Red teaming has emerged as a critical practice in assessing the possible risks of AI models and systems. It aids in the discovery of novel risks, stress testing possible gaps in existing mitigations, enriching existing quantitative safety metrics, facilitating the creation of new safety measurements, and enhancing public trust and the legitimacy of AI risk assessments. This white paper describes OpenAI's work to date in external red teaming and draws some more general conclusions from this work. We describe the design considerations underpinning external red teaming, which include: selecting composition of red team, deciding on access levels, and providing guidance required to conduct red teaming. Additionally, we show outcomes red teaming can enable such as input into risk assessment and automated evaluations. We also describe the limitations of external red teaming, and how it can fit into a broader range of AI model and system evaluations. Through these contributions, we hope that AI developers and deployers, evaluation creators, and policymakers will be able to better design red teaming campaigns and get a deeper look into how external red teaming can fit into model deployment and evaluation processes. These methods are evolving and the value of different methods continues to shift as the ecosystem around red teaming matures and models themselves improve as tools for red teaming.
This study investigates multimodal turn-taking prediction within human-agent interactions (HAI), particularly focusing on cooperative gaming environments. It comprises both model development and subsequent user study, aiming to refine our understanding and improve conversational dynamics in spoken dialogue systems (SDSs). For the modeling phase, we introduce a novel transformer-based deep learning (DL) model that simultaneously integrates multiple modalities - text, vision, audio, and contextual in-game data to predict turn-taking events in real-time. Our model employs a Crossmodal Transformer architecture to effectively fuse information from these diverse modalities, enabling more comprehensive turn-taking predictions. The model demonstrates superior performance compared to baseline models, achieving 87.3% accuracy and 83.0% macro F1 score. A human user study was then conducted to empirically evaluate the turn-taking DL model in an interactive scenario with a virtual avatar while playing the game "Dont Starve Together", comparing a control condition without turn-taking prediction (n=20) to an experimental condition with our model deployed (n=40). Both conditions included a mix of English and Korean speakers, since turn-taking cues are known to vary by culture. We then analyzed the interaction quality, examining aspects such as utterance counts, interruption frequency, and participant perceptions of the avatar. Results from the user study suggest that our multimodal turn-taking model not only enhances the fluidity and naturalness of human-agent conversations, but also maintains a balanced conversational dynamic without significantly altering dialogue frequency. The study provides in-depth insights into the influence of turn-taking abilities on user perceptions and interaction quality, underscoring the potential for more contextually adaptive and responsive conversational agents.
Under-resourced or rural hospitals have limited access to medical specialists and healthcare professionals, which can negatively impact patient outcomes in sepsis. To address this gap, we developed the MATEC (Multi-AI Agent Team Care) framework, which integrates a team of specialized AI agents for sepsis care. The sepsis AI agent team includes five doctor agents, four health professional agents, and a risk prediction model agent, with an additional 33 doctor agents available for consultations. Ten attending physicians at a teaching hospital evaluated this framework, spending approximately 40 minutes on the web-based MATEC application and participating in the 5-point Likert scale survey (rated from 1-unfavorable to 5-favorable). The physicians found the MATEC framework very useful (Median=4, P=0.01), and very accurate (Median=4, P<0.01). This pilot study demonstrates that a Multi-AI Agent Team Care framework (MATEC) can potentially be useful in assisting medical professionals, particularly in under-resourced hospital settings.
Humans have long relied on visual aids like sketches and diagrams to support reasoning and problem-solving. Visual tools, like auxiliary lines in geometry or graphs in calculus, are essential for understanding complex ideas. However, many tutoring systems remain text-based, providing feedback only through natural language. Leveraging recent advances in Large Multimodal Models (LMMs), this paper introduces Interactive Sketchpad, a tutoring system that combines language-based explanations with interactive visualizations to enhance learning. Built on a pre-trained LMM, Interactive Sketchpad is fine-tuned to provide step-by-step guidance in both text and visuals, enabling natural multimodal interaction with the student. Accurate and robust diagrams are generated by incorporating code execution into the reasoning process. User studies conducted on math problems such as geometry, calculus, and trigonometry demonstrate that Interactive Sketchpad leads to improved task comprehension, problem-solving accuracy, and engagement levels, highlighting its potential for transforming educational technologies.
Landscape design is a complex process that requires designers to engage in intricate planning, analysis, and decision-making. This process involves the integration and reconstruction of science, art, and technology. Traditional landscape design methods often rely on the designer's personal experience and subjective aesthetics, with design standards rooted in subjective perception. As a result, they lack scientific and objective evaluation criteria and systematic design processes. Data-driven artificial intelligence (AI) technology provides an objective and rational design process. With the rapid development of different AI technologies, AI-generated content (AIGC) has permeated various aspects of landscape design at an unprecedented speed, serving as an innovative design tool. This article aims to explore the applications and opportunities of AIGC in landscape design. AIGC can support landscape design in areas such as site research and analysis, design concepts and scheme generation, parametric design optimization, plant selection and visual simulation, construction management, and process optimization. However, AIGC also faces challenges in landscape design, including data quality and reliability, design expertise and judgment, technical challenges and limitations, site characteristics and sustainability, user needs and participation, the balance between technology and creativity, ethics, and social impact. Finally, this article provides a detailed outlook on the future development trends and prospects of AIGC in landscape design. Through in-depth research and exploration in this review, readers can gain a better understanding of the relevant applications, potential opportunities, and key challenges of AIGC in landscape design.
As AI systems become more prevalent, concerns about their development, operation, and societal impact intensify. Establishing ethical, social, and safety standards amidst evolving AI capabilities poses significant challenges. Global initiatives are underway to establish guidelines for AI system development and operation. With the increasing use of collaborative human-AI task execution, it's vital to continuously adapt AI systems to meet user and environmental needs. Failure to synchronize AI evolution with changes in users and the environment could result in ethical and safety issues. This paper evaluates the applicability of existing guidelines in human-robot collaborative systems, assesses their effectiveness, and discusses limitations. Through a case study, we examine whether our target system meets requirements outlined in existing guidelines and propose improvements to enhance human-robot interactions. Our contributions provide insights into interpreting and applying guidelines, offer concrete examples of system enhancement, and highlight their applicability and limitations. We believe these contributions will stimulate discussions and influence system assurance and certification in future AI-infused critical systems.
This study introduces "Haunted House" a novel text-based game designed to compare the performance of humans and large language models (LLMs) in model-based reasoning. Players must escape from a house containing nine rooms in a 3x3 grid layout while avoiding the ghost. They are guided by verbal clues that they get each time they move. In Study 1, the results from 98 human participants revealed a success rate of 31.6%, significantly outperforming seven state-of-the-art LLMs tested. Out of 140 attempts across seven LLMs, only one attempt resulted in a pass by Claude 3 Opus. Preliminary results suggested that GPT o3-mini-high performance might be higher, but not at the human level. Further analysis of 29 human participants' moves in Study 2 indicated that LLMs frequently struggled with random and illogical moves, while humans exhibited such errors less frequently. Our findings suggest that current LLMs encounter difficulties in tasks that demand active model-based reasoning, offering inspiration for future benchmarks.
As artificial intelligence becomes increasingly integrated into professional and personal domains, traditional metrics of human intelligence require reconceptualization. This paper introduces the Artificial Intelligence Quotient (AIQ), a novel measurement framework designed to assess an individual's capacity to effectively collaborate with and leverage AI systems, particularly Large Language Models (LLMs). Building upon established cognitive assessment methodologies and contemporary AI interaction research, we present a comprehensive framework for quantifying human-AI collaborative intelligence. This work addresses the growing need for standardized evaluation of AI-augmented cognitive capabilities in educational and professional contexts.
We present DreamLLM-3D, a composite multimodal AI system behind an immersive art installation for dream re-experiencing. It enables automated dream content analysis for immersive dream-reliving, by integrating a Large Language Model (LLM) with text-to-3D Generative AI. The LLM processes voiced dream reports to identify key dream entities (characters and objects), social interaction, and dream sentiment. The extracted entities are visualized as dynamic 3D point clouds, with emotional data influencing the color and soundscapes of the virtual dream environment. Additionally, we propose an experiential AI-Dreamworker Hybrid paradigm. Our system and paradigm could potentially facilitate a more emotionally engaging dream-reliving experience, enhancing personal insights and creativity.
Algorithmic causal discovery is based on formal reasoning and provably converges toward the optimal solution. However, since some of the underlying assumptions are often not met in practice no applications for autonomous everyday life competence are yet available. Humans on the other hand possess full everyday competence and develop cognitive models in a data efficient manner with the ability to transfer knowledge between and to new situations. Here we investigate the causal discovery capabilities of humans in an object place task in virtual reality (VR) with haptic feedback and compare the results to the state of the art causal discovery algorithms FGES, PC and FCI. In addition we use the algorithms to analyze causal relations between sensory information and the kinematic parameters of human behavior. Our findings show that the majority of participants were able to determine which variables are causally related. This is in line with causal discovery algorithms like PC, which recover causal dependencies in the first step. However, unlike such algorithms which can identify causes and effects in our test configuration, humans are unsure in determining a causal direction. Regarding the relation between the sensory information provided to the participants and their placing actions (i.e. their kinematic parameters) the data yields a surprising dissociation of the subjects knowledge and the sensorimotor level. Knowledge of the cause-effect pairs, though undirected, should suffice to improve subject's movements. Yet a detailed causal analysis provides little evidence for any such influence. This, together with the reports of the participants, implies that instead of exploiting their consciously perceived information they leave it to the sensorimotor level to control the movement.
The recent adoption of artificial intelligence (AI) in robotics has driven the development of algorithms that enable autonomous systems to adapt to complex social environments. In particular, safe and efficient social navigation is a key challenge, requiring AI not only to avoid collisions and deadlocks but also to interact intuitively and predictably with its surroundings. To date, methods based on probabilistic models and the generation of conformal safety regions have shown promising results in defining safety regions with a controlled margin of error, primarily relying on classification approaches and explicit rules to describe collision-free navigation conditions. This work explores how topological features contribute to explainable safety regions in social navigation. Instead of using behavioral parameters, we leverage topological data analysis to classify and characterize different simulation behaviors. First, we apply global rule-based classification to distinguish between safe (collision-free) and unsafe scenarios based on topological properties. Then, we define safety regions, $S_\varepsilon$, in the topological feature space, ensuring a maximum classification error of $\varepsilon$. These regions are built with adjustable SVM classifiers and order statistics, providing robust decision boundaries. Local rules extracted from these regions enhance interpretability, keeping the decision-making process transparent. Our approach initially separates simulations with and without collisions, outperforming methods that not incorporate topological features. It offers a deeper understanding of robot interactions within a navigable space. We further refine safety regions to ensure deadlock-free simulations and integrate both aspects to define a compliant simulation space that guarantees safe and efficient navigation.
In the context of artificial life art and agent-based art, this paper draws on Simon Penny's {\itshape Aesthetic of Behavior} theory and Sofian Audry's discussions on behavior computation to examine how artists design agent behaviors and the ensuing aesthetic experiences. We advocate for integrating the environment in which agents operate as the context for behavioral design, positing that the environment emerges through continuous interactions among agents, audiences, and other entities, forming an evolving network of meanings generated by these interactions. Artists create contexts by deploying and guiding these computational systems, audience participation, and agent behaviors through artist strategies. This framework is developed by analysing two categories of agent-based artworks, exploring the intersection of computational systems, audience participation, and artistic strategies in creating aesthetic experiences. This paper seeks to provide a contextual foundation and framework for designing agents' behaviors by conducting a comparative study focused on behavioural design strategies by the artists.
Pedestrian safety is a critical public health priority, with pedestrian fatalities accounting for 18% of all U.S. traffic deaths in 2022. The rising prevalence of distracted walking, exacerbated by mobile device use, poses significant risks at signalized intersections. This study utilized an immersive virtual reality (VR) environment to simulate real-world traffic scenarios and assess pedestrian behavior under three conditions: undistracted crossing, crossing while using a mobile device, and crossing with Light-emitting diode (LED) safety interventions. Analysis using ANOVA models identified speed and mobile-focused eye-tracking as significant predictors of crossing duration, revealing how distractions impair situational awareness and response times. While LED measures reduced delays, their limited effectiveness highlights the need for integrated strategies addressing both behavioral and physical factors. This study showcases VRs potential to analyze complex pedestrian behaviors, offering actionable insights for urban planners and policymakers aiming to enhance pedestrian safety.
Explainable AI (XAI) aims to provide insights into the decisions made by AI models. To date, most XAI approaches provide only one-time, static explanations, which cannot cater to users' diverse knowledge levels and information needs. Conversational explanations have been proposed as an effective method to customize XAI explanations. However, building conversational explanation systems is hindered by the scarcity of training data. Training with synthetic data faces two main challenges: lack of data diversity and hallucination in the generated data. To alleviate these issues, we introduce a repetition penalty to promote data diversity and exploit a hallucination detector to filter out untruthful synthetic conversation turns. We conducted both automatic and human evaluations on the proposed system, fEw-shot Multi-round ConvErsational Explanation (EMCEE). For automatic evaluation, EMCEE achieves relative improvements of 81.6% in BLEU and 80.5% in ROUGE compared to the baselines. EMCEE also mitigates the degeneration of data quality caused by training on synthetic data. In human evaluations (N=60), EMCEE outperforms baseline models and the control group in improving users' comprehension, acceptance, trust, and collaboration with static explanations by large margins. Through a fine-grained analysis of model responses, we further demonstrate that training on self-generated synthetic data improves the model's ability to generate more truthful and understandable answers, leading to better user interactions. To the best of our knowledge, this is the first conversational explanation method that can answer free-form user questions following static explanations.
In an era where black-box AI models are integral to decision-making across industries, robust methods for explaining these models are more critical than ever. While these models leverage complex feature interplay for accurate predictions, most explanation methods only assign relevance to individual features. There is a research gap in methods that effectively illustrate interactions between features, especially in visualizing higher-order interactions involving multiple features, which challenge conventional representation methods. To address this challenge in local explanations focused on individual instances, we employ a visual, subset-based approach to reveal relevant feature interactions. Our visual analytics tool FINCH uses coloring and highlighting techniques to create intuitive, human-centered visualizations, and provides additional views that enable users to calibrate their trust in the model and explanations. We demonstrate FINCH in multiple case studies, demonstrating its generalizability, and conducted an extensive human study with machine learning experts to highlight its helpfulness and usability. With this approach, FINCH allows users to visualize feature interactions involving any number of features locally.
This study investigates factors influencing employees' perceptions of the usefulness of Business Process Management Systems (BPMS) in commercial settings. It explores the roles of system dependency, system quality, and the quality of information and knowledge in the adoption and use of BPMS. Data were collected using a structured questionnaire from end-users in various firms and analyzed with Partial Least Squares (PLS). The survey evaluated perceptions of service quality, input quality, system attributes, and overall system quality. The findings indicate that service quality, input quality, and specific system attributes significantly influence perceived system quality, while system dependency and information quality are predictors of perceived usefulness. The results highlight the importance of user training, support, and high-quality information in enhancing satisfaction and BPMS. This research offers empirical evidence on the factors impacting user perceptions and acceptance, emphasizing the need for user-centric approaches in BPMS.
In this work, we present a domain-independent approach for adaptive scaffolding in robotic explanation generation to guide tasks in human-robot interaction. We present a method for incorporating interdisciplinary research results into a computational model as a pre-configured scoring system implemented in a framework called SHIFT. This involves outlining a procedure for integrating concepts from disciplines outside traditional computer science into a robotics computational framework. Our approach allows us to model the human cognitive state into six observable states within the human partner model. To study the pre-configuration of the system, we implement a reinforcement learning approach on top of our model. This approach allows adaptation to individuals who deviate from the configuration of the scoring system. Therefore, in our proof-of-concept evaluation, the model's adaptability on four different user types shows that the models' adaptation performs better, i.e., recouped faster after exploration and has a higher accumulated reward with our pre-configured scoring system than without it. We discuss further strategies of speeding up the learning phase to enable a realistic adaptation behavior to real users. The system is accessible through docker and supports querying via ROS.
Social Media and the Internet have catalyzed an unprecedented potential for exposure to human diversity in terms of demographics, talents, opinions, knowledge, and the like. However, this potential has not come with new, much needed, instruments and skills to harness it. This paper presents our work on promoting richer and deeper social relations through the design and development of the "Internet of Us", an online platform that uses diversity-aware Artificial Intelligence to mediate and empower human social interactions. We discuss the multiple facets of diversity in social settings, the multidisciplinary work that is required to reap the benefits of diversity, and the vision for a diversity-aware hybrid human-AI society.
The uncanny valley effect poses a significant challenge in the development and acceptance of hyper-realistic social robots. This study investigates whether advanced conversational capabilities powered by large language models (LLMs) can mitigate this effect in highly anthropomorphic robots. We conducted a user study with 80 participants interacting with Nadine, a hyper-realistic humanoid robot equipped with LLM-driven communication skills. Through pre- and post-interaction surveys, we assessed changes in perceptions of uncanniness, conversational quality, and overall user experience. Our findings reveal that LLM-enhanced interactions significantly reduce feelings of eeriness while fostering more natural and engaging conversations. Additionally, we identify key factors influencing user acceptance, including conversational naturalness, human-likeness, and interestingness. Based on these insights, we propose design recommendations to enhance the appeal and acceptability of hyper-realistic robots in social contexts. This research contributes to the growing field of human-robot interaction by offering empirical evidence on the potential of LLMs to bridge the uncanny valley, with implications for the future development of social robots.
