1-hop reasoning, they suffer in 2-hop reasoning in comparison with our fine-tuned NN model even if the relevant information from both modalities is available to the model. Moreover, we observed that LLM models outperform the NN model for KB-related questions which confirms the effectiveness of implicit knowledge in LLMs however, they do not alleviate the need for external KB.


[96] 2404.10227

MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints

This work proposes a novel learning framework for visual hand dynamics analysis that takes into account the physiological aspects of hand motion. The existing models, which are simplified joint-actuated systems, often produce unnatural motions. To address this, we integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create a new model, MS-MANO. This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories. We further propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron (MLP) network. Our evaluation of the accuracy of MS-MANO and the efficacy of the BioPR is conducted in two separate parts. The accuracy of MS-MANO is compared with MyoSuite, while the efficacy of BioPR is benchmarked against two large-scale public datasets and two recent state-of-the-art methods. The results demonstrate that our approach consistently improves the baseline methods both quantitatively and qualitatively.


[97] 2404.10228

Two-Stage Stance Labeling: User-Hashtag Heuristics with Graph Neural Networks

The high volume and rapid evolution of content on social media present major challenges for studying the stance of social media users. In this work, we develop a two stage stance labeling method that utilizes the user-hashtag bipartite graph and the user-user interaction graph. In the first stage, a simple and efficient heuristic for stance labeling uses the user-hashtag bipartite graph to iteratively update the stance association of user and hashtag nodes via a label propagation mechanism. This set of soft labels is then integrated with the user-user interaction graph to train a graph neural network (GNN) model using semi-supervised learning. We evaluate this method on two large-scale datasets containing tweets related to climate change from June 2021 to June 2022 and gun control from January 2022 to January 2023. Experiments demonstrate that our user-hashtag heuristic and the semi-supervised GNN method outperform zero-shot stance labeling using LLMs such as GPT4. Further analysis illustrates how the stance labeling information and interaction graph can be used for evaluating the polarization of social media interactions on divisive issues such as climate change and gun control.


[98] 2404.10229

Generative Text Steganography with Large Language Model

Recent advances in large language models (LLMs) have blurred the boundary of high-quality text generation between humans and machines, which is favorable for generative text steganography. While, current advanced steganographic mapping is not suitable for LLMs since most users are restricted to accessing only the black-box API or user interface of the LLMs, thereby lacking access to the training vocabulary and its sampling probabilities. In this paper, we explore a black-box generative text steganographic method based on the user interfaces of large language models, which is called LLM-Stega. The main goal of LLM-Stega is that the secure covert communication between Alice (sender) and Bob (receiver) is conducted by using the user interfaces of LLMs. Specifically, We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages. Furthermore, to guarantee accurate extraction of secret messages and rich semantics of generated stego texts, an optimization mechanism based on reject sampling is proposed. Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.


[99] 2404.10231

Improving Disturbance Estimation and Suppression via Learning among Systems with Mismatched Dynamics

Iterative learning control (ILC) is a method for reducing system tracking or estimation errors over multiple iterations by using information from past iterations. The disturbance observer (DOB) is used to estimate and mitigate disturbances within the system, while the system is being affected by them. ILC enhances system performance by introducing a feedforward signal in each iteration. However, its effectiveness may diminish if the conditions change during the iterations. On the other hand, although DOB effectively mitigates the effects of new disturbances, it cannot entirely eliminate them as it operates reactively. Therefore, neither ILC nor DOB alone can ensure sufficient robustness in challenging scenarios. This study focuses on the simultaneous utilization of ILC and DOB to enhance system robustness. The proposed methodology specifically targets dynamically different linearized systems performing repetitive tasks. The systems share similar forms but differ in dynamics (e.g. sizes, masses, and controllers). Consequently, the design of learning filters must account for these differences in dynamics. To validate the approach, the study establishes a theoretical framework for designing learning filters in conjunction with DOB. The validity of the framework is then confirmed through numerical studies and experimental tests conducted on unmanned aerial vehicles (UAVs). Although UAVs are nonlinear systems, the study employs a linearized controller as they operate in proximity to the hover condition. A video introduction of this paper is available via this link: https://zh.engr.tamu.edu/wp-content/uploads/sites/310/2024/02/ILCDOB_v3f.mp4.


[100] 2404.10234

Compressible and Searchable: AI-native Multi-Modal Retrieval System with Learned Image Compression

The burgeoning volume of digital content across diverse modalities necessitates efficient storage and retrieval methods. Conventional approaches struggle to cope with the escalating complexity and scale of multimedia data. In this paper, we proposed framework addresses this challenge by fusing AI-native multi-modal search capabilities with neural image compression. First we analyze the intricate relationship between compressibility and searchability, recognizing the pivotal role each plays in the efficiency of storage and retrieval systems. Through the usage of simple adapter is to bridge the feature of Learned Image Compression(LIC) and Contrastive Language-Image Pretraining(CLIP) while retaining semantic fidelity and retrieval of multi-modal data. Experimental evaluations on Kodak datasets demonstrate the efficacy of our approach, showcasing significant enhancements in compression efficiency and search accuracy compared to existing methodologies. Our work marks a significant advancement towards scalable and efficient multi-modal search systems in the era of big data.


[101] 2404.10237

MoE-TinyMed: Mixture of Experts for Tiny Medical Large Vision-Language Models

Mixture of Expert Tuning (MoE-Tuning) has effectively enhanced the performance of general MLLMs with fewer parameters, yet its application in resource-limited medical settings has not been fully explored. To address this gap, we developed MoE-TinyMed, a model tailored for medical applications that significantly lowers parameter demands. In evaluations on the VQA-RAD, SLAKE, and Path-VQA datasets, MoE-TinyMed outperformed LLaVA-Med in all Med-VQA closed settings with just 3.6B parameters. Additionally, a streamlined version with 2B parameters surpassed LLaVA-Med's performance in PathVQA, showcasing its effectiveness in resource-limited healthcare settings.


[102] 2404.10238

A novel interpretation of Nesterov's acceleration via variable step-size linear multistep methods

Nesterov's acceleration in continuous optimization can be understood in a novel way when Nesterov's accelerated gradient (NAG) method is considered as a linear multistep (LM) method for gradient flow. Although the NAG method for strongly convex functions (NAG-sc) has been fully discussed, the NAG method for $L$-smooth convex functions (NAG-c) has not. To fill this gap, we show that the existing NAG-c method can be interpreted as a variable step size LM (VLM) for the gradient flow. Surprisingly, the VLM allows linearly increasing step sizes, which explains the acceleration in the convex case. Here, we introduce a novel technique for analyzing the absolute stability of VLMs. Subsequently, we prove that NAG-c is optimal in a certain natural class of VLMs. Finally, we construct a new broader class of VLMs by optimizing the parameters in the VLM for ill-conditioned problems. According to numerical experiments, the proposed method outperforms the NAG-c method in ill-conditioned cases. These results imply that the numerical analysis perspective of the NAG is a promising working environment, and considering a broader class of VLMs could further reveal novel methods.


[103] 2404.10240

Disturbance Rejection-Guarded Learning for Vibration Suppression of Two-Inertia Systems

Model uncertainty presents significant challenges in vibration suppression of multi-inertia systems, as these systems often rely on inaccurate nominal mathematical models due to system identification errors or unmodeled dynamics. An observer, such as an extended state observer (ESO), can estimate the discrepancy between the inaccurate nominal model and the true model, thus improving control performance via disturbance rejection. The conventional observer design is memoryless in the sense that once its estimated disturbance is obtained and sent to the controller, the datum is discarded. In this research, we propose a seamless integration of ESO and machine learning. On one hand, the machine learning model attempts to model the disturbance. With the assistance of prior information about the disturbance, the observer is expected to achieve faster convergence in disturbance estimation. On the other hand, machine learning benefits from an additional assurance layer provided by the ESO, as any imperfections in the machine learning model can be compensated for by the ESO. We validated the effectiveness of this novel learning-for-control paradigm through simulation and physical tests on two-inertial motion control systems used for vibration studies.


[104] 2404.10241

Vision-and-Language Navigation via Causal Learning

In the pursuit of robust and generalizable environment perception and language understanding, the ubiquitous challenge of dataset bias continues to plague vision-and-language navigation (VLN) agents, hindering their performance in unseen environments. This paper introduces the generalized cross-modal causal transformer (GOAT), a pioneering solution rooted in the paradigm of causal inference. By delving into both observable and unobservable confounders within vision, language, and history, we propose the back-door and front-door adjustment causal learning (BACL and FACL) modules to promote unbiased learning by comprehensively mitigating potential spurious correlations. Additionally, to capture global confounder features, we propose a cross-modal feature pooling (CFP) module supervised by contrastive learning, which is also shown to be effective in improving cross-modal representations during pre-training. Extensive experiments across multiple VLN datasets (R2R, REVERIE, RxR, and SOON) underscore the superiority of our proposed method over previous state-of-the-art approaches. Code is available at https://github.com/CrystalSixone/VLN-GOAT.


[105] 2404.10242

Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology

Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spanning millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond.


[106] 2404.10244

An adaptive Euler-Maruyama scheme for SDDEs

This paper proposes an adaptive numerical method for stochastic delay differential equations (SDDEs) with a non-global Lipschitz drift term and a non-constant delay, building upon the work of Wei Fang and others. The method adapts the step size based on the growth of the drift term. Differing slightly from the conventional Euler-Maruyama format, this paper addresses the estimation of the delay term by substituting it with the numerically obtained solution closest to the left endpoint.This approach overcomes the challenge of numerical nodes not falling within the nodes after subtracting the delay. The paper proves the convergence of the numerical method for a class of non-global Lipschitz continuous SDDEs under the assumption that the step size function satisfies certain conditions.


[107] 2404.10250

AniFrame: A Programming Language for 2D Drawing and Frame-Based Animation

Creative coding is an experimentation-heavy activity that requires translating high-level visual ideas into code. However, most languages and libraries for creative coding may not be adequately intuitive for beginners. In this paper, we present AniFrame, a domain-specific language for drawing and animation. Designed for novice programmers, it (i) features animation-specific data types, operations, and built-in functions to simplify the creation and animation of composite objects, (ii) allows for fine-grained control over animation sequences through explicit specification of the target object and the start and end frames, (iii) reduces the learning curve through a Python-like syntax, type inferencing, and a minimal set of control structures and keywords that map closely to their semantic intent, and (iv) promotes computational expressivity through support for common mathematical operations, built-in trigonometric functions, and user-defined recursion. Our usability test demonstrates AniFrame's potential to enhance readability and writability for multiple creative coding use cases. AniFrame is open-source, and its implementation and reference are available at https://github.com/memgonzales/aniframe-language.


[108] 2404.10252

Learning from Offline and Online Experiences: A Hybrid Adaptive Operator Selection Framework

In many practical applications, usually, similar optimisation problems or scenarios repeatedly appear. Learning from previous problem-solving experiences can help adjust algorithm components of meta-heuristics, e.g., adaptively selecting promising search operators, to achieve better optimisation performance. However, those experiences obtained from previously solved problems, namely offline experiences, may sometimes provide misleading perceptions when solving a new problem, if the characteristics of previous problems and the new one are relatively different. Learning from online experiences obtained during the ongoing problem-solving process is more instructive but highly restricted by limited computational resources. This paper focuses on the effective combination of offline and online experiences. A novel hybrid framework that learns to dynamically and adaptively select promising search operators is proposed. Two adaptive operator selection modules with complementary paradigms cooperate in the framework to learn from offline and online experiences and make decisions. An adaptive decision policy is maintained to balance the use of those two modules in an online manner. Extensive experiments on 170 widely studied real-value benchmark optimisation problems and a benchmark set with 34 instances for combinatorial optimisation show that the proposed hybrid framework outperforms the state-of-the-art methods. Ablation study verifies the effectiveness of each component of the framework.


[109] 2404.10253

Kilometer-Level Coupled Modeling Using 40 Million Cores: An Eight-Year Journey of Model Development

With current and future leading systems adopting heterogeneous architectures, adapting existing models for heterogeneous supercomputers is of urgent need for improving model resolution and reducing modeling uncertainty. This paper presents our three-week effort on porting a complex earth system model, CESM 2.2, to a 40-million-core Sunway supercomputer. Taking a non-intrusive approach that tries to minimizes manual code modifications, our project tries to achieve both improvement of performance and consistency of the model code. By using a hierarchical grid system and an OpenMP-based offloading toolkit, our porting and parallelization effort covers over 80% of the code, and achieves a simulation speed of 340 SDPD (simulated days per day) for 5-km atmosphere, 265 SDPD for 3-km ocean, and 222 SDPD for a coupled model, thus making multi-year or even multi-decadal experiments at such high resolution possible.


[110] 2404.10255

Privacy-Preserving Training-as-a-Service for On-Device Intelligence: Concept, Architectural Scheme, and Open Problems

On-device intelligence (ODI) enables artificial intelligence (AI) applications to run on end devices, providing real-time and customized AI services without relying on remote servers. However, training models for on-device deployment face significant challenges due to the decentralized and privacy-sensitive nature of users' data, along with end-side constraints related to network connectivity, computation efficiency, etc. Existing training paradigms, such as cloud-based training, federated learning, and transfer learning, fail to sufficiently address these practical constraints that are prevalent for devices. To overcome these challenges, we propose Privacy-Preserving Training-as-a-Service (PTaaS), a novel service computing paradigm that provides privacy-friendly, customized AI model training for end devices. PTaaS outsources the core training process to remote and powerful cloud or edge servers, efficiently developing customized on-device models based on uploaded anonymous queries, ensuring data privacy while reducing the computation load on individual devices. We explore the definition, goals, and design principles of PTaaS, alongside emerging technologies that support the PTaaS paradigm. An architectural scheme for PTaaS is also presented, followed by a series of open problems that set the stage for future research directions in the field of PTaaS.


[111] 2404.10258

CO-oPS: A Mobile App for Community Oversight of Privacy and Security

Smartphone users install numerous mobile apps that require access to different information from their devices. Much of this information is very sensitive, and users often struggle to manage these accesses due to their lack of tech expertise and knowledge regarding mobile privacy. Thus, they often seek help from others to make decisions regarding their mobile privacy and security. We embedded these social processes in a mobile app titled "CO-oPS'' ("Community Oversight for Privacy and Security"). CO-oPS allows trusted community members to review one another's apps installed and permissions granted to those apps. Community members can provide feedback to one another regarding their privacy behaviors. Users are also allowed to hide some of their mobile apps that they do not like others to see, ensuring their personal privacy.


[112] 2404.10259

Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy

The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.


[113] 2404.10263

PreGSU-A Generalized Traffic Scene Understanding Model for Autonomous Driving based on Pre-trained Graph Attention Network

Scene understanding, defined as learning, extraction, and representation of interactions among traffic elements, is one of the critical challenges toward high-level autonomous driving (AD). Current scene understanding methods mainly focus on one concrete single task, such as trajectory prediction and risk level evaluation. Although they perform well on specific metrics, the generalization ability is insufficient to adapt to the real traffic complexity and downstream demand diversity. In this study, we propose PreGSU, a generalized pre-trained scene understanding model based on graph attention network to learn the universal interaction and reasoning of traffic scenes to support various downstream tasks. After the feature engineering and sub-graph module, all elements are embedded as nodes to form a dynamic weighted graph. Then, four graph attention layers are applied to learn the relationships among agents and lanes. In the pre-train phase, the understanding model is trained on two self-supervised tasks: Virtual Interaction Force (VIF) modeling and Masked Road Modeling (MRM). Based on the artificial potential field theory, VIF modeling enables PreGSU to capture the agent-to-agent interactions while MRM extracts agent-to-road connections. In the fine-tuning process, the pre-trained parameters are loaded to derive detailed understanding outputs. We conduct validation experiments on two downstream tasks, i.e., trajectory prediction in urban scenario, and intention recognition in highway scenario, to verify the generalized ability and understanding ability. Results show that compared with the baselines, PreGSU achieves better accuracy on both tasks, indicating the potential to be generalized to various scenes and targets. Ablation study shows the effectiveness of pre-train task design.


[114] 2404.10267

OneActor: Consistent Character Generation via Cluster-Conditioned Guidance

Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.


[115] 2404.10268

Modeling Low-Resource Health Coaching Dialogues via Neuro-Symbolic Goal Summarization and Text-Units-Text Generation

Health coaching helps patients achieve personalized and lifestyle-related goals, effectively managing chronic conditions and alleviating mental health issues. It is particularly beneficial, however cost-prohibitive, for low-socioeconomic status populations due to its highly personalized and labor-intensive nature. In this paper, we propose a neuro-symbolic goal summarizer to support health coaches in keeping track of the goals and a text-units-text dialogue generation model that converses with patients and helps them create and accomplish specific goals for physical activities. Our models outperform previous state-of-the-art while eliminating the need for predefined schema and corresponding annotation. We also propose a new health coaching dataset extending previous work and a metric to measure the unconventionality of the patient's response based on data difficulty, facilitating potential coach alerts during deployment.


[116] 2404.10270

Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration

On the path toward developing the first fusion energy devices, plasma simulations have become indispensable tools for supporting the design and development of fusion machines. Among these critical simulation tools, BIT1 is an advanced Particle-in-Cell code with Monte Carlo collisions, specifically designed for modeling plasma-material interaction and, in particular, analyzing the power load distribution on tokamak divertors. The current implementation of BIT1 relies exclusively on MPI for parallel communication and lacks support for GPUs. In this work, we address these limitations by designing and implementing a hybrid, shared-memory version of BIT1 capable of utilizing GPUs. For shared-memory parallelization, we rely on OpenMP and OpenACC, using a task-based approach to mitigate load-imbalance issues in the particle mover. On an HPE Cray EX computing node, we observe an initial performance improvement of approximately 42%, with scalable performance showing an enhancement of about 38% when using 8 MPI ranks. Still relying on OpenMP and OpenACC, we introduce the first version of BIT1 capable of using GPUs. We investigate two different data movement strategies: unified memory and explicit data movement. Overall, we report BIT1 data transfer findings during each PIC cycle. Among BIT1 GPU implementations, we demonstrate performance improvement through concurrent GPU utilization, especially when MPI ranks are assigned to dedicated GPUs. Finally, we analyze the performance of the first BIT1 GPU porting with the NVIDIA Nsight tools to further our understanding of BIT1 computational efficiency for large-scale plasma simulations, capable of exploiting current supercomputer infrastructures.


[117] 2404.10271

Social Choice for AI Alignment: Dealing with Diverse Human Feedback

Foundation models such as GPT-4 are fine-tuned to avoid unsafe or otherwise problematic behavior, so that, for example, they refuse to comply with requests for help with committing crimes or with producing racist text. One approach to fine-tuning, called reinforcement learning from human feedback, learns from humans' expressed preferences over multiple outputs. Another approach is constitutional AI, in which the input from humans is a list of high-level principles. But how do we deal with potentially diverging input from humans? How can we aggregate the input into consistent data about ''collective'' preferences or otherwise use it to make collective choices about model behavior? In this paper, we argue that the field of social choice is well positioned to address these questions, and we discuss ways forward for this agenda, drawing on discussions in a recent workshop on Social Choice for AI Ethics and Safety held in Berkeley, CA, USA in December 2023.


[118] 2404.10272

Plug-and-Play Acceleration of Occupancy Grid-based NeRF Rendering using VDB Grid and Hierarchical Ray Traversal

Transmittance estimators such as Occupancy Grid (OG) can accelerate the training and rendering of Neural Radiance Field (NeRF) by predicting important samples that contributes much to the generated image. However, OG manages occupied regions in the form of the dense binary grid, in which there are many blocks with the same values that cause redundant examination of voxels' emptiness in ray-tracing. In our work, we introduce two techniques to improve the efficiency of ray-tracing in trained OG without fine-tuning. First, we replace the dense grids with VDB grids to reduce the spatial redundancy. Second, we use hierarchical digital differential analyzer (HDDA) to efficiently trace voxels in the VDB grids. Our experiments on NeRF-Synthetic and Mip-NeRF 360 datasets show that our proposed method successfully accelerates rendering NeRF-Synthetic dataset by 12% in average and Mip-NeRF 360 dataset by 4% in average, compared to a fast implementation of OG, NerfAcc, without losing the quality of rendered images.


[119] 2404.10274

Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso

The challenge of imbalanced soil nutrient datasets significantly hampers accurate predictions of soil fertility. To tackle this, a new method is suggested in this research, combining Uniform Manifold Approximation and Projection (UMAP) with Least Absolute Shrinkage and Selection Operator (LASSO). The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision. The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset. UMAP is utilized initially to reduce data complexity, unveiling hidden structures and important patterns. Following this, LASSO is applied to refine features and enhance the model's interpretability. The experimental outcomes highlight the effectiveness of the UMAP and LASSO hybrid approach. The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%, demonstrating its capability in accurate soil fertility predictions. Additionally, it showcases a Precision of 91.25%, indicating its adeptness in identifying fertile soil instances accurately. The Recall metric stands at 90.90%, emphasizing the model's ability to capture true positive cases effectively.


[120] 2404.10275

OptiGrad: A Fair and more Efficient Price Elasticity Optimization via a Gradient Based Learning

This paper presents a novel approach to optimizing profit margins in non-life insurance markets through a gradient descent-based method, targeting three key objectives: 1) maximizing profit margins, 2) ensuring conversion rates, and 3) enforcing fairness criteria such as demographic parity (DP). Traditional pricing optimization, which heavily lean on linear and semi definite programming, encounter challenges in balancing profitability and fairness. These challenges become especially pronounced in situations that necessitate continuous rate adjustments and the incorporation of fairness criteria. Specifically, indirect Ratebook optimization, a widely-used method for new business price setting, relies on predictor models such as XGBoost or GLMs/GAMs to estimate on downstream individually optimized prices. However, this strategy is prone to sequential errors and struggles to effectively manage optimizations for continuous rate scenarios. In practice, to save time actuaries frequently opt for optimization within discrete intervals (e.g., range of [-20\%, +20\%] with fix increments) leading to approximate estimations. Moreover, to circumvent infeasible solutions they often use relaxed constraints leading to suboptimal pricing strategies. The reverse-engineered nature of traditional models complicates the enforcement of fairness and can lead to biased outcomes. Our method addresses these challenges by employing a direct optimization strategy in the continuous space of rates and by embedding fairness through an adversarial predictor model. This innovation not only reduces sequential errors and simplifies the complexities found in traditional models but also directly integrates fairness measures into the commercial premium calculation. We demonstrate improved margin performance and stronger enforcement of fairness highlighting the critical need to evolve existing pricing strategies.


[121] 2404.10279

EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion

We present EucliDreamer, a simple and effective method to generate textures for 3D models given text prompts and meshes. The texture is parametrized as an implicit function on the 3D surface, which is optimized with the Score Distillation Sampling (SDS) process and differentiable rendering. To generate high-quality textures, we leverage a depth-conditioned Stable Diffusion model guided by the depth image rendered from the mesh. We test our approach on 3D models in Objaverse and conducted a user study, which shows its superior quality compared to existing texturing methods like Text2Tex. In addition, our method converges 2 times faster than DreamFusion. Through text prompting, textures of diverse art styles can be produced. We hope Euclidreamer proides a viable solution to automate a labor-intensive stage in 3D content creation.


[122] 2404.10281

AI-Assisted Writing in Education: Ecosystem Risks and Mitigations

While the excitement around the capabilities of technological advancements is giving rise to new AI-based writing assistants, the overarching ecosystem plays a crucial role in how they are adopted in educational practice. In this paper, we point to key ecological aspects for consideration. We draw insights from extensive research integrated with practice on a writing feedback tool over 9 years at a university, and we highlight potential risks when these are overlooked. It informs the design of educational writing support tools to be better aligned within broader contexts to balance innovation with practical impact.


[123] 2404.10282

Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning

Inductive biases are crucial in disentangled representation learning for narrowing down an underspecified solution set. In this work, we consider endowing a neural network autoencoder with three select inductive biases from the literature: data compression into a grid-like latent space via quantization, collective independence amongst latents, and minimal functional influence of any latent on how other latents determine data generation. In principle, these inductive biases are deeply complementary: they most directly specify properties of the latent space, encoder, and decoder, respectively. In practice, however, naively combining existing techniques instantiating these inductive biases fails to yield significant benefits. To address this, we propose adaptations to the three techniques that simplify the learning problem, equip key regularization terms with stabilizing invariances, and quash degenerate incentives. The resulting model, Tripod, achieves state-of-the-art results on a suite of four image disentanglement benchmarks. We also verify that Tripod significantly improves upon its naive incarnation and that all three of its "legs" are necessary for best performance.


[124] 2404.10289

The Dearth of the Author in AI-Supported Writing

We diagnose and briefly discuss the dearth of the author: a condition that arises when AI-based creativity support tools for writing allow users to produce large amounts of text without making a commensurate number of creative decisions, resulting in output that is sparse in expressive intent. We argue that the dearth of the author helps to explain a number of recurring difficulties and anxieties around AI-based writing support tools, but that it also suggests an ambitious new goal for AI-based CSTs.


[125] 2404.10292

From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search

In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.


[126] 2404.10295

ControlMTR: Control-Guided Motion Transformer with Scene-Compliant Intention Points for Feasible Motion Prediction

The ability to accurately predict feasible multimodal future trajectories of surrounding traffic participants is crucial for behavior planning in autonomous vehicles. The Motion Transformer (MTR), a state-of-the-art motion prediction method, alleviated mode collapse and instability during training and enhanced overall prediction performance by replacing conventional dense future endpoints with a small set of fixed prior motion intention points. However, the fixed prior intention points make the MTR multi-modal prediction distribution over-scattered and infeasible in many scenarios. In this paper, we propose the ControlMTR framework to tackle the aforementioned issues by generating scene-compliant intention points and additionally predicting driving control commands, which are then converted into trajectories by a simple kinematic model with soft constraints. These control-generated trajectories will guide the directly predicted trajectories by an auxiliary loss function. Together with our proposed scene-compliant intention points, they can effectively restrict the prediction distribution within the road boundaries and suppress infeasible off-road predictions while enhancing prediction performance. Remarkably, without resorting to additional model ensemble techniques, our method surpasses the baseline MTR model across all performance metrics, achieving notable improvements of 5.22% in SoftmAP and a 4.15% reduction in MissRate. Our approach notably results in a 41.85% reduction in the cross-boundary rate of the MTR, effectively ensuring that the prediction distribution is confined within the drivable area.


[127] 2404.10296

Engineering software 2.0 by interpolating neural networks: unifying training, solving, and calibration

The evolution of artificial intelligence (AI) and neural network theories has revolutionized the way software is programmed, shifting from a hard-coded series of codes to a vast neural network. However, this transition in engineering software has faced challenges such as data scarcity, multi-modality of data, low model accuracy, and slow inference. Here, we propose a new network based on interpolation theories and tensor decomposition, the interpolating neural network (INN). Instead of interpolating training data, a common notion in computer science, INN interpolates interpolation points in the physical space whose coordinates and values are trainable. It can also extrapolate if the interpolation points reside outside of the range of training data and the interpolation functions have a larger support domain. INN features orders of magnitude fewer trainable parameters, faster training, a smaller memory footprint, and higher model accuracy compared to feed-forward neural networks (FFNN) or physics-informed neural networks (PINN). INN is poised to usher in Engineering Software 2.0, a unified neural network that spans various domains of space, time, parameters, and initial/boundary conditions. This has previously been computationally prohibitive due to the exponentially growing number of trainable parameters, easily exceeding the parameter size of ChatGPT, which is over 1 trillion. INN addresses this challenge by leveraging tensor decomposition and tensor product, with adaptable network architecture.


[128] 2404.10297

Future Language Modeling from Temporal Document History

Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem.


[129] 2404.10299

Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis

Recently, growing health awareness, novel methods allow individuals to monitor sleep at home. Utilizing sleep sounds offers advantages over conventional methods like smartwatches, being non-intrusive, and capable of detecting various physiological activities. This study aims to construct a machine learning-based sleep assessment model providing evidence-based assessments, such as poor sleep due to frequent movement during sleep onset. Extracting sleep sound events, deriving latent representations using VAE, clustering with GMM, and training LSTM for subjective sleep assessment achieved a high accuracy of 94.8% in distinguishing sleep satisfaction. Moreover, TimeSHAP revealed differences in impactful sound event types and timings for different individuals.


[130] 2404.10301

Long-form music generation with latent diffusion

Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.


[131] 2404.10304

LLM-Powered Test Case Generation for Detecting Tricky Bugs

Conventional automated test generation tools struggle to generate test oracles and tricky bug-revealing test inputs. Large Language Models (LLMs) can be prompted to produce test inputs and oracles for a program directly, but the precision of the tests can be very low for complex scenarios (only 6.3% based on our experiments). To fill this gap, this paper proposes AID, which combines LLMs with differential testing to generate fault-revealing test inputs and oracles targeting plausibly correct programs (i.e., programs that have passed all the existing tests). In particular, AID selects test inputs that yield diverse outputs on a set of program variants generated by LLMs, then constructs the test oracle based on the outputs. We evaluate AID on two large-scale datasets with tricky bugs: TrickyBugs and EvalPlus, and compare it with three state-of-the-art baselines. The evaluation results show that the recall, precision, and F1 score of AID outperform the state-of-the-art by up to 1.80x, 2.65x, and 1.66x, respectively.


[132] 2404.10305

TC-OCR: TableCraft OCR for Efficient Detection & Recognition of Table Structure & Content

The automatic recognition of tabular data in document images presents a significant challenge due to the diverse range of table styles and complex structures. Tables offer valuable content representation, enhancing the predictive capabilities of various systems such as search engines and Knowledge Graphs. Addressing the two main problems, namely table detection (TD) and table structure recognition (TSR), has traditionally been approached independently. In this research, we propose an end-to-end pipeline that integrates deep learning models, including DETR, CascadeTabNet, and PP OCR v2, to achieve comprehensive image-based table recognition. This integrated approach effectively handles diverse table styles, complex structures, and image distortions, resulting in improved accuracy and efficiency compared to existing methods like Table Transformers. Our system achieves simultaneous table detection (TD), table structure recognition (TSR), and table content recognition (TCR), preserving table structures and accurately extracting tabular data from document images. The integration of multiple models addresses the intricacies of table recognition, making our approach a promising solution for image-based table understanding, data extraction, and information retrieval applications. Our proposed approach achieves an IOU of 0.96 and an OCR Accuracy of 78%, showcasing a remarkable improvement of approximately 25% in the OCR Accuracy compared to the previous Table Transformer approach.


[133] 2404.10306

Balancing Speciality and Versatility: a Coarse to Fine Framework for Supervised Fine-tuning Large Language Model

Aligned Large Language Models (LLMs) showcase remarkable versatility, capable of handling diverse real-world tasks. Meanwhile, aligned LLMs are also expected to exhibit speciality, excelling in specific applications. However, fine-tuning with extra data, a common practice to gain speciality, often leads to catastrophic forgetting (CF) of previously acquired versatility, hindering the model's performance across diverse tasks. In response to this challenge, we propose CoFiTune, a coarse to fine framework in an attempt to strike the balance between speciality and versatility. At the coarse-grained level, an empirical tree-search algorithm is utilized to pinpoint and update specific modules that are crucial for speciality, while keeping other parameters frozen; at the fine-grained level, a soft-masking mechanism regulates the update to the LLMs, mitigating the CF issue without harming speciality. In an overall evaluation of both speciality and versatility, CoFiTune consistently outperforms baseline methods across diverse tasks and model scales. Compared to the full-parameter SFT, CoFiTune leads to about 14% versatility improvement and marginal speciality loss on a 13B model. Lastly, based on further analysis, we provide a speculative insight into the information forwarding process in LLMs, which helps explain the effectiveness of the proposed method. The code is available at https://github.com/rattlesnakey/CoFiTune.


[134] 2404.10307

Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain

Few-shot segmentation is a task to segment objects or regions of novel classes within an image given only a few annotated examples. In the generalized setting, the task extends to segment both the base and the novel classes. The main challenge is how to train the model such that the addition of novel classes does not hurt the base classes performance, also known as catastrophic forgetting. To mitigate this issue, we use SegGPT as our base model and train it on the base classes. Then, we use separate learnable prompts to handle predictions for each novel class. To handle various object sizes which typically present in remote sensing domain, we perform patch-based prediction. To address the discontinuities along patch boundaries, we propose a patch-and-stitch technique by re-framing the problem as an image inpainting task. During inference, we also utilize image similarity search over image embeddings for prompt selection and novel class filtering to reduce false positive predictions. Based on our experiments, our proposed method boosts the weighted mIoU of a simple fine-tuned SegGPT from 15.96 to 35.08 on the validation set of few-shot OpenEarthMap dataset given in the challenge.


[135] 2404.10308

Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs

Large language models (LLMs) have shown remarkable performance in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process. Previous works have explored architectural changes and modifications in positional encoding to relax the constraint, but they often require expensive training or do not address the computational demands of self-attention. In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations. HOMER uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks. Each chunk is then processed collectively, employing a hierarchical strategy that merges adjacent chunks at progressive transformer layers. A token reduction technique precedes each merging, ensuring memory usage efficiency. We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experiments demonstrate the proposed method's superior performance and memory efficiency, enabling the broader use of LLMs in contexts requiring extended context. Code is available at https://github.com/alinlab/HOMER.


[136] 2404.10311

Learning and Optimization for Price-based Demand Response of Electric Vehicle Charging

In the context of charging electric vehicles (EVs), the price-based demand response (PBDR) is becoming increasingly significant for charging load management. Such response usually encourages cost-sensitive customers to adjust their energy demand in response to changes in price for financial incentives. Thus, to model and optimize EV charging, it is important for charging station operator to model the PBDR patterns of EV customers by precisely predicting charging demands given price signals. Then the operator refers to these demands to optimize charging station power allocation policy. The standard pipeline involves offline fitting of a PBDR function based on historical EV charging records, followed by applying estimated EV demands in downstream charging station operation optimization. In this work, we propose a new decision-focused end-to-end framework for PBDR modeling that combines prediction errors and downstream optimization cost errors in the model learning stage. We evaluate the effectiveness of our method on a simulation of charging station operation with synthetic PBDR patterns of EV customers, and experimental results demonstrate that this framework can provide a more reliable prediction model for the ultimate optimization process, leading to more effective optimization solutions in terms of cost savings and charging station operation objectives with only a few training samples.


[137] 2404.10312

OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model

Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.


[138] 2404.10313

Metamaterial-inspired Wearable Pad for Enhancing EM Coupling with Biological Tissues

Wearable, implantable, and ingestible antennas are continuously evolving in biomedical applications, as they are crucial components in devices used for monitoring and controlling physiological parameters. This work presents an experimentally validated wearable pad which can improve transmission of electromagnetic waves into the human body. This metamaterial-inspired matching pad, which is based on small metallic loops encased in a thin dielectric layer, is mechanically stable, flexible, and passive. As such, the pad can serve as a coupling medium for microwave medical systems and implantable device communication. Operating in the 2.4-2.5 GHz range, the pad demonstrates significant improvement in signal penetration levels (and, hence, depth) into a biological tissue. The study presents design methodology, simulation studies, in-lab development, and experimental characterization of this pad, which can offer a practical solution for enhanced communication and functionality in various medical diagnostic systems.


[139] 2404.10314

Awareness of uncertainty in classification using a multivariate model and multi-views

One of the ways to make artificial intelligence more natural is to give it some room for doubt. Two main questions should be resolved in that way. First, how to train a model to estimate uncertainties of its own predictions? And then, what to do with the uncertain predictions if they appear? First, we proposed an uncertainty-aware negative log-likelihood loss for the case of N-dimensional multivariate normal distribution with spherical variance matrix to the solution of N-classes classification tasks. The loss is similar to the heteroscedastic regression loss. The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations. The model fits well with the label smoothing technique. Second, we expanded the limits of data augmentation at the training and test stages, and made the trained model to give multiple predictions for a given number of augmented versions of each test sample. Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions, including mode values and bin counts with soft and hard weights. For the latter method, we formalized the model tuning task in the form of multimodal optimization with non-differentiable criteria of maximum accuracy, and applied particle swarm optimization to solve the tuning task. The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels and demonstrated good results in comparison with other uncertainty estimation methods related to sample selection, co-teaching, and label smoothing.


[140] 2404.10315

Enhancing Confidence Expression in Large Language Models Through Learning from Past Experience

Large Language Models (LLMs) have exhibited remarkable performance across various downstream tasks, but they may generate inaccurate or false information with a confident tone. One of the possible solutions is to empower the LLM confidence expression capability, in which the confidence expressed can be well-aligned with the true probability of the generated answer being correct. However, leveraging the intrinsic ability of LLMs or the signals from the output logits of answers proves challenging in accurately capturing the response uncertainty in LLMs. Therefore, drawing inspiration from cognitive diagnostics, we propose a method of Learning from Past experience (LePe) to enhance the capability for confidence expression. Specifically, we first identify three key problems: (1) How to capture the inherent confidence of the LLM? (2) How to teach the LLM to express confidence? (3) How to evaluate the confidence expression of the LLM? Then we devise three stages in LePe to deal with these problems. Besides, to accurately capture the confidence of an LLM when constructing the training data, we design a complete pipeline including question preparation and answer sampling. We also conduct experiments using the Llama family of LLMs to verify the effectiveness of our proposed method on four datasets.


[141] 2404.10316

Multiple Mobile Target Detection and Tracking in Active Sonar Array Using a Track-Before-Detect Approach

We present an algorithm for detecting and tracking underwater mobile objects using active acoustic transmission of broadband chirp signals whose reflections are received by a hydrophone array. The method overcomes the problem of high false alarm rate by applying a track-before-detect ap- proach to the sequence of received reflections. A 2D time- space matrix is created for the reverberations received from each transmitted probe signal by performing delay and sum beamforming and pulse compression. The result is filtered by a 2D constant false alarm rate (CFAR) detector to identify reflection patterns corresponding to potential targets. Closely spaced signals for multiple probe transmissions are combined into blobs to avoid multiple detections of a single object. A track- before-detect method using a Nearly Constant Velocity (NCV) model is employed to track multiple objects. The position and velocity is estimated by the debiased converted measurement Kalman filter. Results are analyzed for simulated scenarios and for experiments at sea, where GPS tagged gilt-head seabream fish were tracked. Compared to two benchmark schemes, the results show a favorable track continuity and accuracy that is robust to the choice of detection threshold.


[142] 2404.10317

LLMs4OM: Matching Ontologies with Large Language Models

Ontology Matching (OM), is a critical task in knowledge integration, where aligning heterogeneous ontologies facilitates data interoperability and knowledge sharing. Traditional OM systems often rely on expert knowledge or predictive models, with limited exploration of the potential of Large Language Models (LLMs). We present the LLMs4OM framework, a novel approach to evaluate the effectiveness of LLMs in OM tasks. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. Through comprehensive evaluations using 20 OM datasets from various domains, we demonstrate that LLMs, under the LLMs4OM framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. Our results highlight the potential of LLMs to significantly contribute to the field of OM.


[143] 2404.10318

SRGS: Super-Resolution 3D Gaussian Splatting

Recently, 3D Gaussian Splatting (3DGS) has gained popularity as a novel explicit 3D representation. This approach relies on the representation power of Gaussian primitives to provide a high-quality rendering. However, primitives optimized at low resolution inevitably exhibit sparsity and texture deficiency, posing a challenge for achieving high-resolution novel view synthesis (HRNVS). To address this problem, we propose Super-Resolution 3D Gaussian Splatting (SRGS) to perform the optimization in a high-resolution (HR) space. The sub-pixel constraint is introduced for the increased viewpoints in HR space, exploiting the sub-pixel cross-view information of the multiple low-resolution (LR) views. The gradient accumulated from more viewpoints will facilitate the densification of primitives. Furthermore, a pre-trained 2D super-resolution model is integrated with the sub-pixel constraint, enabling these dense primitives to learn faithful texture features. In general, our method focuses on densification and texture learning to effectively enhance the representation ability of primitives. Experimentally, our method achieves high rendering quality on HRNVS only with LR inputs, outperforming state-of-the-art methods on challenging datasets such as Mip-NeRF 360 and Tanks & Temples. Related codes will be released upon acceptance.


[144] 2404.10319

Application of Deep Learning Methods to Processing of Noisy Medical Video Data

Cells count become a challenging problem when the cells move in a continuous stream, and their boundaries are difficult for visual detection. To resolve this problem we modified the training and decision making processes using curriculum learning and multi-view predictions techniques, respectively.


[145] 2404.10320

CARE to Compare: A real-world dataset for anomaly detection in wind turbine data

Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.


[146] 2404.10321

Cluster-based Graph Collaborative Filtering

Graph Convolution Networks (GCNs) have significantly succeeded in learning user and item representations for recommendation systems. The core of their efficacy is the ability to explicitly exploit the collaborative signals from both the first- and high-order neighboring nodes. However, most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution. Thus, the noisy information from unreliable neighbor nodes (e.g., users with dissimilar interests) negatively impacts the representation learning of the target node. Additionally, conducting graph convolution operations without differentiating high-order neighbors suffers the over-smoothing issue when stacking more layers, resulting in performance degradation. In this paper, we aim to capture more valuable information from high-order neighboring nodes while avoiding noise for better representation learning of the target node. To achieve this goal, we propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF). This model performs high-order graph convolution on cluster-specific graphs, which are constructed by capturing the multiple interests of users and identifying the common interests among them. Specifically, we design an unsupervised and optimizable soft node clustering approach to classify user and item nodes into multiple clusters. Based on the soft node clustering results and the topology of the user-item interaction graph, we assign the nodes with probabilities for different clusters to construct the cluster-specific graphs. To evaluate the effectiveness of ClusterGCF, we conducted extensive experiments on four publicly available datasets. Experimental results demonstrate that our model can significantly improve recommendation performance.


[147] 2404.10322

Domain-Rectifying Adapter for Cross-Domain Few-Shot Segmentation

Few-shot semantic segmentation (FSS) has achieved great success on segmenting objects of novel classes, supported by only a few annotated samples. However, existing FSS methods often underperform in the presence of domain shifts, especially when encountering new domain styles that are unseen during training. It is suboptimal to directly adapt or generalize the entire model to new domains in the few-shot scenario. Instead, our key idea is to adapt a small adapter for rectifying diverse target domain styles to the source domain. Consequently, the rectified target domain features can fittingly benefit from the well-optimized source domain segmentation model, which is intently trained on sufficient source domain data. Training domain-rectifying adapter requires sufficiently diverse target domains. We thus propose a novel local-global style perturbation method to simulate diverse potential target domains by perturbating the feature channel statistics of the individual images and collective statistics of the entire source domain, respectively. Additionally, we propose a cyclic domain alignment module to facilitate the adapter effectively rectifying domains using a reverse domain rectification supervision. The adapter is trained to rectify the image features from diverse synthesized target domains to align with the source domain. During testing on target domains, we start by rectifying the image features and then conduct few-shot segmentation on the domain-rectified features. Extensive experiments demonstrate the effectiveness of our method, achieving promising results on cross-domain few-shot semantic segmentation tasks. Our code is available at https://github.com/Matt-Su/DR-Adapter.


[148] 2404.10324

Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks

Physics-based models are computationally time-consuming and infeasible for real-time scenarios of urban drainage networks, and a surrogate model is needed to accelerate the online predictive modelling. Fully-connected neural networks (NNs) are potential surrogate models, but may suffer from low interpretability and efficiency in fitting complex targets. Owing to the state-of-the-art modelling power of graph neural networks (GNNs) and their match with urban drainage networks in the graph structure, this work proposes a GNN-based surrogate of the flow routing model for the hydraulic prediction problem of drainage networks, which regards recent hydraulic states as initial conditions, and future runoff and control policy as boundary conditions. To incorporate hydraulic constraints and physical relationships into drainage modelling, physics-guided mechanisms are designed on top of the surrogate model to restrict the prediction variables with flow balance and flooding occurrence constraints. According to case results in a stormwater network, the GNN-based model is more cost-effective with better hydraulic prediction accuracy than the NN-based model after equal training epochs, and the designed mechanisms further limit prediction errors with interpretable domain knowledge. As the model structure adheres to the flow routing mechanisms and hydraulic constraints in urban drainage networks, it provides an interpretable and effective solution for data-driven surrogate modelling. Simultaneously, the surrogate model accelerates the predictive modelling of urban drainage networks for real-time use compared with the physics-based model.


[149] 2404.10327

Exact and Efficient Unlearning for Large Language Model-based Recommendation

The evolving paradigm of Large Language Model-based Recom- mendation (LLMRec) customizes Large Language Models (LLMs) through parameter-efficient fine-tuning (PEFT) using recommenda- tion data. The inclusion of user data in LLMs raises privacy concerns. To protect users, the unlearning process in LLMRec, specifically removing unusable data (e.g., historical behaviors) from established LLMRec models, becomes crucial. However, existing unlearning methods are insufficient for the unique characteristics of LLM- Rec, mainly due to high computational costs or incomplete data erasure. In this study, we introduce the Adapter Partition and Ag- gregation (APA) framework for exact and efficient unlearning while maintaining recommendation performance. APA achieves this by establishing distinct adapters for partitioned training data shards and retraining only the adapters impacted by unusable data for un- learning. To preserve recommendation performance and mitigate considerable inference costs, APA employs parameter-level adapter aggregation with sample-adaptive attention for individual testing samples. Extensive experiments substantiate the effectiveness and efficiency of our proposed framework


[150] 2404.10328

Quantum Computing for All: Online Courses Built Around Interactive Visual Quantum Circuit Simulator

Quantum computing is a highly abstract scientific discipline, which, however, is expected to have great practical relevance in future information technology. This forces educators to seek new methods to teach quantum computing for students with diverse backgrounds and with no prior knowledge of quantum physics. We have developed an online course built around an interactive quantum circuit simulator designed to enable easy creation and maintenance of course material with ranging difficulty. The immediate feedback and automatically evaluated tasks lowers the entry barrier to quantum computing for all students, regardless of their background.


[151] 2404.10329

Towards Complex Ontology Alignment using Large Language Models

Ontology alignment, a critical process in the Semantic Web for detecting relationships between different ontologies, has traditionally focused on identifying so-called "simple" 1-to-1 relationships through class labels and properties comparison. The more practically useful exploration of more complex alignments remains a hard problem to automate, and as such is largely underexplored, i.e. in application practice it is usually done manually by ontology and domain experts. Recently, the surge in Natural Language Processing (NLP) capabilities, driven by advancements in Large Language Models (LLMs), presents new opportunities for enhancing ontology engineering practices, including ontology alignment tasks. This paper investigates the application of LLM technologies to tackle the complex ontology alignment challenge. Leveraging a prompt-based approach and integrating rich ontology content so-called modules our work constitutes a significant advance towards automating the complex alignment task.


[152] 2404.10332

Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning

Despite achieving outstanding performance on various cross-modal tasks, current large vision-language models (LVLMs) still suffer from hallucination issues, manifesting as inconsistencies between their generated responses and the corresponding images. Prior research has implicated that the low quality of instruction data, particularly the skewed balance between positive and negative samples, is a significant contributor to model hallucinations. Recently, researchers have proposed high-quality instruction datasets, such as LRV-Instruction, to mitigate model hallucination. Nonetheless, our investigation reveals that hallucinatory concepts from different LVLMs exhibit specificity, i.e. the distribution of hallucinatory concepts varies significantly across models. Existing datasets did not consider the hallucination specificity of different models in the design processes, thereby diminishing their efficacy in mitigating model hallucination. In this paper, we propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models. Concretely, DFTG consists of two stages: hallucination diagnosis, which extracts the necessary information from the model's responses and images for hallucination diagnosis; and targeted data generation, which generates targeted instruction data based on diagnostic results. The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.


[153] 2404.10335

Efficiently Adversarial Examples Generation for Visual-Language Models under Targeted Transfer Scenarios using Diffusion Models

Targeted transfer-based attacks involving adversarial examples pose a significant threat to large visual-language models (VLMs). However, the state-of-the-art (SOTA) transfer-based attacks incur high costs due to excessive iteration counts. Furthermore, the generated adversarial examples exhibit pronounced adversarial noise and demonstrate limited efficacy in evading defense methods such as DiffPure. To address these issues, inspired by score matching, we introduce AdvDiffVLM, which utilizes diffusion models to generate natural, unrestricted adversarial examples. Specifically, AdvDiffVLM employs Adaptive Ensemble Gradient Estimation to modify the score during the diffusion model's reverse generation process, ensuring the adversarial examples produced contain natural adversarial semantics and thus possess enhanced transferability. Simultaneously, to enhance the quality of adversarial examples further, we employ the GradCAM-guided Mask method to disperse adversarial semantics throughout the image, rather than concentrating them in a specific area. Experimental results demonstrate that our method achieves a speedup ranging from 10X to 30X compared to existing transfer-based attack methods, while maintaining superior quality of adversarial examples. Additionally, the generated adversarial examples possess strong transferability and exhibit increased robustness against adversarial defense methods. Notably, AdvDiffVLM can successfully attack commercial VLMs, including GPT-4V, in a black-box manner.


[154] 2404.10337

Intriguing Properties of Positional Encoding in Time Series Forecasting

Transformer-based methods have made significant progress in time series forecasting (TSF). They primarily handle two types of tokens, i.e., temporal tokens that contain all variables of the same timestamp, and variable tokens that contain all input time points for a specific variable. Transformer-based methods rely on positional encoding (PE) to mark tokens' positions, facilitating the model to perceive the correlation between tokens. However, in TSF, research on PE remains insufficient. To address this gap, we conduct experiments and uncover intriguing properties of existing PEs in TSF: (i) The positional information injected by PEs diminishes as the network depth increases; (ii) Enhancing positional information in deep networks is advantageous for improving the model's performance; (iii) PE based on the similarity between tokens can improve the model's performance. Motivated by these findings, we introduce two new PEs: Temporal Position Encoding (T-PE) for temporal tokens and Variable Positional Encoding (V-PE) for variable tokens. Both T-PE and V-PE incorporate geometric PE based on tokens' positions and semantic PE based on the similarity between tokens but using different calculations. To leverage both the PEs, we design a Transformer-based dual-branch framework named T2B-PE. It first calculates temporal tokens' correlation and variable tokens' correlation respectively and then fuses the dual-branch features through the gated unit. Extensive experiments demonstrate the superior robustness and effectiveness of T2B-PE. The code is available at: \href{https://github.com/jlu-phyComputer/T2B-PE}{https://github.com/jlu-phyComputer/T2B-PE}.


[155] 2404.10341

Asset management, condition monitoring and Digital Twins: damage detection and virtual inspection on a reinforced concrete bridge

In April 2021 Stava bridge, a main bridge on E6 in Norway, was abruptly closed for traffic. A structural defect had seriously compromised the bridge structural integrity. The Norwegian Public Roads Administration (NPRA) closed it, made a temporary solution and reopened with severe traffic restrictions. The incident was alerted through what constitutes the bridge Digital Twin processing data from Internet of Things sensors. The solution was crucial in online and offline diagnostics, the case demonstrating the value of technologies to tackle emerging dangerous situations as well as acting preventively. A critical and rapidly developing damage was detected in time to stop the development, but not in time to avoid the incident altogether. The paper puts risk in a broader perspective for an organization responsible for highway infrastructure. It positions online monitoring and Digital Twins in the context of Risk- and Condition-Based Maintenance. The situation that arose at Stava bridge, and how it was detected, analyzed, and diagnosed during virtual inspection, is described. The case demonstrates how combining physics-based methods with Machine Learning can facilitate damage detection and diagnostics. A summary of lessons learnt, both from technical and organizational perspectives, as well as plans of future work, is presented.


[156] 2404.10342

Referring Flexible Image Restoration

In reality, images often exhibit multiple degradations, such as rain and fog at night (triple degradations). However, in many cases, individuals may not want to remove all degradations, for instance, a blurry lens revealing a beautiful snowy landscape (double degradations). In such scenarios, people may only desire to deblur. These situations and requirements shed light on a new challenge in image restoration, where a model must perceive and remove specific degradation types specified by human commands in images with multiple degradations. We term this task Referring Flexible Image Restoration (RFIR). To address this, we first construct a large-scale synthetic dataset called RFIR, comprising 153,423 samples with the degraded image, text prompt for specific degradation removal and restored image. RFIR consists of five basic degradation types: blur, rain, haze, low light and snow while six main sub-categories are included for varying degrees of degradation removal. To tackle the challenge, we propose a novel transformer-based multi-task model named TransRFIR, which simultaneously perceives degradation types in the degraded image and removes specific degradation upon text prompt. TransRFIR is based on two devised attention modules, Multi-Head Agent Self-Attention (MHASA) and Multi-Head Agent Cross Attention (MHACA), where MHASA and MHACA introduce the agent token and reach the linear complexity, achieving lower computation cost than vanilla self-attention and cross-attention and obtaining competitive performances. Our TransRFIR achieves state-of-the-art performances compared with other counterparts and is proven as an effective architecture for image restoration. We release our project at https://github.com/GuanRunwei/FIR-CP.


[157] 2404.10343

The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report

This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.


[158] 2404.10346

Self-Explore to Avoid the Pit: Improving the Reasoning Capabilities of Language Models with Fine-grained Rewards

Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at https://github.com/hbin0701/Self-Explore.


[159] 2404.10348

On the Universality of Spatially Coupled LDPC Codes Over Intersymbol Interference Channels

In this paper, we derive the exact input/output transfer functions of the optimal a-posteriori probability channel detector for a general ISI channel with erasures. Considering three channel impulse responses of different memory as an example, we compute the BP and MAP thresholds for regular spatially coupled LDPC codes with joint iterative detection and decoding. When we compare the results with the thresholds of ISI channels with Gaussian noise we observe an apparent inconsistency, i.e., a channel which performs better with erasures performs worse with AWGN. We show that this anomaly can be resolved by looking at the thresholds from an entropy perspective. We finally show that with spatial coupling we can achieve the symmetric information rates of different ISI channels using the same code.


[160] 2404.10350

Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems

We consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The control will be considered in the energy norm of the anisotropic Sobolev space $[H_{0;,0}^{1,1/2}(Q)]^\ast$, such that the state equation of the partial differential equation defines an isomorphism onto $H^{1,1/2}_{0;0,}(Q)$. Thus, we can eliminate the control from the tracking type functional to be minimized, to derive the optimality system in order to determine the state. Since the appearing operator induces an equivalent norm in $H_{0;0,}^{1,1/2}(Q)$, we will replace it by a computable realization of the anisotropic Sobolev norm, using a modified Hilbert transformation. We are then able to link the cost or regularization parameter $\varrho>0$ to the distance of the state and the desired target, solely depending on the regularity of the target. For a conforming space-time finite element discretization, this behavior carries over to the discrete setting, leading to an optimal choice $\varrho = h_x^2$ of the regularization parameter $\varrho$ to the spatial finite element mesh size $h_x$. Using a space-time tensor product mesh, error estimates for the distance of the computable state to the desired target are derived. The main advantage of this new approach is, that applying sparse factorization techniques, a solver of optimal, i.e., almost linear, complexity is proposed and analyzed. The theoretical results are complemented by numerical examples, including discontinuous and less regular targets. Moreover, this approach can be applied also to optimal control problems subject to non-linear state equations.


[161] 2404.10352

CanvasPic: An Interactive Tool for Freely Generating Facial Images Based on Spatial Layout

In real-world usage, existing GAN image generation tools come up short due to their lack of intuitive interfaces and limited flexibility. To overcome these limitations, we developed CanvasPic, an innovative tool for flexible GAN image generation. Our tool introduces a novel 2D layout design that allows users to intuitively control image attributes based on real-world images. By interacting with the distances between images in the spatial layout, users are able to conveniently control the influence of each attribute on the target image and explore a wide range of generated results. Considering practical application scenarios, a user study involving 24 participants was conducted to compare our tool with existing tools in GAN image generation. The results of the study demonstrate that our tool significantly enhances the user experience, enabling more effective achievement of desired generative results.


[162] 2404.10353

Rethinking the Graph Polynomial Filter via Positive and Negative Coupling Analysis

Recently, the optimization of polynomial filters within Spectral Graph Neural Networks (GNNs) has emerged as a prominent research focus. Existing spectral GNNs mainly emphasize polynomial properties in filter design, introducing computational overhead and neglecting the integration of crucial graph structure information. We argue that incorporating graph information into basis construction can enhance understanding of polynomial basis, and further facilitate simplified polynomial filter design. Motivated by this, we first propose a Positive and Negative Coupling Analysis (PNCA) framework, where the concepts of positive and negative activation are defined and their respective and mixed effects are analysed. Then, we explore PNCA from the message propagation perspective, revealing the subtle information hidden in the activation process. Subsequently, PNCA is used to analyze the mainstream polynomial filters, and a novel simple basis that decouples the positive and negative activation and fully utilizes graph structure information is designed. Finally, a simple GNN (called GSCNet) is proposed based on the new basis. Experimental results on the benchmark datasets for node classification verify that our GSCNet obtains better or comparable results compared with existing state-of-the-art GNNs while demanding relatively less computational time.


[163] 2404.10355

AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs

This work investigates a new erase scheme in NAND flash memory to improve the lifetime and performance of modern solid-state drives (SSDs). In NAND flash memory, an erase operation applies a high voltage (e.g., > 20 V) to flash cells for a long time (e.g., > 3.5 ms), which degrades cell endurance and potentially delays user I/O requests. While a large body of prior work has proposed various techniques to mitigate the negative impact of erase operations, no work has yet investigated how erase latency should be set to fully exploit the potential of NAND flash memory; most existing techniques use a fixed latency for every erase operation which is set to cover the worst-case operating conditions. To address this, we propose AERO (Adaptive ERase Operation), a new erase scheme that dynamically adjusts erase latency to be just long enough for reliably erasing target cells, depending on the cells' current erase characteristics. AERO accurately predicts such near-optimal erase latency based on the number of fail bits during an erase operation. To maximize its benefits, we further optimize AERO in two aspects. First, at the beginning of an erase operation, AERO attempts to erase the cells for a short time (e.g., 1 ms), which enables AERO to always obtain the number of fail bits necessary to accurately predict the near-optimal erase latency. Second, AERO aggressively yet safely reduces erase latency by leveraging a large reliability margin present in modern SSDs. We demonstrate the feasibility and reliability of AERO using 160 real 3D NAND flash chips, showing that it enhances SSD lifetime over the conventional erase scheme by 43% without change to existing NAND flash chips. Our system-level evaluation using eleven real-world workloads shows that an AERO-enabled SSD reduces read tail latency by 34% on average over a state-of-the-art technique.


[164] 2404.10356

Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery

Trustworthiness is a major prerequisite for the safe application of opaque deep learning models in high-stakes domains like medicine. Understanding the decision-making process not only contributes to fostering trust but might also reveal previously unknown decision criteria of complex models that could advance the state of medical research. The discovery of decision-relevant concepts from black box models is a particularly challenging task. This study proposes Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT), a novel three-step framework for concept discovery leveraging the superior image synthesis capabilities of diffusion models. In the first step, CDCT uses a Latent Diffusion Model (LDM) to generate a counterfactual trajectory dataset. This dataset is used to derive a disentangled representation of classification-relevant concepts using a Variational Autoencoder (VAE). Finally, a search algorithm is applied to identify relevant concepts in the disentangled latent space. The application of CDCT to a classifier trained on the largest public skin lesion dataset revealed not only the presence of several biases but also meaningful biomarkers. Moreover, the counterfactuals generated within CDCT show better FID scores than those produced by a previously established state-of-the-art method, while being 12 times more resource-efficient. Unsupervised concept discovery holds great potential for the application of trustworthy AI and the further development of human knowledge in various domains. CDCT represents a further step in this direction.


[165] 2404.10357

Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models

Vision-Language Models (VLMs), such as CLIP, play a foundational role in various cross-modal applications. To fully leverage VLMs' potential in adapting to downstream tasks, context optimization methods like Prompt Tuning are essential. However, one key limitation is the lack of diversity in prompt templates, whether they are hand-crafted or learned through additional modules. This limitation restricts the capabilities of pretrained VLMs and can result in incorrect predictions in downstream tasks. To address this challenge, we propose Context Optimization with Multi-Knowledge Representation (CoKnow), a framework that enhances Prompt Learning for VLMs with rich contextual knowledge. To facilitate CoKnow during inference, we trained lightweight semantic knowledge mappers, which are capable of generating Multi-Knowledge Representation for an input image without requiring additional priors. Experimentally, We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods. We will make all resources open-source: https://github.com/EMZucas/CoKnow.


[166] 2404.10358

Improving Bracket Image Restoration and Enhancement with Flow-guided Alignment and Enhanced Feature Aggregation

In this paper, we address the Bracket Image Restoration and Enhancement (BracketIRE) task using a novel framework, which requires restoring a high-quality high dynamic range (HDR) image from a sequence of noisy, blurred, and low dynamic range (LDR) multi-exposure RAW inputs. To overcome this challenge, we present the IREANet, which improves the multiple exposure alignment and aggregation with a Flow-guide Feature Alignment Module (FFAM) and an Enhanced Feature Aggregation Module (EFAM). Specifically, the proposed FFAM incorporates the inter-frame optical flow as guidance to facilitate the deformable alignment and spatial attention modules for better feature alignment. The EFAM further employs the proposed Enhanced Residual Block (ERB) as a foundational component, wherein a unidirectional recurrent network aggregates the aligned temporal features to better reconstruct the results. To improve model generalization and performance, we additionally employ the Bayer preserving augmentation (BayerAug) strategy to augment the multi-exposure RAW inputs. Our experimental evaluations demonstrate that the proposed IREANet shows state-of-the-art performance compared with previous methods.


[167] 2404.10359

Stampede Alert Clustering Algorithmic System Based on Tiny-Scale Strengthened DETR

A novel crowd stampede detection and prediction algorithm based on Deformable DETR is proposed to address the challenges of detecting a large number of small targets and target occlusion in crowded airport and train station environments. In terms of model design, the algorithm incorporates a multi-scale feature fusion module to enlarge the receptive field and enhance the detection capability of small targets. Furthermore, the deformable attention mechanism is improved to reduce missed detections and false alarms for critical targets. Additionally, a new algorithm is innovatively introduced for stampede event prediction and visualization. Experimental evaluations on the PKX-LHR dataset demonstrate that the enhanced algorithm achieves a 34% performance in small target detection accuracy while maintaining the original detection speed.


[168] 2404.10360

Numerical study of the Gross-Pitaevskii equation on a two-dimensional ring and vortex nucleation

We consider the Gross-Pitaevskii equation with a confining ring potential with a Gaussian profile. By introducing a rotating sinusoidal perturbation, we numerically highlight the nucleation of quantum vortices in a particular regime throughout the dynamics. Numerical computations are made via a Strang splitting time integration and a two-point flux approximation Finite Volume scheme based on a particular admissible triangulation. We also develop numerical algorithms for vortex tracking adapted to our finite volume framework.


[169] 2404.10362

3DGen: AI-Assisted Generation of Provably Correct Binary Format Parsers

Improper parsing of attacker-controlled input is a leading source of software security vulnerabilities, especially when programmers transcribe informal format descriptions in RFCs into efficient parsing logic in low-level, memory unsafe languages. Several researchers have proposed formal specification languages for data formats from which efficient code can be extracted. However, distilling informal requirements into formal specifications is challenging and, despite their benefits, new, formal languages are hard for people to learn and use. In this work, we present 3DGen, a framework that makes use of AI agents to transform mixed informal input, including natural language documents (i.e., RFCs) and example inputs into format specifications in a language called 3D. To support humans in understanding and trusting the generated specifications, 3DGen uses symbolic methods to also synthesize test inputs that can be validated against an external oracle. Symbolic test generation also helps in distinguishing multiple plausible solutions. Through a process of repeated refinement, 3DGen produces a 3D specification that conforms to a test suite, and which yields safe, efficient, provably correct, parsing code in C. We have evaluated 3DGen on 20 Internet standard formats, demonstrating the potential for AI-agents to produce formally verified C code at a non-trivial scale. A key enabler is the use of a domain-specific language to limit AI outputs to a class for which automated, symbolic analysis is tractable.


[170] 2404.10363

A Survey on Data-Driven Fault Diagnostic Techniques for Marine Diesel Engines

Fault diagnosis in marine diesel engines is vital for maritime safety and operational efficiency.These engines are integral to marine vessels, and their reliable performance is crucial for safenavigation. Swift identification and resolution of faults are essential to prevent breakdowns,enhance safety, and reduce the risk of catastrophic failures at sea. Proactive fault diagnosisfacilitates timely maintenance, minimizes downtime, and ensures the overall reliability andlongevity of marine diesel engines. This paper explores the importance of fault diagnosis,emphasizing subsystems, common faults, and recent advancements in data-driven approachesfor effective marine diesel engine maintenance


[171] 2404.10365

Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments

Intelligent communications have played a pivotal role in shaping the evolution of 6G networks. Native artificial intelligence (AI) within green communication systems must meet stringent real-time requirements. To achieve this, deploying lightweight and resource-efficient AI models is necessary. However, as wireless networks generate a multitude of data fields and indicators during operation, only a fraction of them imposes significant impact on the network AI models. Therefore, real-time intelligence of communication systems heavily relies on a small but critical set of the data that profoundly influences the performance of network AI models. These challenges underscore the need for innovative architectures and solutions. In this paper, we propose a solution, termed the pervasive multi-level (PML) native AI architecture, which integrates the concept of knowledge graph (KG) into the intelligent operational manipulations of mobile networks, resulting in the establishment of a wireless data KG. Leveraging the wireless data KG, we characterize the massive and complex data collected from wireless communication networks and analyze the relationships among various data fields. The obtained graph of data field relations enables the on-demand generation of minimal and effective datasets, referred to as feature datasets, tailored to specific application requirements. Consequently, this architecture not only enhances AI training, inference, and validation processes but also significantly reduces resource wastage and overhead for communication networks. To implement this architecture, we have developed a specific solution comprising a spatio-temporal heterogeneous graph attention neural network model (STREAM) as well as a feature dataset generation algorithm. Experiments are conducted to validate the effectiveness of the proposed architecture.


[172] 2404.10367

Robust Performance Over Changing Intersymbol Interference Channels by Spatial Coupling

We show that spatially coupled low-density parity- check (LDPC) codes yield robust performance over changing intersymbol interfere (ISI) channels with optimal and suboptimal detectors. We compare the performance with classical LDPC code design which involves optimizing the degree distribution for a given (known) channel. We demonstrate that these classical schemes, despite working very good when designed for a given channel, can perform poorly if the channel is exchanged. With spatially coupled LDPC codes, however, we get performances close to the symmetric information rates with just a single code, without the need to know the channel and adapt to it at the transmitter. We also investigate threshold saturation with the linear minimum mean square error (LMMSE) detector and show that with spatial coupling its performance can get remarkably close to that of an optimal detector for regular LDPC codes.


[173] 2404.10370

Know Yourself Better: Diverse Discriminative Feature Learning Improves Open Set Recognition

Open set recognition (OSR) is a critical aspect of machine learning, addressing the challenge of detecting novel classes during inference. Within the realm of deep learning, neural classifiers trained on a closed set of data typically struggle to identify novel classes, leading to erroneous predictions. To address this issue, various heuristic methods have been proposed, allowing models to express uncertainty by stating "I don't know." However, a gap in the literature remains, as there has been limited exploration of the underlying mechanisms of these methods. In this paper, we conduct an analysis of open set recognition methods, focusing on the aspect of feature diversity. Our research reveals a significant correlation between learning diverse discriminative features and enhancing OSR performance. Building on this insight, we propose a novel OSR approach that leverages the advantages of feature diversity. The efficacy of our method is substantiated through rigorous evaluation on a standard OSR testbench, demonstrating a substantial improvement over state-of-the-art methods.


[174] 2404.10371

Promoting the linguistic diversity of TEI in the Maghreb and the Arab region

The project targets both oral corpus and the rich text resources written in the Maghreb region. It focuses particularly on the continuity, for more than 12 centuries, of a classical still alive Arabic language and on the extreme hybridization of vernacular languages sustained by the rich Libyan, Roman, Hebrew and Ottoman influences and by the more recent French, Spanish and Italian linguistic interference. In short, the Maghreb is a place of extremely abundant, but much unexploited, textual studies.


[175] 2404.10374

Enjeux normatifs des TICE de l'enseignement des langues dans le contexte arabo-berb{è}re

E-learning is becoming a global phenomenon. Learning Arabic (or Arabic dialects), or learning one or several variants of Berber can be understood from a very local perspective (in the Maghreb for instance) or in the wider framework of the diaspora or even more broadly in a global world context (in case a Japanese or a Russian learns Arabic and Berber). Resources for distance learning must then be created and potentially used in any international cultural and linguistic context. This implies that the resources created for such perspective should cope with the general standards framework of the ISO / IEC JTC1SC36, and even beyond the scope of this standardization instance.


[176] 2404.10376

Hunting DeFi Vulnerabilities via Context-Sensitive Concolic Verification

Decentralized finance (DeFi) is revolutionizing the traditional centralized finance paradigm with its attractive features such as high availability, transparency, and tamper-proofing. However, attacks targeting DeFi services have severely damaged the DeFi market, as evidenced by our investigation of 80 real-world DeFi incidents from 2017 to 2022. Existing methods, based on symbolic execution, model checking, semantic analysis, and fuzzing, fall short in identifying the most DeFi vulnerability types. To address the deficiency, we propose Context-Sensitive Concolic Verification (CSCV), a method of automating the DeFi vulnerability finding based on user-defined properties formulated in temporal logic. CSCV builds and optimizes contexts to guide verification processes that dynamically construct context-carrying transition systems in tandem with concolic executions. Furthermore, we demonstrate the effectiveness of CSCV through experiments on real-world DeFi services and qualitative comparison. The experiment results show that our CSCV prototype successfully detects 76.25% of the vulnerabilities from the investigated incidents with an average time of 253.06 seconds.


[177] 2404.10378

Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data

Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.