Dog guides offer an effective mobility solution for blind or visually impaired (BVI) individuals, but conventional dog guides have limitations including the need for care, potential distractions, societal prejudice, high costs, and limited availability. To address these challenges, we seek to develop a robot dog guide capable of performing the tasks of a conventional dog guide, enhanced with additional features. In this work, we focus on design research to identify functional and aesthetic design concepts to implement into a quadrupedal robot. The aesthetic design remains relevant even for BVI users due to their sensitivity toward societal perceptions and the need for smooth integration into society. We collected data through interviews and surveys to answer specific design questions pertaining to the appearance, texture, features, and method of controlling and communicating with the robot. Our study identified essential and preferred features for a future robot dog guide, which are supported by relevant statistics aligning with each suggestion. These findings will inform the future development of user-centered designs to effectively meet the needs of BVI individuals.
Modeling human-like action-to-reaction generation has significant real-world applications, like human-robot interaction and games. Despite recent advancements in single-person motion generation, it is still challenging to well handle action-to-reaction generation, due to the difficulty of directly predicting reaction from action sequence without prompts, and the absence of a unified representation that effectively encodes multi-person motion. To address these challenges, we introduce Think-Then-React (TTR), a large language-model-based framework designed to generate human-like reactions. First, with our fine-grained multimodal training strategy, TTR is capable to unify two processes during inference: a thinking process that explicitly infers action intentions and reasons corresponding reaction description, which serve as semantic prompts, and a reacting process that predicts reactions based on input action and the inferred semantic prompts. Second, to effectively represent multi-person motion in language models, we propose a unified motion tokenizer by decoupling egocentric pose and absolute space features, which effectively represents action and reaction motion with same encoding. Extensive experiments demonstrate that TTR outperforms existing baselines, achieving significant improvements in evaluation metrics, such as reducing FID from 3.988 to 1.942.
Cerebral Palsy (CP) is a prevalent motor disability in children, for which early detection can significantly improve treatment outcomes. While skeleton-based Graph Convolutional Network (GCN) models have shown promise in automatically predicting CP risk from infant videos, their "black-box" nature raises concerns about clinical explainability. To address this, we introduce a perturbation framework tailored for infant movement features and use it to compare two explainable AI (XAI) methods: Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM). First, we identify significant and non-significant body keypoints in very low- and very high-risk infant video snippets based on the XAI attribution scores. We then conduct targeted velocity and angular perturbations, both individually and in combination, on these keypoints to assess how the GCN model's risk predictions change. Our results indicate that velocity-driven features of the arms, hips, and legs have a dominant influence on CP risk predictions, while angular perturbations have a more modest impact. Furthermore, CAM and Grad-CAM show partial convergence in their explanations for both low- and high-risk CP groups. Our findings demonstrate the use of XAI-driven movement analysis for early CP prediction and offer insights into potential movement-based biomarker discovery that warrant further clinical validation.
While performance in coordinated motor tasks has been shown to improve in children as they age, the characterization of children's movement strategies has been underexplored. In this work, we use upper-body motion data collected from an augmented reality reaching game, and show that short (13 second) sections of motion are are sufficient to reveal arm motion differences across child development. To explore what drives this trend, we characterize the movement patterns across different age groups by analyzing (1) directness of path, (2) maximum speed, and (3) progress towards the reaching target. We find that although maximum arm velocity decreases with age (p~=~0.02), their paths to goal are more direct (p~=~0.03), allowing for faster time to goal overall. We also find that older children exhibit more anticipatory reaching behavior, enabling more accurate goal-reaching (i.e. no overshooting) compared to younger children. The resulting analysis has potential to improve the realism of child-like digital characters and advance our understanding of motor skill development.
In the field of affective computing, traditional methods for generating emotions predominantly rely on deep learning techniques and large-scale emotion datasets. However, deep learning techniques are often complex and difficult to interpret, and standardizing large-scale emotional datasets are difficult and costly to establish. To tackle these challenges, we introduce a novel framework named Audio-Visual Fusion for Brain-like Emotion Learning(AVF-BEL). In contrast to conventional brain-inspired emotion learning methods, this approach improves the audio-visual emotion fusion and generation model through the integration of modular components, thereby enabling more lightweight and interpretable emotion learning and generation processes. The framework simulates the integration of the visual, auditory, and emotional pathways of the brain, optimizes the fusion of emotional features across visual and auditory modalities, and improves upon the traditional Brain Emotional Learning (BEL) model. The experimental results indicate a significant improvement in the similarity of the audio-visual fusion emotion learning generation model compared to single-modality visual and auditory emotion learning and generation model. Ultimately, this aligns with the fundamental phenomenon of heightened emotion generation facilitated by the integrated impact of visual and auditory stimuli. This contribution not only enhances the interpretability and efficiency of affective intelligence but also provides new insights and pathways for advancing affective computing technology. Our source code can be accessed here: https://github.com/OpenHUTB/emotion}{https://github.com/OpenHUTB/emotion.
Quantitative estimation of human joint motion in daily living spaces is essential for early detection and rehabilitation tracking of neuromusculoskeletal disorders (e.g., Parkinson's) and mitigating trip and fall risks for older adults. Existing approaches involve monitoring devices such as cameras, wearables, and pressure mats, but have operational constraints such as direct line-of-sight, carrying devices, and dense deployment. To overcome these limitations, we leverage gait-induced floor vibration to estimate lower-limb joint motion (e.g., ankle, knee, and hip flexion angles), allowing non-intrusive and contactless gait health monitoring in people's living spaces. To overcome the high uncertainty in lower-limb movement given the limited information provided by the gait-induced floor vibrations, we formulate a physics-informed graph to integrate domain knowledge of gait biomechanics and structural dynamics into the model. Specifically, different types of nodes represent heterogeneous information from joint motions and floor vibrations; Their connecting edges represent the physiological relationships between joints and forces governed by gait biomechanics, as well as the relationships between forces and floor responses governed by the structural dynamics. As a result, our model poses physical constraints to reduce uncertainty while allowing information sharing between the body and the floor to make more accurate predictions. We evaluate our approach with 20 participants through a real-world walking experiment. We achieved an average of 3.7 degrees of mean absolute error in estimating 12 joint flexion angles (38% error reduction from baseline), which is comparable to the performance of cameras and wearables in current medical practices.
This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements-rather than replaces-human expertise.
The integration of large language models (LLMs) into virtual reality (VR) environments has opened new pathways for creating more immersive and interactive digital humans. By leveraging the generative capabilities of LLMs alongside multimodal outputs such as facial expressions and gestures, virtual agents can simulate human-like personalities and emotions, fostering richer and more engaging user experiences. This paper provides a comprehensive review of methods for enabling digital humans to adopt nuanced personality traits, exploring approaches such as zero-shot, few-shot, and fine-tuning. Additionally, it highlights the challenges of integrating LLM-driven personality traits into VR, including computational demands, latency issues, and the lack of standardized evaluation frameworks for multimodal interactions. By addressing these gaps, this work lays a foundation for advancing applications in education, therapy, and gaming, while fostering interdisciplinary collaboration to redefine human-computer interaction in VR.
In this paper, we investigate how individuals evaluate human and large langue models generated responses to popular questions when the source of the content is either concealed or disclosed. Through a controlled field experiment, participants were presented with a set of questions, each accompanied by a response generated by either a human or an AI. In a randomized design, half of the participants were informed of the response's origin while the other half remained unaware. Our findings indicate that, overall, participants tend to prefer AI-generated responses. However, when the AI origin is revealed, this preference diminishes significantly, suggesting that evaluative judgments are influenced by the disclosure of the response's provenance rather than solely by its quality. These results underscore a bias against AI-generated content, highlighting the societal challenge of improving the perception of AI work in contexts where quality assessments should be paramount.
This study proposes the realization of various virtual environments using a lower limb exoskeletal robot for futuristic gait rehabilitation. The proposed method allows the user to feel virtual gravity, buoyancy, and drag while actively walking. The virtual environments include four fluidic conditions: Water, Olive oil, Honey, and Peanut Butter, and four gravitational conditions consisting of the Earth's, Moon's, Mars', and Jupiter's gravity. The control method of the lower limb exoskeletal robot is as follows. First, torque feedback is applied to control the interaction force between the exoskeletal robot and its user. Second, the reference torque is computed in real time with the dynamic equations of the human body and the kinematic data. The eight environments were implemented via the EXOWheel, a wheelchair-integrated lower limb exoskeletal robot. While attaching electromyography sensors and wearing the EXOWheel, eight healthy subjects walked actively under the virtual conditions. Experimental results show that muscular force signals adequately change depending on gravitational, buoyant, and drag effects. Blind tests confirmed that subjects could reliably distinguish all eight virtual environments.
Researchers have made notable progress in applying Large Language Models (LLMs) to solve math problems, as demonstrated through efforts like GSM8k, ProofNet, AlphaGeometry, and MathOdyssey. This progress has sparked interest in their potential use for tutoring students in mathematics. However, the reliability of LLMs in tutoring contexts -- where correctness and instructional quality are crucial -- remains underexplored. Moreover, LLM problem-solving capabilities may not necessarily translate into effective tutoring support for students. In this work, we present two novel approaches to evaluate the correctness and quality of LLMs in math tutoring contexts. The first approach uses an intelligent tutoring system for college algebra as a testbed to assess LLM problem-solving capabilities. We generate benchmark problems using the tutor, prompt a diverse set of LLMs to solve them, and compare the solutions to those generated by the tutor. The second approach evaluates LLM as tutors rather than problem solvers. We employ human evaluators, who act as students seeking tutoring support from each LLM. We then assess the quality and correctness of the support provided by the LLMs via a qualitative coding process. We applied these methods to evaluate several ChatGPT models, including 3.5 Turbo, 4, 4o, o1-mini, and o1-preview. Our findings show that when used as problem solvers, LLMs generate correct final answers for 85.5% of the college algebra problems tested. When employed interactively as tutors, 90% of LLM dialogues show high-quality instructional support; however, many contain errors -- only 56.6% are entirely correct. We conclude that, despite their potential, LLMs are not yet suitable as intelligent tutors for math without human oversight or additional mechanisms to ensure correctness and quality.
Facial Expression Recognition (FER) plays a foundational role in enabling AI systems to interpret emotional nuances, a critical aspect of affective Theory of Mind (ToM). However, existing models often struggle with poor calibration and a limited capacity to capture emotional intensity and complexity. To address this, we propose Ranking the Emotional Nuance for Theory of Mind (Rank-O-ToM), a framework that leverages ordinal ranking to align confidence levels with the emotional spectrum. By incorporating synthetic samples reflecting diverse affective complexities, Rank-O-ToM enhances the nuanced understanding of emotions, advancing AI's ability to reason about affective states.
It has been suggested that autonomous vehicles can improve efficiency and safety of the transportation systems. While research in this area often focuses on autonomous vehicles which operate on roads, the deployment of low-speed, autonomous vehicles in unstructured, crowded environments has been studied less well and requires specific considerations regarding their interaction with pedestrians. For making the operation of these vehicles acceptable, their behaviour needs to be perceived as safe by both pedestrians and the passengers riding the vehicle. In this paper we conducted an online survey with 116 participants, to understand people's preferences with respect to an autonomous golf cart's behaviour in different interaction scenarios. We measured people's self-reported perceived safety towards different behaviour of the cart in a variety of scenarios. Results suggested that despite the unstructured nature of the environment, the cart was expected to follow common traffic rules when interacting with a group of pedestrians.
Recent advances in large language models (LLMs) have shown promising results in medical diagnosis, with some studies indicating superior performance compared to human physicians in specific scenarios. However, the diagnostic capabilities of LLMs are often overestimated, as their performance significantly deteriorates in interactive diagnostic settings that require active information gathering. This study investigates the underlying mechanisms behind the performance degradation phenomenon and proposes a solution. We identified that the primary deficiency of LLMs lies in the initial diagnosis phase, particularly in information-gathering efficiency and initial diagnosis formation, rather than in the subsequent differential diagnosis phase. To address this limitation, we developed a plug-and-play method enhanced (PPME) LLM agent, leveraging over 3.5 million electronic medical records from Chinese and American healthcare facilities. Our approach integrates specialized models for initial disease diagnosis and inquiry into the history of the present illness, trained through supervised and reinforcement learning techniques. The experimental results indicate that the PPME LLM achieved over 30% improvement compared to baselines. The final diagnostic accuracy of the PPME LLM in interactive diagnostic scenarios approached levels comparable to those achieved using complete clinical data. These findings suggest a promising potential for developing autonomous diagnostic systems, although further validation studies are needed.
In this study, we investigate the feasibility of using a human-centered artificial intelligence (AI) chat platform where medical specialists collaboratively assess complex cases. As the target population for this platform, we focus on patients with cardiovascular diseases who are in a state of multimorbidity, that is, suffering from multiple chronic conditions. We evaluate simulated cases with multiple diseases using a chat application by collaborating with physicians to assess feasibility, efficiency gains through AI utilization, and the quantification of discussion content. We constructed simulated cases based on past case reports, medical errors reports and complex cases of cardiovascular diseases experienced by the physicians. The analysis of discussions across five simulated cases demonstrated a significant reduction in the time required for summarization using AI, with an average reduction of 79.98\%. Additionally, we examined hallucination rates in AI-generated summaries used in multidisciplinary medical discussions. The overall hallucination rate ranged from 1.01\% to 5.73\%, with an average of 3.62\%, whereas the harmful hallucination rate varied from 0.00\% to 2.09\%, with an average of 0.49\%. Furthermore, morphological analysis demonstrated that multidisciplinary assessments enabled a more complex and detailed representation of medical knowledge compared with single physician assessments. We examined structural differences between multidisciplinary and single physician assessments using centrality metrics derived from the knowledge graph. In this study, we demonstrated that AI-assisted summarization significantly reduced the time required for medical discussions while maintaining structured knowledge representation. These findings can support the feasibility of AI-assisted chat-based discussions as a human-centered approach to multidisciplinary medical decision-making.
Autonomous graphical user interface (GUI) agents powered by multimodal large language models have shown great promise. However, a critical yet underexplored issue persists: over-execution, where the agent executes tasks in a fully autonomous way, without adequate assessment of its action confidence to compromise an adaptive human-agent collaboration. This poses substantial risks in complex scenarios, such as those involving ambiguous user instructions, unexpected interruptions, and environmental hijacks. To address the issue, we introduce OS-Kairos, an adaptive GUI agent capable of predicting confidence levels at each interaction step and efficiently deciding whether to act autonomously or seek human intervention. OS-Kairos is developed through two key mechanisms: (i) collaborative probing that annotates confidence scores at each interaction step; (ii) confidence-driven interaction that leverages these confidence scores to elicit the ability of adaptive interaction. Experimental results show that OS-Kairos substantially outperforms existing models on our curated dataset featuring complex scenarios, as well as on established benchmarks such as AITZ and Meta-GUI, with 24.59\%$\sim$87.29\% improvements in task success rate. OS-Kairos facilitates an adaptive human-agent collaboration, prioritizing effectiveness, generality, scalability, and efficiency for real-world GUI interaction. The dataset and codes are available at https://github.com/Wuzheng02/OS-Kairos.
In this short paper we address issues related to building multimodal AI systems for human performance support in manufacturing domains. We make two contributions: we first identify challenges of participatory design and training of such systems, and secondly, to address such challenges, we propose the ACE paradigm: "Action and Control via Explanations". Specifically, we suggest that LLMs can be used to produce explanations in the form of human interpretable "semantic frames", which in turn enable end users to provide data the AI system needs to align its multimodal models and representations, including computer vision, automatic speech recognition, and document inputs. ACE, by using LLMs to "explain" using semantic frames, will help the human and the AI system to collaborate, together building a more accurate model of humans activities and behaviors, and ultimately more accurate predictive outputs for better task support, and better outcomes for human users performing manual tasks.
Artificial Intelligence (AI) has significantly advanced in recent years, driving innovation across various fields, especially in robotics. Even though robots can perform complex tasks with increasing autonomy, challenges remain in ensuring explainability and user-centered design for effective interaction. A key issue in Human-Robot Interaction (HRI) is enabling robots to effectively perceive and reason over multimodal inputs, such as audio and vision, to foster trust and seamless collaboration. In this paper, we propose a generalized and explainable multimodal framework for context representation, designed to improve the fusion of speech and vision modalities. We introduce a use case on assessing 'Relevance' between verbal utterances from the user and visual scene perception of the robot. We present our methodology with a Multimodal Joint Representation module and a Temporal Alignment module, which can allow robots to evaluate relevance by temporally aligning multimodal inputs. Finally, we discuss how the proposed framework for context representation can help with various aspects of explainability in HRI.
The search for effective collaboration between humans and computer systems is one of the biggest challenges in Artificial Intelligence. One of the more effective mechanisms that humans use to coordinate with one another is theory of mind (ToM). ToM can be described as the ability to `take someone else's perspective and make estimations of their beliefs, desires and intentions, in order to make sense of their behaviour and attitudes towards the world'. If leveraged properly, this skill can be very useful in Human-AI collaboration. This introduces the question how we implement ToM when building an AI system. Humans and AI Systems work quite differently, and ToM is a multifaceted concept, each facet rooted in different research traditions across the cognitive and developmental sciences. We observe that researchers from artificial intelligence and the computing sciences, ourselves included, often have difficulties finding their way in the ToM literature. In this paper, we identify four common misconceptions around ToM that we believe should be taken into account when developing an AI system. We have hyperbolised these misconceptions for the sake of the argument, but add nuance in their discussion. The misconceptions we discuss are: (1) "Humans Use a ToM Module, So AI Systems Should As Well". (2) "Every Social Interaction Requires (Advanced) ToM". (3) "All ToM is the Same". (4) "Current Systems Already Have ToM". After discussing the misconception, we end each section by providing tentative guidelines on how the misconception can be overcome.