[178] 2404.10380

PSPACE-Hard 2D Super Mario Games: Thirteen Doors

We prove PSPACE-hardness for fifteen games in the Super Mario Bros. 2D platforming video game series. Previously, only the original Super Mario Bros. was known to be PSPACE-hard (FUN 2016), though several of the games we study were known to be NP-hard (FUN 2014). Our reductions build door gadgets with open, close, and traverse traversals, in each case using mechanics unique to the game. While some of our door constructions are similar to those from FUN 2016, those for Super Mario Bros. 2, Super Mario Land 2, Super Mario World 2, and the New Super Mario Bros. series are quite different; notably, the Super Mario Bros. 2 door is extremely difficult. Doors remain elusive for just two 2D Mario games (Super Mario Land and Super Mario Run); we prove that these games are at least NP-hard.


[179] 2404.10383

Learning to Score Sign Language with Two-stage Method

Human action recognition and performance assessment have been hot research topics in recent years. Recognition problems have mature solutions in the field of sign language, but past research in performance analysis has focused on competitive sports and medical training, overlooking the scoring assessment ,which is an important part of sign language teaching digitalization. In this paper, we analyze the existing technologies for performance assessment and adopt methods that perform well in human pose reconstruction tasks combined with motion rotation embedded expressions, proposing a two-stage sign language performance evaluation pipeline. Our analysis shows that choosing reconstruction tasks in the first stage can provide more expressive features, and using smoothing methods can provide an effective reference for assessment. Experiments show that our method provides good score feedback mechanisms and high consistency with professional assessments compared to end-to-end evaluations.


[180] 2404.10384

Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering

Large language models (LLMs), such as GPT3.5, GPT4 and LLAMA2 perform surprisingly well and outperform human experts on many tasks. However, in many domain-specific evaluations, these LLMs often suffer from hallucination problems due to insufficient training of relevant corpus. Furthermore, fine-tuning large models may face problems such as the LLMs are not open source or the construction of high-quality domain instruction is difficult. Therefore, structured knowledge databases such as knowledge graph can better provide domain back- ground knowledge for LLMs and make full use of the reasoning and analysis capabilities of LLMs. In some previous works, LLM was called multiple times to determine whether the current triplet was suitable for inclusion in the subgraph when retrieving subgraphs through a question. Especially for the question that require a multi-hop reasoning path, frequent calls to LLM will consume a lot of computing power. Moreover, when choosing the reasoning path, LLM will be called once for each step, and if one of the steps is selected incorrectly, it will lead to the accumulation of errors in the following steps. In this paper, we integrated and optimized a pipeline for selecting reasoning paths from KG based on LLM, which can reduce the dependency on LLM. In addition, we propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank which can returns the paths most likely to contain the answer. We conduct experiments on three datasets: GenMedGPT-5k [14], WebQuestions [2], and CMCQA [21]. Finally, RoK can demonstrate that using fewer LLM calls can achieve the same results as previous SOTAs models.


[181] 2404.10386

I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey

High-Performance Computing (HPC) systems excel in managing distributed workloads, and the growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. In the past, research on HPC I/O focused on optimizing the underlying storage system for modeling and simulation applications and checkpointing the results, causing writes to be the dominant I/O operation. These applications typically access large portions of the data written by simulations or experiments. ML workloads, in contrast, perform small I/O reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to HPC storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during ML training, explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature, and lastly, present gaps requiring further R&D. We seek to summarize the common practices used in accessing data by ML applications and expose research gaps that could spawn further R&D.


[182] 2404.10387

CNN-based explanation ensembling for dataset, representation and explanations evaluation

Explainable Artificial Intelligence has gained significant attention due to the widespread use of complex deep learning models in high-stake domains such as medicine, finance, and autonomous cars. However, different explanations often present different aspects of the model's behavior. In this research manuscript, we explore the potential of ensembling explanations generated by deep classification models using convolutional model. Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior, leading to the possibility of evaluating the representation learned by the model. With our method, we can uncover problems of under-representation of images in a certain class. Moreover, we discuss other side benefits like features' reduction by replacing the original image with its explanations resulting in the removal of some sensitive information. Through the use of carefully selected evaluation metrics from the Quantus library, we demonstrated the method's superior performance in terms of Localisation and Faithfulness, compared to individual explanations.


[183] 2404.10389

Paving the Way to Hybrid Quantum-Classical Scientific Workflows

The increasing growth of data volume, and the consequent explosion in demand for computational power, are affecting scientific computing, as shown by the rise of extreme data scientific workflows. As the need for computing power increases, quantum computing has been proposed as a way to deliver it. It may provide significant theoretical speedups for many scientific applications (i.e., molecular dynamics, quantum chemistry, combinatorial optimization, and machine learning). Therefore, integrating quantum computers into the computing continuum constitutes a promising way to speed up scientific computation. However, the scientific computing community still lacks the necessary tools and expertise to fully harness the power of quantum computers in the execution of complex applications such as scientific workflows. In this work, we describe the main characteristics of quantum computing and its main benefits for scientific applications, then we formalize hybrid quantum-classic workflows, explore how to identify quantum components and map them onto resources. We demonstrate concepts on a real use case and define a software architecture for a hybrid workflow management system.


[184] 2404.10391

Convergence rate of the spectral difference method on regular triangular meshes

We consider the spectral difference method based on the p-th order Raviart~-- Thomas space (p=1,2,3) on regular triangular meshes for the scalar transport equation. The solution converges with the order p if the transport velocity is parallel to a family of mesh edges and with the order p+1 otherwise. We prove this fact for p=1 and show it for p=1,2,3 in numerical experiments.


[185] 2404.10392

Generating 6-D Trajectories for Omnidirectional Multirotor Aerial Vehicles in Cluttered Environments

As fully-actuated systems, omnidirectional multirotor aerial vehicles (OMAVs) have more flexible maneuverability and advantages in aggressive flight in cluttered environments than traditional underactuated MAVs. %Due to the high dimensionality of configuration space, making the designed trajectory generation algorithm efficient is challenging. This paper aims to achieve safe flight of OMAVs in cluttered environments. Considering existing static obstacles, an efficient optimization-based framework is proposed to generate 6-D $SE(3)$ trajectories for OMAVs. Given the kinodynamic constraints and the 3D collision-free region represented by a series of intersecting convex polyhedra, the proposed method finally generates a safe and dynamically feasible 6-D trajectory. First, we parameterize the vehicle's attitude into a free 3D vector using stereographic projection to eliminate the constraints inherent in the $SO(3)$ manifold, while the complete $SE(3)$ trajectory is represented as a 6-D polynomial in time without inherent constraints. The vehicle's shape is modeled as a cuboid attached to the body frame to achieve whole-body collision evaluation. Then, we formulate the origin trajectory generation problem as a constrained optimization problem. The original constrained problem is finally transformed into an unconstrained one that can be solved efficiently. To verify the proposed framework's performance, simulations and real-world experiments based on a tilt-rotor hexarotor aerial vehicle are carried out.


[186] 2404.10393

Offline Trajectory Generalization for Offline Reinforcement Learning

Offline reinforcement learning (RL) aims to learn policies from static datasets of previously collected trajectories. Existing methods for offline RL either constrain the learned policy to the support of offline data or utilize model-based virtual environments to generate simulated rollouts. However, these methods suffer from (i) poor generalization to unseen states; and (ii) trivial improvement from low-qualified rollout simulation. In this paper, we propose offline trajectory generalization through world transformers for offline reinforcement learning (OTTO). Specifically, we use casual Transformers, a.k.a. World Transformers, to predict state dynamics and the immediate reward. Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data. Finally, we jointly use offline data with simulated data to train an offline RL algorithm. OTTO serves as a plug-in module and can be integrated with existing offline RL methods to enhance them with better generalization capability of transformers and high-rewarded data augmentation. Conducting extensive experiments on D4RL benchmark datasets, we verify that OTTO significantly outperforms state-of-the-art offline RL methods.


[187] 2404.10394

Portrait3D: Text-Guided High-Quality 3D Portrait Generation Using Pyramid Representation and GANs Prior

Existing neural rendering-based text-to-3D-portrait generation methods typically make use of human geometry prior and diffusion models to obtain guidance. However, relying solely on geometry information introduces issues such as the Janus problem, over-saturation, and over-smoothing. We present Portrait3D, a novel neural rendering-based framework with a novel joint geometry-appearance prior to achieve text-to-3D-portrait generation that overcomes the aforementioned issues. To accomplish this, we train a 3D portrait generator, 3DPortraitGAN-Pyramid, as a robust prior. This generator is capable of producing 360{\deg} canonical 3D portraits, serving as a starting point for the subsequent diffusion-based generation process. To mitigate the "grid-like" artifact caused by the high-frequency information in the feature-map-based 3D representation commonly used by most 3D-aware GANs, we integrate a novel pyramid tri-grid 3D representation into 3DPortraitGAN-Pyramid. To generate 3D portraits from text, we first project a randomly generated image aligned with the given prompt into the pre-trained 3DPortraitGAN-Pyramid's latent space. The resulting latent code is then used to synthesize a pyramid tri-grid. Beginning with the obtained pyramid tri-grid, we use score distillation sampling to distill the diffusion model's knowledge into the pyramid tri-grid. Following that, we utilize the diffusion model to refine the rendered images of the 3D portrait and then use these refined images as training data to further optimize the pyramid tri-grid, effectively eliminating issues with unrealistic color and unnatural artifacts. Our experimental results show that Portrait3D can produce realistic, high-quality, and canonical 3D portraits that align with the prompt.


[188] 2404.10395

Spline-Interpolated Model Predictive Path Integral Control with Stein Variational Inference for Reactive Navigation

This paper presents a reactive navigation method that leverages a Model Predictive Path Integral (MPPI) control enhanced with spline interpolation for the control input sequence and Stein Variational Gradient Descent (SVGD). The MPPI framework addresses a nonlinear optimization problem by determining an optimal sequence of control inputs through a sampling-based approach. The efficacy of MPPI is significantly influenced by the sampling noise. To rapidly identify routes that circumvent large and/or newly detected obstacles, it is essential to employ high levels of sampling noise. However, such high noise levels result in jerky control input sequences, leading to non-smooth trajectories. To mitigate this issue, we propose the integration of spline interpolation within the MPPI process, enabling the generation of smooth control input sequences despite the utilization of substantial sampling noises. Nonetheless, the standard MPPI algorithm struggles in scenarios featuring multiple optimal or near-optimal solutions, such as environments with several viable obstacle avoidance paths, due to its assumption that the distribution over an optimal control input sequence can be closely approximated by a Gaussian distribution. To address this limitation, we extend our method by incorporating SVGD into the MPPI framework with spline interpolation. SVGD, rooted in the optimal transportation algorithm, possesses the unique ability to cluster samples around an optimal solution. Consequently, our approach facilitates robust reactive navigation by swiftly identifying obstacle avoidance paths while maintaining the smoothness of the control input sequences. The efficacy of our proposed method is validated on simulations with a quadrotor, demonstrating superior performance over existing baseline techniques.


[189] 2404.10396

Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span

New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-B\'{e}zier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence which guarantees that all B-spline functions are at least $C^0$-continuous. It has good numerical behavior and has an asymptotically optimal computational complexity.


[190] 2404.10397

On the external concurrency of current BDI frameworks for MAS

The execution of Belief-Desire-Intention (BDI) agents in a Multi-Agent System (MAS) can be practically implemented on top of low-level concurrency mechanisms that impact on efficiency, determinism, and reproducibility. We argue that developers should specify the MAS behaviour independently of the execution model, and choose or configure the concurrency model later on, according to their target domain's specific needs, leaving the MAS specification unaffected. We identify patterns for mapping the agent execution over the underlying concurrency abstractions, and investigate which concurrency models are supported by some of the most commonly used BDI platforms. Although most frameworks support multiple concurrency models, we find that they tend to hide them under the hood, making them opaque to the developer, and effectively limiting the possibility of fine-tuning the MAS.


[191] 2404.10399

FoundationGrasp: Generalizable Task-Oriented Grasping with Foundation Models

Task-oriented grasping (TOG), which refers to the problem of synthesizing grasps on an object that are configurationally compatible with the downstream manipulation task, is the first milestone towards tool manipulation. Analogous to the activation of two brain regions responsible for semantic and geometric reasoning during cognitive processes, modeling the complex relationship between objects, tasks, and grasps requires rich prior knowledge about objects and tasks. Existing methods typically limit the prior knowledge to a closed-set scope and cannot support the generalization to novel objects and tasks out of the training set. To address such a limitation, we propose FoundationGrasp, a foundation model-based TOG framework that leverages the open-ended knowledge from foundation models to learn generalizable TOG skills. Comprehensive experiments are conducted on the contributed Language and Vision Augmented TaskGrasp (LaViA-TaskGrasp) dataset, demonstrating the superiority of FoudationGrasp over existing methods when generalizing to novel object instances, object classes, and tasks out of the training set. Furthermore, the effectiveness of FoudationGrasp is validated in real-robot grasping and manipulation experiments on a 7 DoF robotic arm. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/foundationgrasp.


[192] 2404.10401

A Phone-based Distributed Ambient Temperature Measurement System with An Efficient Label-free Automated Training Strategy

Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation technology. Nevertheless, numerous obstacles remain to be addressed in order to achieve a practical implementation of this technology. This study proposes a distributed phone-based ambient temperature estimation system which enables collaboration between multiple phones to accurately measure the ambient temperature in each small area of an indoor space. Besides, it offers a secure, efficient, and cost-effective training strategy to train a new estimation model for each newly added phone, eliminating the need for manual collection of labeled data. This innovative training strategy can yield a high-performing estimation model for a new phone with just 5 data points, requiring only a few iterations. Meanwhile, by crowdsourcing, our system automatically provides accurate inferred labels for all newly collected data. We also highlight the potential of integrating federated learning into our system to ensure privacy protection at the end of this study. We believe this study has the potential to advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.


[193] 2404.10404

Sisu: Decentralized Trustless Bridge For Full Ethereum Node

In this paper, we present a detailed approach and implementation to prove Ethereum full node using recursive SNARK, distributed general GKR and Groth16. Our protocol's name is Sisu whose architecture is based on distributed Virgo in zkBridge with some major improvements. Besides proving signature aggregation, we provide solutions to 2 hard problems in proving Ethereum full node: 1) any public key is valid under previous beacon state and 2) all public keys are pairwise distinct. Our solution does not require worker-to-worker communication and therefore reduce total worker-to-worker network traffic from terabyte of data to zero compared to zkBridge. This makes our approach suitable for emerging distributed prover markets and more decentralized compared to zkBridge. Our design is highly parallelable and capable of running on GPU for most parts.


[194] 2404.10405

Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition

Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.


[195] 2404.10407

Comprehensive Survey of Model Compression and Speed up for Vision Transformers

Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.


[196] 2404.10408

Adversarial Identity Injection for Semantic Face Image Synthesis

Nowadays, deep learning models have reached incredible performance in the task of image generation. Plenty of literature works address the task of face generation and editing, with human and automatic systems that struggle to distinguish what's real from generated. Whereas most systems reached excellent visual generation quality, they still face difficulties in preserving the identity of the starting input subject. Among all the explored techniques, Semantic Image Synthesis (SIS) methods, whose goal is to generate an image conditioned on a semantic segmentation mask, are the most promising, even though preserving the perceived identity of the input subject is not their main concern. Therefore, in this paper, we investigate the problem of identity preservation in face image generation and present an SIS architecture that exploits a cross-attention mechanism to merge identity, style, and semantic features to generate faces whose identities are as similar as possible to the input ones. Experimental results reveal that the proposed method is not only suitable for preserving the identity but is also effective in the face recognition adversarial attack, i.e. hiding a second identity in the generated faces.


[197] 2404.10411

Camera clustering for scalable stream-based active distillation

We present a scalable framework designed to craft efficient lightweight models for video object detection utilizing self-training and knowledge distillation techniques. We scrutinize methodologies for the ideal selection of training images from video streams and the efficacy of model sharing across numerous cameras. By advocating for a camera clustering methodology, we aim to diminish the requisite number of models for training while augmenting the distillation dataset. The findings affirm that proper camera clustering notably amplifies the accuracy of distilled models, eclipsing the methodologies that employ distinct models for each camera or a universal model trained on the aggregate camera data.


[198] 2404.10413

VDTuner: Automated Performance Tuning for Vector Data Management Systems

Vector data management systems (VDMSs) have become an indispensable cornerstone in large-scale information retrieval and machine learning systems like large language models. To enhance the efficiency and flexibility of similarity search, VDMS exposes many tunable index parameters and system parameters for users to specify. However, due to the inherent characteristics of VDMS, automatic performance tuning for VDMS faces several critical challenges, which cannot be well addressed by the existing auto-tuning methods. In this paper, we introduce VDTuner, a learning-based automatic performance tuning framework for VDMS, leveraging multi-objective Bayesian optimization. VDTuner overcomes the challenges associated with VDMS by efficiently exploring a complex multi-dimensional parameter space without requiring any prior knowledge. Moreover, it is able to achieve a good balance between search speed and recall rate, delivering an optimal configuration. Extensive evaluations demonstrate that VDTuner can markedly improve VDMS performance (14.12% in search speed and 186.38% in recall rate) compared with default setting, and is more efficient compared with state-of-the-art baselines (up to 3.57 times faster in terms of tuning time). In addition, VDTuner is scalable to specific user preference and cost-aware optimization objective. VDTuner is available online at https://github.com/tiannuo-yang/VDTuner.


[199] 2404.10416

Disentangling Instructive Information from Ranked Multiple Candidates for Multi-Document Scientific Summarization

Automatically condensing multiple topic-related scientific papers into a succinct and concise summary is referred to as Multi-Document Scientific Summarization (MDSS). Currently, while commonly used abstractive MDSS methods can generate flexible and coherent summaries, the difficulty in handling global information and the lack of guidance during decoding still make it challenging to generate better summaries. To alleviate these two shortcomings, this paper introduces summary candidates into MDSS, utilizing the global information of the document set and additional guidance from the summary candidates to guide the decoding process. Our insights are twofold: Firstly, summary candidates can provide instructive information from both positive and negative perspectives, and secondly, selecting higher-quality candidates from multiple options contributes to producing better summaries. Drawing on the insights, we propose a summary candidates fusion framework -- Disentangling Instructive information from Ranked candidates (DIR) for MDSS. Specifically, DIR first uses a specialized pairwise comparison method towards multiple candidates to pick out those of higher quality. Then DIR disentangles the instructive information of summary candidates into positive and negative latent variables with Conditional Variational Autoencoder. These variables are further incorporated into the decoder to guide generation. We evaluate our approach with three different types of Transformer-based models and three different types of candidates, and consistently observe noticeable performance improvements according to automatic and human evaluation. More analyses further demonstrate the effectiveness of our model in handling global information and enhancing decoding controllability.


[200] 2404.10420

AudioProtoPNet: An interpretable deep learning model for bird sound classification

Recently, scientists have proposed several deep learning models to monitor the diversity of bird species. These models can detect bird species with high accuracy by analyzing acoustic signals. However, traditional deep learning algorithms are black-box models that provide no insight into their decision-making process. For domain experts, such as ornithologists, it is crucial that these models are not only efficient, but also interpretable in order to be used as assistive tools. In this study, we present an adaption of the Prototypical Part Network (ProtoPNet) for audio classification that provides inherent interpretability through its model architecture. Our approach is based on a ConvNeXt backbone architecture for feature extraction and learns prototypical patterns for each bird species using spectrograms of the training data. Classification of new data is done by comparison with these prototypes in latent space, which simultaneously serve as easily understandable explanations for the model's decisions.


[201] 2404.10421

Concurrency Model of BDI Programming Frameworks: Why Should We Control It?

We provide a taxonomy of concurrency models for BDI frameworks, elicited by analysing state-of-the-art technologies, and aimed at helping both BDI designers and developers in making informed decisions. Comparison among BDI technologies w.r.t. concurrency models reveals heterogeneous support, and low customisability.


[202] 2404.10425

Optimizing BioTac Simulation for Realistic Tactile Perception

Tactile sensing presents a promising opportunity for enhancing the interaction capabilities of today's robots. BioTac is a commonly used tactile sensor that enables robots to perceive and respond to physical tactile stimuli. However, the sensor's non-linearity poses challenges in simulating its behavior. In this paper, we first investigate a BioTac simulation that uses temperature, force, and contact point positions to predict the sensor outputs. We show that training with BioTac temperature readings does not yield accurate sensor output predictions during deployment. Consequently, we tested three alternative models, i.e., an XGBoost regressor, a neural network, and a transformer encoder. We train these models without temperature readings and provide a detailed investigation of the window size of the input vectors. We demonstrate that we achieve statistically significant improvements over the baseline network. Furthermore, our results reveal that the XGBoost regressor and transformer outperform traditional feed-forward neural networks in this task. We make all our code and results available online on https://github.com/wzaielamri/Optimizing_BioTac_Simulation.


[203] 2404.10426

Bit catastrophes for the Burrows-Wheeler Transform

A bit catastrophe, loosely defined, is when a change in just one character of a string causes a significant change in the size of the compressed string. We study this phenomenon for the Burrows-Wheeler Transform (BWT), a string transform at the heart of several of the most popular compressors and aligners today. The parameter determining the size of the compressed data is the number of equal-letter runs of the BWT, commonly denoted $r$. We exhibit infinite families of strings in which insertion, deletion, resp. substitution of one character increases $r$ from constant to $\Theta(\log n)$, where $n$ is the length of the string. These strings can be interpreted both as examples for an increase by a multiplicative or an additive $\Theta(\log n)$-factor. As regards multiplicative factor, they attain the upper bound given by Akagi, Funakoshi, and Inenaga [Inf & Comput. 2023] of $O(\log n \log r)$, since here $r=O(1)$. We then give examples of strings in which insertion, deletion, resp. substitution of a character increases $r$ by a $\Theta(\sqrt{n})$ additive factor. These strings significantly improve the best known lower bound for an additive factor of $\Omega(\log n)$ [Giuliani et al., SOFSEM 2021].


[204] 2404.10429

MEEL: Multi-Modal Event Evolution Learning

Multi-modal Event Reasoning (MMER) endeavors to endow machines with the ability to comprehend intricate event relations across diverse data modalities. MMER is fundamental and underlies a wide broad of applications. Despite extensive instruction fine-tuning, current multi-modal large language models still fall short in such ability. The disparity stems from that existing models are insufficient to capture underlying principles governing event evolution in various scenarios. In this paper, we introduce Multi-Modal Event Evolution Learning (MEEL) to enable the model to grasp the event evolution mechanism, yielding advanced MMER ability. Specifically, we commence with the design of event diversification to gather seed events from a rich spectrum of scenarios. Subsequently, we employ ChatGPT to generate evolving graphs for these seed events. We propose an instruction encapsulation process that formulates the evolving graphs into instruction-tuning data, aligning the comprehension of event reasoning to humans. Finally, we observe that models trained in this way are still struggling to fully comprehend event evolution. In such a case, we propose the guiding discrimination strategy, in which models are trained to discriminate the improper evolution direction. We collect and curate a benchmark M-EV2 for MMER. Extensive experiments on M-EV2 validate the effectiveness of our approach, showcasing competitive performance in open-source multi-modal LLMs.


[205] 2404.10433

Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification

Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.


[206] 2404.10435

Synthetic vs Human Emotional Faces: What Changes in Humans' Decoding Accuracy

Considered the increasing use of assistive technologies in the shape of virtual agents, it is necessary to investigate those factors which characterize and affect the interaction between the user and the agent, among these emerges the way in which people interpret and decode synthetic emotions, i.e., emotional expressions conveyed by virtual agents. For these reasons, an article is proposed, which involved 278 participants split in differently aged groups (young, middle-aged, and elders). Within each age group, some participants were administered a naturalistic decoding task, a recognition task of human emotional faces, while others were administered a synthetic decoding task, namely emotional expressions conveyed by virtual agents. Participants were required to label pictures of female and male humans or virtual agents of different ages (young, middle-aged, and old) displaying static expressions of disgust, anger, sadness, fear, happiness, surprise, and neutrality. Results showed that young participants showed better recognition performances (compared to older groups) of anger, sadness, and neutrality, while female participants showed better recognition performances(compared to males) ofsadness, fear, and neutrality; sadness and fear were better recognized when conveyed by real human faces, while happiness, surprise, and neutrality were better recognized when represented by virtual agents. Young faces were better decoded when expressing anger and surprise, middle-aged faces were better decoded when expressing sadness, fear, and happiness , while old faces were better decoded in the case of disgust; on average, female faces where better decoded compared to male ones.


[207] 2404.10436

Tree Bandits for Generative Bayes

In generative models with obscured likelihood, Approximate Bayesian Computation (ABC) is often the tool of last resort for inference. However, ABC demands many prior parameter trials to keep only a small fraction that passes an acceptance test. To accelerate ABC rejection sampling, this paper develops a self-aware framework that learns from past trials and errors. We apply recursive partitioning classifiers on the ABC lookup table to sequentially refine high-likelihood regions into boxes. Each box is regarded as an arm in a binary bandit problem treating ABC acceptance as a reward. Each arm has a proclivity for being chosen for the next ABC evaluation, depending on the prior distribution and past rejections. The method places more splits in those areas where the likelihood resides, shying away from low-probability regions destined for ABC rejections. We provide two versions: (1) ABC-Tree for posterior sampling, and (2) ABC-MAP for maximum a posteriori estimation. We demonstrate accurate ABC approximability at much lower simulation cost. We justify the use of our tree-based bandit algorithms with nearly optimal regret bounds. Finally, we successfully apply our approach to the problem of masked image classification using deep generative models.


[208] 2404.10438

The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement

Pose refinement is an interesting and practically relevant research direction. Pose refinement can be used to (1) obtain a more accurate pose estimate from an initial prior (e.g., from retrieval), (2) as pre-processing, i.e., to provide a better starting point to a more expensive pose estimator, (3) as post-processing of a more accurate localizer. Existing approaches focus on learning features / scene representations for the pose refinement task. This involves training an implicit scene representation or learning features while optimizing a camera pose-based loss. A natural question is whether training specific features / representations is truly necessary or whether similar results can be already achieved with more generic features. In this work, we present a simple approach that combines pre-trained features with a particle filter and a renderable representation of the scene. Despite its simplicity, it achieves state-of-the-art results, demonstrating that one can easily build a pose refiner without the need for specific training. The code is at https://github.com/ga1i13o/mcloc_poseref


[209] 2404.10439

Decentralized Control for Heterogeneous Battery Energy Storage System

Battery energy storage systems (BESSs) are essential for stable power supply in renewable energy systems that can operate in all weather. Future BESSs will be massive and pluggable with several heterogeneous batteries. In this paper, a novel decentralized control method for a heterogeneous BESS is proposed, in which each battery autonomously operates based on its characteristics. First, a control method that uses only one broadcast signal for each type of battery is proposed. Second, the asymptotic stability of the tracking error is proved. Third, numerical simulations confirm that the proposed control method has robust tracking performance of the total electric power to the demanded power when some batteries fail and are detached from the system. Last, in order to suppress degradation of battery, equalization of the state of charge is achieved for each type of battery without communication among the batteries.


[210] 2404.10440

Language Proficiency and F0 Entrainment: A Study of L2 English Imitation in Italian, French, and Slovak Speakers

This study explores F0 entrainment in second language (L2) English speech imitation during an Alternating Reading Task (ART). Participants with Italian, French, and Slovak native languages imitated English utterances, and their F0 entrainment was quantified using the Dynamic Time Warping (DTW) distance between the parameterized F0 contours of the imitated utterances and those of the model utterances. Results indicate a nuanced relationship between L2 English proficiency and entrainment: speakers with higher proficiency generally exhibit less entrainment in pitch variation and declination. However, within dyads, the more proficient speakers demonstrate a greater ability to mimic pitch range, leading to increased entrainment. This suggests that proficiency influences entrainment differently at individual and dyadic levels, highlighting the complex interplay between language skill and prosodic adaptation.


[211] 2404.10441

1st Place Solution for ICCV 2023 OmniObject3D Challenge: Sparse-View Reconstruction

In this report, we present the 1st place solution for ICCV 2023 OmniObject3D Challenge: Sparse-View Reconstruction. The challenge aims to evaluate approaches for novel view synthesis and surface reconstruction using only a few posed images of each object. We utilize Pixel-NeRF as the basic model, and apply depth supervision as well as coarse-to-fine positional encoding. The experiments demonstrate the effectiveness of our approach in improving sparse-view reconstruction quality. We ranked first in the final test with a PSNR of 25.44614.


[212] 2404.10442

Fundamentals of a Null Field Method-Surface Equivalence Principle Approach for Scattering by Dielectric Cylinders

The null-field method (NFM) and the method of auxiliary sources (MAS) have been both used extensively for the numerical solution of boundary-value problems arising in diverse applications involving propagation and scattering of waves. It has been shown that, under certain conditions, the applicabil- ity of MAS may be restricted by issues concerning the divergence of the auxiliary currents, manifested by the appearance of exponentially large os- cillations. In this work, we combine the NFM with the surface equivalence principle (SEP) and investigate analytically the convergence properties of the combined NFM-SEP with reference to the problem of (internal or external) line-source excitation of a dielectric cylinder. Our main purpose is to prove that (contrary to the MAS) the discrete NFM-SEP currents, when prop- erly normalized, always converge to the corresponding continuous current densities, and thus no divergence and oscillations phenomena appear. The theoretical analysis of the NFM-SEP is accompanied by detailed comparisons with the MAS as well as with representative numerical results illustrating the conclusions.


[213] 2404.10443

AGHINT: Attribute-Guided Representation Learning on Heterogeneous Information Networks with Transformer

Recently, heterogeneous graph neural networks (HGNNs) have achieved impressive success in representation learning by capturing long-range dependencies and heterogeneity at the node level. However, few existing studies have delved into the utilization of node attributes in heterogeneous information networks (HINs). In this paper, we investigate the impact of inter-node attribute disparities on HGNNs performance within the benchmark task, i.e., node classification, and empirically find that typical models exhibit significant performance decline when classifying nodes whose attributes markedly differ from their neighbors. To alleviate this issue, we propose a novel Attribute-Guided heterogeneous Information Networks representation learning model with Transformer (AGHINT), which allows a more effective aggregation of neighbor node information under the guidance of attributes. Specifically, AGHINT transcends the constraints of the original graph structure by directly integrating higher-order similar neighbor features into the learning process and modifies the message-passing mechanism between nodes based on their attribute disparities. Extensive experimental results on three real-world heterogeneous graph benchmarks with target node attributes demonstrate that AGHINT outperforms the state-of-the-art.


[214] 2404.10445

SparseDM: Toward Sparse Efficient Diffusion Models

Diffusion models have been extensively used in data generation tasks and are recognized as one of the best generative models. However, their time-consuming deployment, long inference time, and requirements on large memory limit their application on mobile devices. In this paper, we propose a method based on the improved Straight-Through Estimator to improve the deployment efficiency of diffusion models. Specifically, we add sparse masks to the Convolution and Linear layers in a pre-trained diffusion model, then use design progressive sparsity for model training in the fine-tuning stage, and switch the inference mask on and off, which supports a flexible choice of sparsity during inference according to the FID and MACs requirements. Experiments on four datasets conducted on a state-of-the-art Transformer-based diffusion model demonstrate that our method reduces MACs by $50\%$ while increasing FID by only 1.5 on average. Under other MACs conditions, the FID is also lower than 1$\sim$137 compared to other methods.


[215] 2404.10446

Watching Grass Grow: Long-term Visual Navigation and Mission Planning for Autonomous Biodiversity Monitoring

We describe a challenging robotics deployment in a complex ecosystem to monitor a rich plant community. The study site is dominated by dynamic grassland vegetation and is thus visually ambiguous and liable to drastic appearance change over the course of a day and especially through the growing season. This dynamism and complexity in appearance seriously impact the stability of the robotics platform, as localisation is a foundational part of that control loop, and so routes must be carefully taught and retaught until autonomy is robust and repeatable. Our system is demonstrated over a 6-week period monitoring the response of grass species to experimental climate change manipulations. We also discuss the applicability of our pipeline to monitor biodiversity in other complex natural settings.


[216] 2404.10450

Graph Neural Networks for Protein-Protein Interactions - A Short Survey

Protein-protein interactions (PPIs) play key roles in a broad range of biological processes. Numerous strategies have been proposed for predicting PPIs, and among them, graph-based methods have demonstrated promising outcomes owing to the inherent graph structure of PPI networks. This paper reviews various graph-based methodologies, and discusses their applications in PPI prediction. We classify these approaches into two primary groups based on their model structures. The first category employs Graph Neural Networks (GNN) or Graph Convolutional Networks (GCN), while the second category utilizes Graph Attention Networks (GAT), Graph Auto-Encoders and Graph-BERT. We highlight the distinctive methodologies of each approach in managing the graph-structured data inherent in PPI networks and anticipate future research directions in this domain.


[217] 2404.10452

Polycyclic codes over serial rings and their annihilator CSS construction

In this paper, we investigate the algebraic structure for polycyclic codes over a specific class of serial rings, defined as $\mathscr R=R[x_1,\ldots, x_s]/\langle t_1(x_1),\ldots, t_s(x_s) \rangle$, where $R$ is a chain ring and each $t_i(x_i)$ in $R[x_i]$ for $i\in\{1,\ldots, s\}$ is a monic square-free polynomial. We define quasi-$s$-dimensional polycyclic codes and establish an $R$-isomorphism between these codes and polycyclic codes over $\mathscr R$. We provide necessary and sufficient conditions for the existence of annihilator self-dual, annihilator self-orthogonal, annihilator linear complementary dual, and annihilator dual-containing polycyclic codes over this class of rings. We also establish the CSS construction for annihilator dual-preserving polycyclic codes over the chain ring $R$ and use this construction to derive quantum codes from polycyclic codes over $\mathscr{R}$.


[218] 2404.10454

A Computer Vision-Based Quality Assessment Technique for the automatic control of consumables for analytical laboratories

The rapid growth of the Industry 4.0 paradigm is increasing the pressure to develop effective automated monitoring systems. Artificial Intelligence (AI) is a convenient tool to improve the efficiency of industrial processes while reducing errors and waste. In fact, it allows the use of real-time data to increase the effectiveness of monitoring systems, minimize errors, make the production process more sustainable, and save costs. In this paper, a novel automatic monitoring system is proposed in the context of production process of plastic consumables used in analysis laboratories, with the aim to increase the effectiveness of the control process currently performed by a human operator. In particular, we considered the problem of classifying the presence or absence of a transparent anticoagulant substance inside test tubes. Specifically, a hand-designed deep network model is used and compared with some state-of-the-art models for its ability to categorize different images of vials that can be either filled with the anticoagulant or empty. Collected results indicate that the proposed approach is competitive with state-of-the-art models in terms of accuracy. Furthermore, we increased the complexity of the task by training the models on the ability to discriminate not only the presence or absence of the anticoagulant inside the vial, but also the size of the test tube. The analysis performed in the latter scenario confirms the competitiveness of our approach. Moreover, our model is remarkably superior in terms of its generalization ability and requires significantly fewer resources. These results suggest the possibility of successfully implementing such a model in the production process of a plastic consumables company.


[219] 2404.10457

Revealing data leakage in protein interaction benchmarks

In recent years, there has been remarkable progress in machine learning for protein-protein interactions. However, prior work has predominantly focused on improving learning algorithms, with less attention paid to evaluation strategies and data preparation. Here, we demonstrate that further development of machine learning methods may be hindered by the quality of existing train-test splits. Specifically, we find that commonly used splitting strategies for protein complexes, based on protein sequence or metadata similarity, introduce major data leakage. This may result in overoptimistic evaluation of generalization, as well as unfair benchmarking of the models, biased towards assessing their overfitting capacity rather than practical utility. To overcome the data leakage, we recommend constructing data splits based on 3D structural similarity of protein-protein interfaces and suggest corresponding algorithms. We believe that addressing the data leakage problem is critical for further progress in this research area.


[220] 2404.10458

Advancing Long-Term Multi-Energy Load Forecasting with Patchformer: A Patch and Transformer-Based Approach

In the context of increasing demands for long-term multi-energy load forecasting in real-world applications, this paper introduces Patchformer, a novel model that integrates patch embedding with encoder-decoder Transformer-based architectures. To address the limitation in existing Transformer-based models, which struggle with intricate temporal patterns in long-term forecasting, Patchformer employs patch embedding, which predicts multivariate time-series data by separating it into multiple univariate data and segmenting each of them into multiple patches. This method effectively enhances the model's ability to capture local and global semantic dependencies. The numerical analysis shows that the Patchformer obtains overall better prediction accuracy in both multivariate and univariate long-term forecasting on the novel Multi-Energy dataset and other benchmark datasets. In addition, the positive effect of the interdependence among energy-related products on the performance of long-term time-series forecasting across Patchformer and other compared models is discovered, and the superiority of the Patchformer against other models is also demonstrated, which presents a significant advancement in handling the interdependence and complexities of long-term multi-energy forecasting. Lastly, Patchformer is illustrated as the only model that follows the positive correlation between model performance and the length of the past sequence, which states its ability to capture long-range past local semantic information.


[221] 2404.10464

DESTEIN: Navigating Detoxification of Language Models via Universal Steering Pairs and Head-wise Activation Fusion

Despite the remarkable achievements of language models (LMs) across a broad spectrum of tasks, their propensity for generating toxic outputs remains a prevalent concern. Current solutions involving fine-tuning or auxiliary models usually require extensive memory and computational resources, rendering them less practical for deployment in large language models (LLMs). In this paper, we propose DeStein, a novel method that detoxififies LMs by altering their internal representations in the activation space with lower resource and time cost. Specifically, we leverage self-induced steering pairs to identify detoxification vectors through arithmetic operations in the activation space. During inference, detoxification is achieved by blending the detoxification vectors with the original representations. Empirical results demonstrate that our method significantly outperforms previous state-of-the-art approaches on popular detoxification metrics, while also maintaining satisfactory generation quality and diversity. Furthermore, we extend our method to multiple LLMs, demonstrating its practicality and scalability. Warning: some example model outputs contain highly offensive or disturbing text.


[222] 2404.10468

Community detection and anomaly prediction in dynamic networks

Anomaly detection is an essential task in the analysis of dynamic networks, as it can provide early warning of potential threats or abnormal behavior. We present a principled approach to detect anomalies in dynamic networks that integrates community structure as a foundational model for regular behavior. Our model identifies anomalies as irregular edges while capturing structural changes. Leveraging a Markovian approach for temporal transitions and incorporating structural information via latent variables for communities and anomaly detection, our model infers these hidden parameters to pinpoint abnormal interactions within the network. Our approach is evaluated on both synthetic and real-world datasets. Real-world network analysis shows strong anomaly detection across diverse scenarios. In a more specific study of transfers of professional male football players, we observe various types of unexpected patterns and investigate how the country and wealth of clubs influence interactions. Additionally, we identify anomalies between clubs with incompatible community memberships, but also instances of anomalous transactions between clubs with similar memberships. The latter is due in particular to the dynamic nature of the transactions, as we find that the frequency of transfers results in anomalous behaviors that are otherwise expected to interact as they belong to similar communities.


[223] 2404.10469

How quickly can you pack short paths? Engineering a search-tree algorithm for disjoint s-t paths of bounded length

We study the Short Path Packing problem which asks, given a graph $G$, integers $k$ and $\ell$, and vertices $s$ and $t$, whether there exist $k$ pairwise internally vertex-disjoint $s$-$t$ paths of length at most $\ell$. The problem has been proven to be NP-hard and fixed-parameter tractable parameterized by $k$ and $\ell$. Most previous research on this problem has been theoretical with limited practical implemetations. We present an exact FPT-algorithm based on a search-tree approach in combination with greedy localization. While its worst case runtime complexity of $(k\cdot \ell^2)^{k\cdot \ell}\cdot n^{O(1)}$ is larger than the state of the art, the nature of search-tree algorithms allows for a broad range of potential optimizations. We exploit this potential by presenting techniques for input preprocessing, early detection of trivial and infeasible instances, and strategic selection of promising subproblems. Those approaches were implemented and heavily tested on a large dataset of diverse graphs. The results show that our heuristic improvements are very effective and that for the majority of instances, we can achieve fast runtimes.


[224] 2404.10472

Machine Learning Based Optimization Workflow for Tuning Numerical Settings of Differential Equation Solvers for Boundary Value Problems

Several numerical differential equation solvers have been employed effectively over the years as an alternative to analytical solvers to quickly and conveniently solve differential equations. One category of these is boundary value solvers, which are used to solve real-world problems formulated as differential equations with boundary conditions. These solvers require certain numerical settings to solve the differential equations that affect their solvability and performance. A systematic fine-tuning of these settings is required to obtain the desired solution and performance. Currently, these settings are either selected by trial and error or require domain expertise. In this paper, we propose a machine learning-based optimization workflow for fine-tuning the numerical settings to reduce the time and domain expertise required in the process. In the evaluation section, we discuss the scalability, stability, and reliability of the proposed workflow. We demonstrate our workflow on a numerical boundary value problem solver.


[225] 2404.10474

Toward a Realistic Benchmark for Out-of-Distribution Detection

Deep neural networks are increasingly used in a wide range of technologies and services, but remain highly susceptible to out-of-distribution (OOD) samples, that is, drawn from a different distribution than the original training set. A common approach to address this issue is to endow deep neural networks with the ability to detect OOD samples. Several benchmarks have been proposed to design and validate OOD detection techniques. However, many of them are based on far-OOD samples drawn from very different distributions, and thus lack the complexity needed to capture the nuances of real-world scenarios. In this work, we introduce a comprehensive benchmark for OOD detection, based on ImageNet and Places365, that assigns individual classes as in-distribution or out-of-distribution depending on the semantic similarity with the training set. Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties. Experimental results on different OOD detection techniques show how their measured efficacy depends on the selected benchmark and how confidence-based techniques may outperform classifier-based ones on near-OOD samples.


[226] 2404.10475

Conversations as a Source for Teaching Scientific Concepts at Different Education Levels

Open conversations are one of the most engaging forms of teaching. However, creating those conversations in educational software is a complex endeavor, especially if we want to address the needs of different audiences. While language models hold great promise for educational applications, there are substantial challenges in training them to engage in meaningful and effective conversational teaching, especially when considering the diverse needs of various audiences. No official data sets exist for this task to facilitate the training of language models for conversational teaching, considering the diverse needs of various audiences. This paper presents a novel source for facilitating conversational teaching of scientific concepts at various difficulty levels (from preschooler to expert), namely dialogues taken from video transcripts. We analyse this data source in various ways to show that it offers a diverse array of examples that can be used to generate contextually appropriate and natural responses to scientific topics for specific target audiences. It is a freely available valuable resource for training and evaluating conversation models, encompassing organically occurring dialogues. While the raw data is available online, we provide additional metadata for conversational analysis of dialogues at each level in all available videos.


[227] 2404.10476

Efficient optimal dispersed Haar-like filters for face detection

This paper introduces a new dispersed Haar-like filter for efficiently detection face. The basic idea for finding the filter is maximising between-class and minimising within-class variance. The proposed filters can be considered as an optimal configuration dispersed Haar-like filters; filters with disjoint black and white parts.


[228] 2404.10481

BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction

Predicting legal judgments with reliable confidence is paramount for responsible legal AI applications. While transformer-based deep neural networks (DNNs) like BERT have demonstrated promise in legal tasks, accurately assessing their prediction confidence remains crucial. We present a novel Bayesian approach called BayesJudge that harnesses the synergy between deep learning and deep Gaussian Processes to quantify uncertainty through Bayesian kernel Monte Carlo dropout. Our method leverages informative priors and flexible data modelling via kernels, surpassing existing methods in both predictive accuracy and confidence estimation as indicated through brier score. Extensive evaluations of public legal datasets showcase our model's superior performance across diverse tasks. We also introduce an optimal solution to automate the scrutiny of unreliable predictions, resulting in a significant increase in the accuracy of the model's predictions by up to 27\%. By empowering judges and legal professionals with more reliable information, our work paves the way for trustworthy and transparent legal AI applications that facilitate informed decisions grounded in both knowledge and quantified uncertainty.


[229] 2404.10483

Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty

The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.


[230] 2404.10484

AbsGS: Recovering Fine Details for 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) technique couples 3D Gaussian primitives with differentiable rasterization to achieve high-quality novel view synthesis results while providing advanced real-time rendering performance. However, due to the flaw of its adaptive density control strategy in 3D-GS, it frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images. The underlying reason for the flaw has still been under-explored. In this work, we present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision, which prevents large Gaussians in over-reconstructed regions from splitting. To address this issue, we propose the novel homodirectional view-space positional gradient as the criterion for densification. Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting. We evaluate our proposed method on various challenging datasets. The experimental results indicate that our approach achieves the best rendering quality with reduced or similar memory consumption. Our method is easy to implement and can be incorporated into a wide variety of most recent Gaussian Splatting-based methods. We will open source our codes upon formal publication. Our project page is available at: https://ty424.github.io/AbsGS.github.io/


[231] 2404.10489

Computation of the solution for the 2D acoustic pulse propagation

We consider the 2D acoustic system with the Gaussian pulse as the initial data. This case was proposed at the first Workshop on benchmark problems in computational aeroacoustics, and it is commonly used for the verification of numerical methods. We construct an efficient algorithm to evaluate the exact solution for a given time t and distance r. For a precision eps, it takes c*ln(1/eps) operations (the evaluation of a Bessel function counts as one operation) where c does not depend on t and r. This becomes possible by using three different integral representations and an asymptotic series depending on t and r.


[232] 2404.10490

Teaching Chinese Sign Language with Feedback in Mixed Reality

Traditional sign language teaching methods face challenges such as limited feedback and diverse learning scenarios. Although 2D resources lack real-time feedback, classroom teaching is constrained by a scarcity of teacher. Methods based on VR and AR have relatively primitive interaction feedback mechanisms. This study proposes an innovative teaching model that uses real-time monocular vision and mixed reality technology. First, we introduce an improved hand-posture reconstruction method to achieve sign language semantic retention and real-time feedback. Second, a ternary system evaluation algorithm is proposed for a comprehensive assessment, maintaining good consistency with experts in sign language. Furthermore, we use mixed reality technology to construct a scenario-based 3D sign language classroom and explore the user experience of scenario teaching. Overall, this paper presents a novel teaching method that provides an immersive learning experience, advanced posture reconstruction, and precise feedback, achieving positive feedback on user experience and learning effectiveness.


[233] 2404.10491

BoLD: Fast and Cheap Dispute Resolution

BoLD is a new dispute resolution protocol that is designed to replace the originally deployed Arbitrum dispute resolution protocol. Unlike that protocol, BoLD is resistant to delay attacks. It achieves this resistance without a significant increase in onchain computation costs and with reduced staking costs.


[234] 2404.10494

BDAN: Mitigating Temporal Difference Across Electrodes in Cross-Subject Motor Imagery Classification via Generative Bridging Domain

Because of "the non-repeatability of the experiment settings and conditions" and "the variability of brain patterns among subjects", the data distributions across sessions and electrodes are different in cross-subject motor imagery (MI) studies, eventually reducing the performance of the classification model. Systematically summarised based on the existing studies, a novel temporal-electrode data distribution problem is investigated under both intra-subject and inter-subject scenarios in this paper. Based on the presented issue, a novel bridging domain adaptation network (BDAN) is proposed, aiming to minimise the data distribution difference across sessions in the aspect of the electrode, thus improving and enhancing model performance. In the proposed BDAN, deep features of all the EEG data are extracted via a specially designed spatial feature extractor. With the obtained spatio-temporal features, a special generative bridging domain is established, bridging the data from all the subjects across sessions. The difference across sessions and electrodes is then minimized using the customized bridging loss functions, and the known knowledge is automatically transferred through the constructed bridging domain. To show the effectiveness of the proposed BDAN, comparison experiments and ablation studies are conducted on a public EEG dataset. The overall comparison results demonstrate the superior performance of the proposed BDAN compared with the other advanced deep learning and domain adaptation methods.


[235] 2404.10496

Spiral of Silences: How is Large Language Model Killing Information Retrieval? -- A Case Study on Open Domain Question Answering

The practice of Retrieval-Augmented Generation (RAG), which integrates Large Language Models (LLMs) with retrieval systems, has become increasingly prevalent. However, the repercussions of LLM-derived content infiltrating the web and influencing the retrieval-generation feedback loop are largely uncharted territories. In this study, we construct and iteratively run a simulation pipeline to deeply investigate the short-term and long-term effects of LLM text on RAG systems. Taking the trending Open Domain Question Answering (ODQA) task as a point of entry, our findings reveal a potential digital "Spiral of Silence" effect, with LLM-generated text consistently outperforming human-authored content in search rankings, thereby diminishing the presence and impact of human contributions online. This trend risks creating an imbalanced information ecosystem, where the unchecked proliferation of erroneous LLM-generated content may result in the marginalization of accurate information. We urge the academic community to take heed of this potential issue, ensuring a diverse and authentic digital information landscape.


[236] 2404.10497

Subsequences With Generalised Gap Constraints: Upper and Lower Complexity Bounds

For two strings u, v over some alphabet A, we investigate the problem of embedding u into w as a subsequence under the presence of generalised gap constraints. A generalised gap constraint is a triple (i, j, C_{i, j}), where 1 <= i < j <= |u| and C_{i, j} is a subset of A^*. Embedding u as a subsequence into v such that (i, j, C_{i, j}) is satisfied means that if u[i] and u[j] are mapped to v[k] and v[l], respectively, then the induced gap v[k + 1..l - 1] must be a string from C_{i, j}. This generalises the setting recently investigated in [Day et al., ISAAC 2022], where only gap constraints of the form C_{i, i + 1} are considered, as well as the setting from [Kosche et al., RP 2022], where only gap constraints of the form C_{1, |u|} are considered. We show that subsequence matching under generalised gap constraints is NP-hard, and we complement this general lower bound with a thorough (parameterised) complexity analysis. Moreover, we identify several efficiently solvable subclasses that result from restricting the interval structure induced by the generalised gap constraints.


[237] 2404.10498

LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System

Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.


[238] 2404.10499

Robust Noisy Label Learning via Two-Stream Sample Distillation

Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts sample selection or label correction to deal with noisy labels during the model training process. In this paper, we design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD), for noisy label learning, which can extract more high-quality samples with clean labels to improve the robustness of network training. Firstly, a novel Parallel Sample Division (PSD) module is designed to generate a certain training set with sufficient reliable positive and negative samples by jointly considering the sample structure in feature space and the human prior in loss space. Secondly, a novel Meta Sample Purification (MSP) module is further designed to mine adequate semi-hard samples from the remaining uncertain training set by learning a strong meta classifier with extra golden data. As a result, more and more high-quality samples will be distilled from the noisy training set to train networks robustly in every iteration. Extensive experiments on four benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and Clothing-1M, show that our method has achieved state-of-the-art results over its competitors.


[239] 2404.10500

When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm

With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.


[240] 2404.10501

Self-Supervised Visual Preference Alignment

This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code will be available.


[241] 2404.10503

A Sentiment Analysis of Medical Text Based on Deep Learning

The field of natural language processing (NLP) has made significant progress with the rapid development of deep learning technologies. One of the research directions in text sentiment analysis is sentiment analysis of medical texts, which holds great potential for application in clinical diagnosis. However, the medical field currently lacks sufficient text datasets, and the effectiveness of sentiment analysis is greatly impacted by different model design approaches, which presents challenges. Therefore, this paper focuses on the medical domain, using bidirectional encoder representations from transformers (BERT) as the basic pre-trained model and experimenting with modules such as convolutional neural network (CNN), fully connected network (FCN), and graph convolutional networks (GCN) at the output layer. Experiments and analyses were conducted on the METS-CoV dataset to explore the training performance after integrating different deep learning networks. The results indicate that CNN models outperform other networks when trained on smaller medical text datasets in combination with pre-trained models like BERT. This study highlights the significance of model selection in achieving effective sentiment analysis in the medical domain and provides a reference for future research to develop more efficient model architectures.


[242] 2404.10505

Data Collection of Real-Life Knowledge Work in Context: The RLKWiC Dataset

Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.


[243] 2404.10508

White Men Lead, Black Women Help: Uncovering Gender, Racial, and Intersectional Bias in Language Agency

Social biases can manifest in language agency. For instance, White individuals and men are often described as "agentic" and achievement-oriented, whereas Black individuals and women are frequently described as "communal" and as assisting roles. This study establishes agency as an important aspect of studying social biases in both human-written and Large Language Model (LLM)-generated texts. To accurately measure "language agency" at sentence level, we propose a Language Agency Classification dataset to train reliable agency classifiers. We then use an agency classifier to reveal notable language agency biases in 6 datasets of human- or LLM-written texts, including biographies, professor reviews, and reference letters. While most prior NLP research on agency biases focused on single dimensions, we comprehensively explore language agency biases in gender, race, and intersectional identities. We observe that (1) language agency biases in human-written texts align with real-world social observations; (2) LLM-generated texts demonstrate remarkably higher levels of language agency bias than human-written texts; and (3) critical biases in language agency target people of minority groups--for instance, languages used to describe Black females exhibit the lowest level of agency across datasets. Our findings reveal intricate social biases in human- and LLM-written texts through the lens of language agency, warning against using LLM generations in social contexts without scrutiny.


[244] 2404.10509

Dependability in Embedded Systems: A Survey of Fault Tolerance Methods and Software-Based Mitigation Techniques

Fault tolerance is a critical aspect of modern computing systems, ensuring correct functionality in the presence of faults. This paper presents a comprehensive survey of fault tolerance methods and software-based mitigation techniques in embedded systems. The focus is on real-time embedded systems, considering their resource constraints and the increasing interconnectivity of computing systems in commercial and industrial applications. The survey covers various fault-tolerance methods, including hardware, software, and hybrid redundancy. Particular emphasis is given to software faults, acknowledging their significance as a leading cause of system failures. Moreover, the paper explores the challenges posed by soft errors in modern computing systems. The survey concludes by emphasizing the need for continued research and development in fault-tolerance methods, specifically in the context of real-time embedded systems, and highlights the potential for extending fault-tolerance approaches to diverse computing environments.


[245] 2404.10511

Balancing-based model reduction for switched descriptor systems

We present a novel certified model order reduction (MOR) algorithm for switched descriptor systems applicable to large-scale systems. Our algorithm combines the idea of [Hossain \& Trenn, Technical report, 2023] to reformulate the switched descriptor system as a switched ordinary differential equation with jumps and an extension of the balanced truncation for switched ODE from [Pontes Duff et al., IEEE Trans.~Automat.~Control, 2020]. Besides being the first MOR method for switched descriptor systems applicable to the large-scale setting, we give a detailed numerical analysis by incorporating the error in the computation of the system Gramians in the a-priori error bound for the output of the reduced system. In more detail, we demonstrate, theoretically and numerically, that the standard error bound is not applicable, and a certificate must account for the numerical approximation errors.


[246] 2404.10512

Four-hour thunderstorm nowcasting using deep diffusion models of satellite

Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to nature and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model of satellite (DDMS) to establish an AI-based convection nowcasting system. On one hand, it employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, significantly improving the forecast lead time. On the other hand, it utilizes geostationary satellite brightness temperature data, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system operates efficiently (forecasting 4 hours of convection in 8 minutes), and is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.


[247] 2404.10513

CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity

State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.


[248] 2404.10514

Simple $k$-crashing Plan with a Good Approximation Ratio

In project management, a project is typically described as an activity-on-edge network (AOE network), where each activity / job is represented as an edge of some network $N$ (which is a DAG). Some jobs must be finished before others can be started, as described by the topology structure of $N$. It is known that job $j_i$ in normal speed would require $b_i$ days to be finished after it is started. Given the network $N$ with the associated edge lengths $b_1,\ldots,b_m$, the duration of the project is determined, which equals the length of the critical path (namely, the longest path) of $N$. To speed up the project (i.e. reduce the duration), the manager can crash a few jobs (namely, reduce the length of the corresponding edges) by investing extra resources into that job. However, the time for completing $j_i$ has a lower bound due to technological limits -- it requires at least $a_i$ days to be completed. Moreover, it is expensive to buy resources. Given $N$ and an integer $k\geq 1$, the $k$-crashing problem asks the minimum amount of resources required to speed up the project by $k$ days. We show a simple and efficient algorithm with an approximation ratio $\frac{1}{1}+\ldots+\frac{1}{k}$ for this problem. We also study a related problem called $k$-LIS, in which we are given a sequence $\omega$ of numbers and we aim to find $k$ disjoint increasing subsequence of $\omega$ with the largest total length. We show a $(1-\frac{1}{e})$-approximation algorithm which is simple and efficient.


[249] 2404.10515

An Enhanced Differential Grouping Method for Large-Scale Overlapping Problems

Large-scale overlapping problems are prevalent in practical engineering applications, and the optimization challenge is significantly amplified due to the existence of shared variables. Decomposition-based cooperative coevolution (CC) algorithms have demonstrated promising performance in addressing large-scale overlapping problems. However, current CC frameworks designed for overlapping problems rely on grouping methods for the identification of overlapping problem structures and the current grouping methods for large-scale overlapping problems fail to consider both accuracy and efficiency simultaneously. In this article, we propose a two-stage enhanced grouping method for large-scale overlapping problems, called OEDG, which achieves accurate grouping while significantly reducing computational resource consumption. In the first stage, OEDG employs a grouping method based on the finite differences principle to identify all subcomponents and shared variables. In the second stage, we propose two grouping refinement methods, called subcomponent union detection (SUD) and subcomponent detection (SD), to enhance and refine the grouping results. SUD examines the information of the subcomponents and shared variables obtained in the previous stage, and SD corrects inaccurate grouping results. To better verify the performance of the proposed OEDG, we propose a series of novel benchmarks that consider various properties of large-scale overlapping problems, including the topology structure, overlapping degree, and separability. Extensive experimental results demonstrate that OEDG is capable of accurately grouping different types of large-scale overlapping problems while consuming fewer computational resources. Finally, we empirically verify that the proposed OEDG can effectively improve the optimization performance of diverse large-scale overlapping problems.


[250] 2404.10516

Exact descriptional complexity of determinization of input-driven pushdown automata

The number of states and stack symbols needed to determinize nondeterministic input-driven pushdown automata (NIDPDA) working over a fixed alphabet is determined precisely. It is proved that in the worst case exactly 2^{n^2} states are needed to determinize an n-state NIDPDA, and the proof uses witness automata with a stack alphabet \Gamma = {0,1} working on strings over a 4-symbol input alphabet (Only an asymptotic lower bound was known before in the case of a fixed alphabet). Also, the impact of NIDPDA determinization on the size of stack alphabet is determined precisely for the first time: it is proved that s(2^{n^2}-1) stack symbols are necessary in the worst case to determinize an n-state NIDPDA working over an input alphabet of size s+5 with s left brackets (The previous lower bound was only asymptotic in the number of states and did not depend on the number of left brackets).


[251] 2404.10518

MobileNetV4 - Universal Models for the Mobile Ecosystem

We present the latest generation of MobileNets, known as MobileNetV4 (MNv4), featuring universally efficient architecture designs for mobile devices. At its core, we introduce the Universal Inverted Bottleneck (UIB) search block, a unified and flexible structure that merges Inverted Bottleneck (IB), ConvNext, Feed Forward Network (FFN), and a novel Extra Depthwise (ExtraDW) variant. Alongside UIB, we present Mobile MQA, an attention block tailored for mobile accelerators, delivering a significant 39% speedup. An optimized neural architecture search (NAS) recipe is also introduced which improves MNv4 search effectiveness. The integration of UIB, Mobile MQA and the refined NAS recipe results in a new suite of MNv4 models that are mostly Pareto optimal across mobile CPUs, DSPs, GPUs, as well as specialized accelerators like Apple Neural Engine and Google Pixel EdgeTPU - a characteristic not found in any other models tested. Finally, to further boost accuracy, we introduce a novel distillation technique. Enhanced by this technique, our MNv4-Hybrid-Large model delivers 87% ImageNet-1K accuracy, with a Pixel 8 EdgeTPU runtime of just 3.8ms.


[252] 2404.10520

A Game-Theoretic Approach for PMU Deployment Against False Data Injection Attacks

Phasor Measurement Units (PMUs) are used in the measurement, control and protection of power grids. However, deploying PMUs at every bus in a power system is prohibitively expensive, necessitating partial PMU placement that can ensure system observability with minimal units. One consequence of this economic approach is increased system vulnerability to False Data Injection Attacks (FDIAs). This paper proposes a zero-sum game-based approach to strategically place an additional PMU (following the initial optimal PMU deployment that ensures full observability) to bolster robustness against FDIAs by introducing redundancy in attack-susceptible areas. To compute the Nash equilibrium (NE) solution, we leverage a reinforcement learning algorithm that mitigates the need for complete knowledge of the opponent's actions. The proposed PMU deployment algorithm increases the detection rate of FDIA by 36% compared to benchmark algorithms.


[253] 2404.10527

SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments

In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. We will make our source code publicly available at https://github.com/fraunhoferhhi/spvloc .


[254] 2404.10528

AllTheDocks road safety dataset: A cyclist's perspective and experience

Active travel is an essential component in intelligent transportation systems. Cycling, as a form of active travel, shares the road space with motorised traffic which often affects the cyclists' safety and comfort and therefore peoples' propensity to uptake cycling instead of driving. This paper presents a unique dataset, collected by cyclists across London, that includes video footage, accelerometer, GPS, and gyroscope data. The dataset is then labelled by an independent group of London cyclists to rank the safety level of each frame and to identify objects in the cyclist's field of vision that might affect their experience. Furthermore, in this dataset, the quality of the road is measured by the international roughness index of the surface, which indicates the comfort of cycling on the road. The dataset will be made available for open access in the hope of motivating more research in this area to underpin the requirements for cyclists' safety and comfort and encourage more people to replace vehicle travel with cycling.


[255] 2404.10534

Into the Fog: Evaluating Multiple Object Tracking Robustness

State-of-the-art (SOTA) trackers have shown remarkable Multiple Object Tracking (MOT) performance when trained and evaluated on current benchmarks. However, these benchmarks primarily consist of clear scenarios, overlooking adverse atmospheric conditions such as fog, haze, smoke and dust. As a result, the robustness of SOTA trackers remains underexplored. To address these limitations, we propose a pipeline for physic-based volumetric fog simulation in arbitrary real-world MOT dataset utilizing frame-by-frame monocular depth estimation and a fog formation optical model. Moreover, we enhance our simulation by rendering of both homogeneous and heterogeneous fog effects. We propose to use the dark channel prior method to estimate fog (smoke) color, which shows promising results even in night and indoor scenes. We present the leading tracking benchmark MOTChallenge (MOT17 dataset) overlaid by fog (smoke for indoor scenes) of various intensity levels and conduct a comprehensive evaluation of SOTA MOT methods, revealing their limitations under fog and fog-similar challenges.


[256] 2404.10536

Benchmarking Machine Learning Applications on Heterogeneous Architecture using Reframe

With the rapid increase in machine learning workloads performed on HPC systems, it is beneficial to regularly perform machine learning specific benchmarks to monitor performance and identify issues. Furthermore, as part of the Edinburgh International Data Facility, EPCC currently hosts a wide range of machine learning accelerators including Nvidia GPUs, the Graphcore Bow Pod64 and Cerebras CS-2, which are managed via Kubernetes and Slurm. We extended the Reframe framework to support the Kubernetes scheduler backend, and utilise Reframe to perform machine learning benchmarks, and we discuss the preliminary results collected and challenges involved in integrating Reframe across multiple platforms and architectures.


[257] 2404.10539

VideoSAGE: Video Summarization with Graph Representation Learning

We propose a graph-based representation learning framework for video summarization. First, we convert an input video to a graph where nodes correspond to each of the video frames. Then, we impose sparsity on the graph by connecting only those pairs of nodes that are within a specified temporal distance. We then formulate the video summarization task as a binary node classification problem, precisely classifying video frames whether they should belong to the output summary video. A graph constructed this way aims to capture long-range interactions among video frames, and the sparsity ensures the model trains without hitting the memory and compute bottleneck. Experiments on two datasets(SumMe and TVSum) demonstrate the effectiveness of the proposed nimble model compared to existing state-of-the-art summarization approaches while being one order of magnitude more efficient in compute time and memory


[258] 2404.10540

SEVD: Synthetic Event-based Vision Dataset for Ego and Fixed Traffic Perception

Recently, event-based vision sensors have gained attention for autonomous driving applications, as conventional RGB cameras face limitations in handling challenging dynamic conditions. However, the availability of real-world and synthetic event-based vision datasets remains limited. In response to this gap, we present SEVD, a first-of-its-kind multi-view ego, and fixed perception synthetic event-based dataset using multiple dynamic vision sensors within the CARLA simulator. Data sequences are recorded across diverse lighting (noon, nighttime, twilight) and weather conditions (clear, cloudy, wet, rainy, foggy) with domain shifts (discrete and continuous). SEVD spans urban, suburban, rural, and highway scenes featuring various classes of objects (car, truck, van, bicycle, motorcycle, and pedestrian). Alongside event data, SEVD includes RGB imagery, depth maps, optical flow, semantic, and instance segmentation, facilitating a comprehensive understanding of the scene. Furthermore, we evaluate the dataset using state-of-the-art event-based (RED, RVT) and frame-based (YOLOv8) methods for traffic participant detection tasks and provide baseline benchmarks for assessment. Additionally, we conduct experiments to assess the synthetic event-based dataset's generalization capabilities. The dataset is available at https://eventbasedvision.github.io/SEVD


[259] 2404.10541

MPCOM: Robotic Data Gathering with Radio Mapping and Model Predictive Communication

Robotic data gathering (RDG) is an emerging paradigm that navigates a robot to harvest data from remote sensors. However, motion planning in this paradigm needs to maximize the RDG efficiency instead of the navigation efficiency, for which the existing motion planning methods become inefficient, as they plan robot trajectories merely according to motion factors. This paper proposes radio map guided model predictive communication (MPCOM), which navigates the robot with both grid and radio maps for shape-aware collision avoidance and communication-aware trajectory generation in a dynamic environment. The proposed MPCOM is able to trade off the time spent on reaching goal, avoiding collision, and improving communication. MPCOM captures high-order signal propagation characteristics using radio maps and incorporates the map-guided communication regularizer to the motion planning block. Experiments in IRSIM and CARLA simulators show that the proposed MPCOM outperforms other benchmarks in both LOS and NLOS cases. Real-world testing based on car-like robots is also provided to demonstrate the effectiveness of MPCOM in indoor environments.


[260] 2404.10543

Characterizing Polkadot's Transactions Ecosystem: methodology, tools, and insights

The growth potential of a crypto(currency) project can be measured by the use cases spurred by the underlying technology. However, these projects are usually distributed, with a weak feedback schemes. Hence, a metric that is widely used as a proxy for their healthiness is the number of transactions and related volumes. Nevertheless, such a metric can be subject to manipulation (the crypto market being an unregulated one magnifies such a risk). To address the cited gap we design a comprehensive methodology to process large cryptocurrency transaction graphs that, after clustering user addresses of interest, derives a compact representation of the network that highlights clusters interactions. To show the viability of our solution, we bring forward a use case centered on Polkadot, which has gained significant attention in the digital currency landscape due to its pioneering approach to interoperability and scalability. However, little is known about how many and to what extent its wide range of enabled use cases have been adopted by end-users so far. The answer to this type of question means mapping Polkadot (or any analyzed crypto project) on a palette that ranges from a thriving ecosystem to a speculative coin without compelling use cases. Our findings demonstrate that crypto exchanges exert considerable influence on the Polkadot network, owning nearly 40% of all addresses in the ledger and absorbing at least 80% of all transactions. In addition, the high volume of inter-exchange transactions (> 20%) underscores the strong interconnections among just a couple of prominent exchanges, prompting further investigations into the behavior of these actors to uncover potential unethical activities, such as wash trading. These results, while characterized by a high level of scalability and adaptability, are at the same time immune from the drawbacks of currently used metrics.


[261] 2404.10547

A/B testing under Interference with Partial Network Information

A/B tests are often required to be conducted on subjects that might have social connections. For e.g., experiments on social media, or medical and social interventions to control the spread of an epidemic. In such settings, the SUTVA assumption for randomized-controlled trials is violated due to network interference, or spill-over effects, as treatments to group A can potentially also affect the control group B. When the underlying social network is known exactly, prior works have demonstrated how to conduct A/B tests adequately to estimate the global average treatment effect (GATE). However, in practice, it is often impossible to obtain knowledge about the exact underlying network. In this paper, we present UNITE: a novel estimator that relax this assumption and can identify GATE while only relying on knowledge of the superset of neighbors for any subject in the graph. Through theoretical analysis and extensive experiments, we show that the proposed approach performs better in comparison to standard estimators.


[262] 2404.10550

Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem

We propose an analytical solution for approximating the gradient of the Evidence Lower Bound (ELBO) in variational inference problems where the statistical model is a Bayesian network consisting of observations drawn from a mixture of a Gaussian distribution embedded in unrelated clutter, known as the clutter problem. The method employs the reparameterization trick to move the gradient operator inside the expectation and relies on the assumption that, because the likelihood factorizes over the observed data, the variational distribution is generally more compactly supported than the Gaussian distribution in the likelihood factors. This allows efficient local approximation of the individual likelihood factors, which leads to an analytical solution for the integral defining the gradient expectation. We integrate the proposed gradient approximation as the expectation step in an EM (Expectation Maximization) algorithm for maximizing ELBO and test against classical deterministic approaches in Bayesian inference, such as the Laplace approximation, Expectation Propagation and Mean-Field Variational Inference. The proposed method demonstrates good accuracy and rate of convergence together with linear computational complexity.


[263] 2404.10551

The Evolution of Learning: Assessing the Transformative Impact of Generative AI on Higher Education

Generative Artificial Intelligence (GAI) models such as ChatGPT have experienced a surge in popularity, attracting 100 million active users in 2 months and generating an estimated 10 million daily queries. Despite this remarkable adoption, there remains a limited understanding to which extent this innovative technology influences higher education. This research paper investigates the impact of GAI on university students and Higher Education Institutions (HEIs). The study adopts a mixed-methods approach, combining a comprehensive survey with scenario analysis to explore potential benefits, drawbacks, and transformative changes the new technology brings. Using an online survey with 130 participants we assessed students' perspectives and attitudes concerning present ChatGPT usage in academics. Results show that students use the current technology for tasks like assignment writing and exam preparation and believe it to be a effective help in achieving academic goals. The scenario analysis afterwards projected potential future scenarios, providing valuable insights into the possibilities and challenges associated with incorporating GAI into higher education. The main motivation is to gain a tangible and precise understanding of the potential consequences for HEIs and to provide guidance responding to the evolving learning environment. The findings indicate that irresponsible and excessive use of the technology could result in significant challenges. Hence, HEIs must develop stringent policies, reevaluate learning objectives, upskill their lecturers, adjust the curriculum and reconsider examination approaches.