As the population of older adults increases, so will the need for both human and robot care providers. While traditional practices involve hiring human caregivers to serve meals and attend to basic needs, older adults often require continuous companionship and health monitoring. However, hiring human caregivers for this job costs a lot of money. However, using a robot like Nao could be cheaper and still helpful. This study explores the integration of humanoid robots, particularly Nao, in health monitoring and caregiving for older adults. Using a mixed-methods approach with a within-subject factorial design, we investigated the effectiveness of nonverbal communication modalities, including touch, gestures, and LED patterns, in enhancing human-robot interactions. Our results indicate that Nao's touch-based health monitoring was well-received by participants, with positive ratings across various dimensions. LED patterns were perceived as more effective and accurate compared to hand and head gestures. Moreover, longer interactions were associated with higher trust levels and perceived empathy, highlighting the importance of prolonged engagement in fostering trust in human-robot interactions. Despite limitations, our study contributes valuable insights into the potential of humanoid robots to improve health monitoring and caregiving for older adults.
Brain-Computer Interface (BCI) technology facilitates direct communication between the human brain and external devices, representing a substantial advancement in human-machine interaction. This review provides an in-depth analysis of various BCI paradigms, including classic paradigms, current classifications, and hybrid paradigms, each with distinct characteristics and applications. Additionally, we explore a range of signal acquisition methods, classified into non-implantation, intervention, and implantation techniques, elaborating on their principles and recent advancements. By examining the interdependence between paradigms and signal acquisition technologies, this review offers a comprehensive perspective on how innovations in one domain propel progress in the other. The goal is to present insights into the future development of more efficient, user-friendly, and versatile BCI systems, emphasizing the synergy between paradigm design and signal acquisition techniques and their potential to transform the field.
The rapid development of artificial intelligence (AI) has significantly transformed human-computer interactions, making it essential to establish robust design standards to ensure effective, ethical, and human-centered AI (HCAI) solutions. Standards serve as the foundation for the adoption of new technologies, and human-AI interaction (HAII) standards are critical to supporting the industrialization of AI technology by following an HCAI approach. These design standards aim to provide clear principles, requirements, and guidelines for designing, developing, deploying, and using AI systems, enhancing the user experience and performance of AI systems. Despite their importance, the creation and adoption of HCAI-based interaction design standards face challenges, including the absence of universal frameworks, the inherent complexity of HAII, and the ethical dilemmas that arise in such systems. This chapter provides a comparative analysis of HAII versus traditional human-computer interaction (HCI) and outlines guiding principles for HCAI-based design. It explores international, regional, national, and industry standards related to HAII design from an HCAI perspective and reviews design guidelines released by leading companies such as Microsoft, Google, and Apple. Additionally, the chapter highlights tools available for implementing HAII standards and presents case studies of human-centered interaction design for AI systems in diverse fields, including healthcare, autonomous vehicles, and customer service. It further examines key challenges in developing HAII standards and suggests future directions for the field. Emphasizing the importance of ongoing collaboration between AI designers, developers, and experts in human factors and HCI, this chapter stresses the need to advance HCAI-based interaction design standards to ensure human-centered AI solutions across various domains.
Traditional rule-based conversational robots, constrained by predefined scripts and static response mappings, fundamentally lack adaptability for personalized, long-term human interaction. While Large Language Models (LLMs) like GPT-4 have revolutionized conversational AI through open-domain capabilities, current social robots implementing LLMs still lack emotional awareness and continuous personalization. This dual limitation hinders their ability to sustain engagement across multiple interaction sessions. We bridge this gap with PERCY (Personal Emotional Robotic Conversational sYstem), a system designed to enable open-domain, multi-turn dialogues by dynamically analyzing users' real-time facial expressions and vocabulary to tailor responses based on their emotional state. Built on a ROS-based multimodal framework, PERCY integrates a fine-tuned GPT-4 reasoning engine, combining textual sentiment analysis with visual emotional cues to accurately assess and respond to user emotions. We evaluated PERCY's performance through various dialogue quality metrics, showing strong coherence, relevance, and diversity. Human evaluations revealed PERCY's superior personalization and comparable naturalness to other models. This work highlights the potential for integrating advanced multimodal perception and personalization in social robot dialogue systems.
This paper presents Matrix, an advanced AI-powered framework designed for real-time 3D object generation in Augmented Reality (AR) environments. By integrating a cutting-edge text-to-3D generative AI model, multilingual speech-to-text translation, and large language models (LLMs), the system enables seamless user interactions through spoken commands. The framework processes speech inputs, generates 3D objects, and provides object recommendations based on contextual understanding, enhancing AR experiences. A key feature of this framework is its ability to optimize 3D models by reducing mesh complexity, resulting in significantly smaller file sizes and faster processing on resource-constrained AR devices. Our approach addresses the challenges of high GPU usage, large model output sizes, and real-time system responsiveness, ensuring a smoother user experience. Moreover, the system is equipped with a pre-generated object repository, further reducing GPU load and improving efficiency. We demonstrate the practical applications of this framework in various fields such as education, design, and accessibility, and discuss future enhancements including image-to-3D conversion, environmental object detection, and multimodal support. The open-source nature of the framework promotes ongoing innovation and its utility across diverse industries.
We present LLM-Glasses, a wearable navigation system designed to assist visually impaired individuals by combining haptic feedback, YOLO-World object detection, and GPT-4o-driven reasoning. The system delivers real-time tactile guidance via temple-mounted actuators, enabling intuitive and independent navigation. Three user studies were conducted to evaluate its effectiveness: (1) a haptic pattern recognition study achieving an 81.3% average recognition rate across 13 distinct patterns, (2) a VICON-based navigation study in which participants successfully followed predefined paths in open spaces, and (3) an LLM-guided video evaluation demonstrating 91.8% accuracy in open scenarios, 84.6% with static obstacles, and 81.5% with dynamic obstacles. These results demonstrate the system's reliability in controlled environments, with ongoing work focusing on refining its responsiveness and adaptability to diverse real-world scenarios. LLM-Glasses showcases the potential of combining generative AI with haptic interfaces to empower visually impaired individuals with intuitive and effective mobility solutions.
Simulation of conflict situations for autonomous driving research is crucial for understanding and managing interactions between Automated Vehicles (AVs) and human drivers. This paper presents a set of exemplary conflict scenarios in CARLA that arise in shared autonomy settings, where both AVs and human drivers must navigate complex traffic environments. We explore various conflict situations, focusing on the impact of driver behavior and decision-making processes on overall traffic safety and efficiency. We build a simple extendable toolkit for situation awareness research, in which the implemented conflicts can be demonstrated.
In aviation emergencies, high-stakes decisions must be made in an instant. Pilots rely on quick access to precise, context-specific information -- an area where emerging tools like large language models (LLMs) show promise in providing critical support. This paper introduces LeRAAT, a framework that integrates LLMs with the X-Plane flight simulator to deliver real-time, context-aware pilot assistance. The system uses live flight data, weather conditions, and aircraft documentation to generate recommendations aligned with aviation best practices and tailored to the particular situation. It employs a Retrieval-Augmented Generation (RAG) pipeline that extracts and synthesizes information from aircraft type-specific manuals, including performance specifications and emergency procedures, as well as aviation regulatory materials, such as FAA directives and standard operating procedures. We showcase the framework in both a virtual reality and traditional on-screen simulation, supporting a wide range of research applications such as pilot training, human factors research, and operational decision support.
Effective visualisation of multidimensional data is crucial for generating insights. Glyph-based visualisations, which encode data dimensions onto multiple visual channels such as colour, shape, and size, provide an effective means of representing complex datasets. Pie-chart glyphs (pie-glyphs) are one such approach, where multiple data attributes are mapped to slices within a pie chart. This paper introduces the PieGlyph R package, which enables users to overlay any 2D plot with axis-invariant pie-glyphs, offering a compact and intuitive representation of multidimensional data. Unlike existing R packages such as scatterpie or ggforce, PieGlyph generates pie-glyphs independently of the plot axes by employing a nested coordinate system, ensuring they remain circular regardless of changes to the underlying coordinate system. This enhances interpretability, particularly in when visualising spatial data, as users can select the most appropriate map projection without distorting the glyphs' shape. Pie-glyphs are also particularly well-suited for visualising compositional data, where there is a natural sum-to-one constraint on the data attributes. PieGlyph is developed under the Grammar of Graphics paradigm using the ggplot2 framework and supports the generation of interactive pie-glyphs through the ggiraph package. Designed to integrate seamlessly with all features and extensions offered by ggplot2 and ggiraph, PieGlyph provides users with full flexibility in customising every aspect of the visualisation. This paper outlines the conceptual framework of PieGlyph, compares it with existing alternatives, and demonstrates its applications through example visualisations.
With Highly Automated Driving (HAD), the driver can engage in non-driving-related tasks. In the event of a system failure, the driver is expected to reasonably regain control of the Automated Vehicle (AV). Incorrect system understanding may provoke misuse by the driver and can lead to vehicle-level hazards. ISO 21448, referred to as the standard for Safety of the Intended Functionality (SOTIF), defines misuse as usage of the system by the driver in a way not intended by the system manufacturer. Foreseeable Misuse (FM) implies anticipated system misuse based on the best knowledge about the system design and the driver behaviour. This is the underlying motivation to propose simulation-based testing of FM. The vital challenge is to perform a simulation-based testing for a SOTIF-related misuse scenario. Transverse Guidance Assist System (TGAS) is modelled for HAD. In the context of this publication, TGAS is referred to as the "system," and the driver is the human operator of the system. This publication focuses on implementing the Driver-Vehicle Interface (DVI) that permits the interactions between the driver and the system. The implementation and testing of a derived misuse scenario using the driving simulator ensure reasonable usage of the system by supporting the driver with unambiguous information on system functions and states so that the driver can conveniently perceive, comprehend, and act upon the information.
As large language models (LLMs) enter the mainstream, aligning them to foster constructive dialogue rather than exacerbate societal divisions is critical. Using an individualized and multicultural alignment dataset of over 7,500 conversations of individuals from 74 countries engaging with 21 LLMs, we examined how linguistic attributes linked to constructive interactions are reflected in human preference data used for training AI. We found that users consistently preferred well-reasoned and nuanced responses while rejecting those high in personal storytelling. However, users who believed that AI should reflect their values tended to place less preference on reasoning in LLM responses and more on curiosity. Encouragingly, we observed that users could set the tone for how constructive their conversation would be, as LLMs mirrored linguistic attributes, including toxicity, in user queries.
The increasing use of robots in human-centric public spaces such as shopping malls, sidewalks, and hospitals, requires understanding of how pedestrians respond to their presence. However, existing research lacks comprehensive datasets that capture the full range of pedestrian behaviors, e.g., including avoidance, neutrality, and attraction in the presence of robots. Such datasets can be used to effectively learn models capable of accurately predicting diverse responses of pedestrians to robot presence, which are crucial for advancing robot navigation strategies and optimizing pedestrian-aware motion planning. In this paper, we address these challenges by collecting a novel dataset of pedestrian motion in two outdoor locations under three distinct conditions, i.e., no robot presence, a stationary robot, and a moving robot. Thus, unlike existing datasets, ours explicitly encapsulates variations in pedestrian behavior across the different robot conditions. Using our dataset, we propose a novel Neural Social Robot Force Model (NSRFM), an extension of the traditional Social Force Model that integrates neural networks and robot-induced forces to better predict pedestrian behavior in the presence of robots. We validate the NSRFM by comparing its generated trajectories on different real-world datasets. Furthermore, we implemented it in simulation to enable the learning and benchmarking of robot navigation strategies based on their impact on pedestrian movement. Our results demonstrate the model's effectiveness in replicating real-world pedestrian reactions and its its utility in developing, evaluating, and benchmarking social robot navigation algorithms.
STEAM education integrates Science, Technology, Engineering, Arts, and Mathematics to foster creativity and problem-solving. However, students with visual impairments (VI) encounter significant challenges in programming and robotics, particularly in tracking robot movements and developing spatial awareness. This paper presents a framework that leverages pre-constructed robots and algorithms, such as maze-solving techniques, within an accessible learning environment. The proposed system employs Contrastive Language-Image Pre-training (CLIP) to process global camera-captured maze layouts, converting visual data into textual descriptions that generate spatial audio prompts in an Audio Virtual Reality (AVR) system. Students issue verbal commands, which are refined through CLIP, while robot-mounted stereo cameras provide real-time data processed via Simultaneous Localization and Mapping (SLAM) for continuous feedback. By integrating these technologies, the framework empowers VI students to develop coding skills and engage in complex problem-solving tasks. Beyond maze-solving applications, this approach demonstrates the broader potential of computer vision in special education, contributing to improved accessibility and learning experiences in STEAM disciplines.
Episodic Future Thinking (EFT) is an intervention that involves vividly imagining personal future events and experiences in detail. It has shown promise as an intervention to reduce delay discounting - the tendency to devalue delayed rewards in favor of immediate gratification - and to promote behavior change in a range of maladaptive health behaviors. We present EFTeacher, an AI chatbot powered by the GPT-4-Turbo large language model, designed to generate EFT cues for users with lifestyle-related conditions. To evaluate the chatbot, we conducted a user study that included usability assessments and user evaluations based on content characteristics questionnaires, followed by semi-structured interviews. The study provides qualitative insights into participants' experiences and interactions with the chatbot and its usability. Our findings highlight the potential application of AI chatbots based on Large Language Models (LLMs) in EFT interventions, and offer design guidelines for future behavior-oriented applications.
This study explores the use of OpenAI's API for inductive thematic analysis, employing a stepwise strategy to enhance transparency and traceability in GenAI-generated coding. A five-phase analysis and evaluation process were followed. Using the stepwise prompt, GenAI effectively generated codes with supporting statements and references, categorized themes, and developed broader interpretations by linking them to real-world contexts. While GenAI performed at a comparable level to human coders in coding and theming, it exhibited a more generalized and conceptual approach to interpretation, whereas human coders provided more specific, theme-based interpretations. Mapping these processes onto Naeem et al.'s (2023) six-step thematic analysis framework, GenAI covered four out of the six steps, while human coders followed three steps. Although GenAI's coding, theming, and interpretation align with keywording, coding, theming, and interpretation in Naeem et al.'s framework, human coders' interpretations were more closely tied to themes rather than broader conceptualization. This study positions GenAI as a viable tool for conducting inductive thematic analysis with minimal human intervention, offering an efficient and structured approach to qualitative data analysis. Future research should explore the development of specialized prompts that align GenAI's inductive thematic analysis with established qualitative research frameworks.
Computer programming represents a rapidly evolving and sought-after career path in the 21st century. Nevertheless, novice learners may find the process intimidating for several reasons, such as limited and highly competitive career opportunities, peer and parental pressure for academic success, and course difficulties. These factors frequently contribute to anxiety and eventual dropout as a result of fear. Furthermore, research has demonstrated that beginners are significantly deterred by the fear of failure, which results in programming anxiety and and a sense of being overwhelmed by intricate topics, ultimately leading to dropping out. This project undertakes an exploration beyond the scope of conventional code learning platforms by identifying and utilising effective and personalised strategies of learning. The proposed solution incorporates features such as AI-generated challenging questions, mindfulness quotes, and tips to motivate users, along with an AI chatbot that functions as a motivational aid. In addition, the suggested solution integrates personalized roadmaps and gamification elements to maintain user involvement. The project aims to systematically monitor the progress of novice programmers and enhance their knowledge of coding with a personalised, revised curriculum to help mitigate the fear of coding and boost confidence.
The rise of online programming education has necessitated more effective, personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios where there is a need for personalized feedback. PythonPal's design, featuring modules for conversation, tutorials, and exercises, was evaluated through student interactions and feedback. Key findings reveal PythonPal's proficiency in syntax error recognition and user query comprehension, with its intent classification model showing high accuracy. The system's performance in error feedback, though varied, demonstrates both strengths and areas for enhancement. Student feedback indicated satisfactory query understanding and feedback accuracy but also pointed out the need for faster responses and improved interaction quality. PythonPal's deployment promises to significantly enhance online programming education by providing immediate, personalized feedback and interactive learning experiences, fostering a deeper understanding of programming concepts among students. These benefits mark a step forward in addressing the challenges of distance learning, making programming education more accessible and effective.
With an increasing demand for assistive technologies that promote the independence and mobility of visually impaired people, this study suggests an innovative real-time system that gives audio descriptions of a user's surroundings to improve situational awareness. The system acquires live video input and processes it with a quantized and fine-tuned Florence-2 big model, adjusted to 4-bit accuracy for efficient operation on low-power edge devices such as the NVIDIA Jetson Orin Nano. By transforming the video signal into frames with a 5-frame latency, the model provides rapid and contextually pertinent descriptions of objects, pedestrians, and barriers, together with their estimated distances. The system employs Parler TTS Mini, a lightweight and adaptable Text-to-Speech (TTS) solution, for efficient audio feedback. It accommodates 34 distinct speaker types and enables customization of speech tone, pace, and style to suit user requirements. This study examines the quantization and fine-tuning techniques utilized to modify the Florence-2 model for this application, illustrating how the integration of a compact model architecture with a versatile TTS component improves real-time performance and user experience. The proposed system is assessed based on its accuracy, efficiency, and usefulness, providing a viable option to aid vision-impaired users in navigating their surroundings securely and successfully.
The rapid adoption of generative AI in software development has impacted the industry, yet its effects on developers with visual impairments remain largely unexplored. To address this gap, we used an Activity Theory framework to examine how developers with visual impairments interact with AI coding assistants. For this purpose, we conducted a study where developers who are visually impaired completed a series of programming tasks using a generative AI coding assistant. We uncovered that, while participants found the AI assistant beneficial and reported significant advantages, they also highlighted accessibility challenges. Specifically, the AI coding assistant often exacerbated existing accessibility barriers and introduced new challenges. For example, it overwhelmed users with an excessive number of suggestions, leading developers who are visually impaired to express a desire for ``AI timeouts.'' Additionally, the generative AI coding assistant made it more difficult for developers to switch contexts between the AI-generated content and their own code. Despite these challenges, participants were optimistic about the potential of AI coding assistants to transform the coding experience for developers with visual impairments. Our findings emphasize the need to apply activity-centered design principles to generative AI assistants, ensuring they better align with user behaviors and address specific accessibility needs. This approach can enable the assistants to provide more intuitive, inclusive, and effective experiences, while also contributing to the broader goal of enhancing accessibility in software development.
Effective Human-Robot Interaction (HRI) is crucial for enhancing accessibility and usability in real-world robotics applications. However, existing solutions often rely on gestures or language commands, making interaction inefficient and ambiguous, particularly for users with physical impairments. In this paper, we introduce FAM-HRI, an efficient multi-modal framework for human-robot interaction that integrates language and gaze inputs via foundation models. By leveraging lightweight Meta ARIA glasses, our system captures real-time multi-modal signals and utilizes large language models (LLMs) to fuse user intention with scene context, enabling intuitive and precise robot manipulation. Our method accurately determines gaze fixation time interval, reducing noise caused by the gaze dynamic nature. Experimental evaluations demonstrate that FAM-HRI achieves a high success rate in task execution while maintaining a low interaction time, providing a practical solution for individuals with limited physical mobility or motor impairments.
An underlying assumption of many existing approaches to human-robot task communication is that the robot possesses a sufficient amount of environmental domain knowledge, including the locations of task-critical objects. This assumption is unrealistic if the locations of known objects change or have not yet been discovered by the robot. In this work, our key insight is that in many scenarios, robot end users possess more scene insight than the robot and need ways to express it. Presently, there is a lack of research on how solutions for collecting end-user scene insight should be designed. We thereby created an Uncertainty Expression System (UES) to investigate how best to elicit end-user scene insight. The UES allows end users to convey their knowledge of object uncertainty using either: (1) a precision interface that allows meticulous expression of scene insight; (2) a painting interface by which users create a heat map of possible object locations; and (3) a ranking interface by which end users express object locations via an ordered list. We then conducted a user study to compare the effectiveness of these approaches based on the accuracy of scene insight conveyed to the robot, the efficiency at which end users are able to express this scene insight, and both usability and task load. Results indicate that the rank interface is more user friendly and efficient than the precision interface, and that the paint interface is the least accurate.
In today's media landscape, propaganda distribution has a significant impact on society. It sows confusion, undermines democratic processes, and leads to increasingly difficult decision-making for news readers. We investigate the lasting effect on critical thinking and propaganda awareness on them when using a propaganda detection and contextualization tool. Building on inoculation theory, which suggests that preemptively exposing individuals to weakened forms of propaganda can improve their resilience against it, we integrate Kahneman's dual-system theory to measure the tools' impact on critical thinking. Through a two-phase online experiment, we measure the effect of several inoculation doses. Our findings show that while the tool increases critical thinking during its use, this increase vanishes without access to the tool. This indicates a single use of the tool does not create a lasting impact. We discuss the implications and propose possible approaches to improve the resilience against propaganda in the long-term.
Large Language Models (LLMs) offer a promising alternative to traditional survey methods, potentially enhancing efficiency and reducing costs. In this study, we use LLMs to create virtual populations that answer survey questions, enabling us to predict outcomes comparable to human responses. We evaluate several LLMs-including GPT-4o, GPT-3.5, Claude 3.5-Sonnet, and versions of the Llama and Mistral models-comparing their performance to that of a traditional Random Forests algorithm using demographic data from the World Values Survey (WVS). LLMs demonstrate competitive performance overall, with the significant advantage of requiring no additional training data. However, they exhibit biases when predicting responses for certain religious and population groups, underperforming in these areas. On the other hand, Random Forests demonstrate stronger performance than LLMs when trained with sufficient data. We observe that removing censorship mechanisms from LLMs significantly improves predictive accuracy, particularly for underrepresented demographic segments where censored models struggle. These findings highlight the importance of addressing biases and reconsidering censorship approaches in LLMs to enhance their reliability and fairness in public opinion research.
This paper presents an iterative, participatory, empirical study that examines the potential of using artificial intelligence, such as social robots and large language models, to support mediation and advocacy for students with disabilities in higher education. Drawing on qualitative data from interviews and focus groups conducted with various stakeholders, including disabled students, disabled student representatives, and disability practitioners at the University of Cambridge, this study reports findings relating to understanding the problem space, ideating robotic support and participatory co-design of advocacy support robots. The findings highlight the potential of these technologies in providing signposting and acting as a sounding board or study companion, while also addressing limitations in empathic understanding, trust, equity, and accessibility. We discuss ethical considerations, including intersectional biases, the double empathy problem, and the implications of deploying social robots in contexts shaped by structural inequalities. Finally, we offer a set of recommendations and suggestions for future research, rethinking the notion of corrective technological interventions to tools that empower and amplify self-advocacy.
Aligning robot navigation with human preferences is essential for ensuring comfortable and predictable robot movement in shared spaces, facilitating seamless human-robot coexistence. While preference-based learning methods, such as reinforcement learning from human feedback (RLHF), enable this alignment, the choice of the preference collection interface may influence the process. Traditional 2D interfaces provide structured views but lack spatial depth, whereas immersive VR offers richer perception, potentially affecting preference articulation. This study systematically examines how the interface modality impacts human preference collection and navigation policy alignment. We introduce a novel dataset of 2,325 human preference queries collected through both VR and 2D interfaces, revealing significant differences in user experience, preference consistency, and policy outcomes. Our findings highlight the trade-offs between immersion, perception, and preference reliability, emphasizing the importance of interface selection in preference-based robot learning. The dataset will be publicly released to support future research.
Human communication has been profoundly changed by social media, which allows users to engage in previously unheard-of ways, such as text-based conversations, video chats, and live streaming. The digital landscape has started to change in recent years as a result of the introduction of Virtual Reality (VR) to these platforms. Instead of using conventional 2D screens, VR offers a completely immersive experience that lets users interact with content and one another in 3D spaces. This study examines the integration of virtual reality (VR) technology into social media applications, evaluating their potential to provide more dynamic and captivating digital spaces. Globally, social media sites like Facebook, Instagram, and Twitter have already changed the nature of communication. Immersion technologies like virtual reality (VR) represent the next stage, though, as they have the ability to change how we interact, connect, and share in social settings in addition to improving user experience.
This study investigates the development and assessment of an artificial human designed as a conversational AI chatbot, focusing on its role as a clinical psychologist. The project involved creating a specialized chatbot using the Character.ai platform. The chatbot was designed to engage users in psychological discussions, providing advice and support with a human-like touch. The study involved participants (N=27) from diverse backgrounds, including psychologists, AI researchers, and the general public, who interacted with the chatbot and provided feedback on its human-likeness, empathy, and engagement levels. Results indicate that while many users found the chatbot engaging and somewhat human-like, limitations were noted in areas such as empathy and nuanced understanding. The findings suggest that although conversational AI has made strides, it remains far from achieving the true human-like interaction necessary for Artificial General Intelligence (AGI). The study highlights the challenges and potential of AI in human-computer interactions, suggesting directions for future research and development to bridge the gap between current capabilities and AGI. The project was completed in November of 2022 before the release of chatGPT.
This paper introduces a simple JavaScript-based web application designed to assist educators in detecting AI-generated content in student essays and written assignments. Unlike existing AI detection tools that rely on obfuscated machine learning models, AIDetection.info employs a heuristic-based approach to identify common syntactic traces left by generative AI models, such as ChatGPT, Claude, Grok, DeepSeek, Gemini, Llama/Meta, Microsoft Copilot, Grammarly AI, and other text-generating models and wrapper applications. The tool scans documents in bulk for potential AI artifacts, as well as AI citations and acknowledgments, and provides a visual summary with downloadable Excel and CSV reports. This article details its methodology, functionalities, limitations, and applications within educational settings.
Background: The increasing use of artificial intelligence (AI) in healthcare documentation necessitates robust methods for evaluating the quality of AI-generated medical notes compared to those written by humans. This paper introduces an open-source tool, the Human Notes Evaluator, designed to assess clinical note quality and differentiate between human and AI authorship. Methods: The Human Notes Evaluator is a Flask-based web application implemented on Hugging Face Spaces. It employs the Physician Documentation Quality Instrument (PDQI-9), a validated 9-item rubric, to evaluate notes across dimensions such as accuracy, thoroughness, clarity, and more. The tool allows users to upload clinical notes in CSV format and systematically score each note against the PDQI-9 criteria, as well as assess the perceived origin (human, AI, or undetermined). Results: The Human Notes Evaluator provides a user-friendly interface for standardized note assessment. It outputs comprehensive results, including individual PDQI-9 scores for each criterion, origin assessments, and overall quality metrics. Exportable data facilitates comparative analyses between human and AI-generated notes, identification of quality trends, and areas for documentation improvement. The tool is available online at https://huggingface.co/spaces/iyadsultan/human_evaluator . Discussion: This open-source tool offers a valuable resource for researchers, healthcare professionals, and AI developers to rigorously evaluate and compare the quality of medical notes. By leveraging the PDQI-9 framework, it provides a structured and reliable approach to assess clinical documentation, contributing to the responsible integration of AI in healthcare. The tool's availability on Hugging Face promotes accessibility and collaborative development in the field of AI-driven medical documentation.
Despite the ever-growing importance of online moderation, there has been no large-scale study evaluating the effectiveness of alternative moderation strategies. This is largely due to the lack of appropriate datasets, and the difficulty of getting human discussants, moderators, and evaluators involved in multiple experiments. In this paper, we propose a methodology for leveraging synthetic experiments performed exclusively by Large Language Models (LLMs) to initially bypass the need for human participation in experiments involving online moderation. We evaluate six LLM moderation configurations; two currently used real-life moderation strategies (guidelines issued for human moderators for online moderation and real-life facilitation), two baseline strategies (guidelines elicited for LLM alignment work, and LLM moderation with minimal prompting) a baseline with no moderator at all, as well as our own proposed strategy inspired by a Reinforcement Learning (RL) formulation of the problem. We find that our own moderation strategy significantly outperforms established moderation guidelines, as well as out-of-the-box LLM moderation. We also find that smaller LLMs, with less intensive instruction-tuning, can create more varied discussions than larger models. In order to run these experiments, we create and release an efficient, purpose-built, open-source Python framework, dubbed "SynDisco" to easily simulate hundreds of discussions using LLM user-agents and moderators. Additionally, we release the Virtual Moderation Dataset (VMD), a large dataset of LLM-generated and LLM-annotated discussions, generated by three families of open-source LLMs accompanied by an exploratory analysis of the dataset.
Post-merger integration (PMI) planning presents significant challenges due to the complex interdependencies between integration initiatives and their associated synergies. While dependency-based planning approaches offer valuable frameworks, practitioners often become anchored to specific integration paths without systematically exploring alternative solutions. This research introduces a novel AI-assisted tool designed to expand and enhance the exploration of viable integration planning options. The proposed system leverages a frontier model-based agent augmented with specialized reasoning techniques to map and analyze dependencies between integration plan elements. Through a chain-of-thought planning approach, the tool guides users in systematically exploring the integration planning space, helping identify and evaluate alternative paths that might otherwise remain unconsidered. In an initial evaluation using a simulated case study, participants using the tool identified 43% more viable integration planning options compared to the control group. While the quality of generated options showed improvement, the effect size was modest. These preliminary results suggest promising potential for AI-assisted tools in enhancing the systematic exploration of PMI planning alternatives. This early-stage research contributes to both the theoretical understanding of AI-assisted planning in complex organizational contexts and the practical development of tools to support PMI planning. Future work will focus on refining the underlying models and expanding the evaluation scope to real-world integration scenarios.
This late-breaking work presents a large-scale analysis of explainable AI (XAI) literature to evaluate claims of human explainability. We collaborated with a professional librarian to identify 18,254 papers containing keywords related to explainability and interpretability. Of these, we find that only 253 papers included terms suggesting human involvement in evaluating an XAI technique, and just 128 of those conducted some form of a human study. In other words, fewer than 1% of XAI papers (0.7%) provide empirical evidence of human explainability when compared to the broader body of XAI literature. Our findings underscore a critical gap between claims of human explainability and evidence-based validation, raising concerns about the rigor of XAI research. We call for increased emphasis on human evaluations in XAI studies and provide our literature search methodology to enable both reproducibility and further investigation into this widespread issue.
Conversational AI interfaces powered by large language models (LLMs) are increasingly used as coding assistants. However, questions remain about how programmers interact with LLM-based conversational agents, the challenges they encounter, and the factors influencing adoption. This study investigates programmers' usage patterns, perceptions, and interaction strategies when engaging with LLM-driven coding assistants. Through a survey, participants reported both the benefits, such as efficiency and clarity of explanations, and the limitations, including inaccuracies, lack of contextual awareness, and concerns about over-reliance. Notably, some programmers actively avoid LLMs due to a preference for independent learning, distrust in AI-generated code, and ethical considerations. Based on our findings, we propose design guidelines for improving conversational coding assistants, emphasizing context retention, transparency, multimodal support, and adaptability to user preferences. These insights contribute to the broader understanding of how LLM-based conversational agents can be effectively integrated into software development workflows while addressing adoption barriers and enhancing usability.
A timely and effective response is crucial to minimize damage and save lives during natural disasters like earthquakes. Microblogging platforms, particularly Twitter, have emerged as valuable real-time information sources for such events. This work explores the potential of leveraging Twitter data for earthquake response analysis. We develop a machine learning (ML) framework by incorporating natural language processing (NLP) techniques to extract and analyze relevant information from tweets posted during earthquake events. The approach primarily focuses on extracting location data from tweets to identify affected areas, generating severity maps, and utilizing WebGIS to display valuable information. The insights gained from this analysis can aid emergency responders, government agencies, humanitarian organizations, and NGOs in enhancing their disaster response strategies and facilitating more efficient resource allocation during earthquake events.
Humanity is currently facing an existential crisis about the nature of truth and reality driven by the availability of information online which overloads and overwhelms our cognitive capabilities, which we call Cyber-Psychosis. The results of this Cyber-Psychosis include the decline of critical thinking coupled with deceptive influences on the Internet which have become so prolific that they are challenging our ability to form a shared understanding of reality in either the digital or physical world. Fundamental to mending our fractured digital universe is establishing the ability to know where a digital object (i.e. a piece of information like text, audio, or video) came from, whether it was modified, what it is derived from, where it has been circulated, and what (if any) lifetime that information should have. Furthermore, we argue that on-by-default object security for genuine objects will provide the necessary grounding to support critical thinking and rational online behavior, even with the ubiquity of deceptive content. To this end, we propose that the Internet needs an object security service layer. This proposition may not be as distant as it may first seem. Through an examination of several venerable (and new) protocols, we show how pieces of this problem have already been addressed. While interdisciplinary research will be key to properly crafting the architectural changes needed, here we propose an approach for how we can already use fallow protections to begin turning the tide of this emerging Cyber-Psychosis today!
In the current work, we connect token-level uncertainty in causal language modeling to two types of training objectives: 1) masked maximum likelihood (MLE), 2) self-distillation. We show that masked MLE is effective in reducing epistemic uncertainty, and serve as an effective token-level automatic curriculum learning technique. However, masked MLE is prone to overfitting and requires self-distillation regularization to improve or maintain performance on out-of-distribution tasks. We demonstrate significant performance gain via the proposed training objective - combined masked MLE and self-distillation - across multiple architectures (Gemma, LLaMA, Phi) and datasets (Alpaca, ShareGPT, GSM8K), mitigating overfitting while maintaining adaptability during post-training. Our findings suggest that uncertainty-aware training provides an effective mechanism for enhancing language model training.
In this paper, we compare a manual assembly task communicated to workers using both printed and robot-delivered instructions. The comparison was made using physiological signals (blood volume pulse (BVP) and electrodermal activity (EDA)) collected from individuals during an experimental study. In addition, we also collected responses of individuals using the NASA Task Load Index (TLX) survey. Furthermore, we mapped the collected physiological signals to the responses of participants for NASA TLX to predict their workload. For both the classification problems, we compare the performance of Convolutional Neural Networks (CNNs) and Long-Short-Term Memory (LSTM) models. Results show that for our CNN-based approach using multimodal data (both BVP and EDA) gave better results than using just BVP (approx. 8.38% more) and EDA (approx 20.49% more). Our LSTM-based model too had better results when we used multimodal data (approx 8.38% more than just BVP and 6.70% more than just EDA). Overall, CNNs performed better than LSTMs for classifying physiologies for paper vs robot-based instruction by 7.72%. The CNN-based model was able to give better classification results (approximately 17.83% more on an average across all responses of the NASA TLX) within a few minutes of training compared to the LSTM-based models.