[264] 2404.10552

Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning

The open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress. This includes both base models, which are pre-trained on extensive datasets without alignment, and aligned models, deliberately designed to align with ethical standards and human values. Contrary to the prevalent assumption that the inherent instruction-following limitations of base LLMs serve as a safeguard against misuse, our investigation exposes a critical oversight in this belief. By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions. To systematically assess these risks, we introduce a novel set of risk evaluation metrics. Empirical results reveal that the outputs from base LLMs can exhibit risk levels on par with those of models fine-tuned for malicious purposes. This vulnerability, requiring neither specialized knowledge nor training, can be manipulated by almost anyone, highlighting the substantial risk and the critical need for immediate attention to the base LLMs' security protocols.


[265] 2404.10555

Construction of Domain-specified Japanese Large Language Model for Finance through Continual Pre-training

Large language models (LLMs) are now widely used in various fields, including finance. However, Japanese financial-specific LLMs have not been proposed yet. Hence, this study aims to construct a Japanese financial-specific LLM through continual pre-training. Before tuning, we constructed Japanese financial-focused datasets for continual pre-training. As a base model, we employed a Japanese LLM that achieved state-of-the-art performance on Japanese financial benchmarks among the 10-billion-class parameter models. After continual pre-training using the datasets and the base model, the tuned model performed better than the original model on the Japanese financial benchmarks. Moreover, the outputs comparison results reveal that the tuned model's outputs tend to be better than the original model's outputs in terms of the quality and length of the answers. These findings indicate that domain-specific continual pre-training is also effective for LLMs. The tuned model is publicly available on Hugging Face.


[266] 2404.10556

Generative AI for Advanced UAV Networking

With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.


[267] 2404.10558

Decade-Bandwidth RF-Input Pseudo-Doherty Load Modulated Balanced Amplifier using Signal-Flow-Based Phase Alignment Design

This paper reports a first-ever decade-bandwidth pseudo-Doherty load-modulated balanced amplifier (PD-LMBA), designed for emerging 4G/5G communications and multi-band operations. By revisiting the LMBA theory using the signal-flow graph, a frequency-agnostic phase-alignment condition is found that is critical for ensuring intrinsically broadband load modulation behavior. This unique design methodology enables, for the first time, the independent optimization of broadband balanced amplifier (BA, as the peaking) and control amplifier (CA, as the carrier), thus fundamentally addressing the longstanding limits imposed on the design of wideband load-modulated power amplifiers (PAs). To prove the proposed concept, an ultra-wideband RF-input PD-LMBA is designed and developed using GaN technology covering the frequency range from 0.2 to 2 GHz. Experimental results demonstrate an efficiency of 51% to 72% for peak output power and 44% to 62% for 10-dB OBO, respectively.


[268] 2404.10561

HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction

The discovery of drug-target interactions (DTIs) plays a crucial role in pharmaceutical development. The deep learning model achieves more accurate results in DTI prediction due to its ability to extract robust and expressive features from drug and target chemical structures. However, existing deep learning methods typically generate drug features via aggregating molecular atom representations, ignoring the chemical properties carried by motifs, i.e., substructures of the molecular graph. The atom-drug double-level molecular representation learning can not fully exploit structure information and fails to interpret the DTI mechanism from the motif perspective. In addition, sequential model-based target feature extraction either fuses limited contextual information or requires expensive computational resources. To tackle the above issues, we propose a hierarchical graph representation learning-based DTI prediction method (HiGraphDTI). Specifically, HiGraphDTI learns hierarchical drug representations from triple-level molecular graphs to thoroughly exploit chemical information embedded in atoms, motifs, and molecules. Then, an attentional feature fusion module incorporates information from different receptive fields to extract expressive target features.Last, the hierarchical attention mechanism identifies crucial molecular segments, which offers complementary views for interpreting interaction mechanisms. The experiment results not only demonstrate the superiority of HiGraphDTI to the state-of-the-art methods, but also confirm the practical ability of our model in interaction interpretation and new DTI discovery.


[269] 2404.10570

PAKT: Perspectivized Argumentation Knowledge Graph and Tool for Deliberation Analysis (with Supplementary Materials)

Deliberative processes play a vital role in shaping opinions, decisions and policies in our society. In contrast to persuasive debates, deliberation aims to foster understanding of conflicting perspectives among interested parties. The exchange of arguments in deliberation serves to elucidate viewpoints, to raise awareness of conflicting interests, and to finally converge on a resolution. To better understand and analyze the underlying processes of deliberation, we propose PAKT, a Perspectivized Argumentation Knowledge Graph and Tool. The graph structures the argumentative space across diverse topics, where arguments i) are divided into premises and conclusions, ii) are annotated for stances, framings and their underlying values and iii) are connected to background knowledge. We show how to construct PAKT and conduct case studies on the obtained multifaceted argumentation graph. Our findings show the analytical potential offered by our framework, highlighting the capability to go beyond individual arguments and to reveal structural patterns in the way participants and stakeholders argue in a debate. The overarching goal of our work is to facilitate constructive discourse and informed decision making as a special form of argumentation. We offer public access to PAKT and its rich capabilities to support analytics, visualizaton, navigation and efficient search, for diverse forms of argumentation.


[270] 2404.10571

CMU-Flownet: Exploring Point Cloud Scene Flow Estimation in Occluded Scenario

Occlusions hinder point cloud frame alignment in LiDAR data, a challenge inadequately addressed by scene flow models tested mainly on occlusion-free datasets. Attempts to integrate occlusion handling within networks often suffer accuracy issues due to two main limitations: a) the inadequate use of occlusion information, often merging it with flow estimation without an effective integration strategy, and b) reliance on distance-weighted upsampling that falls short in correcting occlusion-related errors. To address these challenges, we introduce the Correlation Matrix Upsampling Flownet (CMU-Flownet), incorporating an occlusion estimation module within its cost volume layer, alongside an Occlusion-aware Cost Volume (OCV) mechanism. Specifically, we propose an enhanced upsampling approach that expands the sensory field of the sampling process which integrates a Correlation Matrix designed to evaluate point-level similarity. Meanwhile, our model robustly integrates occlusion data within the context of scene flow, deploying this information strategically during the refinement phase of the flow estimation. The efficacy of this approach is demonstrated through subsequent experimental validation. Empirical assessments reveal that CMU-Flownet establishes state-of-the-art performance within the realms of occluded Flyingthings3D and KITTY datasets, surpassing previous methodologies across a majority of evaluated metrics.


[271] 2404.10572

Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation

Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes and thus presents significant practical challenges for deep learning approaches. We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation and then recovers original labels. Using a greedy graph colouring algorithm, our method automatically groups and merges multiple spatially separate labels prior to model training and inference. The merged labels may be semantically unrelated. A deep learning model is trained to predict merged labels. At inference time, original labels are restored using atlas-based influence regions. In our experiments, the proposed approach reduces the number of labels by up to 68% while achieving segmentation accuracy comparable to the baseline method without label merging and splitting. Moreover, model training and inference times as well as GPU memory requirements were reduced significantly. The proposed method can be applied to all semantic segmentation tasks with a large number of spatially separate classes within an atlas-based prior.


[272] 2404.10573

AAVDiff: Experimental Validation of Enhanced Viability and Diversity in Recombinant Adeno-Associated Virus (AAV) Capsids through Diffusion Generation

Recombinant adeno-associated virus (rAAV) vectors have revolutionized gene therapy, but their broad tropism and suboptimal transduction efficiency limit their clinical applications. To overcome these limitations, researchers have focused on designing and screening capsid libraries to identify improved vectors. However, the large sequence space and limited resources present challenges in identifying viable capsid variants. In this study, we propose an end-to-end diffusion model to generate capsid sequences with enhanced viability. Using publicly available AAV2 data, we generated 38,000 diverse AAV2 viral protein (VP) sequences, and evaluated 8,000 for viral selection. The results attested the superiority of our model compared to traditional methods. Additionally, in the absence of AAV9 capsid data, apart from one wild-type sequence, we used the same model to directly generate a number of viable sequences with up to 9 mutations. we transferred the remaining 30,000 samples to the AAV9 domain. Furthermore, we conducted mutagenesis on AAV9 VP hypervariable regions VI and V, contributing to the continuous improvement of the AAV9 VP sequence. This research represents a significant advancement in the design and functional validation of rAAV vectors, offering innovative solutions to enhance specificity and transduction efficiency in gene therapy applications.


[273] 2404.10574

Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation

Standard Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target but usually requires simultaneous access to both source and target data. Moreover, UDA approaches commonly assume that source and target domains share the same labels space. Yet, these two assumptions are hardly satisfied in real-world scenarios. This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting, where both assumptions are dropped. We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes. Starting from an initial clustering-based assignment, our method progressively improves the segregation of target-private samples by refining their pseudo-labels with the guide of an uncertainty-based sample selection module. Additionally, we propose a novel contrastive loss, named NL-InfoNCELoss, that, integrating negative learning into self-supervised contrastive learning, enhances the model robustness to noisy pseudo-labels. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed method over existing approaches, establishing new state-of-the-art performance. Notably, additional analyses show that our method is able to learn the underlying semantics of novel classes, opening the possibility to perform novel class discovery.


[274] 2404.10575

EMC$^2$: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence

A key challenge in contrastive learning is to generate negative samples from a large sample set to contrast with positive samples, for learning better encoding of the data. These negative samples often follow a softmax distribution which are dynamically updated during the training process. However, sampling from this distribution is non-trivial due to the high computational costs in computing the partition function. In this paper, we propose an Efficient Markov Chain Monte Carlo negative sampling method for Contrastive learning (EMC$^2$). We follow the global contrastive learning loss as introduced in SogCLR, and propose EMC$^2$ which utilizes an adaptive Metropolis-Hastings subroutine to generate hardness-aware negative samples in an online fashion during the optimization. We prove that EMC$^2$ finds an $\mathcal{O}(1/\sqrt{T})$-stationary point of the global contrastive loss in $T$ iterations. Compared to prior works, EMC$^2$ is the first algorithm that exhibits global convergence (to stationarity) regardless of the choice of batch size while exhibiting low computation and memory cost. Numerical experiments validate that EMC$^2$ is effective with small batch training and achieves comparable or better performance than baseline algorithms. We report the results for pre-training image encoders on STL-10 and Imagenet-100.


[275] 2404.10578

Vivo : une approche multimodale de la synthese concatenative par corpus dans le cadre d'une oeuvre audiovisuelle immersive

Which visual descriptors are suitable for multi-modal interaction and how to integrate them via real-time video data analysis into a corpus-based concatenative synthesis sound system.


[276] 2404.10579

The application of Augmented Reality (AR) in Remote Work and Education

With the rapid advancement of technology, Augmented Reality (AR) technology, known for its ability to deeply integrate virtual information with the real world, is gradually transforming traditional work modes and teaching methods. Particularly in the realms of remote work and online education, AR technology demonstrates a broad spectrum of application prospects. This paper delves into the application potential and actual effects of AR technology in remote work and education. Through a systematic literature review, this study outlines the key features, advantages, and challenges of AR technology. Based on theoretical analysis, it discusses the scientific basis and technical support that AR technology provides for enhancing remote work efficiency and promoting innovation in educational teaching models. Additionally, by designing an empirical research plan and analyzing experimental data, this article reveals the specific performance and influencing factors of AR technology in practical applications. Finally, based on the results of the experiments, this research summarizes the application value of AR technology in remote work and education, looks forward to its future development trends, and proposes forward-looking research directions and strategic suggestions, offering empirical foundation and theoretical guidance for further promoting the in-depth application of AR technology in related fields.


[277] 2404.10584

ReWiTe: Realistic Wide-angle and Telephoto Dual Camera Fusion Dataset via Beam Splitter Camera Rig

The fusion of images from dual camera systems featuring a wide-angle and a telephoto camera has become a hotspot problem recently. By integrating simultaneously captured wide-angle and telephoto images from these systems, the resulting fused image achieves a wide field of view (FOV) coupled with high-definition quality. Existing approaches are mostly deep learning methods, and predominantly rely on supervised learning, where the training dataset plays a pivotal role. However, current datasets typically adopt a data synthesis approach generate input pairs of wide-angle and telephoto images alongside ground-truth images. Notably, the wide-angle inputs are synthesized rather than captured using real wide-angle cameras, and the ground-truth image is captured by wide-angle camera whose quality is substantially lower than that of input telephoto images captured by telephoto cameras. To address these limitations, we introduce a novel hardware setup utilizing a beam splitter to simultaneously capture three images, i.e. input pairs and ground-truth images, from two authentic cellphones equipped with wide-angle and telephoto dual cameras. Specifically, the wide-angle and telephoto images captured by cellphone 2 serve as the input pair, while the telephoto image captured by cellphone 1, which is calibrated to match the optical path of the wide-angle image from cellphone 2, serves as the ground-truth image, maintaining quality on par with the input telephoto image. Experiments validate the efficacy of our newly introduced dataset, named ReWiTe, significantly enhances the performance of various existing methods for real-world wide-angle and telephoto dual image fusion tasks.


[278] 2404.10588

Do Counterfactual Examples Complicate Adversarial Training?

We leverage diffusion models to study the robustness-performance tradeoff of robust classifiers. Our approach introduces a simple, pretrained diffusion method to generate low-norm counterfactual examples (CEs): semantically altered data which results in different true class membership. We report that the confidence and accuracy of robust models on their clean training data are associated with the proximity of the data to their CEs. Moreover, robust models perform very poorly when evaluated on the CEs directly, as they become increasingly invariant to the low-norm, semantic changes brought by CEs. The results indicate a significant overlap between non-robust and semantic features, countering the common assumption that non-robust features are not interpretable.


[279] 2404.10589

Thermal Crosstalk Modelling and Compensation Methods for Programmable Photonic Integrated Circuits

Photonic integrated circuits play an important role in the field of optical computing, promising faster and more energy-efficient operations compared to their digital counterparts. This advantage stems from the inherent suitability of optical signals to carry out matrix multiplication. However, even deterministic phenomena such as thermal crosstalk make precise programming of photonic chips a challenging task. Here, we train and experimentally evaluate three models incorporating varying degrees of physics intuition to predict the effect of thermal crosstalk in different locations of an integrated programmable photonic mesh. We quantify the effect of thermal crosstalk by the resonance wavelength shift in the power spectrum of a microring resonator implemented in the chip, achieving modelling errors <0.5 pm. We experimentally validate the models through compensation of the crosstalk-induced wavelength shift. Finally, we evaluate the generalization capabilities of one of the models by employing it to predict and compensate for the effect of thermal crosstalk for parts of the chip it was not trained on, revealing root-mean-square-errors of <2.0 pm.


[280] 2404.10591

Learning Symbolic Task Representation from a Human-Led Demonstration: A Memory to Store, Retrieve, Consolidate, and Forget Experiences

We present a symbolic learning framework inspired by cognitive-like memory functionalities (i.e., storing, retrieving, consolidating and forgetting) to generate task representations to support high-level task planning and knowledge bootstrapping. We address a scenario involving a non-expert human, who performs a single task demonstration, and a robot, which online learns structured knowledge to re-execute the task based on experiences, i.e., observations. We consider a one-shot learning process based on non-annotated data to store an intelligible representation of the task, which can be refined through interaction, e.g., via verbal or visual communication. Our general-purpose framework relies on fuzzy Description Logic, which has been used to extend the previously developed Scene Identification and Tagging algorithm. In this paper, we exploit such an algorithm to implement cognitive-like memory functionalities employing scores that rank memorised observations over time based on simple heuristics. Our main contribution is the formalisation of a framework that can be used to systematically investigate different heuristics for bootstrapping hierarchical knowledge representations based on robot observations. Through an illustrative assembly task scenario, the paper presents the performance of our framework to discuss its benefits and limitations.


[281] 2404.10593

A Longitudinal Study of Child Wellbeing Assessment via Online Interactions with a Social Robots

Socially Assistive Robots are studied in different Child-Robot Interaction settings. However, logistical constraints limit accessibility, particularly affecting timely support for mental wellbeing. In this work, we have investigated whether online interactions with a robot can be used for the assessment of mental wellbeing in children. The children (N=40, 20 girls and 20 boys; 8-13 years) interacted with the Nao robot (30-45 mins) over three sessions, at least a week apart. Audio-visual recordings were collected throughout the sessions that concluded with the children answering user perception questionnaires pertaining to their anxiety towards the robot, and the robot's abilities. We divided the participants into three wellbeing clusters (low, med and high tertiles) using their responses to the Short Moods and Feelings Questionnaire (SMFQ) and further analysed how their wellbeing and their perceptions of the robot changed over the wellbeing tertiles, across sessions and across participants' gender. Our primary findings suggest that (I) online mediated-interactions with robots can be effective in assessing children's mental wellbeing over time, and (II) children's overall perception of the robot either improved or remained consistent across time. Supplementary exploratory analyses have also revealed that gender affected the children's wellbeing assessments as well as their perceptions of the robot.


[282] 2404.10595

Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases

Large Vision-Language Models (LVLMs), due to the remarkable visual reasoning ability to understand images and videos, have received widespread attention in the autonomous driving domain, which significantly advances the development of interpretable end-to-end autonomous driving. However, current evaluations of LVLMs primarily focus on the multi-faceted capabilities in common scenarios, lacking quantifiable and automated assessment in autonomous driving contexts, let alone severe road corner cases that even the state-of-the-art autonomous driving perception systems struggle to handle. In this paper, we propose CODA-LM, a novel vision-language benchmark for self-driving, which provides the first automatic and quantitative evaluation of LVLMs for interpretable autonomous driving including general perception, regional perception, and driving suggestions. CODA-LM utilizes the texts to describe the road images, exploiting powerful text-only large language models (LLMs) without image inputs to assess the capabilities of LVLMs in autonomous driving scenarios, which reveals stronger alignment with human preferences than LVLM judges. Experiments demonstrate that even the closed-sourced commercial LVLMs like GPT-4V cannot deal with road corner cases well, suggesting that we are still far from a strong LVLM-powered intelligent driving agent, and we hope our CODA-LM can become the catalyst to promote future development.


[283] 2404.10597

Hardware-aware training of models with synaptic delays for digital event-driven neuromorphic processors

Configurable synaptic delays are a basic feature in many neuromorphic neural network hardware accelerators. However, they have been rarely used in model implementations, despite their promising impact on performance and efficiency in tasks that exhibit complex (temporal) dynamics, as it has been unclear how to optimize them. In this work, we propose a framework to train and deploy, in digital neuromorphic hardware, highly performing spiking neural network models (SNNs) where apart from the synaptic weights, the per-synapse delays are also co-optimized. Leveraging spike-based back-propagation-through-time, the training accounts for both platform constraints, such as synaptic weight precision and the total number of parameters per core, as a function of the network size. In addition, a delay pruning technique is used to reduce memory footprint with a low cost in performance. We evaluate trained models in two neuromorphic digital hardware platforms: Intel Loihi and Imec Seneca. Loihi offers synaptic delay support using the so-called Ring-Buffer hardware structure. Seneca does not provide native hardware support for synaptic delays. A second contribution of this paper is therefore a novel area- and memory-efficient hardware structure for acceleration of synaptic delays, which we have integrated in Seneca. The evaluated benchmark involves several models for solving the SHD (Spiking Heidelberg Digits) classification task, where minimal accuracy degradation during the transition from software to hardware is demonstrated. To our knowledge, this is the first work showcasing how to train and deploy hardware-aware models parameterized with synaptic delays, on multicore neuromorphic hardware accelerators.


[284] 2404.10598

Resilient-By-Design Framework for MIMO-OFDM Communications under Smart Jamming

Native jamming mitigation is essential for addressing security and resilience in future 6G wireless networks. In this paper a resilient-by-design framework for effective anti-jamming in MIMO-OFDM wireless communications is introduced. A novel approach that integrates information from wireless sensing services to develop anti-jamming strategies, which do not rely on any prior information or assumptions on the adversary's concrete setup, is explored. To this end, a method that replaces conventional approaches to noise covariance estimation in anti-jamming with a surrogate covariance model is proposed, which instead incorporates sensing information on the jamming signal's directions-of-arrival (DoAs) to provide an effective approximation of the true jamming strategy. The study further focuses on integrating this novel, sensing-assisted approach into the joint optimization of beamforming, user scheduling and power allocation for a multi-user MIMO-OFDM uplink setting. Despite the NP-hard nature of this optimization problem, it can be effectively solved using an iterative water-filling approach. In order to assess the effectiveness of the proposed sensing-assisted jamming mitigation, the corresponding worst-case jamming strategy is investigated, which aims to minimize the total user sum-rate. Experimental simulations eventually affirm the robustness of our approach against both worst-case and barrage jamming, demonstrating its potential to address a wide range of jamming scenarios. Since such an integration of sensing-assisted information is directly implemented on the physical layer, resilience is incorporated preemptively by-design.


[285] 2404.10599

Towards free-response paradigm: a theory on decision-making in spiking neural networks

The energy-efficient and brain-like information processing abilities of Spiking Neural Networks (SNNs) have attracted considerable attention, establishing them as a crucial element of brain-inspired computing. One prevalent challenge encountered by SNNs is the trade-off between inference speed and accuracy, which requires sufficient time to achieve the desired level of performance. Drawing inspiration from animal behavior experiments that demonstrate a connection between decision-making reaction times, task complexity, and confidence levels, this study seeks to apply these insights to SNNs. The focus is on understanding how SNNs make inferences, with a particular emphasis on untangling the interplay between signal and noise in decision-making processes. The proposed theoretical framework introduces a new optimization objective for SNN training, highlighting the importance of not only the accuracy of decisions but also the development of predictive confidence through learning from past experiences. Experimental results demonstrate that SNNs trained according to this framework exhibit improved confidence expression, leading to better decision-making outcomes. In addition, a strategy is introduced for efficient decision-making during inference, which allows SNNs to complete tasks more quickly and can use stopping times as indicators of decision confidence. By integrating neuroscience insights with neuromorphic computing, this study opens up new possibilities to explore the capabilities of SNNs and advance their application in complex decision-making scenarios.


[286] 2404.10600

Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning

A positive margin may result in an increased risk of local recurrences after breast retention surgery for any malignant tumour. In order to reduce the number of positive margins would offer surgeon real-time intra-operative information on the presence of positive resection margins. This study aims to design an intra-operative tumour margin evaluation scheme by using specimen mammography in breast-conserving surgery. Total of 30 cases were evaluated and compared with the manually determined contours by experienced physicians and pathology report. The proposed method utilizes image thresholding to extract regions of interest and then performs a deep learning model, i.e. SegNet, to segment tumour tissue. The margin width of normal tissues surrounding it is evaluated as the result. The desired size of margin around the tumor was set for 10 mm. The smallest average difference to manual sketched margin (6.53 mm +- 5.84). In the all case, the SegNet architecture was utilized to obtain tissue specimen boundary and tumor contour, respectively. The simulation results indicated that this technology is helpful in discriminating positive from negative margins in the intra-operative setting. The aim of proposed scheme was a potential procedure in the intra-operative measurement system. The experimental results reveal that deep learning techniques can draw results that are consistent with pathology reports.


[287] 2404.10602

Exploring Post Quantum Cryptography with Quantum Key Distribution for Sustainable Mobile Network Architecture Design

The proliferation of mobile networks and their increasing importance to modern life, combined with the emerging threat of quantum computing, present new challenges and opportunities for cybersecurity. This paper addresses the complexity of protecting these critical infrastructures against future quantum attacks while considering operational sustainability. We begin with an overview of the current landscape, identify the main vulnerabilities in mobile networks, and evaluate existing security solutions with new post-quantum cryptography (PQC) methods. We then present a quantum-secure architecture with PQC and Quantum Key Distribution (QKD) tailored explicitly for sustainable mobile networks and illustrate its applicability with several use cases that emphasize the need for advanced protection measures in this new era. In addition, a comprehensive analysis of PQC algorithm families is presented, focusing on their suitability for integration in mobile environments, with particular attention to the trade-offs between energy consumption and security improvements. Finally, recommendations for strengthening mobile networks against quantum threats are provided through a detailed examination of current challenges and opportunities.


[288] 2404.10603

Enhancing 3D Fidelity of Text-to-3D using Cross-View Correspondences

Leveraging multi-view diffusion models as priors for 3D optimization have alleviated the problem of 3D consistency, e.g., the Janus face problem or the content drift problem, in zero-shot text-to-3D models. However, the 3D geometric fidelity of the output remains an unresolved issue; albeit the rendered 2D views are realistic, the underlying geometry may contain errors such as unreasonable concavities. In this work, we propose CorrespondentDream, an effective method to leverage annotation-free, cross-view correspondences yielded from the diffusion U-Net to provide additional 3D prior to the NeRF optimization process. We find that these correspondences are strongly consistent with human perception, and by adopting it in our loss design, we are able to produce NeRF models with geometries that are more coherent with common sense, e.g., more smoothed object surface, yielding higher 3D fidelity. We demonstrate the efficacy of our approach through various comparative qualitative results and a solid user study.


[289] 2404.10605

UAV Trajectory Optimization for Sensing Exploiting Target Location Distribution Map

In this paper, we study the trajectory optimization of a cellular-connected unmanned aerial vehicle (UAV) which aims to sense the location of a target while maintaining satisfactory communication quality with the ground base stations (GBSs). In contrast to most existing works which assumed the target's location is known, we focus on a more challenging scenario where the exact location of the target to be sensed is unknown and random, while its distribution is known a priori and stored in a novel target location distribution map. Based on this map, the probability for the UAV to successfully sense the target can be expressed as a function of the UAV's trajectory. We aim to optimize the UAV's trajectory between two pre-determined locations to maximize the overall sensing probability during its flight, subject to a GBS-UAV communication quality constraint at each time instant and a maximum mission completion time constraint. Despite the non-convexity and NP-hardness of this problem, we devise three high-quality suboptimal solutions tailored for it with polynomial complexity. Numerical results show that our proposed designs outperform various benchmark schemes.


[290] 2404.10606

InfoCon: Concept Discovery with Generative and Discriminative Informativeness

We focus on the self-supervised discovery of manipulation concepts that can be adapted and reassembled to address various robotic tasks. We propose that the decision to conceptualize a physical procedure should not depend on how we name it (semantics) but rather on the significance of the informativeness in its representation regarding the low-level physical state and state changes. We model manipulation concepts (discrete symbols) as generative and discriminative goals and derive metrics that can autonomously link them to meaningful sub-trajectories from noisy, unlabeled demonstrations. Specifically, we employ a trainable codebook containing encodings (concepts) capable of synthesizing the end-state of a sub-trajectory given the current state (generative informativeness). Moreover, the encoding corresponding to a particular sub-trajectory should differentiate the state within and outside it and confidently predict the subsequent action based on the gradient of its discriminative score (discriminative informativeness). These metrics, which do not rely on human annotation, can be seamlessly integrated into a VQ-VAE framework, enabling the partitioning of demonstrations into semantically consistent sub-trajectories, fulfilling the purpose of discovering manipulation concepts and the corresponding sub-goal (key) states. We evaluate the effectiveness of the learned concepts by training policies that utilize them as guidance, demonstrating superior performance compared to other baselines. Additionally, our discovered manipulation concepts compare favorably to human-annotated ones while saving much manual effort.


[291] 2404.10610

Shining Light into the Tunnel: Understanding and Classifying Network Traffic of Residential Proxies

Emerging in recent years, residential proxies (RESIPs) feature multiple unique characteristics when compared with traditional network proxies (e.g., commercial VPNs), particularly, the deployment in residential networks rather than data center networks, the worldwide distribution in tens of thousands of cities and ISPs, and the large scale of millions of exit nodes. All these factors allow RESIP users to effectively masquerade their traffic flows as ones from authentic residential users, which leads to the increasing adoption of RESIP services, especially in malicious online activities. However, regarding the (malicious) usage of RESIPs (i.e., what traffic is relayed by RESIPs), current understanding turns out to be insufficient. Particularly, previous works on RESIP traffic studied only the maliciousness of web traffic destinations and the suspicious patterns of visiting popular websites. Also, a general methodology is missing regarding capturing large-scale RESIP traffic and analyzing RESIP traffic for security risks. Furthermore, considering many RESIP nodes are found to be located in corporate networks and are deployed without proper authorization from device owners or network administrators, it is becoming increasingly necessary to detect and block RESIP traffic flows, which unfortunately is impeded by the scarcity of realistic RESIP traffic datasets and effective detection methodologies. To fill in these gaps, multiple novel tools have been designed and implemented in this study, which include a general framework to deploy RESIP nodes and collect RESIP traffic in a distributed manner, a RESIP traffic analyzer to efficiently process RESIP traffic logs and surface out suspicious traffic flows, and multiple machine learning based RESIP traffic classifiers to timely and accurately detect whether a given traffic flow is RESIP traffic or not.


[292] 2404.10616

One is all you need: Second-order Unification without First-order Variables

We consider the fragment of Second-Order unification with the following properties: (i) only one second-order variable allowed, (ii) first-order variables do not occur. We show that Hilbert's 10$^{th}$ problem is reducible to this fragment if the signature contains a binary function symbol and two constants. This generalizes known undecidability results. Furthermore, We show that adding the following restriction: (i) the second-order variable has arity 1, (ii) the signature is finite, and (iii) the problem has \emph{bounded congruence}, results in a decidable fragment. The latter fragment is related to \emph{Bounded second-order unification}, i.e. the number of holes is a function of the problem structure.


[293] 2404.10617

Optimizing Performance on Trinity Utilizing Machine Learning, Proxy Applications and Scheduling Priorities

The sheer number of nodes continues to increase in todays supercomputers, the first half of Trinity alone contains more than 9400 compute nodes. Since the speed of todays clusters are limited by the slowest nodes, it more important than ever to identify slow nodes, improve their performance if it can be done, and assure minimal usage of slower nodes during performance critical runs. This is an ongoing maintenance task that occurs on a regular basis and, therefore, it is important to minimize the impact upon its users by assessing and addressing slow performing nodes and mitigating their consequences while minimizing down time. These issues can be solved, in large part, through a systematic application of fast running hardware assessment tests, the application of Machine Learning, and making use of performance data to increase efficiency of large clusters. Proxy applications utilizing both MPI and OpenMP were developed to produce data as a substitute for long runtime applications to evaluate node performance. Machine learning is applied to identify underperforming nodes, and policies are being discussed to both minimize the impact of underperforming nodes and increase the efficiency of the system. In this paper, I will describe the process used to produce quickly performing proxy tests, consider various methods to isolate the outliers, and produce ordered lists for use in scheduling to accomplish this task.


[294] 2404.10618

Private Attribute Inference from Images with Vision-Language Models

As large language models (LLMs) become ubiquitous in our daily tasks and digital interactions, associated privacy risks are increasingly in focus. While LLM privacy research has primarily focused on the leakage of model training data, it has recently been shown that the increase in models' capabilities has enabled LLMs to make accurate privacy-infringing inferences from previously unseen texts. With the rise of multimodal vision-language models (VLMs), capable of understanding both images and text, a pertinent question is whether such results transfer to the previously unexplored domain of benign images posted online. To investigate the risks associated with the image reasoning capabilities of newly emerging VLMs, we compile an image dataset with human-annotated labels of the image owner's personal attributes. In order to understand the additional privacy risk posed by VLMs beyond traditional human attribute recognition, our dataset consists of images where the inferable private attributes do not stem from direct depictions of humans. On this dataset, we evaluate the inferential capabilities of 7 state-of-the-art VLMs, finding that they can infer various personal attributes at up to 77.6% accuracy. Concerningly, we observe that accuracy scales with the general capabilities of the models, implying that future models can be misused as stronger adversaries, establishing an imperative for the development of adequate defenses.


[295] 2404.10620

PyTorchGeoNodes: Enabling Differentiable Shape Programs for 3D Shape Reconstruction

We propose PyTorchGeoNodes, a differentiable module for reconstructing 3D objects from images using interpretable shape programs. In comparison to traditional CAD model retrieval methods, the use of shape programs for 3D reconstruction allows for reasoning about the semantic properties of reconstructed objects, editing, low memory footprint, etc. However, the utilization of shape programs for 3D scene understanding has been largely neglected in past works. As our main contribution, we enable gradient-based optimization by introducing a module that translates shape programs designed in Blender, for example, into efficient PyTorch code. We also provide a method that relies on PyTorchGeoNodes and is inspired by Monte Carlo Tree Search (MCTS) to jointly optimize discrete and continuous parameters of shape programs and reconstruct 3D objects for input scenes. In our experiments, we apply our algorithm to reconstruct 3D objects in the ScanNet dataset and evaluate our results against CAD model retrieval-based reconstructions. Our experiments indicate that our reconstructions match well the input scenes while enabling semantic reasoning about reconstructed objects.


[296] 2404.10622

Learning Deep Dynamical Systems using Stable Neural ODEs

Learning complex trajectories from demonstrations in robotic tasks has been effectively addressed through the utilization of Dynamical Systems (DS). State-of-the-art DS learning methods ensure stability of the generated trajectories; however, they have three shortcomings: a) the DS is assumed to have a single attractor, which limits the diversity of tasks it can achieve, b) state derivative information is assumed to be available in the learning process and c) the state of the DS is assumed to be measurable at inference time. We propose a class of provably stable latent DS with possibly multiple attractors, that inherit the training methods of Neural Ordinary Differential Equations, thus, dropping the dependency on state derivative information. A diffeomorphic mapping for the output and a loss that captures time-invariant trajectory similarity are proposed. We validate the efficacy of our approach through experiments conducted on a public dataset of handwritten shapes and within a simulated object manipulation task.


[297] 2404.10625

Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks

NeRF-based 3D-aware Generative Adversarial Networks (GANs) like EG3D or GIRAFFE have shown very high rendering quality under large representational variety. However, rendering with Neural Radiance Fields poses challenges for 3D applications: First, the significant computational demands of NeRF rendering preclude its use on low-power devices, such as mobiles and VR/AR headsets. Second, implicit representations based on neural networks are difficult to incorporate into explicit 3D scenes, such as VR environments or video games. 3D Gaussian Splatting (3DGS) overcomes these limitations by providing an explicit 3D representation that can be rendered efficiently at high frame rates. In this work, we present a novel approach that combines the high rendering quality of NeRF-based 3D-aware GANs with the flexibility and computational advantages of 3DGS. By training a decoder that maps implicit NeRF representations to explicit 3D Gaussian Splatting attributes, we can integrate the representational diversity and quality of 3D GANs into the ecosystem of 3D Gaussian Splatting for the first time. Additionally, our approach allows for a high resolution GAN inversion and real-time GAN editing with 3D Gaussian Splatting scenes.