The PerAnsSumm 2025 challenge focuses on perspective-aware healthcare answer summarization (Agarwal et al., 2025). This work proposes a few-shot learning framework using a Snorkel-BART-SVM pipeline for classifying and summarizing open-ended healthcare community question-answering (CQA). An SVM model is trained with weak supervision via Snorkel, enhancing zero-shot learning. Extractive classification identifies perspective-relevant sentences, which are then summarized using a pretrained BART-CNN model. The approach achieved 12th place among 100 teams in the shared task, demonstrating computational efficiency and contextual accuracy. By leveraging pretrained summarization models, this work advances medical CQA research and contributes to clinical decision support systems.
Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.
Large Language Models (LLMs) were used to assist four Commonwealth Scientific and Industrial Research Organisation (CSIRO) researchers to perform systematic literature reviews (SLR). We evaluate the performance of LLMs for SLR tasks in these case studies. In each, we explore the impact of changing parameters on the accuracy of LLM responses. The LLM was tasked with extracting evidence from chosen academic papers to answer specific research questions. We evaluate the models' performance in faithfully reproducing quotes from the literature and subject experts were asked to assess the model performance in answering the research questions. We developed a semantic text highlighting tool to facilitate expert review of LLM responses. We found that state of the art LLMs were able to reproduce quotes from texts with greater than 95% accuracy and answer research questions with an accuracy of approximately 83%. We use two methods to determine the correctness of LLM responses; expert review and the cosine similarity of transformer embeddings of LLM and expert answers. The correlation between these methods ranged from 0.48 to 0.77, providing evidence that the latter is a valid metric for measuring semantic similarity.
Privacy policies are widely used by digital services and often required for legal purposes. Many machine learning based classifiers have been developed to automate detection of different concepts in a given privacy policy, which can help facilitate other automated tasks such as producing a more reader-friendly summary and detecting legal compliance issues. Despite the successful applications of large language models (LLMs) to many NLP tasks in various domains, there is very little work studying the use of LLMs for automated privacy policy analysis, therefore, if and how LLMs can help automate privacy policy analysis remains under-explored. To fill this research gap, we conducted a comprehensive evaluation of LLM-based privacy policy concept classifiers, employing both prompt engineering and LoRA (low-rank adaptation) fine-tuning, on four state-of-the-art (SOTA) privacy policy corpora and taxonomies. Our experimental results demonstrated that combining prompt engineering and fine-tuning can make LLM-based classifiers outperform other SOTA methods, \emph{significantly} and \emph{consistently} across privacy policy corpora/taxonomies and concepts. Furthermore, we evaluated the explainability of the LLM-based classifiers using three metrics: completeness, logicality, and comprehensibility. For all three metrics, a score exceeding 91.1\% was observed in our evaluation, indicating that LLMs are not only useful to improve the classification performance, but also to enhance the explainability of detection results.
This research addresses the growing need to measure and understand AI literacy in the context of generative AI technologies. Through three sequential studies involving a total of 517 participants, we establish AI literacy as a coherent, measurable construct with significant implications for education, workforce development, and social equity. Study 1 (N=85) revealed a dominant latent factor - termed the "A-factor" - that accounts for 44.16% of variance across diverse AI interaction tasks. Study 2 (N=286) refined the measurement tool by examining four key dimensions of AI literacy: communication effectiveness, creative idea generation, content evaluation, and step-by-step collaboration, resulting in an 18-item assessment battery. Study 3 (N=146) validated this instrument in a controlled laboratory setting, demonstrating its predictive validity for real-world task performance. Results indicate that AI literacy significantly predicts performance on complex, language-based creative tasks but shows domain specificity in its predictive power. Additionally, regression analyses identified several significant predictors of AI literacy, including cognitive abilities (IQ), educational background, prior AI experience, and training history. The multidimensional nature of AI literacy and its distinct factor structure provide evidence that effective human-AI collaboration requires a combination of general and specialized abilities. These findings contribute to theoretical frameworks of human-AI collaboration while offering practical guidance for developing targeted educational interventions to promote equitable access to the benefits of generative AI technologies.
Human-Machine Teaming (HMT) is revolutionizing collaboration across domains such as defense, healthcare, and autonomous systems by integrating AI-driven decision-making, trust calibration, and adaptive teaming. This survey presents a comprehensive taxonomy of HMT, analyzing theoretical models, including reinforcement learning, instance-based learning, and interdependence theory, alongside interdisciplinary methodologies. Unlike prior reviews, we examine team cognition, ethical AI, multi-modal interactions, and real-world evaluation frameworks. Key challenges include explainability, role allocation, and scalable benchmarking. We propose future research in cross-domain adaptation, trust-aware AI, and standardized testbeds. By bridging computational and social sciences, this work lays a foundation for resilient, ethical, and scalable HMT systems.
Recent advancements in virtual reality (VR) technology have enabled the creation of immersive learning environments that provide engineering students with hands-on, interactive experiences. This paper presents a novel framework for virtual laboratory environments (VLEs) focused on embodied learning, specifically designed to teach concepts related to mechanical and materials engineering. Utilizing the principles of embodiment and congruency, these VR modules offer students the opportunity to engage physically with virtual specimens and machinery, thereby enhancing their understanding of complex topics through sensory immersion and kinesthetic interaction. Our framework employs an event-driven, directed-graph-based architecture developed with Unity 3D and C#, ensuring modularity and scalability. Students interact with the VR environment by performing tasks such as selecting and testing materials, which trigger various visual and haptic events to simulate real-world laboratory conditions. A pre-/post-test evaluation method was used to assess the educational effectiveness of these VR modules. Results demonstrated significant improvements in student comprehension and retention, with notable increases in test scores compared to traditional non-embodied VR methods. The implementation of these VLEs in a university setting highlighted their potential to democratize access to high-cost laboratory experiences, making engineering education more accessible and effective. By fostering a deeper connection between cognitive processes and physical actions, our VR framework not only enhances learning outcomes but also provides a template for future developments in VR-based education. Our study suggests that immersive VR environments can significantly improve the learning experience for engineering students.
Incorporating personas into conversational AI models is crucial for achieving authentic and engaging interactions. However, the cultural diversity and adaptability of existing persona datasets is often overlooked, reducing their efficacy in building culturally aware AI systems. To address this issue, we propose a two-step pipeline for generating culture-specific personas and introduce KoPersona, a dataset comprising 200,000 personas designed to capture Korean cultural values, behaviors, and social nuances. A comprehensive evaluation through various metrics validates the quality of KoPersona and its relevance to Korean culture. This work not only contributes to persona-based research, but also establishes a scalable approach for creating culturally relevant personas adaptable to various languages and cultural contexts.
This paper explores conversational self-play with LLMs as a scalable approach for analyzing and exploring psychotherapy approaches, evaluating how well AI-generated therapeutic dialogues align with established modalities.
Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high-accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams-Bashforth-Moulton (ABM) predictor-corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM-Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high-resolution image datasets validate that ABM-Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
Emotional support (ES) systems alleviate users' mental distress by generating strategic supportive dialogues based on diverse user situations. However, ES systems are limited in their ability to generate effective ES dialogues that include timely context and interpretability, hindering them from earning public trust. Driven by cognitive models, we propose Mind-to-Mind (Mind2), an ES framework that approaches interpretable ES context modeling for the ES dialogue generation task from a discourse analysis perspective. Specifically, we perform cognitive discourse analysis on ES dialogues according to our dynamic discourse context propagation window, which accommodates evolving context as the conversation between the ES system and user progresses. To enhance interpretability, Mind2 prioritizes details that reflect each speaker's belief about the other speaker with bidirectionality, integrating Theory-of-Mind, physiological expected utility, and cognitive rationality to extract cognitive knowledge from ES conversations. Experimental results support that Mind2 achieves competitive performance versus state-of-the-art ES systems while trained with only 10\% of the available training data.
Confusing or otherwise unhelpful learner feedback creates or perpetuates erroneous beliefs that the teacher and learner have of each other, thereby increasing the cognitive burden placed upon the human teacher. For example, the robot's feedback might cause the human to misunderstand what the learner knows about the learning objective or how the learner learns. At the same time -- and in addition to the learning objective -- the learner might misunderstand how the teacher perceives the learner's task knowledge and learning processes. To ease the teaching burden, the learner should provide feedback that accounts for these misunderstandings and elicits efficient teaching from the human. This work endows an AI learner with a Second-order Theory of Mind that models perceived rationality as a source for the erroneous beliefs a teacher and learner may have of one another. It also explores how a learner can ease the teaching burden and improve teacher efficacy if it selects feedback which accounts for its model of the teacher's beliefs about the learner and its learning objective.
This paper presents KVShare, a multi-user Key-Value (KV) Cache sharing technology based on semantic similarity, designed to enhance the inference efficiency of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Addressing the limitations of existing prefix caching (strict text prefix matching) and semantic caching (loss of response diversity), KVShare achieves fine-grained KV cache reuse through semantic alignment algorithms and differential editing operations. Experiments on real-world user conversation datasets demonstrate that KVShare improves KV cache hit rates by over 60%, while maintaining output quality comparable to full computation (no significant degradation in BLEU and Rouge-L metrics). This approach effectively reduces GPU resource consumption and is applicable to scenarios with repetitive queries, such as healthcare and education.
The use of large language models (LLMs) to simulate human behavior has gained significant attention, particularly through personas that approximate individual characteristics. Persona-based simulations hold promise for transforming disciplines that rely on population-level feedback, including social science, economic analysis, marketing research, and business operations. Traditional methods to collect realistic persona data face significant challenges. They are prohibitively expensive and logistically challenging due to privacy constraints, and often fail to capture multi-dimensional attributes, particularly subjective qualities. Consequently, synthetic persona generation with LLMs offers a scalable, cost-effective alternative. However, current approaches rely on ad hoc and heuristic generation techniques that do not guarantee methodological rigor or simulation precision, resulting in systematic biases in downstream tasks. Through extensive large-scale experiments including presidential election forecasts and general opinion surveys of the U.S. population, we reveal that these biases can lead to significant deviations from real-world outcomes. Our findings underscore the need to develop a rigorous science of persona generation and outline the methodological innovations, organizational and institutional support, and empirical foundations required to enhance the reliability and scalability of LLM-driven persona simulations. To support further research and development in this area, we have open-sourced approximately one million generated personas, available for public access and analysis at https://huggingface.co/datasets/Tianyi-Lab/Personas.
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, when applied to hardware description languages (HDL), these models exhibit significant limitations due to data scarcity, resulting in hallucinations and incorrect code generation. To address these challenges, we propose HDLCoRe, a training-free framework that enhances LLMs' HDL generation capabilities through prompt engineering techniques and retrieval-augmented generation (RAG). Our approach consists of two main components: (1) an HDL-aware Chain-of-Thought (CoT) prompting technique with self-verification that classifies tasks by complexity and type, incorporates domain-specific knowledge, and guides LLMs through step-by-step self-simulation for error correction; and (2) a two-stage heterogeneous RAG system that addresses formatting inconsistencies through key component extraction and efficiently retrieves relevant HDL examples through sequential filtering and re-ranking. HDLCoRe eliminates the need for model fine-tuning while substantially improving LLMs' HDL generation capabilities. Experimental results demonstrate that our framework achieves superior performance on the RTLLM2.0 benchmark, significantly reducing hallucinations and improving both syntactic and functional correctness.
DeepSeek-R1, renowned for its exceptional reasoning capabilities and open-source strategy, is significantly influencing the global artificial intelligence landscape. However, it exhibits notable safety shortcomings. Recent research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 achieves a 100\% attack success rate when processing harmful prompts. Furthermore, multiple security firms and research institutions have identified critical security vulnerabilities within the model. Although China Unicom has uncovered safety vulnerabilities of R1 in Chinese contexts, the safety capabilities of the remaining distilled models in the R1 series have not yet been comprehensively evaluated. To address this gap, this study utilizes the comprehensive Chinese safety benchmark CHiSafetyBench to conduct an in-depth safety evaluation of the DeepSeek-R1 series distilled models. The objective is to assess the safety capabilities of these models in Chinese contexts both before and after distillation, and to further elucidate the adverse effects of distillation on model safety. Building on these findings, we implement targeted safety enhancements for six distilled models. Evaluation results indicate that the enhanced models achieve significant improvements in safety while maintaining reasoning capabilities without notable degradation. We open-source the safety-enhanced models at https://github.com/UnicomAI/DeepSeek-R1-Distill-Safe/tree/main to serve as a valuable resource for future research and optimization of DeepSeek models.
Evidence-based medicine (EBM) plays a crucial role in the application of large language models (LLMs) in healthcare, as it provides reliable support for medical decision-making processes. Although it benefits from current retrieval-augmented generation~(RAG) technologies, it still faces two significant challenges: the collection of dispersed evidence and the efficient organization of this evidence to support the complex queries necessary for EBM. To tackle these issues, we propose using LLMs to gather scattered evidence from multiple sources and present a knowledge hypergraph-based evidence management model to integrate these evidence while capturing intricate relationships. Furthermore, to better support complex queries, we have developed an Importance-Driven Evidence Prioritization (IDEP) algorithm that utilizes the LLM to generate multiple evidence features, each with an associated importance score, which are then used to rank the evidence and produce the final retrieval results. Experimental results from six datasets demonstrate that our approach outperforms existing RAG techniques in application domains of interest to EBM, such as medical quizzing, hallucination detection, and decision support. Testsets and the constructed knowledge graph can be accessed at \href{https://drive.google.com/file/d/1WJ9QTokK3MdkjEmwuFQxwH96j_Byawj_/view?usp=drive_link}{https://drive.google.com/rag4ebm}.
Deep networks for electroencephalogram (EEG) decoding are currently often trained to only solve a specific task like pathology or gender decoding. A more general approach leveraging the medical reports of clinical EEG recordings is to learn mappings between medical reports and EEG recordings. This approach was pioneered in the computer vision domain matching images and their text captions and subsequently allowed to do successful zero-shot decoding using textual class prompts. In this work, we follow this approach and develop a contrastive learning framework EEG-CLIP that aligns EEG time series and their corresponding clinical text descriptions in a shared embedding space. We investigate its potential for versatile EEG decoding, assessing performance on a range of few-shot and zero-shot settings. Overall, results show that EEG-CLIP manages to nontrivially align text and EEG representations. Our work presents a promising approach to learn general EEG representations, which could enable easier analyses of diverse decoding questions through zero shot decoding or training task-specific models from fewer training examples. The code for reproducing our results is available at https://github.com/tidiane-camaret/EEGClip.
Accurate emotion recognition is pivotal for nuanced and engaging human-computer interactions, yet remains difficult to achieve, especially in dynamic, conversation-like settings. In this study, we showcase how integrating eye-tracking data, temporal dynamics, and personality traits can substantially enhance the detection of both perceived and felt emotions. Seventy-three participants viewed short, speech-containing videos from the CREMA-D dataset, while being recorded for eye-tracking signals (pupil size, fixation patterns), Big Five personality assessments, and self-reported emotional states. Our neural network models combined these diverse inputs including stimulus emotion labels for contextual cues and yielded marked performance gains compared to the state-of-the-art. Specifically, perceived valence predictions reached a macro F1-score of 0.76, and models incorporating personality traits and stimulus information demonstrated significant improvements in felt emotion accuracy. These results highlight the benefit of unifying physiological, individual and contextual factors to address the subjectivity and complexity of emotional expression. Beyond validating the role of user-specific data in capturing subtle internal states, our findings inform the design of future affective computing and human-agent systems, paving the way for more adaptive and cross-individual emotional intelligence in real-world interactions.
The transition towards patient-centric healthcare necessitates a comprehensive understanding of patient journeys, which encompass all healthcare experiences and interactions across the care spectrum. Existing healthcare data systems are often fragmented and lack a holistic representation of patient trajectories, creating challenges for coordinated care and personalized interventions. Patient Journey Knowledge Graphs (PJKGs) represent a novel approach to addressing the challenge of fragmented healthcare data by integrating diverse patient information into a unified, structured representation. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process and structure both formal clinical documentation and unstructured patient-provider conversations. These graphs encapsulate temporal and causal relationships among clinical encounters, diagnoses, treatments, and outcomes, enabling advanced temporal reasoning and personalized care insights. The research evaluates four different LLMs, such as Claude 3.5, Mistral, Llama 3.1, and Chatgpt4o, in their ability to generate accurate and computationally efficient knowledge graphs. Results demonstrate that while all models achieved perfect structural compliance, they exhibited variations in medical entity processing and computational efficiency. The paper concludes by identifying key challenges and future research directions. This work contributes to advancing patient-centric healthcare through the development of comprehensive, actionable knowledge graphs that support improved care coordination and outcome prediction.
This study evaluates the biases in Gemini 2.0 Flash Experimental, a state-of-the-art large language model (LLM) developed by Google, focusing on content moderation and gender disparities. By comparing its performance to ChatGPT-4o, examined in a previous work of the author, the analysis highlights some differences in ethical moderation practices. Gemini 2.0 demonstrates reduced gender bias, notably with female-specific prompts achieving a substantial rise in acceptance rates compared to results obtained by ChatGPT-4o. It adopts a more permissive stance toward sexual content and maintains relatively high acceptance rates for violent prompts, including gender-specific cases. Despite these changes, whether they constitute an improvement is debatable. While gender bias has been reduced, this reduction comes at the cost of permitting more violent content toward both males and females, potentially normalizing violence rather than mitigating harm. Male-specific prompts still generally receive higher acceptance rates than female-specific ones. These findings underscore the complexities of aligning AI systems with ethical standards, highlighting progress in reducing certain biases while raising concerns about the broader implications of the model's permissiveness. Ongoing refinements are essential to achieve moderation practices that ensure transparency, fairness, and inclusivity without amplifying harmful content.