[298] 2404.10626

Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction

We explore simple methods for adapting a trained multi-task UNet which predicts canopy cover and height to a new geographic setting using remotely sensed data without the need of training a domain-adaptive classifier and extensive fine-tuning. Extending previous research, we followed a selective alignment process to identify similar images in the two geographical domains and then tested an array of data-based unsupervised domain adaptation approaches in a zero-shot setting as well as with a small amount of fine-tuning. We find that the selective aligned data-based image matching methods produce promising results in a zero-shot setting, and even more so with a small amount of fine-tuning. These methods outperform both an untransformed baseline and a popular data-based image-to-image translation model. The best performing methods were pixel distribution adaptation and fourier domain adaptation on the canopy cover and height tasks respectively.


[299] 2404.10630

HLAT: High-quality Large Language Model Pre-trained on AWS Trainium

Getting large language models (LLMs) to perform well on the downstream tasks requires pre-training over trillions of tokens. This typically demands a large number of powerful computational devices in addition to a stable distributed training framework to accelerate the training. The growing number of applications leveraging AI/ML had led to a scarcity of the expensive conventional accelerators (such as GPUs), which begs the need for the alternative specialized-accelerators that are scalable and cost-efficient. AWS Trainium is the second-generation machine learning accelerator that has been purposely built for training large deep learning models. Its corresponding instance, Amazon EC2 trn1, is an alternative to GPU instances for LLM training. However, training LLMs with billions of parameters on trn1 is challenging due to its relatively nascent software ecosystem. In this paper, we showcase HLAT: a 7 billion parameter decoder-only LLM pre-trained using trn1 instances over 1.8 trillion tokens. The performance of HLAT is benchmarked against popular open source baseline models including LLaMA and OpenLLaMA, which have been trained on NVIDIA GPUs and Google TPUs, respectively. On various evaluation tasks, we show that HLAT achieves model quality on par with the baselines. We also share the best practice of using the Neuron Distributed Training Library (NDTL), a customized distributed training library for AWS Trainium to achieve efficient training. Our work demonstrates that AWS Trainium powered by the NDTL is able to successfully pre-train state-of-the-art LLM models with high performance and cost-effectiveness.


[300] 2404.10631

Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications

Hyperspectral (HS) imaging presents itself as a non-contact, non-ionizing and non-invasive technique, proven to be suitable for medical diagnosis. However, the volume of information contained in these images makes difficult providing the surgeon with information about the boundaries in real-time. To that end, High-Performance-Computing (HPC) platforms become necessary. This paper presents a comparison between the performances provided by five different HPC platforms while processing a spatial-spectral approach to classify HS images, assessing their main benefits and drawbacks. To provide a complete study, two different medical applications, with two different requirements, have been analyzed. The first application consists of HS images taken from neurosurgical operations; the second one presents HS images taken from dermatological interventions. While the main constraint for neurosurgical applications is the processing time, in other environments, as the dermatological one, other requirements can be considered. In that sense, energy efficiency is becoming a major challenge, since this kind of applications are usually developed as hand-held devices, thus depending on the battery capacity. These requirements have been considered to choose the target platforms: on the one hand, three of the most powerful Graphic Processing Units (GPUs) available in the market; and, on the other hand, a low-power GPU and a manycore architecture, both specifically thought for being used in battery-dependent environments.


[301] 2404.10632

Constrained Object Placement Using Reinforcement Learning

Close and precise placement of irregularly shaped objects requires a skilled robotic system. Particularly challenging is the manipulation of objects that have sensitive top surfaces and a fixed set of neighbors. To avoid damaging the surface, they have to be grasped from the side, and during placement, their neighbor relations have to be maintained. In this work, we train a reinforcement learning agent that generates smooth end-effector motions to place objects as close as possible next to each other. During the placement, our agent considers neighbor constraints defined in a given layout of the objects while trying to avoid collisions. Our approach learns to place compact object assemblies without the need for predefined spacing between objects as required by traditional methods. We thoroughly evaluated our approach using a two-finger gripper mounted to a robotic arm with six degrees of freedom. The results show that our agent outperforms two baseline approaches in terms of object assembly compactness, thereby reducing the needed space to place the objects according to the given neighbor constraints. On average, our approach reduces the distances between all placed objects by at least 60%, with fewer collisions at the same compactness compared to both baselines.


[302] 2404.10633

Contextrast: Contextual Contrastive Learning for Semantic Segmentation

Despite great improvements in semantic segmentation, challenges persist because of the lack of local/global contexts and the relationship between them. In this paper, we propose Contextrast, a contrastive learning-based semantic segmentation method that allows to capture local/global contexts and comprehend their relationships. Our proposed method comprises two parts: a) contextual contrastive learning (CCL) and b) boundary-aware negative (BANE) sampling. Contextual contrastive learning obtains local/global context from multi-scale feature aggregation and inter/intra-relationship of features for better discrimination capabilities. Meanwhile, BANE sampling selects embedding features along the boundaries of incorrectly predicted regions to employ them as harder negative samples on our contrastive learning, resolving segmentation issues along the boundary region by exploiting fine-grained details. We demonstrate that our Contextrast substantially enhances the performance of semantic segmentation networks, outperforming state-of-the-art contrastive learning approaches on diverse public datasets, e.g. Cityscapes, CamVid, PASCAL-C, COCO-Stuff, and ADE20K, without an increase in computational cost during inference.


[303] 2404.10635

Compressed Federated Reinforcement Learning with a Generative Model

Reinforcement learning has recently gained unprecedented popularity, yet it still grapples with sample inefficiency. Addressing this challenge, federated reinforcement learning (FedRL) has emerged, wherein agents collaboratively learn a single policy by aggregating local estimations. However, this aggregation step incurs significant communication costs. In this paper, we propose CompFedRL, a communication-efficient FedRL approach incorporating both \textit{periodic aggregation} and (direct/error-feedback) compression mechanisms. Specifically, we consider compressed federated $Q$-learning with a generative model setup, where a central server learns an optimal $Q$-function by periodically aggregating compressed $Q$-estimates from local agents. For the first time, we characterize the impact of these two mechanisms (which have remained elusive) by providing a finite-time analysis of our algorithm, demonstrating strong convergence behaviors when utilizing either direct or error-feedback compression. Our bounds indicate improved solution accuracy concerning the number of agents and other federated hyperparameters while simultaneously reducing communication costs. To corroborate our theory, we also conduct in-depth numerical experiments to verify our findings, considering Top-$K$ and Sparsified-$K$ sparsification operators.


[304] 2404.10636

What are human values, and how do we align AI to them?

There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but there is very little work on what that means and how we actually do it. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.


[305] 2404.10637

On Homomorphism Indistinguishability and Hypertree Depth

$GC^k$ is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers ($C$) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs $G$, $H$ satisfy the same sentences in the logic $GC^k$ with guard depth at most $k$ if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most $k$. This lifts the analogous result for tree depth $\leq k$ and sentences of first-order logic with counting quantifiers of quantifier rank at most $k$ due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gaven\v{c}iak and Klimo\v{s}ov\'a (2012). To justify this restriction, we show that for every $H$, the strict hypertree depth of $H$ is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.


[306] 2404.10638

A Fast 3-Approximation for the Capacitated Tree Cover Problem with Edge Loads

The capacitated tree cover problem with edge loads is a variant of the tree cover problem, where we are given facility opening costs, edge costs and loads, as well as vertex loads. We try to find a tree cover of minimum cost such that the total edge and vertex load of each tree does not exceed a given bound. We present an $\mathcal{O}(m\log n)$ time 3-approximation algorithm for this problem. This is achieved by starting with a certain LP formulation. We give a combinatorial algorithm that solves the LP optimally in time $\mathcal{O}(m\log n)$. Then, we show that a linear time rounding and splitting technique leads to an integral solution that costs at most 3 times as much as the LP solution. Finally, we prove that the integrality gap of the LP is $3$, which shows that we can not improve the rounding step in general.


[307] 2404.10641

A Cloud Resources Portfolio Optimization Business Model - From Theory to Practice

Cloud resources have become increasingly important, with many businesses using cloud solutions to supplement or outright replace their existing IT infrastructure. However, as there is a plethora of providers with varying products, services, and markets, it has become increasingly more challenging to keep track of the best solutions for each application. Cloud service intermediaries aim to alleviate this problem by offering services that help users meet their requirements. This paper aims to lay the groundwork for developing a cloud portfolio management platform and its business model, defined via a business model canvas. Furthermore, a prototype of a platform is developed offering a cloud portfolio optimization service, using two algorithms developed in previous research to create suitable and well-utilized allocations for a customer's applications.


[308] 2404.10642

Self-playing Adversarial Language Game Enhances LLM Reasoning

We explore the self-play training procedure of large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate with respect to a target word only visible to the attacker. The attacker aims to induce the defender to utter the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players should have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Play in this Adversarial language Game (SPAG). With this goal, we let LLMs act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performance uniformly improves on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLM's reasoning ability. The code is at https://github.com/Linear95/SPAG.


[309] 2404.10643

A Calibrated and Automated Simulator for Innovations in 5G

The rise of 5G deployments has created the environment for many emerging technologies to flourish. Self-driving vehicles, Augmented and Virtual Reality, and remote operations are examples of applications that leverage 5G networks' support for extremely low latency, high bandwidth, and increased throughput. However, the complex architecture of 5G hinders innovation due to the lack of accessibility to testbeds or realistic simulators with adequate 5G functionalities. Also, configuring and managing simulators are complex and time consuming. Finally, the lack of adequate representative data hinders the data-driven designs in 5G campaigns. Thus, we calibrated a system-level open-source simulator, Simu5G, following 3GPP guidelines to enable faster innovation in the 5G domain. Furthermore, we developed an API for automatic simulator configuration without knowing the underlying architectural details. Finally, we demonstrate the usage of the calibrated and automated simulator by developing an ML-based anomaly detection in a 5G Radio Access Network (RAN).


[310] 2404.10645

Continuous Control Reinforcement Learning: Distributed Distributional DrQ Algorithms

Distributed Distributional DrQ is a model-free and off-policy RL algorithm for continuous control tasks based on the state and observation of the agent, which is an actor-critic method with the data-augmentation and the distributional perspective of critic value function. Aim to learn to control the agent and master some tasks in a high-dimensional continuous space. DrQ-v2 uses DDPG as the backbone and achieves out-performance in various continuous control tasks. Here Distributed Distributional DrQ uses Distributed Distributional DDPG as the backbone, and this modification aims to achieve better performance in some hard continuous control tasks through the better expression ability of distributional value function and distributed actor policies.


[311] 2404.10646

Efficient Parking Search using Shared Fleet Data

Finding an available on-street parking spot is a relevant problem of day-to-day life. In recent years, cities such as Melbourne and San Francisco deployed sensors that provide real-time information about the occupation of parking spots. Finding a free parking spot in such a smart environment can be modeled and solved as a Markov decision process (MDP). The problem has to consider uncertainty as available parking spots might not remain available until arrival due to other vehicles also claiming spots in the meantime. Knowing the parking intention of every vehicle in the environment would eliminate this uncertainty. Unfortunately, it does currently not seem realistic to have such data from all vehicles. In contrast, acquiring data from a subset of vehicles or a vehicle fleet appears feasible and has the potential to reduce uncertainty. In this paper, we examine the question of how useful sharing data within a vehicle fleet might be for the search times of particular drivers. We use fleet data to better estimate the availability of parking spots at arrival. Since optimal solutions for large scenarios are infeasible, we base our method on approximate solutions, which have been shown to perform well in single-agent settings. Our experiments are conducted on a simulation using real-world and synthetic data from the city of Melbourne. The results indicate that fleet data can significantly reduce search times for an available parking spot.


[312] 2404.10648

The General and Finite Satisfiability Problems for PCTL are Undecidable

The general/finite PCTL satisfiability problem asks whether a given PCTL formula has a general/finite model. We show that the finite PCTL satisfiability problem is undecidable, and the general PCTL satisfiability problem is even highly undecidable (beyond the arithmetical hierarchy). Consequently, there are no sound deductive systems proving all generally/finitely valid PCTL formulae.


[313] 2404.10649

Navigating the Serious Game Design Landscape: A Comprehensive Reference Document

Within the evolving field of digital intervention, serious games emerge as promising tools for evidence-based interventions. Research indicates that gamified therapy, whether employed independently or in conjunction with online psychoeducation or traditional programs, proves more efficacious in delivering care to patients. As we navigate the intricate realm of serious game design, bridging the gap between therapeutic approaches and creative design proves complex. Professionals in clinical and research roles demonstrate innovative thinking yet face challenges in executing engaging therapeutic serious games due to the lack of specialized design skills and knowledge. Thus, a larger question remains: How might we aid and educate professionals in clinical and research roles the importance of game design to support their innovative therapeutic approaches? This study examines potential solutions aimed at facilitating the integration of gamification design principles into clinical study protocols, a pivotal aspect for aligning therapeutic practices with captivating narratives in the pursuit of innovative interventions. We propose two solutions, a flow chart framework for serious games or a comprehensive reference document encompassing gamification design principles and guidelines for best design practices. Through an examination of literature reviews, it was observed that selected design decisions varied across studies. Thus, we propose that the second solution, a comprehensive reference design guide, is more versatile and adaptable.


[314] 2404.10652

ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images

Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (\textbf{Vi}etnamese \textbf{Text}-based \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering dataset) which contains \textbf{over 16,000} images and \textbf{over 50,000} questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this \href{https://github.com/minhquan6203/ViTextVQA-Dataset}{link} for research purposes.


[315] 2404.10653

Context-Free Languages of String Diagrams

We introduce context-free languages of morphisms in monoidal categories, extending recent work on the categorification of context-free languages, and regular languages of string diagrams. Context-free languages of string diagrams include classical context-free languages of words, trees, and hypergraphs, when instantiated over appropriate monoidal categories. Using a contour-splicing adjunction, we prove a representation theorem for context-free languages of string diagrams: every such language arises as the image under a monoidal functor of a regular language of string diagrams.


[316] 2404.10658

Trajectory Planning using Reinforcement Learning for Interactive Overtaking Maneuvers in Autonomous Racing Scenarios

Conventional trajectory planning approaches for autonomous racing are based on the sequential execution of prediction of the opposing vehicles and subsequent trajectory planning for the ego vehicle. If the opposing vehicles do not react to the ego vehicle, they can be predicted accurately. However, if there is interaction between the vehicles, the prediction loses its validity. For high interaction, instead of a planning approach that reacts exclusively to the fixed prediction, a trajectory planning approach is required that incorporates the interaction with the opposing vehicles. This paper demonstrates the limitations of a widely used conventional sampling-based approach within a highly interactive blocking scenario. We show that high success rates are achieved for less aggressive blocking behavior but that the collision rate increases with more significant interaction. We further propose a novel Reinforcement Learning (RL)-based trajectory planning approach for racing that explicitly exploits the interaction with the opposing vehicle without requiring a prediction. In contrast to the conventional approach, the RL-based approach achieves high success rates even for aggressive blocking behavior. Furthermore, we propose a novel safety layer (SL) that intervenes when the trajectory generated by the RL-based approach is infeasible. In that event, the SL generates a sub-optimal but feasible trajectory, avoiding termination of the scenario due to a not found valid solution.


[317] 2404.10659

Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure

The emergence of quantum computing presents a double-edged sword for cybersecurity. While its immense power holds promise for advancements in various fields, it also threatens to crack the foundation of current encryption methods. This analysis explores the impact of quantum computing on critical infrastructure and cloud services, meticulously evaluating potential vulnerabilities across various layers, including applications, data, runtime, middleware, operating systems, virtualization, hardware, storage, and networks. We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography. This crucial shift necessitates a comprehensive approach, and the paper introduces a tailored security blueprint encompassing nine critical infrastructure components. This blueprint strengthens each area's defenses against potential quantum-induced cyber threats. Our strategic vulnerability and risk assessment equips stakeholders with the knowledge to navigate the complex quantum threat landscape. This empowers them to make informed decisions about design, implementation, and policy formulation, ultimately bolstering the resilience of critical infrastructure. In essence, this analysis not only forecasts quantum threats but also offers a sophisticated, actionable framework for fortifying infrastructure and cloud environments against the multifaceted challenges of the quantum era. This proactive approach will ensure continued data security and a thriving digital landscape in the years to come


[318] 2404.10661

PD-Insighter: A Visual Analytics System to Monitor Daily Actions for Parkinson's Disease Treatment

People with Parkinson's Disease (PD) can slow the progression of their symptoms with physical therapy. However, clinicians lack insight into patients' motor function during daily life, preventing them from tailoring treatment protocols to patient needs. This paper introduces PD-Insighter, a system for comprehensive analysis of a person's daily movements for clinical review and decision-making. PD-Insighter provides an overview dashboard for discovering motor patterns and identifying critical deficits during activities of daily living and an immersive replay for closely studying the patient's body movements with environmental context. Developed using an iterative design study methodology in consultation with clinicians, we found that PD-Insighter's ability to aggregate and display data with respect to time, actions, and local environment enabled clinicians to assess a person's overall functioning during daily life outside the clinic. PD-Insighter's design offers future guidance for generalized multiperspective body motion analytics, which may significantly improve clinical decision-making and slow the functional decline of PD and other medical conditions.


[319] 2404.10662

Continual Offline Reinforcement Learning via Diffusion-based Dual Generative Replay

We study continual offline reinforcement learning, a practical paradigm that facilitates forward transfer and mitigates catastrophic forgetting to tackle sequential offline tasks. We propose a dual generative replay framework that retains previous knowledge by concurrent replay of generated pseudo-data. First, we decouple the continual learning policy into a diffusion-based generative behavior model and a multi-head action evaluation model, allowing the policy to inherit distributional expressivity for encompassing a progressive range of diverse behaviors. Second, we train a task-conditioned diffusion model to mimic state distributions of past tasks. Generated states are paired with corresponding responses from the behavior generator to represent old tasks with high-fidelity replayed samples. Finally, by interleaving pseudo samples with real ones of the new task, we continually update the state and behavior generators to model progressively diverse behaviors, and regularize the multi-head critic via behavior cloning to mitigate forgetting. Experiments demonstrate that our method achieves better forward transfer with less forgetting, and closely approximates the results of using previous ground-truth data due to its high-fidelity replay of the sample space. Our code is available at \href{https://github.com/NJU-RL/CuGRO}{https://github.com/NJU-RL/CuGRO}.


[320] 2404.10664

Assessing The Impact of CNN Auto Encoder-Based Image Denoising on Image Classification Tasks

Images captured from the real world are often affected by different types of noise, which can significantly impact the performance of Computer Vision systems and the quality of visual data. This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers. The methodology involves utilizing deep learning models such as VGG16, InceptionV3, and other models in both the spatial and frequency domains to identify noise types and defect status. The research process begins with preprocessing images, followed by applying denoising techniques tailored to specific noise categories. The goal is to enhance the accuracy and robustness of defect detection by integrating noise detection and denoising into the classification pipeline. The study achieved remarkable results using VGG16 for noise type classification in the frequency domain, achieving an accuracy of over 99%. Removal of salt and pepper noise resulted in an average SSIM of 87.9, while Gaussian noise removal had an average SSIM of 64.0, and periodic noise removal yielded an average SSIM of 81.6. This comprehensive approach showcases the effectiveness of the deep AutoEncoder model and median filter, for denoising strategies in real-world industrial applications. Finally, our study reports significant improvements in binary classification accuracy for defect detection compared to previous methods. For the VGG16 classifier, accuracy increased from 94.6% to 97.0%, demonstrating the effectiveness of the proposed noise detection and denoising approach. Similarly, for the InceptionV3 classifier, accuracy improved from 84.7% to 90.0%, further validating the benefits of integrating noise analysis into the classification pipeline.


[321] 2404.10665

Iterated Invariant Extended Kalman Filter (IIEKF)

In this paper, we introduce the Iterated Invariant Extended Kalman Filter (IIEKF), which is an invariant extended Kalman filter (IEKF) where the updated state in the light of the latest measurement is defined as a maximum a posteriori (MAP) estimate. Under some compatibility requirements on the output map, we prove strong mathematical guarantees which echo those of the Kalman filter in the linear case. We apply the technique to two problems: solving a system of equations on a Lie group, and a problem of engineering interest, namely ego-localization of the hook of a crane. The latter serves as a benchmarking example, where the IIEKF favorably compares to other filters.


[322] 2404.10666

Bounds on Sphere Sizes in the Sum-Rank Metric and Coordinate-Additive Metrics

This paper provides new bounds on the size of spheres in any coordinate-additive metric with a particular focus on improving existing bounds in the sum-rank metric. We derive improved upper and lower bounds based on the entropy of a distribution related to the Boltzmann distribution, which work for any coordinate-additive metric. Additionally, we derive new closed-form upper and lower bounds specifically for the sum-rank metric that outperform existing closed-form bounds.


[323] 2404.10667

VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time

We introduce VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip. Our premiere model, VASA-1, is capable of not only producing lip movements that are exquisitely synchronized with the audio, but also capturing a large spectrum of facial nuances and natural head motions that contribute to the perception of authenticity and liveliness. The core innovations include a holistic facial dynamics and head movement generation model that works in a face latent space, and the development of such an expressive and disentangled face latent space using videos. Through extensive experiments including evaluation on a set of new metrics, we show that our method significantly outperforms previous methods along various dimensions comprehensively. Our method not only delivers high video quality with realistic facial and head dynamics but also supports the online generation of 512x512 videos at up to 40 FPS with negligible starting latency. It paves the way for real-time engagements with lifelike avatars that emulate human conversational behaviors.


[324] 2404.10670

The Simultaneous Interval Number: A New Width Parameter that Measures the Similarity to Interval Graphs

We propose a novel way of generalizing the class of interval graphs, via a graph width parameter called the simultaneous interval number. This parameter is related to the simultaneous representation problem for interval graphs and defined as the smallest number $d$ of labels such that the graph admits a $d$-simultaneous interval representation, that is, an assignment of intervals and label sets to the vertices such that two vertices are adjacent if and only if the corresponding intervals, as well as their label sets, intersect. We show that this parameter is $\mathsf{NP}$-hard to compute and give several bounds for the parameter, showing in particular that it is sandwiched between pathwidth and linear mim-width. For classes of graphs with bounded parameter values, assuming that the graph is equipped with a simultaneous interval representation with a constant number of labels, we give $\mathsf{FPT}$ algorithms for the clique, independent set, and dominating set problems, and hardness results for the independent dominating set and coloring problems. The $\mathsf{FPT}$ results for independent set and dominating set are for the simultaneous interval number plus solution size. In contrast, both problems are known to be $\mathsf{W}[1]$-hard for linear mim-width plus solution size.


[325] 2404.10675

SCALE: Self-Correcting Visual Navigation for Mobile Robots via Anti-Novelty Estimation

Although visual navigation has been extensively studied using deep reinforcement learning, online learning for real-world robots remains a challenging task. Recent work directly learned from offline dataset to achieve broader generalization in the real-world tasks, which, however, faces the out-of-distribution (OOD) issue and potential robot localization failures in a given map for unseen observation. This significantly drops the success rates and even induces collision. In this paper, we present a self-correcting visual navigation method, SCALE, that can autonomously prevent the robot from the OOD situations without human intervention. Specifically, we develop an image-goal conditioned offline reinforcement learning method based on implicit Q-learning (IQL). When facing OOD observation, our novel localization recovery method generates the potential future trajectories by learning from the navigation affordance, and estimates the future novelty via random network distillation (RND). A tailored cost function searches for the candidates with the least novelty that can lead the robot to the familiar places. We collect offline data and conduct evaluation experiments in three real-world urban scenarios. Experiment results show that SCALE outperforms the previous state-of-the-art methods for open-world navigation with a unique capability of localization recovery, significantly reducing the need for human intervention. Code is available at https://github.com/KubeEdge4Robotics/ScaleNav.


[326] 2404.10676

Circuit-theoretic Joint Parameter-State Estimation -- Balancing Optimality and AC Feasibility

AC State Estimation (ACSE) is widely recognized as a practical approach for determining the grid states in steady-state conditions. It serves as a fundamental analysis to ensure grid security and is a reference for market dispatch. As grid complexity increases with rapid electrification and decarbonization, there is a growing need for more accurate knowledge of the grid operating state. However, existing ACSE algorithms have technical gaps. Critically, current ACSE algorithms are susceptible to erroneous system parameters, which are assumed to be fixed in traditional approaches. In this paper, we build a novel circuit-theoretic joint parameter-state estimation algorithm to address this limitation. The innovative algorithm builds an analogous equivalent circuit of the grid with states and certain parameters unknown. It solves a circuit-constrained optimization to estimate the most likely grid states and parameters given a set of measurements. Further, it quantifies the goodness of the estimated output by formulating tight convex envelopes around the original non-convex problem to quantify the quality of estimates. We compare the various proposed approaches on systems with up to 2869 nodes while demonstrating a tradeoff between solution optimality and model fidelity.


[327] 2404.10678

Automating REST API Postman Test Cases Using LLM

In the contemporary landscape of technological advancements, the automation of manual processes is crucial, compelling the demand for huge datasets to effectively train and test machines. This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases specifically using Large Language Models. The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation for training and evaluating Large Language Models. This formalized approach with LLMs simplifies the testing process, making it more efficient and comprehensive. Leveraging natural language understanding, LLMs can intelligently formulate test cases that cover a broad range of REST API properties, ensuring comprehensive testing. The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs. LLMs enhance the creation of Postman test cases by automating the generation of varied and intricate test scenarios. Postman test cases offer streamlined automation, collaboration, and dynamic data handling, providing a user-friendly and efficient approach to API testing compared to traditional test cases. Thus, the model developed not only conforms to current technological standards but also holds the promise of evolving into an idea of substantial importance in future technological advancements.


[328] 2404.10679

HSVI-based Online Minimax Strategies for Partially Observable Stochastic Games with Neural Perception Mechanisms

We consider a variant of continuous-state partially-observable stochastic games with neural perception mechanisms and an asymmetric information structure. One agent has partial information, with the observation function implemented as a neural network, while the other agent is assumed to have full knowledge of the state. We present, for the first time, an efficient online method to compute an $\varepsilon$-minimax strategy profile, which requires only one linear program to be solved for each agent at every stage, instead of a complex estimation of opponent counterfactual values. For the partially-informed agent, we propose a continual resolving approach which uses lower bounds, pre-computed offline with heuristic search value iteration (HSVI), instead of opponent counterfactual values. This inherits the soundness of continual resolving at the cost of pre-computing the bound. For the fully-informed agent, we propose an inferred-belief strategy, where the agent maintains an inferred belief about the belief of the partially-informed agent based on (offline) upper bounds from HSVI, guaranteeing $\varepsilon$-distance to the value of the game at the initial belief known to both agents.


[329] 2404.10681

StyleCity: Large-Scale 3D Urban Scenes Stylization with Vision-and-Text Reference via Progressive Optimization

Creating large-scale virtual urban scenes with variant styles is inherently challenging. To facilitate prototypes of virtual production and bypass the need for complex materials and lighting setups, we introduce the first vision-and-text-driven texture stylization system for large-scale urban scenes, StyleCity. Taking an image and text as references, StyleCity stylizes a 3D textured mesh of a large-scale urban scene in a semantics-aware fashion and generates a harmonic omnidirectional sky background. To achieve that, we propose to stylize a neural texture field by transferring 2D vision-and-text priors to 3D globally and locally. During 3D stylization, we progressively scale the planned training views of the input 3D scene at different levels in order to preserve high-quality scene content. We then optimize the scene style globally by adapting the scale of the style image with the scale of the training views. Moreover, we enhance local semantics consistency by the semantics-aware style loss which is crucial for photo-realistic stylization. Besides texture stylization, we further adopt a generative diffusion model to synthesize a style-consistent omnidirectional sky image, which offers a more immersive atmosphere and assists the semantic stylization process. The stylized neural texture field can be baked into an arbitrary-resolution texture, enabling seamless integration into conventional rendering pipelines and significantly easing the virtual production prototyping process. Extensive experiments demonstrate our stylized scenes' superiority in qualitative and quantitative performance and user preferences.


[330] 2404.10683

Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning

Portfolio optimization tasks describe sequential decision problems in which the investor's wealth is distributed across a set of assets. Allocation constraints are used to enforce minimal or maximal investments into particular subsets of assets to control for objectives such as limiting the portfolio's exposure to a certain sector due to environmental concerns. Although methods for constrained Reinforcement Learning (CRL) can optimize policies while considering allocation constraints, it can be observed that these general methods yield suboptimal results. In this paper, we propose a novel approach to handle allocation constraints based on a decomposition of the constraint action space into a set of unconstrained allocation problems. In particular, we examine this approach for the case of two constraints. For example, an investor may wish to invest at least a certain percentage of the portfolio into green technologies while limiting the investment in the fossil energy sector. We show that the action space of the task is equivalent to the decomposed action space, and introduce a new reinforcement learning (RL) approach CAOSD, which is built on top of the decomposition. The experimental evaluation on real-world Nasdaq-100 data demonstrates that our approach consistently outperforms state-of-the-art CRL benchmarks for portfolio optimization.


[331] 2404.10684

Driver Fatigue Prediction using Randomly Activated Neural Networks for Smart Ridesharing Platforms

Drivers in ridesharing platforms exhibit cognitive atrophy and fatigue as they accept ride offers along the day, which can have a significant impact on the overall efficiency of the ridesharing platform. In contrast to the current literature which focuses primarily on modeling and learning driver's preferences across different ride offers, this paper proposes a novel Dynamic Discounted Satisficing (DDS) heuristic to model and predict driver's sequential ride decisions during a given shift. Based on DDS heuristic, a novel stochastic neural network with random activations is proposed to model DDS heuristic and predict the final decision made by a given driver. The presence of random activations in the network necessitated the development of a novel training algorithm called Sampling-Based Back Propagation Through Time (SBPTT), where gradients are computed for independent instances of neural networks (obtained via sampling the distribution of activation threshold) and aggregated to update the network parameters. Using both simulation experiments as well as on real Chicago taxi dataset, this paper demonstrates the improved performance of the proposed approach, when compared to state-of-the-art methods.


[332] 2404.10685

Generating Human Interaction Motions in Scenes with Text Control

We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models. Previous text-to-motion methods focus on characters in isolation without considering scenes due to the limited availability of datasets that include motion, text descriptions, and interactive scenes. Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model, emphasizing goal-reaching constraints on large-scale motion-capture datasets. We then enhance this model with a scene-aware component, fine-tuned using data augmented with detailed scene information, including ground plane and object shapes. To facilitate training, we embed annotated navigation and interaction motions within scenes. The proposed method produces realistic and diverse human-object interactions, such as navigation and sitting, in different scenes with various object shapes, orientations, initial body positions, and poses. Extensive experiments demonstrate that our approach surpasses prior techniques in terms of the plausibility of human-scene interactions, as well as the realism and variety of the generated motions. Code will be released upon publication of this work at https://research.nvidia.com/labs/toronto-ai/tesmo.


[333] 2404.10687

Invariant Kalman Filtering with Noise-Free Pseudo-Measurements

In this paper, we focus on developing an Invariant Extended Kalman Filter (IEKF) for extended pose estimation for a noisy system with state equality constraints. We treat those constraints as noise-free pseudo-measurements. To this aim, we provide a formula for the Kalman gain in the limit of noise-free measurements and rank-deficient covariance matrix. We relate the constraints to group-theoretic properties and study the behavior of the IEKF in the presence of such noise-free measurements. We illustrate this perspective on the estimation of the motion of the load of an overhead crane, when a wireless inertial measurement unit is mounted on the hook.


[334] 2404.10688

Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution

Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.


[335] 2404.10689

Network architecture search of X-ray based scientific applications

X-ray and electron diffraction-based microscopy use bragg peak detection and ptychography to perform 3-D imaging at an atomic resolution. Typically, these techniques are implemented using computationally complex tasks such as a Psuedo-Voigt function or solving a complex inverse problem. Recently, the use of deep neural networks has improved the existing state-of-the-art approaches. However, the design and development of the neural network models depends on time and labor intensive tuning of the model by application experts. To that end, we propose a hyperparameter (HPS) and neural architecture search (NAS) approach to automate the design and optimization of the neural network models for model size, energy consumption and throughput. We demonstrate the improved performance of the auto-tuned models when compared to the manually tuned BraggNN and PtychoNN benchmark. We study and demonstrate the importance of the exploring the search space of tunable hyperparameters in enhancing the performance of bragg peak detection and ptychographic reconstruction. Our NAS and HPS of (1) BraggNN achieves a 31.03\% improvement in bragg peak detection accuracy with a 87.57\% reduction in model size, and (2) PtychoNN achieves a 16.77\% improvement in model accuracy and a 12.82\% reduction in model size when compared to the baseline PtychoNN model. When inferred on the Orin-AGX platform, the optimized Braggnn and Ptychonn models demonstrate a 10.51\% and 9.47\% reduction in inference latency and a 44.18\% and 15.34\% reduction in energy consumption when compared to their respective baselines, when inferred in the Orin-AGX edge platform.


[336] 2404.10690

MathWriting: A Dataset For Handwritten Mathematical Expression Recognition

We introduce MathWriting, the largest online handwritten mathematical expression dataset to date. It consists of 230k human-written samples and an additional 400k synthetic ones. MathWriting can also be used for offline HME recognition and is larger than all existing offline HME datasets like IM2LATEX-100K. We introduce a benchmark based on MathWriting data in order to advance research on both online and offline HME recognition.


[337] 2404.10694

Towards scalable cryogenic quantum dot biasing using memristor-based DC sources

Cryogenic memristor-based DC sources offer a promising avenue for in situ biasing of quantum dot arrays. In this study, we present experimental results and discuss the scaling potential for such DC sources. We first demonstrate the operation of a commercial discrete operational amplifier down to 1.2K which is used on the DC source prototype. Then, the tunability of the memristor-based DC source is validated by performing several 250mV-DC sweeps with a resolution of 10mV at room temperature and at 1.2K. Additionally, the DC source prototype exhibits a limited output drift of $\approx1\mathrm{\mu Vs^{-1}}$ at 1.2K. This showcases the potential of memristor-based DC sources for quantum dot biasing. Limitations in power consumption and voltage resolution using discrete components highlight the need for a fully integrated and scalable complementary metal-oxide-semiconductor-based (CMOS-based) approach. To address this, we propose to monolithically co-integrate emerging non-volatile memories (eNVMs) and 65nm CMOS circuitry. Simulations reveal a reduction in power consumption, down to $\mathrm{10\mu W}$ per DC source and in footprint. This allows for the integration of up to one million eNVM-based DC sources at the 4.2K stage of a dilution fridge, paving the way for near term large-scale quantum computing applications.


[338] 2404.10696

Integrating knowledge bases to improve coreference and bridging resolution for the chemical domain

Resolving coreference and bridging relations in chemical patents is important for better understanding the precise chemical process, where chemical domain knowledge is very critical. We proposed an approach incorporating external knowledge into a multi-task learning model for both coreference and bridging resolution in the chemical domain. The results show that integrating external knowledge can benefit both chemical coreference and bridging resolution.