Depth estimation is a core problem in robotic perception and vision tasks, but 3D reconstruction from a single image presents inherent uncertainties. Current depth estimation models primarily rely on inter-image relationships for supervised training, often overlooking the intrinsic information provided by the camera itself. We propose a method that embodies the camera model and its physical characteristics into a deep learning model, computing embodied scene depth through real-time interactions with road environments. The model can calculate embodied scene depth in real-time based on immediate environmental changes using only the intrinsic properties of the camera, without any additional equipment. By combining embodied scene depth with RGB image features, the model gains a comprehensive perspective on both geometric and visual details. Additionally, we incorporate text descriptions containing environmental content and depth information as priors for scene understanding, enriching the model's perception of objects. This integration of image and language - two inherently ambiguous modalities - leverages their complementary strengths for monocular depth estimation. The real-time nature of the embodied language and depth prior model ensures that the model can continuously adjust its perception and behavior in dynamic environments. Experimental results show that the embodied depth estimation method enhances model performance across different scenes.
We present Word2Minecraft, a system that leverages large language models to generate playable game levels in Minecraft based on structured stories. The system transforms narrative elements-such as protagonist goals, antagonist challenges, and environmental settings-into game levels with both spatial and gameplay constraints. We introduce a flexible framework that allows for the customization of story complexity, enabling dynamic level generation. The system employs a scaling algorithm to maintain spatial consistency while adapting key game elements. We evaluate Word2Minecraft using both metric-based and human-based methods. Our results show that GPT-4-Turbo outperforms GPT-4o-Mini in most areas, including story coherence and objective enjoyment, while the latter excels in aesthetic appeal. We also demonstrate the system' s ability to generate levels with high map enjoyment, offering a promising step forward in the intersection of story generation and game design. We open-source the code at https://github.com/JMZ-kk/Word2Minecraft/tree/word2mc_v0
This paper examines the performance of Multimodal LLMs (MLLMs) in skilled production work, with a focus on welding. Using a novel data set of real-world and online weld images, annotated by a domain expert, we evaluate the performance of two state-of-the-art MLLMs in assessing weld acceptability across three contexts: RV \& Marine, Aeronautical, and Farming. While both models perform better on online images, likely due to prior exposure or memorization, they also perform relatively well on unseen, real-world weld images. Additionally, we introduce WeldPrompt, a prompting strategy that combines Chain-of-Thought generation with in-context learning to mitigate hallucinations and improve reasoning. WeldPrompt improves model recall in certain contexts but exhibits inconsistent performance across others. These results underscore the limitations and potentials of MLLMs in high-stakes technical domains and highlight the importance of fine-tuning, domain-specific data, and more sophisticated prompting strategies to improve model reliability. The study opens avenues for further research into multimodal learning in industry applications.
This paper introduces a novel approach that leverages the capabilities of vision-language models (VLMs) by integrating them with established approaches for open-vocabulary detection (OVD), instance segmentation, and tracking. We utilize VLM-generated structured descriptions to identify visible object instances, collect application-relevant attributes, and inform an open-vocabulary detector to extract corresponding bounding boxes that are passed to a video segmentation model providing precise segmentation masks and tracking capabilities. Once initialized, this model can then directly extract segmentation masks, allowing processing of image streams in real time with minimal computational overhead. Tracks can be updated online as needed by generating new structured descriptions and corresponding open-vocabulary detections. This combines the descriptive power of VLMs with the grounding capability of OVD and the pixel-level understanding and speed of video segmentation. Our evaluation across datasets and robotics platforms demonstrates the broad applicability of this approach, showcasing its ability to extract task-specific attributes from non-standard objects in dynamic environments.
Strain sensors are gaining popularity in soft robotics for acquiring tactile data due to their flexibility and ease of integration. Tactile sensing plays a critical role in soft grippers, enabling them to safely interact with unstructured environments and precisely detect object properties. However, a significant challenge with these systems is their high non-linearity, time-varying behavior, and long-term signal drift. In this paper, we introduce a continual learning (CL) approach to model a soft finger equipped with piezoelectric-based strain sensors for proprioception. To tackle the aforementioned challenges, we propose an adaptive CL algorithm that integrates a Long Short-Term Memory (LSTM) network with a memory buffer for rehearsal and includes a regularization term to keep the model's decision boundary close to the base signal while adapting to time-varying drift. We conduct nine different experiments, resetting the entire setup each time to demonstrate signal drift. We also benchmark our algorithm against two other methods and conduct an ablation study to assess the impact of different components on the overall performance.
Hallucinations in generative AI, particularly in Large Language Models (LLMs), pose a significant challenge to the reliability of multilingual applications. Existing benchmarks for hallucination detection focus primarily on English and a few widely spoken languages, lacking the breadth to assess inconsistencies in model performance across diverse linguistic contexts. To address this gap, we introduce Poly-FEVER, a large-scale multilingual fact verification benchmark specifically designed for evaluating hallucination detection in LLMs. Poly-FEVER comprises 77,973 labeled factual claims spanning 11 languages, sourced from FEVER, Climate-FEVER, and SciFact. It provides the first large-scale dataset tailored for analyzing hallucination patterns across languages, enabling systematic evaluation of LLMs such as ChatGPT and the LLaMA series. Our analysis reveals how topic distribution and web resource availability influence hallucination frequency, uncovering language-specific biases that impact model accuracy. By offering a multilingual benchmark for fact verification, Poly-FEVER facilitates cross-linguistic comparisons of hallucination detection and contributes to the development of more reliable, language-inclusive AI systems. The dataset is publicly available to advance research in responsible AI, fact-checking methodologies, and multilingual NLP, promoting greater transparency and robustness in LLM performance. The proposed Poly-FEVER is available at: https://huggingface.co/datasets/HanzhiZhang/Poly-FEVER.
The increasing need for sharing healthcare data and collaborating on clinical research has raised privacy concerns. Health information leakage due to malicious attacks can lead to serious problems such as misdiagnoses and patient identification issues. Privacy-preserving machine learning (PPML) and privacy-enhancing technologies, particularly federated learning (FL), have emerged in recent years as innovative solutions to balance privacy protection with data utility; however, they also suffer from inherent privacy vulnerabilities. Gradient inversion attacks constitute major threats to data sharing in federated learning. Researchers have proposed many defenses against gradient inversion attacks. However, current defense methods for healthcare data lack generalizability, i.e., existing solutions may not be applicable to data from a broader range of populations. In addition, most existing defense methods are tested using non-healthcare data, which raises concerns about their applicability to real-world healthcare systems. In this study, we present a defense against gradient inversion attacks in federated learning. We achieve this using latent data perturbation and minimax optimization, utilizing both general and medical image datasets. Our method is compared to two baselines, and the results show that our approach can outperform the baselines with a reduction of 12.5% in the attacker's accuracy in classifying reconstructed images. The proposed method also yields an increase of over 12.4% in Mean Squared Error (MSE) between the original and reconstructed images at the same level of model utility of around 90% client classification accuracy. The results suggest the potential of a generalizable defense for healthcare data.
Tailoring persuasive conversations to users leads to more effective persuasion. However, existing dialogue systems often struggle to adapt to dynamically evolving user states. This paper presents a novel method that leverages causal discovery and counterfactual reasoning for optimizing system persuasion capability and outcomes. We employ the Greedy Relaxation of the Sparsest Permutation (GRaSP) algorithm to identify causal relationships between user and system utterance strategies, treating user strategies as states and system strategies as actions. GRaSP identifies user strategies as causal factors influencing system responses, which inform Bidirectional Conditional Generative Adversarial Networks (BiCoGAN) in generating counterfactual utterances for the system. Subsequently, we use the Dueling Double Deep Q-Network (D3QN) model to utilize counterfactual data to determine the best policy for selecting system utterances. Our experiments with the PersuasionForGood dataset show measurable improvements in persuasion outcomes using our approach over baseline methods. The observed increase in cumulative rewards and Q-values highlights the effectiveness of causal discovery in enhancing counterfactual reasoning and optimizing reinforcement learning policies for online dialogue systems.
Empathy is fundamental to human interactions, yet it remains unclear whether embodied agents can provide human-like empathetic support. Existing works have studied agents' tasks solving and social interactions abilities, but whether agents can understand empathetic needs and conduct empathetic behaviors remains overlooked. To address this, we introduce EmpathyAgent, the first benchmark to evaluate and enhance agents' empathetic actions across diverse scenarios. EmpathyAgent contains 10,000 multimodal samples with corresponding empathetic task plans and three different challenges. To systematically evaluate the agents' empathetic actions, we propose an empathy-specific evaluation suite that evaluates the agents' empathy process. We benchmark current models and found that exhibiting empathetic actions remains a significant challenge. Meanwhile, we train Llama3-8B using EmpathyAgent and find it can potentially enhance empathetic behavior. By establishing a standard benchmark for evaluating empathetic actions, we hope to advance research in empathetic embodied agents. Our code and data are publicly available at https://github.com/xinyan-cxy/EmpathyAgent.
Deep Convolutional Neural Networks (CNNs) have significantly advanced deep learning, driving breakthroughs in computer vision, natural language processing, medical diagnosis, object detection, and speech recognition. Architectural innovations including 1D, 2D, and 3D convolutional models, dilated and grouped convolutions, depthwise separable convolutions, and attention mechanisms address domain-specific challenges and enhance feature representation and computational efficiency. Structural refinements such as spatial-channel exploitation, multi-path design, and feature-map enhancement contribute to robust hierarchical feature extraction and improved generalization, particularly through transfer learning. Efficient preprocessing strategies, including Fourier transforms, structured transforms, low-precision computation, and weight compression, optimize inference speed and facilitate deployment in resource-constrained environments. This survey presents a unified taxonomy that classifies CNN architectures based on spatial exploitation, multi-path structures, depth, width, dimensionality expansion, channel boosting, and attention mechanisms. It systematically reviews CNN applications in face recognition, pose estimation, action recognition, text classification, statistical language modeling, disease diagnosis, radiological analysis, cryptocurrency sentiment prediction, 1D data processing, video analysis, and speech recognition. In addition to consolidating architectural advancements, the review highlights emerging learning paradigms such as few-shot, zero-shot, weakly supervised, federated learning frameworks and future research directions include hybrid CNN-transformer models, vision-language integration, generative learning, etc. This review provides a comprehensive perspective on CNN's evolution from 2015 to 2025, outlining key innovations, challenges, and opportunities.
Traditional AI-based healthcare systems often rely on single-modal data, limiting diagnostic accuracy due to incomplete information. However, recent advancements in foundation models show promising potential for enhancing diagnosis combining multi-modal information. While these models excel in static tasks, they struggle with dynamic diagnosis, failing to manage multi-turn interactions and often making premature diagnostic decisions due to insufficient persistence in information collection.To address this, we propose a multi-agent framework inspired by consultation flow and reinforcement learning (RL) to simulate the entire consultation process, integrating multiple clinical information for effective diagnosis. Our approach incorporates a hierarchical action set, structured from clinic consultation flow and medical textbook, to effectively guide the decision-making process. This strategy improves agent interactions, enabling them to adapt and optimize actions based on the dynamic state. We evaluated our framework on a public dynamic diagnosis benchmark. The proposed framework evidentially improves the baseline methods and achieves state-of-the-art performance compared to existing foundation model-based methods.
Large Language Models (LLMs) have substantially improved the conversational capabilities of social robots. Nevertheless, for an intuitive and fluent human-robot interaction, robots should be able to ground the conversation by relating ambiguous or underspecified spoken utterances to the current physical situation and to the intents expressed non verbally by the user, for example by using referential gaze. Here we propose a representation integrating speech and gaze to enable LLMs to obtain higher situated awareness and correctly resolve ambiguous requests. Our approach relies on a text-based semantic translation of the scanpath produced by the user along with the verbal requests and demonstrates LLM's capabilities to reason about gaze behavior, robustly ignoring spurious glances or irrelevant objects. We validate the system across multiple tasks and two scenarios, showing its generality and accuracy, and demonstrate its implementation on a robotic platform, closing the loop from request interpretation to execution.
Despite impressive performance across diverse tasks, Multimodal Large Language Models (MLLMs) have yet to fully demonstrate their potential in visual mathematical problem-solving, particularly in accurately perceiving and interpreting diagrams. Inspired by typical processes of humans, we hypothesize that the perception capabilities to extract meaningful information from diagrams is crucial, as it directly impacts subsequent inference processes. To validate this hypothesis, we developed FlowVerse, a comprehensive benchmark that categorizes all information used during problem-solving into four components, which are then combined into six problem versions for evaluation. Our preliminary results on FlowVerse reveal that existing MLLMs exhibit substantial limitations when extracting essential information and reasoned property from diagrams and performing complex reasoning based on these visual inputs. In response, we introduce MathFlow, a modular problem-solving pipeline that decouples perception and inference into distinct stages, thereby optimizing each independently. Given the perceptual limitations observed in current MLLMs, we trained MathFlow-P-7B as a dedicated perception model. Experimental results indicate that MathFlow-P-7B yields substantial performance gains when integrated with various closed-source and open-source inference models. This demonstrates the effectiveness of the MathFlow pipeline and its compatibility to diverse inference frameworks. The FlowVerse benchmark and code are available at https://github.com/MathFlow-zju/MathFlow.
Neural network language models (LMs) are confronted with significant challenges in generalization and robustness. Currently, many studies focus on improving either generalization or robustness in isolation, without methods addressing both aspects simultaneously, which presents a significant challenge in developing LMs that are both robust and generalized. In this paper, we propose a bi-stage optimization framework to uniformly enhance both the generalization and robustness of LMs, termed UEGR. Specifically, during the forward propagation stage, we enrich the output probability distributions of adversarial samples by adaptive dropout to generate diverse sub models, and incorporate JS divergence and adversarial losses of these output distributions to reinforce output stability. During backward propagation stage, we compute parameter saliency scores and selectively update only the most critical parameters to minimize unnecessary deviations and consolidate the model's resilience. Theoretical analysis shows that our framework includes gradient regularization to limit the model's sensitivity to input perturbations and selective parameter updates to flatten the loss landscape, thus improving both generalization and robustness. The experimental results show that our method significantly improves the generalization and robustness of LMs compared to other existing methods across 13 publicly available language datasets, achieving state-of-the-art (SOTA) performance.
Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
Autonomous driving has entered the testing phase, but due to the limited decision-making capabilities of individual vehicle algorithms, safety and efficiency issues have become more apparent in complex scenarios. With the advancement of connected communication technologies, autonomous vehicles equipped with connectivity can leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, offering a potential solution to the decision-making challenges from individual vehicle's perspective. We propose a multi-level vehicle-infrastructure cooperative decision-making framework for complex conflict scenarios at unsignalized intersections. First, based on vehicle states, we define a method for quantifying vehicle impacts and their propagation relationships, using accumulated impact to group vehicles through motif-based graph clustering. Next, within and between vehicle groups, a pass order negotiation process based on Large Language Models (LLM) is employed to determine the vehicle passage order, resulting in planned vehicle actions. Simulation results from ablation experiments show that our approach reduces negotiation complexity and ensures safer, more efficient vehicle passage at intersections, aligning with natural decision-making logic.
Large Language Models (LLMs) are widely applied to domain-specific tasks due to their massive general knowledge and remarkable inference capacities. Current studies on LLMs have shown immense potential in applying LLMs to model individual mobility prediction problems. However, most LLM-based mobility prediction models only train on specific datasets or use single well-designed prompts, leading to difficulty in adapting to different cities and users with diverse contexts. To fill these gaps, this paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model. We conducted extensive experiments on six real-world mobility datasets to validate the proposed model. The results showed that the proposed model achieved the best performance in prediction accuracy and transferability over state-of-the-art models based on deep learning and LLMs.
As narrative extraction systems grow in complexity, establishing user trust through interpretable and explainable outputs becomes increasingly critical. This paper presents an evaluation of an Explainable Artificial Intelligence (XAI) system for narrative map extraction that provides meaningful explanations across multiple levels of abstraction. Our system integrates explanations based on topical clusters for low-level document relationships, connection explanations for event relationships, and high-level structure explanations for overall narrative patterns. In particular, we evaluate the XAI system through a user study involving 10 participants that examined narratives from the 2021 Cuban protests. The analysis of results demonstrates that participants using the explanations made the users trust in the system's decisions, with connection explanations and important event detection proving particularly effective at building user confidence. Survey responses indicate that the multi-level explanation approach helped users develop appropriate trust in the system's narrative extraction capabilities. This work advances the state-of-the-art in explainable narrative extraction while providing practical insights for developing reliable narrative extraction systems that support effective human-AI collaboration.
Qatar's football sector has undergone a substantial technological transformation with the implementation of Electronic Performance and Tracking Systems (EPTS). This study examines the impact of cultural and technological factors on EPTS adoption, using Hofstede's Cultural Dimensions Theory and the Technology Acceptance Model (TAM) as theoretical frameworks. An initial exploratory study involved ten participants, followed by an expanded dataset comprising thirty stakeholders, including players, coaches, and staff from Qatari football organizations. Multiple regression analysis was conducted to evaluate the relationships between perceived usefulness, perceived ease of use, power distance, innovation receptiveness, integration complexity, and overall adoption. The results indicate that perceived usefulness, innovation receptiveness, and lower power distance significantly drive EPTS adoption, while ease of use is marginally significant and integration complexity is non-significant in this sample. These findings provide practical insights for sports technology stakeholders in Qatar and emphasize the importance of aligning cultural considerations with technological readiness for successful EPTS integration.