[339] 2404.10699

ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Segmentation

We introduce ECLAIR (Extended Classification of Lidar for AI Recognition), a new outdoor large-scale aerial LiDAR dataset designed specifically for advancing research in point cloud semantic segmentation. As the most extensive and diverse collection of its kind to date, the dataset covers a total area of 10$km^2$ with close to 600 million points and features eleven distinct object categories. To guarantee the dataset's quality and utility, we have thoroughly curated the point labels through an internal team of experts, ensuring accuracy and consistency in semantic labeling. The dataset is engineered to move forward the fields of 3D urban modeling, scene understanding, and utility infrastructure management by presenting new challenges and potential applications. As a benchmark, we report qualitative and quantitative analysis of a voxel-based point cloud segmentation approach based on the Minkowski Engine.


[340] 2404.10702

Retrieval Augmented Verification : Unveiling Disinformation with Structured Representations for Zero-Shot Real-Time Evidence-guided Fact-Checking of Multi-modal Social media posts

Social Media posts, where real images are unscrupulously reused along with provocative text to promote a particular idea, have been one of the major sources of disinformation. By design, these claims are without editorial oversight and accessible to a vast population who otherwise may not have access to multiple information sources. This implies the need to fact-check these posts and clearly explain which parts of the posts are fake. In the supervised learning setup, this is often reduced to a binary classification problem, neglecting all intermediate stages. Further, these claims often involve recent events on which systems trained on historical data are prone to fail. In this work, we propose a zero-shot approach by retrieving real-time web-scraped evidence from multiple news websites and matching them with the claim text and image using pretrained language vision systems. We propose a graph structured representation, which a) allows us to gather evidence automatically and b) helps generate interpretable results by explicitly pointing out which parts of the claim can not be verified. Our zero-shot method, with improved interpretability, generates competitive results against the state-of-the-art methods


[341] 2404.10703

An empirical study on code review activity prediction in practice

During code reviews, an essential step in software quality assurance, reviewers have the difficult task of understanding and evaluating code changes to validate their quality and prevent introducing faults to the codebase. This is a tedious process where the effort needed is highly dependent on the code submitted, as well as the author's and the reviewer's experience, leading to median wait times for review feedback of 15-64 hours. Through an initial user study carried with 29 experts, we found that re-ordering the files changed by a patch within the review environment has potential to improve review quality, as more comments are written (+23%), and participants' file-level hot-spot precision and recall increases to 53% (+13%) and 28% (+8%), respectively, compared to the alphanumeric ordering. Hence, this paper aims to help code reviewers by predicting which files in a submitted patch need to be (1) commented, (2) revised, or (3) are hot-spots (commented or revised). To predict these tasks, we evaluate two different types of text embeddings (i.e., Bag-of-Words and Large Language Models encoding) and review process features (i.e., code size-based and history-based features). Our empirical study on three open-source and two industrial datasets shows that combining the code embedding and review process features leads to better results than the state-of-the-art approach. For all tasks, F1-scores (median of 40-62%) are significantly better than the state-of-the-art (from +1 to +9%).


[342] 2404.10704

Question Difficulty Ranking for Multiple-Choice Reading Comprehension

Multiple-choice (MC) tests are an efficient method to assess English learners. It is useful for test creators to rank candidate MC questions by difficulty during exam curation. Typically, the difficulty is determined by having human test takers trial the questions in a pretesting stage. However, this is expensive and not scalable. Therefore, we explore automated approaches to rank MC questions by difficulty. However, there is limited data for explicit training of a system for difficulty scores. Hence, we compare task transfer and zero-shot approaches: task transfer adapts level classification and reading comprehension systems for difficulty ranking while zero-shot prompting of instruction finetuned language models contrasts absolute assessment against comparative. It is found that level classification transfers better than reading comprehension. Additionally, zero-shot comparative assessment is more effective at difficulty ranking than the absolute assessment and even the task transfer approaches at question difficulty ranking with a Spearman's correlation of 40.4%. Combining the systems is observed to further boost the correlation.


[343] 2404.10706

Cross-Language Evolution of Divergent Collective Memory Around the Arab Spring

The Arab Spring was a historic set of protests beginning in 2011 that toppled governments and led to major conflicts. Collective memories of events like these can vary significantly across social contexts in response to political, cultural, and linguistic factors. While Wikipedia plays an important role in documenting both historic and current events, little attention has been given to how Wikipedia articles, created in the aftermath of major events, continue to evolve over years or decades. Using the archived content of Arab Spring-related topics across the Arabic and English Wikipedias between 2011 and 2024, we define and evaluate multilingual measures of event salience, deliberation, contextualization, and consolidation of collective memory surrounding the Arab Spring. Our findings about the temporal evolution of the Wikipedia articles' content similarity across languages has implications for theorizing about online collective memory processes and evaluating linguistic models trained on these data.


[344] 2404.10710

Dual Modalities of Text: Visual and Textual Generative Pre-training

Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.


[345] 2404.10712

Tetris with Few Piece Types

We prove NP-hardness and #P-hardness of Tetris clearing (clearing an initial board using a given sequence of pieces) with the Super Rotation System (SRS), even when the pieces are limited to any two of the seven Tetris piece types. This result is the first advance on a question posed twenty years ago: which piece sets are easy vs. hard? All previous Tetris NP-hardness proofs used five of the seven piece types. We also prove ASP-completeness of Tetris clearing, using three piece types, as well as versions of 3-Partition and Numerical 3-Dimensional Matching where all input integers are distinct. Finally, we prove NP-hardness of Tetris survival and clearing under the "hard drops only" and "20G" modes, using two piece types, improving on a previous "hard drops only" result that used five piece types.


[346] 2404.10713

A Plausibility Study of Using Augmented Reality in the Ventriculoperitoneal Shunt Operations

The field of augmented reality (AR) has undergone substantial growth, finding diverse applications in the medical industry. This paper delves into various techniques employed in medical surgeries, scrutinizing factors such as cost, implementation, and accessibility. The focus of this exploration is on AR-based solutions, with a particular emphasis on addressing challenges and proposing an innovative solution for ventriculoperitoneal shunt (VP) operations. The proposed solution introduces a novel flow in the pre-surgery phase, aiming to substantially reduce setup time and operation duration by creating 3D models of the skull and ventricles. Experiments are conducted where the models are visualized on a 3D- printed skull through an AR device, specifically the Microsoft HoloLens 2. The paper then conducts an in-depth analysis of this proposed solution, discussing its feasibility, advantages, limitations,and future implications.


[347] 2404.10715

Dynamic Frequency-Based Fingerprinting Attacks against Modern Sandbox Environments

The cloud computing landscape has evolved significantly in recent years, embracing various sandboxes to meet the diverse demands of modern cloud applications. These sandboxes encompass container-based technologies like Docker and gVisor, microVM-based solutions like Firecracker, and security-centric sandboxes relying on Trusted Execution Environments (TEEs) such as Intel SGX and AMD SEV. However, the practice of placing multiple tenants on shared physical hardware raises security and privacy concerns, most notably side-channel attacks. In this paper, we investigate the possibility of fingerprinting containers through CPU frequency reporting sensors in Intel and AMD CPUs. One key enabler of our attack is that the current CPU frequency information can be accessed by user-space attackers. We demonstrate that Docker images exhibit a unique frequency signature, enabling the distinction of different containers with up to 84.5% accuracy even when multiple containers are running simultaneously in different cores. Additionally, we assess the effectiveness of our attack when performed against several sandboxes deployed in cloud environments, including Google's gVisor, AWS' Firecracker, and TEE-based platforms like Gramine (utilizing Intel SGX) and AMD SEV. Our empirical results show that these attacks can also be carried out successfully against all of these sandboxes in less than 40 seconds, with an accuracy of over 70% in all cases. Finally, we propose a noise injection-based countermeasure to mitigate the proposed attack on cloud environments.


[348] 2404.10716

MOWA: Multiple-in-One Image Warping Model

While recent image warping approaches achieved remarkable success on existing benchmarks, they still require training separate models for each specific task and cannot generalize well to different camera models or customized manipulations. To address diverse types of warping in practice, we propose a Multiple-in-One image WArping model (named MOWA) in this work. Specifically, we mitigate the difficulty of multi-task learning by disentangling the motion estimation at both the region level and pixel level. To further enable dynamic task-aware image warping, we introduce a lightweight point-based classifier that predicts the task type, serving as prompts to modulate the feature maps for better estimation. To our knowledge, this is the first work that solves multiple practical warping tasks in one single model. Extensive experiments demonstrate that our MOWA, which is trained on six tasks for multiple-in-one image warping, outperforms state-of-the-art task-specific models across most tasks. Moreover, MOWA also exhibits promising potential to generalize into unseen scenes, as evidenced by cross-domain and zero-shot evaluations. The code will be made publicly available.


[349] 2404.10717

Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation

Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance. However, the scarcity of labeled data limits the expressiveness of prototypes in previous methods, potentially hindering the complete representation of prototypes for class embedding. To address this problem, we propose the Mixed Prototype Consistency Learning (MPCL) framework, which includes a Mean Teacher and an auxiliary network. The Mean Teacher generates prototypes for labeled and unlabeled data, while the auxiliary network produces additional prototypes for mixed data processed by CutMix. Through prototype fusion, mixed prototypes provide extra semantic information to both labeled and unlabeled prototypes. High-quality global prototypes for each class are formed by fusing two enhanced prototypes, optimizing the distribution of hidden embeddings used in consistency learning. Extensive experiments on the left atrium and type B aortic dissection datasets demonstrate MPCL's superiority over previous state-of-the-art approaches, confirming the effectiveness of our framework. The code will be released soon.


[350] 2404.10718

GazeHTA: End-to-end Gaze Target Detection with Head-Target Association

We propose an end-to-end approach for gaze target detection: predicting a head-target connection between individuals and the target image regions they are looking at. Most of the existing methods use independent components such as off-the-shelf head detectors or have problems in establishing associations between heads and gaze targets. In contrast, we investigate an end-to-end multi-person Gaze target detection framework with Heads and Targets Association (GazeHTA), which predicts multiple head-target instances based solely on input scene image. GazeHTA addresses challenges in gaze target detection by (1) leveraging a pre-trained diffusion model to extract scene features for rich semantic understanding, (2) re-injecting a head feature to enhance the head priors for improved head understanding, and (3) learning a connection map as the explicit visual associations between heads and gaze targets. Our extensive experimental results demonstrate that GazeHTA outperforms state-of-the-art gaze target detection methods and two adapted diffusion-based baselines on two standard datasets.


[351] 2404.10719

Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study

Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across various a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.


[352] 2404.10728

Randomized Exploration in Cooperative Multi-Agent Reinforcement Learning

We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$ regret bound with communication complexity $\widetilde{\mathcal{O}}(dHM^2)$, where $d$ is the feature dimension, $H$ is the horizon length, $M$ is the number of agents, and $K$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (\textit{i.e.,} $N$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning.


[353] 2404.10730

Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units

The discoveries in this paper show that Intelligence Processing Units (IPUs) offer a viable accelerator alternative to GPUs for machine learning (ML) applications within the fields of materials science and battery research. We investigate the process of migrating a model from GPU to IPU and explore several optimization techniques, including pipelining and gradient accumulation, aimed at enhancing the performance of IPU-based models. Furthermore, we have effectively migrated a specialized model to the IPU platform. This model is employed for predicting effective conductivity, a parameter crucial in ion transport processes, which govern the performance of multiple charge and discharge cycles of batteries. The model utilizes a Convolutional Neural Network (CNN) architecture to perform prediction tasks for effective conductivity. The performance of this model on the IPU is found to be comparable to its execution on GPUs. We also analyze the utilization and performance of Graphcore's Bow IPU. Through benchmark tests, we observe significantly improved performance with the Bow IPU when compared to its predecessor, the Colossus IPU.


[354] 2404.10731

What is Meant by AGI? On the Definition of Artificial General Intelligence

This paper aims to establish a consensus on AGI's definition. General intelligence refers to the adaptation to open environments according to certain principles using limited resources. It emphasizes that adaptation or learning is an indispensable property of intelligence, and places the controversial part within the principles of intelligence, which can be described from different perspectives.


[355] 2404.10732

Attention-Aware Visualization: Tracking and Responding to User Perception Over Time

We propose the notion of Attention-Aware Visualizations (AAVs) that track the user's perception of a visual representation over time and feed this information back to the visualization. Such context awareness is particularly useful for ubiquitous and immersive analytics where knowing which embedded visualizations the user is looking at can be used to make visualizations react appropriately to the user's attention: for example, by highlighting data the user has not yet seen. We can separate the approach into three components: (1) measuring the user's gaze on a visualization and its parts; (2) tracking the user's attention over time; and (3) reactively modifying the visual representation based on the current attention metric. In this paper, we present two separate implementations of AAV: a 2D data-agnostic method for web-based visualizations that can use an embodied eyetracker to capture the user's gaze, and a 3D data-aware one that uses the stencil buffer to track the visibility of each individual mark in a visualization. Both methods provide similar mechanisms for accumulating attention over time and changing the appearance of marks in response. We also present results from a qualitative evaluation studying visual feedback and triggering mechanisms for capturing and revisualizing attention.


[356] 2404.10733

Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration

Agents that assist people need to have well-initialized policies that can adapt quickly to align with their partners' reward functions. Initializing policies to maximize performance with unknown partners can be achieved by bootstrapping nonlinear models using imitation learning over large, offline datasets. Such policies can require prohibitive computation to fine-tune in-situ and therefore may miss critical run-time information about a partner's reward function as expressed through their immediate behavior. In contrast, online logistic regression using low-capacity models performs rapid inference and fine-tuning updates and thus can make effective use of immediate in-task behavior for reward function alignment. However, these low-capacity models cannot be bootstrapped as effectively by offline datasets and thus have poor initializations. We propose BLR-HAC, Bootstrapped Logistic Regression for Human Agent Collaboration, which bootstraps large nonlinear models to learn the parameters of a low-capacity model which then uses online logistic regression for updates during collaboration. We test BLR-HAC in a simulated surface rearrangement task and demonstrate that it achieves higher zero-shot accuracy than shallow methods and takes far less computation to adapt online while still achieving similar performance to fine-tuned, large nonlinear models. For code, please see our project page https://sites.google.com/view/blr-hac.


[357] 2404.10734

SPONGE: Open-Source Designs of Modular Articulated Soft Robots

Soft-robot designs are manifold, but only a few are publicly available. Often, these are only briefly described in their publications. This complicates reproduction, and hinders the reproducibility and comparability of research results. If the designs were uniform and open source, validating researched methods on real benchmark systems would be possible. To address this, we present two variants of a soft pneumatic robot with antagonistic bellows as open source. Starting from a semi-modular design with multiple cables and tubes routed through the robot body, the transition to a fully modular robot with integrated microvalves and serial communication is highlighted. Modularity in terms of stackability, actuation, and communication is achieved, which is the crucial requirement for building soft robots with many degrees of freedom and high dexterity for real-world tasks. Both systems are compared regarding their respective advantages and disadvantages. The robots' functionality is demonstrated in experiments on airtightness, gravitational influence, position control with mean tracking errors of <3 deg, and long-term operation of cast and printed bellows. All soft- and hardware files required for reproduction are provided.


[358] 2404.10740

N-Agent Ad Hoc Teamwork

Current approaches to learning cooperative behaviors in multi-agent settings assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls \textit{all} agents in the scenario, while in ad hoc teamwork, the learning algorithm usually assumes control over only a $\textit{single}$ agent in the scenario. However, many cooperative settings in the real world are much less restrictive. For example, in an autonomous driving scenario, a company might train its cars with the same learning algorithm, yet once on the road, these cars must cooperate with cars from another company. Towards generalizing the class of scenarios that cooperative learning methods can address, we introduce $N$-agent ad hoc teamwork, in which a set of autonomous agents must interact and cooperate with dynamically varying numbers and types of teammates at evaluation time. This paper formalizes the problem, and proposes the $\textit{Policy Optimization with Agent Modelling}$ (POAM) algorithm. POAM is a policy gradient, multi-agent reinforcement learning approach to the NAHT problem, that enables adaptation to diverse teammate behaviors by learning representations of teammate behaviors. Empirical evaluation on StarCraft II tasks shows that POAM improves cooperative task returns compared to baseline approaches, and enables out-of-distribution generalization to unseen teammates.


[359] 2404.10745

Settling Constant Regrets in Linear Markov Decision Processes

We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level $\zeta$. At the core of Cert-LSVI-UCB is an innovative certified estimator, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes. Specifically, we demonstrate that for an MDP characterized by a minimal suboptimality gap $\Delta$, Cert-LSVI-UCB has a cumulative regret of $\tilde{\mathcal{O}}(d^3H^5/\Delta)$ with high probability, provided that the misspecification level $\zeta$ is below $\tilde{\mathcal{O}}(\Delta / (\sqrt{d}H^2))$. Remarkably, this regret bound remains constant relative to the number of episodes $K$. To the best of our knowledge, Cert-LSVI-UCB is the first algorithm to achieve a constant, instance-dependent, high-probability regret bound in RL with linear function approximation for infinite runs without relying on prior distribution assumptions. This not only highlights the robustness of Cert-LSVI-UCB to model misspecification but also introduces novel algorithmic designs and analytical techniques of independent interest.


[360] 2404.10747

How Deduction Systems Can Help You To Verify Stability Properties

Mathematical proofs are a cornerstone of control theory, and it is important to get them right. Deduction systems can help with this by mechanically checking the proofs. However, the structure and level of detail at which a proof is represented in a deduction system differ significantly from a proof read and written by mathematicians and engineers, hampering understanding and adoption of these systems. This paper aims at helping to bridge the gap between machine-checked proofs and proofs in engineering and mathematics by presenting a machine-checked proof for stability using Lyapunov's theorem in a human-readable way. The structure of the proof is analyzed in detail, and potential benefits of such a proof are discussed, such as generalizability, reusability and increased trust in correctness.


[361] 2404.10752

Computing Inductive Invariants of Regular Abstraction Frameworks

Regular transition systems (RTS) are a popular formalism for modeling infinite-state systems in general, and parameterised systems in particular. In a CONCUR 22 paper, Esparza et al. introduce a novel approach to the verification of RTS, based on inductive invariants. The approach computes the intersection of all inductive invariants of a given RTS that can be expressed as CNF formulas with a bounded number of clauses, and uses it to construct an automaton recognising an overapproximation of the reachable configurations. The paper shows that the problem of deciding if the language of this automaton intersects a given regular set of unsafe configurations is in $\textsf{EXPSPACE}$ and $\textsf{PSPACE}$-hard. We introduce $\textit{regular abstraction frameworks}$, a generalisation of the approach of Esparza et al., very similar to the regular abstractions of Hong and Lin. A framework consists of a regular language of $\textit{constraints}$, and a transducer, called the $\textit{interpretation}$, that assigns to each constraint the set of configurations of the RTS satisfying it. Examples of regular abstraction frameworks include the formulas of Esparza et al., octagons, bounded difference matrices, and views. We show that the generalisation of the decision problem above to regular abstraction frameworks remains in $\textsf{EXPSPACE}$, and prove a matching (highly non-trivial) $\textsf{EXPSPACE}$-hardness bound. $\textsf{EXPSPACE}$-hardness implies that, in the worst case, the automaton recognising the overapproximation of the reachable configurations has a double-exponential number of states. We introduce a learning algorithm that computes this automaton in a lazy manner, stopping whenever the current hypothesis is already strong enough to prove safety. We report on an implementation and show that our experimental results improve on those of Esparza et al.


[362] 2404.10754

A Systematic Survey of the Gemini Principles for Digital Twin Ontologies

Ontologies are widely used for achieving interoperable Digital Twins (DTws), yet competing DTw definitions compound interoperability issues. Semantically linking these differing twins is feasible through ontologies and Cognitive Digital Twins (CDTws). However, it is often unclear how ontology use bolsters broader DTw advancements. This article presents a systematic survey following the PRISMA method, to explore the potential of ontologies to support DTws to meet the Centre for Digital Built Britain's Gemini Principles and aims to link progress in ontologies to this framework. The Gemini Principles focus on common DTw requirements, considering: Purpose for 1) Public Good, 2) Value Creation, and 3) Insight; Trustworthiness with sufficient 4) Security, 5) Openness, and 6) Quality; and appropriate Functionality of 7) Federation, 8) Curation, and 9) Evolution. This systematic literature review examines the role of ontologies in facilitating each principle. Existing research uses ontologies to solve DTw challenges within these principles, particularly by connecting DTws, optimising decisionmaking, and reasoning governance policies. Furthermore, analysing the sectoral distribution of literature found that research encompassing the crossover of ontologies, DTws and the Gemini Principles is emerging, and that most innovation is predominantly within manufacturing and built environment sectors. Critical gaps for researchers, industry practitioners, and policymakers are subsequently identified.


[363] 2404.10756

A High-Order Conservative Cut Finite Element Method for Problems in Time-Dependent Domains

A mass-conservative high-order unfitted finite element method for convection-diffusion equations in evolving domains is proposed. The space-time method presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016)] is extended to naturally achieve mass conservation by utilizing Reynold's transport theorem. Furthermore, by partitioning the time-dependent domain into macroelements, a more efficient stabilization procedure for the cut finite element method in time-dependent domains is presented. Numerical experiments illustrate that the method fulfills mass conservation, attains high-order convergence, and the condition number of the resulting system matrix is controlled while sparsity is increased. Problems in bulk domains as well as coupled bulk-surface problems are considered.


[364] 2404.10758

Watch Your Step: Optimal Retrieval for Continual Learning at Scale

One of the most widely used approaches in continual learning is referred to as replay. Replay methods support interleaved learning by storing past experiences in a replay buffer. Although there are methods for selectively constructing the buffer and reprocessing its contents, there is limited exploration of the problem of selectively retrieving samples from the buffer. Current solutions have been tested in limited settings and, more importantly, in isolation. Existing work has also not explored the impact of duplicate replays on performance. In this work, we propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives. We evaluated several combinations of existing strategies for selective retrieval and present their performances. Furthermore, we propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay. In an effort to match our problem setting to a realistic continual learning pipeline, we restrict our experiments to a setting involving a large, pre-trained, open vocabulary object detection model, which is fully fine-tuned on a sequence of 15 datasets.


[365] 2404.10759

Laplace-HDC: Understanding the geometry of binary hyperdimensional computing

This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.


[366] 2404.10760

Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark

Anomaly detection (AD) is often focused on detecting anomaly areas for industrial quality inspection and medical lesion examination. However, due to the specific scenario targets, the data scale for AD is relatively small, and evaluation metrics are still deficient compared to classic vision tasks, such as object detection and semantic segmentation. To fill these gaps, this work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field. This enables fair evaluation and sustainable development for different methods on this challenging benchmark. Moreover, current metrics such as AU-ROC have nearly reached saturation on simple datasets, which prevents a comprehensive evaluation of different methods. Inspired by the metrics in the segmentation field, we further propose several more practical threshold-dependent AD-specific metrics, ie, m$F_1$$^{.2}_{.8}$, mAcc$^{.2}_{.8}$, mIoU$^{.2}_{.8}$, and mIoU-max. Motivated by GAN inversion's high-quality reconstruction capability, we propose a simple but more powerful InvAD framework to achieve high-quality feature reconstruction. Our method improves the effectiveness of reconstruction-based methods on popular MVTec AD, VisA, and our newly proposed COCO-AD datasets under a multi-class unsupervised setting, where only a single detection model is trained to detect anomalies from different classes. Extensive ablation experiments have demonstrated the effectiveness of each component of our InvAD. Full codes and models are available at https://github.com/zhangzjn/ader.


[367] 2404.10761

TorchSurv: A Lightweight Package for Deep Survival Analysis

TorchSurv is a Python package that serves as a companion tool to perform deep survival modeling within the PyTorch environment. Unlike existing libraries that impose specific parametric forms, TorchSurv enables the use of custom PyTorch-based deep survival mod- els. With its lightweight design, minimal input requirements, full PyTorch backend, and freedom from restrictive survival model parameterizations, TorchSurv facilitates efficient deep survival model implementation and is particularly beneficial for high-dimensional and complex input data scenarios


[368] 2404.10763

LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?

Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.


[369] 2404.10764

Confidential Federated Computations

Federated Learning and Analytics (FLA) have seen widespread adoption by technology platforms for processing sensitive on-device data. However, basic FLA systems have privacy limitations: they do not necessarily require anonymization mechanisms like differential privacy (DP), and provide limited protections against a potentially malicious service provider. Adding DP to a basic FLA system currently requires either adding excessive noise to each device's updates, or assuming an honest service provider that correctly implements the mechanism and only uses the privatized outputs. Secure multiparty computation (SMPC) -based oblivious aggregations can limit the service provider's access to individual user updates and improve DP tradeoffs, but the tradeoffs are still suboptimal, and they suffer from scalability challenges and susceptibility to Sybil attacks. This paper introduces a novel system architecture that leverages trusted execution environments (TEEs) and open-sourcing to both ensure confidentiality of server-side computations and provide externally verifiable privacy properties, bolstering the robustness and trustworthiness of private federated computations.


[370] 2404.10765

RefFusion: Reference Adapted Diffusion Models for 3D Scene Inpainting

Neural reconstruction approaches are rapidly emerging as the preferred representation for 3D scenes, but their limited editability is still posing a challenge. In this work, we propose an approach for 3D scene inpainting -- the task of coherently replacing parts of the reconstructed scene with desired content. Scene inpainting is an inherently ill-posed task as there exist many solutions that plausibly replace the missing content. A good inpainting method should therefore not only enable high-quality synthesis but also a high degree of control. Based on this observation, we focus on enabling explicit control over the inpainted content and leverage a reference image as an efficient means to achieve this goal. Specifically, we introduce RefFusion, a novel 3D inpainting method based on a multi-scale personalization of an image inpainting diffusion model to the given reference view. The personalization effectively adapts the prior distribution to the target scene, resulting in a lower variance of score distillation objective and hence significantly sharper details. Our framework achieves state-of-the-art results for object removal while maintaining high controllability. We further demonstrate the generality of our formulation on other downstream tasks such as object insertion, scene outpainting, and sparse view reconstruction.


[371] 2404.10767

Privacy Can Arise Endogenously in an Economic System with Learning Agents

We study price-discrimination games between buyers and a seller where privacy arises endogenously--that is, utility maximization yields equilibrium strategies where privacy occurs naturally. In this game, buyers with a high valuation for a good have an incentive to keep their valuation private, lest the seller charge them a higher price. This yields an equilibrium where some buyers will send a signal that misrepresents their type with some probability; we refer to this as buyer-induced privacy. When the seller is able to publicly commit to providing a certain privacy level, we find that their equilibrium response is to commit to ignore buyers' signals with some positive probability; we refer to this as seller-induced privacy. We then turn our attention to a repeated interaction setting where the game parameters are unknown and the seller cannot credibly commit to a level of seller-induced privacy. In this setting, players must learn strategies based on information revealed in past rounds. We find that, even without commitment ability, seller-induced privacy arises as a result of reputation building. We characterize the resulting seller-induced privacy and seller's utility under no-regret and no-policy-regret learning algorithms and verify these results through simulations.


[372] 2404.10769

Finite-dimensional approximations of push-forwards on locally analytic functionals and truncation of least-squares polynomials

This paper introduces a theoretical framework for investigating analytic maps from finite discrete data, elucidating mathematical machinery underlying the polynomial approximation with least-squares in multivariate situations. Our approach is to consider the push-forward on the space of locally analytic functionals, instead of directly handling the analytic map itself. We establish a methodology enabling appropriate finite-dimensional approximation of the push-forward from finite discrete data, through the theory of the Fourier--Borel transform and the Fock space. Moreover, we prove a rigorous convergence result with a convergence rate. As an application, we prove that it is not the least-squares polynomial, but the polynomial obtained by truncating its higher-degree terms, that approximates analytic functions and further allows for approximation beyond the support of the data distribution. One advantage of our theory is that it enables us to apply linear algebraic operations to the finite-dimensional approximation of the push-forward. Utilizing this, we prove the convergence of a method for approximating an analytic vector field from finite data of the flow map of an ordinary differential equation.


[373] 2404.10771

TENG: Time-Evolving Natural Gradient for Solving PDEs with Deep Neural Net

Partial differential equations (PDEs) are instrumental for modeling dynamical systems in science and engineering. The advent of neural networks has initiated a significant shift in tackling these complexities though challenges in accuracy persist, especially for initial value problems. In this paper, we introduce the $\textit{Time-Evolving Natural Gradient (TENG)}$, generalizing time-dependent variational principles and optimization-based time integration, leveraging natural gradient optimization to obtain high accuracy in neural-network-based PDE solutions. Our comprehensive development includes algorithms like TENG-Euler and its high-order variants, such as TENG-Heun, tailored for enhanced precision and efficiency. TENG's effectiveness is further validated through its performance, surpassing current leading methods and achieving machine precision in step-by-step optimizations across a spectrum of PDEs, including the heat equation, Allen-Cahn equation, and Burgers' equation.


[374] 2404.10772

Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes

Recently, 3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results, while allowing the rendering of high-resolution images in real-time. However, leveraging 3D Gaussians for surface reconstruction poses significant challenges due to the explicit and disconnected nature of 3D Gaussians. In this work, we present Gaussian Opacity Fields (GOF), a novel approach for efficient, high-quality, and compact surface reconstruction in unbounded scenes. Our GOF is derived from ray-tracing-based volume rendering of 3D Gaussians, enabling direct geometry extraction from 3D Gaussians by identifying its levelset, without resorting to Poisson reconstruction or TSDF fusion as in previous work. We approximate the surface normal of Gaussians as the normal of the ray-Gaussian intersection plane, enabling the application of regularization that significantly enhances geometry. Furthermore, we develop an efficient geometry extraction method utilizing marching tetrahedra, where the tetrahedral grids are induced from 3D Gaussians and thus adapt to the scene's complexity. Our evaluations reveal that GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis. Further, it compares favorably to, or even outperforms, neural implicit methods in both quality and speed.


[375] 2404.10774

MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents

Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of "fact-checking" are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to LLMs to check a single response. In this work, we show how to build small models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify pre-existing datasets into a benchmark LLM-AggreFact, collected from recent work on fact-checking and grounding LLM generations. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.


[376] 2404.10775

COMBO: Compositional World Models for Embodied Multi-Agent Cooperation

In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only partial egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. To evaluate the efficacy of our methods, we create two challenging embodied multi-agent long-horizon cooperation tasks using the ThreeDWorld simulator and conduct experiments with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed framework. More videos can be found at https://vis-www.cs.umass.edu/combo/.


[377] 2404.10776

Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback

Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM). However, the effectiveness of this approach can be influenced by adversaries, who may intentionally provide misleading preferences to manipulate the output in an undesirable or harmful direction. To tackle this challenge, we study a specific model within this problem domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary. We propose an algorithm namely robust contextual dueling bandit (\algo), which is based on uncertainty-weighted maximum likelihood estimation. Our algorithm achieves an $\tilde O(d\sqrt{T}+dC)$ regret bound, where $T$ is the number of rounds, $d$ is the dimension of the context, and $ 0 \le C \le T$ is the total number of adversarial feedback. We also prove a lower bound to show that our regret bound is nearly optimal, both in scenarios with and without ($C=0$) adversarial feedback. Additionally, we conduct experiments to evaluate our proposed algorithm against various types of adversarial feedback. Experimental results demonstrate its superiority over the state-of-the-art dueling bandit algorithms in the presence of adversarial feedback.


[378] 1406.0134

Theoremizing Yablo's Paradox

To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these versions of Yablo's paradox, we prove some theorems in LTL. This is the first time that Yablo's paradox(es) become new(ly discovered) theorems in mathematics and logic.


[379] 2404.09621

AAM-VDT: Vehicle Digital Twin for Tele-Operations in Advanced Air Mobility

This study advanced tele-operations in Advanced Air Mobility (AAM) through the creation of a Vehicle Digital Twin (VDT) system for eVTOL aircraft, tailored to enhance remote control safety and efficiency, especially for Beyond Visual Line of Sight (BVLOS) operations. By synergizing digital twin technology with immersive Virtual Reality (VR) interfaces, we notably elevate situational awareness and control precision for remote operators. Our VDT framework integrates immersive tele-operation with a high-fidelity aerodynamic database, essential for authentically simulating flight dynamics and control tactics. At the heart of our methodology lies an eVTOL's high-fidelity digital replica, placed within a simulated reality that accurately reflects physical laws, enabling operators to manage the aircraft via a master-slave dynamic, substantially outperforming traditional 2D interfaces. The architecture of the designed system ensures seamless interaction between the operator, the digital twin, and the actual aircraft, facilitating exact, instantaneous feedback. Experimental assessments, involving propulsion data gathering, simulation database fidelity verification, and tele-operation testing, verify the system's capability in precise control command transmission and maintaining the digital-physical eVTOL synchronization. Our findings underscore the VDT system's potential in augmenting AAM efficiency and safety, paving the way for broader digital twin application in autonomous aerial vehicles.


[380] 2404.09998

Electric Vehicles Limit Equitable Access to Essential Services During Blackouts

Electric vehicles (EVs) link mobility and electric power availability, posing a risk of making transportation unavailable during blackouts. We develop a computational framework to quantify the impact of EVs on mobility and access to services and find that existing access issues are exacerbated by EVs. Our results demonstrate that larger batteries reduce mobility constraints but their effectiveness is dependent on the geographic distribution of services and households. We explore the trade-offs between mobility and quality-of-life improvements presented by Vehicle-to-Grid technologies and the feasibility and trade-offs of public charging infrastructure as a solution to access inequalities. Equitable access to essential services (e.g. supermarkets, schools, parks, etc.) is the most important aspect of community resilience and our results show vehicle electrification can hinder access to essential services unless properly incorporated into policy and city-scale decision-making.


[381] 2404.10003

Lightweight Geometric Deep Learning for Molecular Modelling in Catalyst Discovery

New technology for energy storage is necessary for the large-scale adoption of renewable energy sources like wind and solar. The ability to discover suitable catalysts is crucial for making energy storage more cost-effective and scalable. The Open Catalyst Project aims to apply advances in graph neural networks (GNNs) to accelerate progress in catalyst discovery, replacing Density Functional Theory-based (DFT) approaches that are computationally burdensome. Current approaches involve scaling GNNs to over 1 billion parameters, pushing the problem out of reach for a vast majority of machine learning practitioner around the world. This study aims to evaluate the performance and insights gained from using more lightweight approaches for this task that are more approachable for smaller teams to encourage participation from individuals from diverse backgrounds. By implementing robust design patterns like geometric and symmetric message passing, we were able to train a GNN model that reached a MAE of 0.0748 in predicting the per-atom forces of adsorbate-surface interactions, rivaling established model architectures like SchNet and DimeNet++ while using only a fraction of trainable parameters.