Problem-Based Learning (PBL) has significantly impacted biomedical engineering (BME) education since its introduction in the early 2000s, effectively enhancing critical thinking and real-world knowledge application among students. With biomedical engineering rapidly converging with artificial intelligence (AI), integrating effective AI education into established curricula has become challenging yet increasingly necessary. Recent advancements, including AI's recognition by the 2024 Nobel Prize, have highlighted the importance of training students comprehensively in biomedical AI. However, effective biomedical AI education faces substantial obstacles, such as diverse student backgrounds, limited personalized mentoring, constrained computational resources, and difficulties in safely scaling hands-on practical experiments due to privacy and ethical concerns associated with biomedical data. To overcome these issues, we conducted a three-year (2021-2023) case study implementing an advanced PBL framework tailored specifically for biomedical AI education, involving 92 undergraduate and 156 graduate students from the joint Biomedical Engineering program of Georgia Institute of Technology and Emory University. Our approach emphasizes collaborative, interdisciplinary problem-solving through authentic biomedical AI challenges. The implementation led to measurable improvements in learning outcomes, evidenced by high research productivity (16 student-authored publications), consistently positive peer evaluations, and successful development of innovative computational methods addressing real biomedical challenges. Additionally, we examined the role of generative AI both as a teaching subject and an educational support tool within the PBL framework. Our study presents a practical and scalable roadmap for biomedical engineering departments aiming to integrate robust AI education into their curricula.
This paper proposes a design scheme of reward function that constantly evaluates both driving states and actions for applying reinforcement learning to automated driving. In the field of reinforcement learning, reward functions often evaluate whether the goal is achieved by assigning values such as +1 for success and -1 for failure. This type of reward function can potentially obtain a policy that achieves the goal, but the process by which the goal is reached is not evaluated. However, process to reach a destination is important for automated driving, such as keeping velocity, avoiding risk, retaining distance from other cars, keeping comfortable for passengers. Therefore, the reward function designed by the proposed scheme is suited for automated driving by evaluating driving process. The effects of the proposed scheme are demonstrated on simulated circuit driving and highway cruising. Asynchronous Advantage Actor-Critic is used, and models are trained under some situations for generalization. The result shows that appropriate driving positions are obtained, such as traveling on the inside of corners, and rapid deceleration to turn along sharp curves. In highway cruising, the ego vehicle becomes able to change lane in an environment where there are other vehicles with suitable deceleration to avoid catching up to a front vehicle, and acceleration so that a rear vehicle does not catch up to the ego vehicle.
The future work section of a scientific article outlines potential research directions by identifying gaps and limitations of a current study. This section serves as a valuable resource for early-career researchers seeking unexplored areas and experienced researchers looking for new projects or collaborations. In this study, we generate future work suggestions from key sections of a scientific article alongside related papers and analyze how the trends have evolved. We experimented with various Large Language Models (LLMs) and integrated Retrieval-Augmented Generation (RAG) to enhance the generation process. We incorporate a LLM feedback mechanism to improve the quality of the generated content and propose an LLM-as-a-judge approach for evaluation. Our results demonstrated that the RAG-based approach with LLM feedback outperforms other methods evaluated through qualitative and quantitative metrics. Moreover, we conduct a human evaluation to assess the LLM as an extractor and judge. The code and dataset for this project are here, code: HuggingFace
In Rectified Flow, by obtaining the rectified flow several times, the mapping relationship between distributions can be distilled into a neural network, and the target distribution can be directly predicted by the straight lines of the flow. However, during the pairing process of the mapping relationship, a large amount of error accumulation will occur, resulting in a decrease in performance after multiple rectifications. In the field of flow models, knowledge distillation of multi - teacher diffusion models is also a problem worthy of discussion in accelerating sampling. I intend to combine multi - teacher knowledge distillation with Bezier curves to solve the problem of error accumulation. Currently, the related paper is being written by myself.
Revolutionizing drug discovery demands more than just understanding molecular interactions - it requires generative models that can design novel ligands tailored to specific biological targets. While chemical Language Models (cLMs) have made strides in learning molecular properties, most fail to incorporate target-specific insights, restricting their ability to drive de-novo ligand generation. Chem42, a cutting-edge family of generative chemical Language Models, is designed to bridge this gap. By integrating atomic-level interactions with multimodal inputs from Prot42, a complementary protein Language Model, Chem42 achieves a sophisticated cross-modal representation of molecular structures, interactions, and binding patterns. This innovative framework enables the creation of structurally valid, synthetically accessible ligands with enhanced target specificity. Evaluations across diverse protein targets confirm that Chem42 surpasses existing approaches in chemical validity, target-aware design, and predicted binding affinity. By reducing the search space of viable drug candidates, Chem42 could accelerate the drug discovery pipeline, offering a powerful generative AI tool for precision medicine. Our Chem42 models set a new benchmark in molecule property prediction, conditional molecule generation, and target-aware ligand design. The models are publicly available at huggingface.co/inceptionai.
We introduce Gene42, a novel family of Genomic Foundation Models (GFMs) designed to manage context lengths of up to 192,000 base pairs (bp) at a single-nucleotide resolution. Gene42 models utilize a decoder-only (LLaMA-style) architecture with a dense self-attention mechanism. Initially trained on fixed-length sequences of 4,096 bp, our models underwent continuous pretraining to extend the context length to 192,000 bp. This iterative extension allowed for the comprehensive processing of large-scale genomic data and the capture of intricate patterns and dependencies within the human genome. Gene42 is the first dense attention model capable of handling such extensive long context lengths in genomics, challenging state-space models that often rely on convolutional operators among other mechanisms. Our pretrained models exhibit notably low perplexity values and high reconstruction accuracy, highlighting their strong ability to model genomic data. Extensive experiments on various genomic benchmarks have demonstrated state-of-the-art performance across multiple tasks, including biotype classification, regulatory region identification, chromatin profiling prediction, variant pathogenicity prediction, and species classification. The models are publicly available at huggingface.co/inceptionai.
The rapid evolution of Large Vision-Language Models (LVLMs) has highlighted the necessity for comprehensive evaluation frameworks that assess these models across diverse dimensions. While existing benchmarks focus on specific aspects such as perceptual abilities, cognitive capabilities, and safety against adversarial attacks, they often lack the breadth and depth required to provide a holistic understanding of LVLMs' strengths and limitations. To address this gap, we introduce REVAL, a comprehensive benchmark designed to evaluate the \textbf{RE}liability and \textbf{VAL}ue of LVLMs. REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability, which assesses truthfulness (\eg, perceptual accuracy and hallucination tendencies) and robustness (\eg, resilience to adversarial attacks, typographic attacks, and image corruption), and Values, which evaluates ethical concerns (\eg, bias and moral understanding), safety issues (\eg, toxicity and jailbreak vulnerabilities), and privacy problems (\eg, privacy awareness and privacy leakage). We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro. Our findings reveal that while current LVLMs excel in perceptual tasks and toxicity avoidance, they exhibit significant vulnerabilities in adversarial scenarios, privacy preservation, and ethical reasoning. These insights underscore critical areas for future improvements, guiding the development of more secure, reliable, and ethically aligned LVLMs. REVAL provides a robust framework for researchers to systematically assess and compare LVLMs, fostering advancements in the field.
Neural decoding is an important method in cognitive neuroscience that aims to decode brain representations from recorded neural activity using a multivariate machine learning model. The THINGS initiative provides a large EEG dataset of 46 subjects watching rapidly shown images. Here, we test the feasibility of using this method for decoding high-level object features using recent deep learning models. We create a derivative dataset from this of living vs non-living entities test 15 different deep learning models with 5 different architectures and compare to a SOTA linear model. We show that the linear model is not able to solve the decoding task, while almost all the deep learning models are successful, suggesting that in some cases non-linear models are needed to decode neural representations. We also run a comparative study of the models' performance on individual object categories, and suggest how artificial neural networks can be used to study brain activity.
Spiking Neural Networks (SNNs) have garnered considerable attention as a potential alternative to Artificial Neural Networks (ANNs). Recent studies have highlighted SNNs' potential on large-scale datasets. For SNN training, two main approaches exist: direct training and ANN-to-SNN (ANN2SNN) conversion. To fully leverage existing ANN models in guiding SNN learning, either direct ANN-to-SNN conversion or ANN-SNN distillation training can be employed. In this paper, we propose an ANN-SNN distillation framework from the ANN-to-SNN perspective, designed with a block-wise replacement strategy for ANN-guided learning. By generating intermediate hybrid models that progressively align SNN feature spaces to those of ANN through rate-based features, our framework naturally incorporates rate-based backpropagation as a training method. Our approach achieves results comparable to or better than state-of-the-art SNN distillation methods, showing both training and learning efficiency.
Autonomous underwater vehicles (AUVs) are essential for various applications, including oceanographic surveys, underwater mapping, and infrastructure inspections. Accurate and robust navigation are critical to completing these tasks. To this end, a Doppler velocity log (DVL) and inertial sensors are fused together. Recently, a model-based approach demonstrated the ability to extract the vehicle acceleration vector from DVL velocity measurements. Motivated by this advancement, in this paper we present an end-to-end deep learning approach to estimate the AUV acceleration vector based on past DVL velocity measurements. Based on recorded data from sea experiments, we demonstrate that the proposed method improves acceleration vector estimation by more than 65% compared to the model-based approach by using data-driven techniques. As a result of our data-driven approach, we can enhance navigation accuracy and reliability in AUV applications, contributing to more efficient and effective underwater missions through improved accuracy and reliability.
The rapid advancement of large language models (LLMs) has sparked widespread adoption across diverse applications, making robust evaluation frameworks crucial for assessing their performance. While conventional evaluation metrics remain applicable for shorter texts, their efficacy diminishes when evaluating the quality of long-form answers. This limitation is particularly critical in real-world scenarios involving extended questions, extensive context, and long-form answers, such as financial analysis or regulatory compliance. In this paper, we use a practical financial use case to illustrate applications that handle "long question-context-answer triplets". We construct a real-world financial dataset comprising long triplets and demonstrate the inadequacies of traditional metrics. To address this, we propose an effective Extract, Match, and Score (EMS) evaluation approach tailored to the complexities of long-form LLMs' outputs, providing practitioners with a reliable methodology for assessing LLMs' performance in complex real-world scenarios.
Heart disease remains one of the leading causes of morbidity and mortality worldwide, necessitating the development of effective diagnostic tools to enable early diagnosis and clinical decision-making. This study evaluates the impact of feature selection techniques Mutual Information (MI), Analysis of Variance (ANOVA), and Chi-Square on the predictive performance of various machine learning (ML) and deep learning (DL) models using a dataset of clinical indicators for heart disease. Eleven ML/DL models were assessed using metrics such as precision, recall, AUC score, F1-score, and accuracy. Results indicate that MI outperformed other methods, particularly for advanced models like neural networks, achieving the highest accuracy of 82.3% and recall score of 0.94. Logistic regression (accuracy 82.1%) and random forest (accuracy 80.99%) also demonstrated improved performance with MI. Simpler models such as Naive Bayes and decision trees achieved comparable results with ANOVA and Chi-Square, yielding accuracies of 76.45% and 75.99%, respectively, making them computationally efficient alternatives. Conversely, k Nearest Neighbors (KNN) and Support Vector Machines (SVM) exhibited lower performance, with accuracies ranging between 51.52% and 54.43%, regardless of the feature selection method. This study provides a comprehensive comparison of feature selection methods for heart disease prediction, demonstrating the critical role of feature selection in optimizing model performance. The results offer practical guidance for selecting appropriate feature selection techniques based on the chosen classification algorithm, contributing to the development of more accurate and efficient diagnostic tools for enhanced clinical decision-making in cardiology.
While voice technologies increasingly serve aging populations, current systems exhibit significant performance gaps due to inadequate training data capturing elderly-specific vocal characteristics like presbyphonia and dialectal variations. The limited data available on super-aged individuals in existing elderly speech datasets, coupled with overly simple recording styles and annotation dimensions, exacerbates this issue. To address the critical scarcity of speech data from individuals aged 75 and above, we introduce SeniorTalk, a carefully annotated Chinese spoken dialogue dataset. This dataset contains 55.53 hours of speech from 101 natural conversations involving 202 participants, ensuring a strategic balance across gender, region, and age. Through detailed annotation across multiple dimensions, it can support a wide range of speech tasks. We perform extensive experiments on speaker verification, speaker diarization, speech recognition, and speech editing tasks, offering crucial insights for the development of speech technologies targeting this age group.
When interacting with the world robots face a number of difficult questions, having to make decisions when given under-specified tasks where they need to make choices, often without clearly defined right and wrong answers. Humans, on the other hand, can often rely on their knowledge and experience to fill in the gaps. For example, the simple task of organizing newly bought produce into the fridge involves deciding where to put each thing individually, how to arrange them together meaningfully, e.g. putting related things together, all while there is no clear right and wrong way to accomplish this task. We could encode all this information on how to do such things explicitly into the robots' knowledge base, but this can quickly become overwhelming, considering the number of potential tasks and circumstances the robot could encounter. However, images of the real world often implicitly encode answers to such questions and can show which configurations of objects are meaningful or are usually used by humans. An image of a full fridge can give a lot of information about how things are usually arranged in relation to each other and the full fridge at large. Modern generative systems are capable of generating plausible images of the real world and can be conditioned on the environment in which the robot operates. Here we investigate the idea of using the implicit knowledge about the world of modern generative AI systems given by their ability to generate convincing images of the real world to solve under-specified tasks.
Accurate and contextually faithful responses are critical when applying large language models (LLMs) to sensitive and domain-specific tasks, such as answering queries related to quranic studies. General-purpose LLMs often struggle with hallucinations, where generated responses deviate from authoritative sources, raising concerns about their reliability in religious contexts. This challenge highlights the need for systems that can integrate domain-specific knowledge while maintaining response accuracy, relevance, and faithfulness. In this study, we investigate 13 open-source LLMs categorized into large (e.g., Llama3:70b, Gemma2:27b, QwQ:32b), medium (e.g., Gemma2:9b, Llama3:8b), and small (e.g., Llama3.2:3b, Phi3:3.8b). A Retrieval-Augmented Generation (RAG) is used to make up for the problems that come with using separate models. This research utilizes a descriptive dataset of Quranic surahs including the meanings, historical context, and qualities of the 114 surahs, allowing the model to gather relevant knowledge before responding. The models are evaluated using three key metrics set by human evaluators: context relevance, answer faithfulness, and answer relevance. The findings reveal that large models consistently outperform smaller models in capturing query semantics and producing accurate, contextually grounded responses. The Llama3.2:3b model, even though it is considered small, does very well on faithfulness (4.619) and relevance (4.857), showing the promise of smaller architectures that have been well optimized. This article examines the trade-offs between model size, computational efficiency, and response quality while using LLMs in domain-specific applications.
This study explores the application of machine learning-based genetic linguistics for identifying heavy metal response genes in rice (Oryza sativa). By integrating convolutional neural networks and random forest algorithms, we developed a hybrid model capable of extracting and learning meaningful features from gene sequences, such as k-mer frequencies and physicochemical properties. The model was trained and tested on datasets of genes, achieving high predictive performance (precision: 0.89, F1-score: 0.82). RNA-seq and qRT-PCR experiments conducted on rice leaves which exposed to Hg0, revealed differential expression of genes associated with heavy metal responses, which validated the model's predictions. Co-expression network analysis identified 103 related genes, and a literature review indicated that these genes are highly likely to be involved in heavy metal-related biological processes. By integrating and comparing the analysis results with those of differentially expressed genes (DEGs), the validity of the new machine learning method was further demonstrated. This study highlights the efficacy of combining machine learning with genetic linguistics for large-scale gene prediction. It demonstrates a cost-effective and efficient approach for uncovering molecular mechanisms underlying heavy metal responses, with potential applications in developing stress-tolerant crop varieties.
Approximate deep neural networks (AxDNNs) are promising for enhancing energy efficiency in real-world devices. One of the key contributors behind this enhanced energy efficiency in AxDNNs is the use of approximate multipliers. Unfortunately, the simulation of approximate multipliers does not usually scale well on CPUs and GPUs. As a consequence, this slows down the overall simulation of AxDNNs aimed at identifying the appropriate approximate multipliers to achieve high energy efficiency with a minimum accuracy loss. To address this problem, we present a novel XAI-Gen methodology, which leverages the analytical model of the emerging hardware accelerator (e.g., Google TPU v4) and explainable artificial intelligence (XAI) to precisely identify the non-critical layers for approximation and quickly discover the appropriate approximate multipliers for AxDNN layers. Our results show that XAI-Gen achieves up to 7x lower energy consumption with only 1-2% accuracy loss. We also showcase the effectiveness of the XAI-Gen approach through a neural architecture search (XAI-NAS) case study. Interestingly, XAI-NAS achieves 40\% higher energy efficiency with up to 5x less execution time when compared to the state-of-the-art NAS methods for generating AxDNNs.