[382] 2404.10010

Kinematics Modeling of Peroxy Free Radicals: A Deep Reinforcement Learning Approach

Tropospheric ozone, known as a concerning air pollutant, has been associated with health issues including asthma, bronchitis, and impaired lung function. The rates at which peroxy radicals react with NO play a critical role in the overall formation and depletion of tropospheric ozone. However, obtaining comprehensive kinetic data for these reactions remains challenging. Traditional approaches to determine rate constants are costly and technically intricate. Fortunately, the emergence of machine learning-based models offers a less resource and time-intensive alternative for acquiring kinetics information. In this study, we leveraged deep reinforcement learning to predict ranges of rate constants (\textit{k}) with exceptional accuracy, achieving a testing set accuracy of 100%. To analyze reactivity trends based on the molecular structure of peroxy radicals, we employed 51 global descriptors as input parameters. These descriptors were derived from optimized minimum energy geometries of peroxy radicals using the quantum composite G3B3 method. Through the application of Integrated Gradients (IGs), we gained valuable insights into the significance of the various descriptors in relation to reaction rates. We successfully validated and contextualized our findings by conducting cross-comparisons with established trends in the existing literature. These results establish a solid foundation for pioneering advancements in chemistry, where computer analysis serves as an inspirational source driving innovation.


[383] 2404.10017

Model-based Offline Quantum Reinforcement Learning

This paper presents the first algorithm for model-based offline quantum reinforcement learning and demonstrates its functionality on the cart-pole benchmark. The model and the policy to be optimized are each implemented as variational quantum circuits. The model is trained by gradient descent to fit a pre-recorded data set. The policy is optimized with a gradient-free optimization scheme using the return estimate given by the model as the fitness function. This model-based approach allows, in principle, full realization on a quantum computer during the optimization phase and gives hope that a quantum advantage can be achieved as soon as sufficiently powerful quantum computers are available.


[384] 2404.10019

Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data

ChatGPT has been the most talked-about concept in recent months, captivating both professionals and the general public alike, and has sparked discussions about the changes that artificial intelligence (AI) will bring to the world. As physicists and astrophysicists, we are curious about if scientific data can be correctly analyzed by large language models (LLMs) and yield accurate physics. In this article, we fine-tune the generative pre-trained transformer (GPT) model by the astronomical data from the observations of galaxies, quasars, stars, gamma-ray bursts (GRBs), and the simulations of black holes (BHs), the fine-tuned model demonstrates its capability to classify astrophysical phenomena, distinguish between two types of GRBs, deduce the redshift of quasars, and estimate BH parameters. We regard this as a successful test, marking the LLM's proven efficacy in scientific research. With the ever-growing volume of multidisciplinary data and the advancement of AI technology, we look forward to the emergence of a more fundamental and comprehensive understanding of our universe. This article also shares some interesting thoughts on data collection and AI design. Using the approach of understanding the universe - looking outward at data and inward for fundamental building blocks - as a guideline, we propose a method of series expansion for AI, suggesting ways to train and control AI that is smarter than humans.


[385] 2404.10026

Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection

Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis while protecting patient privacy, which is crucial for achieving efficient medical image analysis and accelerating medical research progress. This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis. Traditional Centralized Machine Learning models, despite their widespread use in medical imaging for tasks such as disease diagnosis, raise significant privacy concerns due to the sensitive nature of patient data. As an alternative, FL emerges as a promising solution by allowing the training of a collective global model across local clients without centralizing the data, thus preserving privacy. Focusing on the application of FL in Magnetic Resonance Imaging (MRI) brain tumor detection, this study demonstrates the effectiveness of the Federated Learning framework coupled with EfficientNet-B0 and the FedAvg algorithm in enhancing both privacy and diagnostic accuracy. Through a meticulous selection of preprocessing methods, algorithms, and hyperparameters, and a comparative analysis of various Convolutional Neural Network (CNN) architectures, the research uncovers optimal strategies for image classification. The experimental results reveal that EfficientNet-B0 outperforms other models like ResNet in handling data heterogeneity and achieving higher accuracy and lower loss, highlighting the potential of FL in overcoming the limitations of traditional models. The study underscores the significance of addressing data heterogeneity and proposes further research directions for broadening the applicability of FL in medical image analysis.


[386] 2404.10029

Federated Learning on Riemannian Manifolds with Differential Privacy

In recent years, federated learning (FL) has emerged as a prominent paradigm in distributed machine learning. Despite the partial safeguarding of agents' information within FL systems, a malicious adversary can potentially infer sensitive information through various means. In this paper, we propose a generic private FL framework defined on Riemannian manifolds (PriRFed) based on the differential privacy (DP) technique. We analyze the privacy guarantee while establishing the convergence properties. To the best of our knowledge, this is the first federated learning framework on Riemannian manifold with a privacy guarantee and convergence results. Numerical simulations are performed on synthetic and real-world datasets to showcase the efficacy of the proposed PriRFed approach.


[387] 2404.10030

Hyperspectral Reconstruction of Skin Through Fusion of Scattering Transform Features

Hyperspectral imagery (HSI) is an established technique with an array of applications, but its use is limited due to both practical and technical issues associated with spectral devices. The goal of the ICASSP 2024 'Hyper-Skin' Challenge is to extract skin HSI from matching RGB images and an infrared band. To address this problem we propose a model using features of the scattering transform - a type of convolutional neural network with predefined filters. Our model matches and inverts those features, rather than the pixel values, reducing the complexity of matching while grouping similar features together, resulting in an improved learning process.


[388] 2404.10031

Emergent Language Symbolic Autoencoder (ELSA) with Weak Supervision to Model Hierarchical Brain Networks

Brain networks display a hierarchical organization, a complexity that poses a challenge for existing deep learning models, often structured as flat classifiers, leading to difficulties in interpretability and the 'black box' issue. To bridge this gap, we propose a novel architecture: a symbolic autoencoder informed by weak supervision and an Emergent Language (EL) framework. This model moves beyond traditional flat classifiers by producing hierarchical clusters and corresponding imagery, subsequently represented through symbolic sentences to improve the clinical interpretability of hierarchically organized data such as intrinsic brain networks, which can be characterized using resting-state fMRI images. Our innovation includes a generalized hierarchical loss function designed to ensure that both sentences and images accurately reflect the hierarchical structure of functional brain networks. This enables us to model functional brain networks from a broader perspective down to more granular details. Furthermore, we introduce a quantitative method to assess the hierarchical consistency of these symbolic representations. Our qualitative analyses show that our model successfully generates hierarchically organized, clinically interpretable images, a finding supported by our quantitative evaluations. We find that our best performing loss function leads to a hierarchical consistency of over 97% when identifying images corresponding to brain networks. This approach not only advances the interpretability of deep learning models in neuroimaging analysis but also represents a significant step towards modeling the intricate hierarchical nature of brain networks.


[389] 2404.10044

Variational quantum simulation: a case study for understanding warm starts

The barren plateau phenomenon, characterized by loss gradients that vanish exponentially with system size, poses a challenge to scaling variational quantum algorithms. Here we explore the potential of warm starts, whereby one initializes closer to a solution in the hope of enjoying larger loss variances. Focusing on an iterative variational method for learning shorter-depth circuits for quantum real and imaginary time evolution we conduct a case study to elucidate the potential and limitations of warm starts. We start by proving that the iterative variational algorithm will exhibit substantial (at worst vanishing polynomially in system size) gradients in a small region around the initializations at each time-step. Convexity guarantees for these regions are then established, suggesting trainability for polynomial size time-steps. However, our study highlights scenarios where a good minimum shifts outside the region with trainability guarantees. Our analysis leaves open the question whether such minima jumps necessitate optimization across barren plateau landscapes or whether there exist gradient flows, i.e., fertile valleys away from the plateau with substantial gradients, that allow for training.


[390] 2404.10099

Feature selection in linear SVMs via hard cardinality constraint: a scalable SDP decomposition approach

In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to a fully explainable selection model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel SDP relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed SDPs. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.


[391] 2404.10122

Online Estimation via Offline Estimation: An Information-Theoretic Framework

$ $The classical theory of statistical estimation aims to estimate a parameter of interest under data generated from a fixed design ("offline estimation"), while the contemporary theory of online learning provides algorithms for estimation under adaptively chosen covariates ("online estimation"). Motivated by connections between estimation and interactive decision making, we ask: is it possible to convert offline estimation algorithms into online estimation algorithms in a black-box fashion? We investigate this question from an information-theoretic perspective by introducing a new framework, Oracle-Efficient Online Estimation (OEOE), where the learner can only interact with the data stream indirectly through a sequence of offline estimators produced by a black-box algorithm operating on the stream. Our main results settle the statistical and computational complexity of online estimation in this framework. $\bullet$ Statistical complexity. We show that information-theoretically, there exist algorithms that achieve near-optimal online estimation error via black-box offline estimation oracles, and give a nearly-tight characterization for minimax rates in the OEOE framework. $\bullet$ Computational complexity. We show that the guarantees above cannot be achieved in a computationally efficient fashion in general, but give a refined characterization for the special case of conditional density estimation: computationally efficient online estimation via black-box offline estimation is possible whenever it is possible via unrestricted algorithms. Finally, we apply our results to give offline oracle-efficient algorithms for interactive decision making.


[392] 2404.10169

Asymptotic mutual information in quadratic estimation problems over compact groups

Motivated by applications to group synchronization and quadratic assignment on random data, we study a general problem of Bayesian inference of an unknown ``signal'' belonging to a high-dimensional compact group, given noisy pairwise observations of a featurization of this signal. We establish a quantitative comparison between the signal-observation mutual information in any such problem with that in a simpler model with linear observations, using interpolation methods. For group synchronization, our result proves a replica formula for the asymptotic mutual information and Bayes-optimal mean-squared-error. Via analyses of this replica formula, we show that the conjectural phase transition threshold for computationally-efficient weak recovery of the signal is determined by a classification of the real-irreducible components of the observed group representation(s), and we fully characterize the information-theoretic limits of estimation in the example of angular/phase synchronization over $SO(2)$/$U(1)$. For quadratic assignment, we study observations given by a kernel matrix of pairwise similarities and a randomly permutated and noisy counterpart, and we show in a bounded signal-to-noise regime that the asymptotic mutual information coincides with that in a Bayesian spiked model with i.i.d. signal prior.


[393] 2404.10178

CryoMAE: Few-Shot Cryo-EM Particle Picking with Masked Autoencoders

Cryo-electron microscopy (cryo-EM) emerges as a pivotal technology for determining the architecture of cells, viruses, and protein assemblies at near-atomic resolution. Traditional particle picking, a key step in cryo-EM, struggles with manual effort and automated methods' sensitivity to low signal-to-noise ratio (SNR) and varied particle orientations. Furthermore, existing neural network (NN)-based approaches often require extensive labeled datasets, limiting their practicality. To overcome these obstacles, we introduce cryoMAE, a novel approach based on few-shot learning that harnesses the capabilities of Masked Autoencoders (MAE) to enable efficient selection of single particles in cryo-EM images. Contrary to conventional NN-based techniques, cryoMAE requires only a minimal set of positive particle images for training yet demonstrates high performance in particle detection. Furthermore, the implementation of a self-cross similarity loss ensures distinct features for particle and background regions, thereby enhancing the discrimination capability of cryoMAE. Experiments on large-scale cryo-EM datasets show that cryoMAE outperforms existing state-of-the-art (SOTA) methods, improving 3D reconstruction resolution by up to 22.4%.


[394] 2404.10207

HELLINGER-UCB: A novel algorithm for stochastic multi-armed bandit problem and cold start problem in recommender system

In this paper, we study the stochastic multi-armed bandit problem, where the reward is driven by an unknown random variable. We propose a new variant of the Upper Confidence Bound (UCB) algorithm called Hellinger-UCB, which leverages the squared Hellinger distance to build the upper confidence bound. We prove that the Hellinger-UCB reaches the theoretical lower bound. We also show that the Hellinger-UCB has a solid statistical interpretation. We show that Hellinger-UCB is effective in finite time horizons with numerical experiments between Hellinger-UCB and other variants of the UCB algorithm. As a real-world example, we apply the Hellinger-UCB algorithm to solve the cold-start problem for a content recommender system of a financial app. With reasonable assumption, the Hellinger-UCB algorithm has a convenient but important lower latency feature. The online experiment also illustrates that the Hellinger-UCB outperforms both KL-UCB and UCB1 in the sense of a higher click-through rate (CTR).


[395] 2404.10260

HelixFold-Multimer: Elevating Protein Complex Structure Prediction to New Heights

While monomer protein structure prediction tools boast impressive accuracy, the prediction of protein complex structures remains a daunting challenge in the field. This challenge is particularly pronounced in scenarios involving complexes with protein chains from different species, such as antigen-antibody interactions, where accuracy often falls short. Limited by the accuracy of complex prediction, tasks based on precise protein-protein interaction analysis also face obstacles. In this report, we highlight the ongoing advancements of our protein complex structure prediction model, HelixFold-Multimer, underscoring its enhanced performance. HelixFold-Multimer provides precise predictions for diverse protein complex structures, especially in therapeutic protein interactions. Notably, HelixFold-Multimer achieves remarkable success in antigen-antibody and peptide-protein structure prediction, surpassing AlphaFold-Multimer by several folds. HelixFold-Multimer is now available for public use on the PaddleHelix platform, offering both a general version and an antigen-antibody version. Researchers can conveniently access and utilize this service for their development needs.


[396] 2404.10261

Lighter, Better, Faster Multi-Source Domain Adaptation with Gaussian Mixture Models and Optimal Transport

In this paper, we tackle Multi-Source Domain Adaptation (MSDA), a task in transfer learning where one adapts multiple heterogeneous, labeled source probability measures towards a different, unlabeled target measure. We propose a novel framework for MSDA, based on Optimal Transport (OT) and Gaussian Mixture Models (GMMs). Our framework has two key advantages. First, OT between GMMs can be solved efficiently via linear programming. Second, it provides a convenient model for supervised learning, especially classification, as components in the GMM can be associated with existing classes. Based on the GMM-OT problem, we propose a novel technique for calculating barycenters of GMMs. Based on this novel algorithm, we propose two new strategies for MSDA: GMM-WBT and GMM-DaDiL. We empirically evaluate our proposed methods on four benchmarks in image classification and fault diagnosis, showing that we improve over the prior art while being faster and involving fewer parameters.


[397] 2404.10290

NeuroMorphix: A Novel Brain MRI Asymmetry-specific Feature Construction Approach For Seizure Recurrence Prediction

Seizure recurrence is an important concern after an initial unprovoked seizure; without drug treatment, it occurs within 2 years in 40-50% of cases. The decision to treat currently relies on predictors of seizure recurrence risk that are inaccurate, resulting in unnecessary, possibly harmful, treatment in some patients and potentially preventable seizures in others. Because of the link between brain lesions and seizure recurrence, we developed a recurrence prediction tool using machine learning and clinical 3T brain MRI. We developed NeuroMorphix, a feature construction approach based on MRI brain anatomy. Each of seven NeuroMorphix features measures the absolute or relative difference between corresponding regions in each cerebral hemisphere. FreeSurfer was used to segment brain regions and to generate values for morphometric parameters (8 for each cortical region and 5 for each subcortical region). The parameters were then mapped to whole brain NeuroMorphix features, yielding a total of 91 features per subject. Features were generated for a first seizure patient cohort (n = 169) categorised into seizure recurrence and non-recurrence subgroups. State-of-the-art classification algorithms were trained and tested using NeuroMorphix features to predict seizure recurrence. Classification models using the top 5 features, ranked by sequential forward selection, demonstrated excellent performance in predicting seizure recurrence, with area under the ROC curve of 88-93%, accuracy of 83-89%, and F1 score of 83-90%. Highly ranked features aligned with structural alterations known to be associated with epilepsy. This study highlights the potential for targeted, data-driven approaches to aid clinical decision-making in brain disorders.


[398] 2404.10310

Wireless Earphone-based Real-Time Monitoring of Breathing Exercises: A Deep Learning Approach

Several therapy routines require deep breathing exercises as a key component and patients undergoing such therapies must perform these exercises regularly. Assessing the outcome of a therapy and tailoring its course necessitates monitoring a patient's compliance with the therapy. While therapy compliance monitoring is routine in a clinical environment, it is challenging to do in an at-home setting. This is so because a home setting lacks access to specialized equipment and skilled professionals needed to effectively monitor the performance of a therapy routine by a patient. For some types of therapies, these challenges can be addressed with the use of consumer-grade hardware, such as earphones and smartphones, as practical solutions. To accurately monitor breathing exercises using wireless earphones, this paper proposes a framework that has the potential for assessing a patient's compliance with an at-home therapy. The proposed system performs real-time detection of breathing phases and channels with high accuracy by processing a $\mathbf{500}$ ms audio signal through two convolutional neural networks. The first network, called a channel classifier, distinguishes between nasal and oral breathing, and a pause. The second network, called a phase classifier, determines whether the audio segment is from inhalation or exhalation. According to $k$-fold cross-validation, the channel and phase classifiers achieved a maximum F1 score of $\mathbf{97.99\%}$ and $\mathbf{89.46\%}$, respectively. The results demonstrate the potential of using commodity earphones for real-time breathing channel and phase detection for breathing therapy compliance monitoring.


[399] 2404.10351

On the Use of Relative Validity Indices for Comparing Clustering Approaches

Relative Validity Indices (RVIs) such as the Silhouette Width Criterion, Calinski-Harabasz and Davie's Bouldin indices are the most popular tools for evaluating and optimising applications of clustering. Their ability to rank collections of candidate partitions has been used to guide the selection of the number of clusters, and to compare partitions from different clustering algorithms. Beyond these more conventional tasks, many examples can be found in the literature where RVIs have been used to compare and select other aspects of clustering approaches such as data normalisation procedures, data representation methods, and distance measures. The authors are not aware of any studies that have attempted to establish the suitability of RVIs for such comparisons. Moreover, given the impact of these aspects on pairwise similarities, it is not even immediately obvious how RVIs should be implemented when comparing these aspects. In this study, we conducted experiments with seven common RVIs on over 2.7 million clustering partitions for both synthetic and real-world datasets, encompassing feature-vector and time-series data. Our findings suggest that RVIs are not well-suited to these unconventional tasks, and that conclusions drawn from such applications may be misleading. It is recommended that normalisation procedures, representation methods, and distance measures instead be selected using external validation on high quality labelled datasets or carefully designed outcome-oriented objective criteria, both of which should be informed by relevant domain knowledge and clustering aims.


[400] 2404.10354

Physical formula enhanced multi-task learning for pharmacokinetics prediction

Artificial intelligence (AI) technology has demonstrated remarkable potential in drug dis-covery, where pharmacokinetics plays a crucial role in determining the dosage, safety, and efficacy of new drugs. A major challenge for AI-driven drug discovery (AIDD) is the scarcity of high-quality data, which often requires extensive wet-lab work. A typical example of this is pharmacokinetic experiments. In this work, we develop a physical formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously. By incorporating physical formulas into the multi-task framework, PEMAL facilitates effective knowledge sharing and target alignment among the pharmacokinetic parameters, thereby enhancing the accuracy of prediction. Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks. Moreover, we demonstrate that PEMAL enhances the robustness to noise, an advantage that conventional Neural Networks do not possess. Another advantage of PEMAL is its high flexibility, which can be potentially applied to other multi-task machine learning scenarios. Overall, our work illustrates the benefits and potential of using PEMAL in AIDD and other scenarios with data scarcity and noise.


[401] 2404.10368

Non-local traffic flow models with time delay: well-posedness and numerical approximation

We prove the well-posedness of weak entropy solutions of a scalar non-local traffic flow model with time delay. Existence is obtained by convergence of finite volume approximate solutions constructed by Lax-Friedrich and Hilliges-Weidlich schemes, while the L1 stability with respect to the initial data and the delay parameter relies on a Kruzkov-type doubling of variable technique.Numerical tests are provided to illustrate the efficiency of the proposed schemes, as well as the solution dependence on the delay and look-ahead parameters.


[402] 2404.10390

Complexity and algorithms for Arc-Kayles and Non-Disconnecting Arc-Kayles

Arc-Kayles is a game where two players alternate removing two adjacent vertices until no move is left. Introduced in 1978, its computational complexity is still open. More recently, subtraction games, where the players cannot disconnect the graph while removing vertices, were introduced. In particular, Arc-Kayles admits a non-disconnecting variant that is a subtraction game. We study the computational complexity of subtraction games on graphs, proving that they are PSPACE-complete even on very structured graph classes (split, bipartite of any even girth). We prove that Non-Disconnecting Arc-Kayles can be solved in polynomial-time on unicyclic graphs, clique trees, and subclasses of threshold graphs. We also show that a sufficient condition for a second player-win on Arc-Kayles is equivalent to the graph isomorphism problem.


[403] 2404.10419

MAD Speech: Measures of Acoustic Diversity of Speech

Generative spoken language models produce speech in a wide range of voices, prosody, and recording conditions, seemingly approaching the diversity of natural speech. However, the extent to which generated speech is acoustically diverse remains unclear due to a lack of appropriate metrics. We address this gap by developing lightweight metrics of acoustic diversity, which we collectively refer to as MAD Speech. We focus on measuring five facets of acoustic diversity: voice, gender, emotion, accent, and background noise. We construct the metrics as a composition of specialized, per-facet embedding models and an aggregation function that measures diversity within the embedding space. Next, we build a series of datasets with a priori known diversity preferences for each facet. Using these datasets, we demonstrate that our proposed metrics achieve a stronger agreement with the ground-truth diversity than baselines. Finally, we showcase the applicability of our proposed metrics across several real-life evaluation scenarios. MAD Speech will be made publicly accessible.


[404] 2404.10444

Semi-supervised Fréchet Regression

This paper explores the field of semi-supervised Fr\'echet regression, driven by the significant costs associated with obtaining non-Euclidean labels. Methodologically, we propose two novel methods: semi-supervised NW Fr\'echet regression and semi-supervised kNN Fr\'echet regression, both based on graph distance acquired from all feature instances. These methods extend the scope of existing semi-supervised Euclidean regression methods. We establish their convergence rates with limited labeled data and large amounts of unlabeled data, taking into account the low-dimensional manifold structure of the feature space. Through comprehensive simulations across diverse settings and applications to real data, we demonstrate the superior performance of our methods over their supervised counterparts. This study addresses existing research gaps and paves the way for further exploration and advancements in the field of semi-supervised Fr\'echet regression.


[405] 2404.10482

Primary Decomposition of Symmetric Ideals

We propose an effective method for primary decomposition of symmetric ideals. Let $K[X]=K[x_1,\ldots,x_n]$ be the $n$-valuables polynomial ring over a field $K$ and $\mathfrak{S}_n$ the symmetric group of order $n$. We consider the canonical action of $\mathfrak{S}_n$ on $K[X]$ i.e. $\sigma(f(x_1,\ldots,x_n))=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$ for $\sigma\in \mathfrak{S}_n$. For an ideal $I$ of $K[X]$, $I$ is called {\em symmetric} if $\sigma(I)=I$ for any $\sigma\in \mathfrak{S}_n$. For a minimal primary decomposition $I=Q_1\cap \cdots \cap Q_r$ of a symmetric ideal $I$, $\sigma(I)=\sigma (Q_1)\cap \cdots \cap \sigma(Q_r)$ is a minimal primary decomposition of $I$ for any $\sigma\in \mathfrak{S}_n$. We utilize this property to compute a full primary decomposition of $I$ efficiently from partial primary components. We investigate the effectiveness of our algorithm by implementing it in the computer algebra system Risa/Asir.


[406] 2404.10546

Warm-Start Variational Quantum Policy Iteration

Reinforcement learning is a powerful framework aiming to determine optimal behavior in highly complex decision-making scenarios. This objective can be achieved using policy iteration, which requires to solve a typically large linear system of equations. We propose the variational quantum policy iteration (VarQPI) algorithm, realizing this step with a NISQ-compatible quantum-enhanced subroutine. Its scalability is supported by an analysis of the structure of generic reinforcement learning environments, laying the foundation for potential quantum advantage with utility-scale quantum computers. Furthermore, we introduce the warm-start initialization variant (WS-VarQPI) that significantly reduces resource overhead. The algorithm solves a large FrozenLake environment with an underlying 256x256-dimensional linear system, indicating its practical robustness.


[407] 2404.10548

Classification of Prostate Cancer in 3D Magnetic Resonance Imaging Data based on Convolutional Neural Networks

Prostate cancer is a commonly diagnosed cancerous disease among men world-wide. Even with modern technology such as multi-parametric magnetic resonance tomography and guided biopsies, the process for diagnosing prostate cancer remains time consuming and requires highly trained professionals. In this paper, different convolutional neural networks (CNN) are evaluated on their abilities to reliably classify whether an MRI sequence contains malignant lesions. Implementations of a ResNet, a ConvNet and a ConvNeXt for 3D image data are trained and evaluated. The models are trained using different data augmentation techniques, learning rates, and optimizers. The data is taken from a private dataset, provided by Cantonal Hospital Aarau. The best result was achieved by a ResNet3D, yielding an average precision score of 0.4583 and AUC ROC score of 0.6214.


[408] 2404.10580

Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain

Clinical data informs the personalization of health care with a potential for more effective disease management. In practice, this is achieved by subgrouping, whereby clusters with similar patient characteristics are identified and then receive customized treatment plans with the goal of targeting subgroup-specific disease dynamics. In this paper, we propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases. Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases (i.e., "severe", "moderate", and "mild") through tailored latent states. We demonstrate our subgrouping framework based on a longitudinal study across 847 patients with non-specific low back pain. Here, our subgrouping framework identifies 8 subgroups. Further, we show that our subgrouping framework outperforms common baselines in terms of cluster validity indices. Finally, we discuss the applicability of the model to other chronic and long-lasting diseases.


[409] 2404.10634

Flow-Acoustics: Theory and Benchmarking

The urgent need for transitioning to green energy solutions, particularly in the context of house heating and urban redensification, has brought the issue of fan noise aeroacoustics investigations to the forefront. As societies worldwide strive to mitigate climate change and reduce carbon emissions, adopting sustainable heating technologies such as air heat pumps has gained significant traction. In Germany, renowned for its commitment to environmental sustainability, the "TA L\"arm" regulations, derived from the "Bundes-Immissionsschutzgesetz," impose stringent limits on noise levels both inside and outside buildings across various applications. These regulations delineate permissible noise levels during daytime (6 AM to 10 PM) and nighttime (10 PM to 6 AM), with particular emphasis on protecting residential areas with low noise limits. Moreover, the noise limits prescribed for indoor environments are even more stringent. Given the necessity of maintaining acoustic comfort and quality of life, compliance with these regulations necessitates meticulous attention to noise generation sources, especially those associated with heating and ventilation systems. Consequently, understanding and mitigating fan noise through aeroacoustic investigations is essential to ensure the successful adoption and integration of green energy solutions in residential and urban settings. In the following, an experimental benchmark for a low-pressure rise axial fan (FAN-01) is presented, and several prediction methods of the sound pressure and sound power are evaluated.


[410] 2404.10686

Swarm-Based Trajectory Generation and Optimization for Stress-Aligned 3D Printing

In this study, we present a novel swarm-based approach for generating optimized stress-aligned trajectories for 3D printing applications. The method utilizes swarming dynamics to simulate the motion of virtual agents along the stress produced in a loaded part. Agent trajectories are then used as print trajectories. With this approach, the complex global trajectory generation problem is subdivided into a set of sequential and computationally efficient quadratic programs. Through comprehensive evaluations in both simulation and experiments, we compare our method with state-of-the-art approaches. Our results highlight a remarkable improvement in computational efficiency, achieving a 115x faster computation speed than existing methods. This efficiency, combined with the possibility to tune the trajectories spacing to match the deposition process constraints, makes the potential integration of our approach into existing 3D printing processes seamless. Additionally, the open-hole tensile specimen produced on a conventional fused filament fabrication set-up with our algorithm achieve a notable ~10% improvement in specific modulus compared to existing trajectory optimization methods.


[411] 2404.10693

A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems

Mixed Integer Linear Programming (MILP) can be considered the backbone of the modern power system optimization process, with a large application spectrum, from Unit Commitment and Optimal Transmission Switching to verifying Neural Networks for power system applications. The main issue of these formulations is the computational complexity of the solution algorithms, as they are considered NP-Hard problems. Quantum computing has been tested as a potential solution towards reducing the computational burden imposed by these problems, providing promising results, motivating the can be used to speedup the solution of MILPs. In this work, we present a general framework for solving power system optimization problems with a Quantum Computer (QC), which leverages mathematical tools and QCs' sampling ability to provide accelerated solutions. Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow. Specifically, using an accelerated version of Benders Decomposition , we split a given MILP into an Integer Master Problem and a linear Subproblem and solve it through a hybrid ``quantum-classical'' approach, getting the best of both worlds. We provide 2 use cases, and benchmark the developed framework against other classical and hybrid methodologies, to demonstrate the opportunities and challenges of hybrid quantum-classical algorithms for power system mixed integer optimization problems.


[412] 2404.10700

Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs

Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images.


[413] 2404.10714

AV-GAN: Attention-Based Varifocal Generative Adversarial Network for Uneven Medical Image Translation

Different types of staining highlight different structures in organs, thereby assisting in diagnosis. However, due to the impossibility of repeated staining, we cannot obtain different types of stained slides of the same tissue area. Translating the slide that is easy to obtain (e.g., H&E) to slides of staining types difficult to obtain (e.g., MT, PAS) is a promising way to solve this problem. However, some regions are closely connected to other regions, and to maintain this connection, they often have complex structures and are difficult to translate, which may lead to wrong translations. In this paper, we propose the Attention-Based Varifocal Generative Adversarial Network (AV-GAN), which solves multiple problems in pathologic image translation tasks, such as uneven translation difficulty in different regions, mutual interference of multiple resolution information, and nuclear deformation. Specifically, we develop an Attention-Based Key Region Selection Module, which can attend to regions with higher translation difficulty. We then develop a Varifocal Module to translate these regions at multiple resolutions. Experimental results show that our proposed AV-GAN outperforms existing image translation methods with two virtual kidney tissue staining tasks and improves FID values by 15.9 and 4.16 respectively in the H&E-MT and H&E-PAS tasks.


[414] 2404.10726

Automatic re-calibration of quantum devices by reinforcement learning

During their operation, due to shifts in environmental conditions, devices undergo various forms of detuning from their optimal settings. Typically, this is addressed through control loops, which monitor variables and the device performance, to maintain settings at their optimal values. Quantum devices are particularly challenging since their functionality relies on precisely tuning their parameters. At the same time, the detailed modeling of the environmental behavior is often computationally unaffordable, while a direct measure of the parameters defining the system state is costly and introduces extra noise in the mechanism. In this study, we investigate the application of reinforcement learning techniques to develop a model-free control loop for continuous recalibration of quantum device parameters. Furthermore, we explore the advantages of incorporating minimal environmental noise models. As an example, the application to numerical simulations of a Kennedy receiver-based long-distance quantum communication protocol is presented.


[415] 2404.10727

How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model

Understanding what makes high-dimensional data learnable is a fundamental question in machine learning. On the one hand, it is believed that the success of deep learning lies in its ability to build a hierarchy of representations that become increasingly more abstract with depth, going from simple features like edges to more complex concepts. On the other hand, learning to be insensitive to invariances of the task, such as smooth transformations for image datasets, has been argued to be important for deep networks and it strongly correlates with their performance. In this work, we aim to explain this correlation and unify these two viewpoints. We show that by introducing sparsity to generative hierarchical models of data, the task acquires insensitivity to spatial transformations that are discrete versions of smooth transformations. In particular, we introduce the Sparse Random Hierarchy Model (SRHM), where we observe and rationalize that a hierarchical representation mirroring the hierarchical model is learnt precisely when such insensitivity is learnt, thereby explaining the strong correlation between the latter and performance. Moreover, we quantify how the sample complexity of CNNs learning the SRHM depends on both the sparsity and hierarchical structure of the task.


[416] 2404.10746

Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials

Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic simulations, and recently published universal MLIPs, pre-trained on large datasets, have demonstrated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits their applicability to chemically disordered systems requiring large simulation cells or to sample-intensive statistical methods. Here, we report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural network MLIPs represent discrete elements as real-valued tensors. The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the compositional states of materials. The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights. Leveraging these gradients, we propose methodologies for optimizing the composition of solid solutions towards target macroscopic properties and conducting alchemical free energy simulations to quantify the free energy of vacancy formation and composition changes. The approach offers an avenue for extending the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the phase stabilities of complex materials systems.


[417] 2404.10748

Classical and Quantum Distributed Algorithms for the Survivable Network Design Problem

We investigate distributed classical and quantum approaches for the survivable network design problem (SNDP), sometimes called the generalized Steiner problem. These problems generalize many complex graph problems of interest, such as the traveling salesperson problem, the Steiner tree problem, and the k-connected network problem. To our knowledge, no classical or quantum algorithms for the SNDP have been formulated in the distributed settings we consider. We describe algorithms that are heuristics for the general problem but give concrete approximation bounds under specific parameterizations of the SNDP, which in particular hold for the three aforementioned problems that SNDP generalizes. We use a classical, centralized algorithmic framework first studied in (Goemans & Bertsimas 1993) and provide a distributed implementation thereof. Notably, we obtain asymptotic quantum speedups by leveraging quantum shortest path computations in this framework, generalizing recent work of (Kerger et al. 2023). These results raise the question of whether there is a separation between the classical and quantum models for application-scale instances of the problems considered.


[418] 2404.10757

Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification

Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star light curves, based on large datasets from the Kepler and K2 missions. Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision. Employing AutoDL optimization, we achieve striking performance with the 1D-Convolution+BiLSTM architecture and the Swin Transformer, hitting accuracies of 94\% and 99\% correspondingly, with the latter demonstrating a notable 83\% accuracy in discerning the elusive Type II Cepheids-comprising merely 0.02\% of the total dataset.We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal large language model (MLLM), and Large Audio Language Model (LALM). Each model is fine-tuned with strategic prompt engineering and customized training methods to explore the emergent abilities of these models for astronomical data. Remarkably, StarWhisper LC Series exhibit high accuracies around 90\%, significantly reducing the need for explicit feature engineering, thereby paving the way for streamlined parallel data processing and the progression of multifaceted multimodal models in astronomical applications. The study furnishes two detailed catalogs illustrating the impacts of phase and sampling intervals on deep learning classification accuracy, showing that a substantial decrease of up to 14\% in observation duration and 21\% in sampling points can be realized without compromising accuracy by more than 10\%.


[419] 2404.10766

RapidVol: Rapid Reconstruction of 3D Ultrasound Volumes from Sensorless 2D Scans

Two-dimensional (2D) freehand ultrasonography is one of the most commonly used medical imaging modalities, particularly in obstetrics and gynaecology. However, it only captures 2D cross-sectional views of inherently 3D anatomies, losing valuable contextual information. As an alternative to requiring costly and complex 3D ultrasound scanners, 3D volumes can be constructed from 2D scans using machine learning. However this usually requires long computational time. Here, we propose RapidVol: a neural representation framework to speed up slice-to-volume ultrasound reconstruction. We use tensor-rank decomposition, to decompose the typical 3D volume into sets of tri-planes, and store those instead, as well as a small neural network. A set of 2D ultrasound scans, with their ground truth (or estimated) 3D position and orientation (pose) is all that is required to form a complete 3D reconstruction. Reconstructions are formed from real fetal brain scans, and then evaluated by requesting novel cross-sectional views. When compared to prior approaches based on fully implicit representation (e.g. neural radiance fields), our method is over 3x quicker, 46% more accurate, and if given inaccurate poses is more robust. Further speed-up is also possible by reconstructing from a structural prior rather than from scratch.