We introduce a novel multimodal emotion recognition dataset that enhances the precision of Valence-Arousal Model while accounting for individual differences. This dataset includes electroencephalography (EEG), electrocardiography (ECG), and pulse interval (PI) from 64 participants. Data collection employed two emotion induction paradigms: video stimuli that targeted different valence levels (positive, neutral, and negative) and the Mannheim Multicomponent Stress Test (MMST), which induced high arousal through cognitive, emotional, and social stressors. To enrich the dataset, participants' personality traits, anxiety, depression, and emotional states were assessed using validated questionnaires. By capturing a broad spectrum of affective responses while accounting for individual differences, this dataset provides a robust resource for precise emotion modeling. The integration of multimodal physiological data with psychological assessments lays a strong foundation for personalized emotion recognition. We anticipate this resource will support the development of more accurate, adaptive, and individualized emotion recognition systems across diverse applications.
Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text. LMs have a wide range of applications in natural language processing (NLP) tasks, including autocomplete and machine translation. Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources. Distributed computing strategies offer essential solutions for improving scalability and managing the growing computational demand. Further, the use of sensitive datasets in training and deployment raises significant privacy concerns. Recent research has focused on developing decentralized techniques to enable distributed training and inference while utilizing diverse computational resources and enabling edge AI. This paper presents a survey on distributed solutions for various LMs, including large language models (LLMs), vision language models (VLMs), multimodal LLMs (MLLMs), and small language models (SLMs). While LLMs focus on processing and generating text, MLLMs are designed to handle multiple modalities of data (e.g., text, images, and audio) and to integrate them for broader applications. To this end, this paper reviews key advancements across the MLLM pipeline, including distributed training, inference, fine-tuning, and deployment, while also identifying the contributions, limitations, and future areas of improvement. Further, it categorizes the literature based on six primary focus areas of decentralization. Our analysis describes gaps in current methodologies for enabling distributed solutions for LMs and outline future research directions, emphasizing the need for novel solutions to enhance the robustness and applicability of distributed LMs.
Generative AI (GenAI) browser assistants integrate powerful capabilities of GenAI in web browsers to provide rich experiences such as question answering, content summarization, and agentic navigation. These assistants, available today as browser extensions, can not only track detailed browsing activity such as search and click data, but can also autonomously perform tasks such as filling forms, raising significant privacy concerns. It is crucial to understand the design and operation of GenAI browser extensions, including how they collect, store, process, and share user data. To this end, we study their ability to profile users and personalize their responses based on explicit or inferred demographic attributes and interests of users. We perform network traffic analysis and use a novel prompting framework to audit tracking, profiling, and personalization by the ten most popular GenAI browser assistant extensions. We find that instead of relying on local in-browser models, these assistants largely depend on server-side APIs, which can be auto-invoked without explicit user interaction. When invoked, they collect and share webpage content, often the full HTML DOM and sometimes even the user's form inputs, with their first-party servers. Some assistants also share identifiers and user prompts with third-party trackers such as Google Analytics. The collection and sharing continues even if a webpage contains sensitive information such as health or personal information such as name or SSN entered in a web form. We find that several GenAI browser assistants infer demographic attributes such as age, gender, income, and interests and use this profile--which carries across browsing contexts--to personalize responses. In summary, our work shows that GenAI browser assistants can and do collect personal and sensitive information for profiling and personalization with little to no safeguards.
We investigate the potential of enhancing small (<20 kg) drone endurance by exploiting the high energy density of hydrocarbons using a prototype generator based on commercial-off-the-shelf (COTS) thermoelectric energy conversion technology. A proof-of-concept prototype was developed to vet design and engineering challenges and to bolster validity of resultant conclusions. The combination of the prototype performance and modeling suggests that endurance augmentation remains a difficult technical challenge with no clear immediate remedy despite many expectant alternatives. Across a sample of representative drones including ground- and air-based, multicopter and fixed wing drones, we report the following: from their current maximum values of 12%, thermoelectric (TE) generator module efficiencies must increase by over two times to achieve endurance parity with lithium batteries for VTOL multicopters. On the other hand, current TE efficiencies can compete with lithium batteries for some low power fixed wing and ground-based drones. Technical contributors for these results include weight of non-energy contributing components, low specific power and the associated tradeoff between specific power and specific energy due to fuel mass fraction, and lastly, low efficiencies.
In this work we unify two existing lines of work towards cache analysis for non-LRU policies. To this end, we extend the notion of competitiveness to block-wise competitiveness and systematically analyze the competitiveness and block competitiveness of FIFO and MRU relative to LRU for arbitrary associativities. We show how competitiveness and block competitiveness can be exploited in state-of-the-art WCET analysis based on the results of existing persistence analyses for LRU. Unlike prior work, our approach is applicable to microarchitectures that exhibit timing anomalies. We experimentally evaluate the precision and cost of our approach on benchmarks from TACLeBench. The experiments demonstrate that quantitative cache analysis for FIFO and MRU comes close to the precision of LRU.
A key trait of stochastic optimizers is that multiple runs of the same optimizer in attempting to solve the same problem can produce different results. As a result, their performance is evaluated over several repeats, or runs, on the problem. However, the accuracy of the estimated performance metrics depends on the number of runs and should be studied using statistical tools. We present a statistical analysis of the common metrics, and develop guidelines for experiment design to measure the optimizer's performance using these metrics to a high level of confidence and accuracy. To this end, we first discuss the confidence interval of the metrics and how they are related to the number of runs of an experiment. We then derive a lower bound on the number of repeats in order to guarantee achieving a given accuracy in the metrics. Using this bound, we propose an algorithm to adaptively adjust the number of repeats needed to ensure the accuracy of the evaluated metric. Our simulation results demonstrate the utility of our analysis and how it allows us to conduct reliable benchmarking as well as hyperparameter tuning and prevent us from drawing premature conclusions regarding the performance of stochastic optimizers.
Monocular 3D estimation is crucial for visual perception. However, current methods fall short by relying on oversimplified assumptions, such as pinhole camera models or rectified images. These limitations severely restrict their general applicability, causing poor performance in real-world scenarios with fisheye or panoramic images and resulting in substantial context loss. To address this, we present UniK3D, the first generalizable method for monocular 3D estimation able to model any camera. Our method introduces a spherical 3D representation which allows for better disentanglement of camera and scene geometry and enables accurate metric 3D reconstruction for unconstrained camera models. Our camera component features a novel, model-independent representation of the pencil of rays, achieved through a learned superposition of spherical harmonics. We also introduce an angular loss, which, together with the camera module design, prevents the contraction of the 3D outputs for wide-view cameras. A comprehensive zero-shot evaluation on 13 diverse datasets demonstrates the state-of-the-art performance of UniK3D across 3D, depth, and camera metrics, with substantial gains in challenging large-field-of-view and panoramic settings, while maintaining top accuracy in conventional pinhole small-field-of-view domains. Code and models are available at github.com/lpiccinelli-eth/unik3d .
Robust and precise robotic assembly entails insertion of constituent components. Insertion success is hindered when noise in scene understanding exceeds tolerance limits, especially when fabricated with tight tolerances. In this work, we propose ContactFusion which combines global mapping with local contact information, fusing point clouds with force sensing. Our method entails a Rejection Sampling based contact occupancy sensing procedure which estimates contact locations on the end-effector from Force/Torque sensing at the wrist. We demonstrate how to fuse contact with visual information into a Stochastic Poisson Surface Map (SPSMap) - a map representation that can be updated with the Stochastic Poisson Surface Reconstruction (SPSR) algorithm. We first validate the contact occupancy sensor in simulation and show its ability to detect the contact location on the robot from force sensing information. Then, we evaluate our method in a peg-in-hole task, demonstrating an improvement in the hole pose estimate with the fusion of the contact information with the SPSMap.
Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts without model update. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high detection accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the DEcision Feedback INcontExt Detection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts as pseudo-labels to improve the detection for subsequent symbols. Furthermore, we proposed another detection method where we combine ICL with Semi-Supervised Learning (SSL) to extract information from both labeled and unlabeled data during inference, thus avoiding the errors propagated during the decision feedback process of the original DEFINED. Extensive experiments across a broad range of wireless communication settings demonstrate that a small Transformer trained with DEFINED or IC-SSL achieves significant performance improvements over conventional methods, in some cases only needing a single pilot pair to achieve similar performance of the latter with more than 4 pilot pairs.
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
Trusted Execution Environments (TEEs) have emerged at the forefront of edge computing to combat the lack of trust between system components. Field Programmable Gate Arrays (FPGAs) are commonly used as edge computers but were not created with security as a primary consideration. Thus, FPGA-based edge computers are increasingly the target of cyberattacks. We analyze the existing literature to systematize the applications and features of FPGA-based TEEs. We identified 27 primary studies related to different types of System-on-Chip FPGA-based TEEs. Across a wide range of applications and features, the availability of extensible solutions is limited. Most solutions focus on specific features and applications, whereas few solutions focus on feature-rich, comprehensive TEEs that can be utilized across computer systems. Whether TEEs are specific or extensible, the paucity of published studies provides evidence of research gaps. This SoK delineates these gaps revealing opportunities for researchers and developers.
Many environments, such as unvisited planetary surfaces and oceanic regions, remain unexplored due to a lack of prior knowledge. Autonomous vehicles must sample upon arrival, process data, and either transmit findings to a teleoperator or decide where to explore next. Teleoperation is suboptimal, as human intuition lacks mathematical guarantees for optimality. This study evaluates an informative path planning algorithm for mapping a scalar variable distribution while minimizing travel distance and ensuring model convergence. We compare traditional open loop coverage methods (e.g., Boustrophedon, Spiral) with information-theoretic approaches using Gaussian processes, which update models iteratively with confidence metrics. The algorithm's performance is tested on three surfaces, a parabola, Townsend function, and lunar crater hydration map, to assess noise, convexity, and function behavior. Results demonstrate that information-driven methods significantly outperform naive exploration in reducing model error and travel distance while improving convergence potential.
Computer manufacturers typically offer platforms for users to report faults. However, there remains a significant gap in these platforms' ability to effectively utilize textual reports, which impedes users from describing their issues in their own words. In this context, Natural Language Processing (NLP) offers a promising solution, by enabling the analysis of user-generated text. This paper presents an innovative approach that employs NLP models to classify user reports for detecting faulty computer components, such as CPU, memory, motherboard, video card, and more. In this work, we build a dataset of 341 user reports obtained from many sources. Additionally, through extensive experimental evaluation, our approach achieved an accuracy of 79% with our dataset.
We propose a model-agnostic, progressive test-time energy adaptation approach for medical image segmentation. Maintaining model performance across diverse medical datasets is challenging, as distribution shifts arise from inconsistent imaging protocols and patient variations. Unlike domain adaptation methods that require multiple passes through target data - impractical in clinical settings - our approach adapts pretrained models progressively as they process test data. Our method leverages a shape energy model trained on source data, which assigns an energy score at the patch level to segmentation maps: low energy represents in-distribution (accurate) shapes, while high energy signals out-of-distribution (erroneous) predictions. By minimizing this energy score at test time, we refine the segmentation model to align with the target distribution. To validate the effectiveness and adaptability, we evaluated our framework on eight public MRI (bSSFP, T1- and T2-weighted) and X-ray datasets spanning cardiac, spinal cord, and lung segmentation. We consistently outperform baselines both quantitatively and qualitatively.
The Rashomon set of equally-good models promises less discriminatory algorithms, reduced outcome homogenization, and fairer decisions through model ensembles or reconciliation. However, we argue from the perspective of allocation multiplicity that these promises may remain unfulfilled. When there are more qualified candidates than resources available, many different allocations of scarce resources can achieve the same utility. This space of equal-utility allocations may not be faithfully reflected by the Rashomon set, as we show in a case study of healthcare allocations. We attribute these unfulfilled promises to several factors: limitations in empirical methods for sampling from the Rashomon set, the standard practice of deterministically selecting individuals with the lowest risk, and structural biases that cause all equally-good models to view some qualified individuals as inherently risky.
Explainable Artificial Intelligence (XAI) aims to uncover the inner reasoning of machine learning models. In IoT systems, XAI improves the transparency of models processing sensor data from multiple heterogeneous devices, ensuring end-users understand and trust their outputs. Among the many applications, XAI has also been applied to sensor-based Activities of Daily Living (ADLs) recognition in smart homes. Existing approaches highlight which sensor events are most important for each predicted activity, using simple rules to convert these events into natural language explanations for non-expert users. However, these methods produce rigid explanations lacking natural language flexibility and are not scalable. With the recent rise of Large Language Models (LLMs), it is worth exploring whether they can enhance explanation generation, considering their proven knowledge of human activities. This paper investigates potential approaches to combine XAI and LLMs for sensor-based ADL recognition. We evaluate if LLMs can be used: a) as explainable zero-shot ADL recognition models, avoiding costly labeled data collection, and b) to automate the generation of explanations for existing data-driven XAI approaches when training data is available and the goal is higher recognition rates. Our critical evaluation provides insights into the benefits and challenges of using LLMs for explainable ADL recognition.
Scientific publications significantly impact academic-related decisions in computer science, where top-tier conferences are particularly influential. However, efforts required to produce a publication differ drastically across various subfields. While existing citation-based studies compare venues within areas, cross-area comparisons remain challenging due to differing publication volumes and citation practices. To address this gap, we introduce the concept of ICLR points, defined as the average effort required to produce one publication at top-tier machine learning conferences such as ICLR, ICML, and NeurIPS. Leveraging comprehensive publication data from DBLP (2019--2023) and faculty information from CSRankings, we quantitatively measure and compare the average publication effort across 27 computer science sub-areas. Our analysis reveals significant differences in average publication effort, validating anecdotal perceptions: systems conferences generally require more effort per publication than AI conferences. We further demonstrate the utility of the ICLR points metric by evaluating publication records of current faculties and recent faculty candidates. Our findings highlight how using this metric enables more meaningful cross-area comparisons in academic evaluation processes. Lastly, we discuss the metric's limitations and caution against its misuse, emphasizing the necessity of holistic assessment criteria beyond publication metrics alone.
Digital system design lectures are mandatory in the electrical and electronics engineering curriculum. Besides HDL simulators and viewers, FPGA boards are necessary for the real implementation of HDL, which were previously costly for students. With the emergence of low-cost FPGA boards, the use of take-home labs is increasing. The COVID-19 pandemic has further accelerated this process. Traditional lab sessions have limitations, prompting the exploration of take-home lab kits to enhance learning flexibility and engagement. This study aims to evaluate the effectiveness of a low-cost take-home lab kit, consisting of a Tang Nano 9K FPGA board and a Saleae Logic Analyzer, in improving students' practical skills and sparking curiosity in digital system design. The research was conducted in the EEE 303 Digital Design lecture. Students used the Tang Nano 9K FPGA and Saleae Logic Analyzer for a term project involving PWM signal generation. Data was collected through a survey assessing the kit's impact on learning and engagement. Positive Acceptance: 75% of students agreed or strongly agreed that the take-home lab kit was beneficial. Preference for Lab Types: 60% of students preferred classical weekly lab hours over take-home labs. Increased Curiosity: 65% of students conducted additional, unassigned experiments, indicating heightened interest and engagement. The take-home lab kit effectively aids in learning practical aspects of digital system design and stimulates curiosity, though some students prefer traditional lab sessions for group work.
Plant diseases significantly threaten global food security by reducing crop yields and undermining agricultural sustainability. AI-driven automated classification has emerged as a promising solution, with deep learning models demonstrating impressive performance in plant disease identification. However, deploying these models on mobile and edge devices remains challenging due to high computational demands and resource constraints, highlighting the need for lightweight, accurate solutions for accessible smart agriculture systems. To address this, we propose MobilePlantViT, a novel hybrid Vision Transformer (ViT) architecture designed for generalized plant disease classification, which optimizes resource efficiency while maintaining high performance. Extensive experiments across diverse plant disease datasets of varying scales show our model's effectiveness and strong generalizability, achieving test accuracies ranging from 80% to over 99%. Notably, with only 0.69 million parameters, our architecture outperforms the smallest versions of MobileViTv1 and MobileViTv2, despite their higher parameter counts. These results underscore the potential of our approach for real-world, AI-powered automated plant disease classification in sustainable and resource-efficient smart agriculture systems. All codes will be available in the GitHub repository: https://github.com/moshiurtonmoy/MobilePlantViT
This work concerns itself with the task of reconstructing all edges of an arbitrary 3D wire-frame model projected to an image plane. We explore a bottom-up part-wise procedure undertaken by an RL agent to segment and reconstruct these 2D multipart objects. The environment's state is represented as a four-colour image, where different colours correspond to background, a target edge, a reconstruction line, and the overlap of both. At each step, the agent can transform the reconstruction line within a four-dimensional action space or terminate the episode using a specific termination action. To investigate the impact of reward function formulations, we tested episodic and incremental rewards, as well as combined approaches. Empirical results demonstrated that the latter yielded the most effective training performance. To further enhance efficiency and stability, we introduce curriculum learning strategies. First, an action-based curriculum was implemented, where the agent was initially restricted to a reduced action space, being able to only perform three of the five possible actions, before progressing to the full action space. Second, we test a task-based curriculum, where the agent first solves a simplified version of the problem before being presented with the full, more complex task. This second approach produced promising results, as the agent not only successfully transitioned from learning the simplified task to mastering the full task, but in doing so gained significant performance. This study demonstrates the potential of an iterative RL wire-frame reconstruction in two dimensions. By combining optimized reward function formulations with curriculum learning strategies, we achieved significant improvements in training success. The proposed methodology provides an effective framework for solving similar tasks and represents a promising direction for future research in the field.
As 3D content creation continues to grow, transferring semantic textures between 3D meshes remains a significant challenge in computer graphics. While recent methods leverage text-to-image diffusion models for texturing, they often struggle to preserve the appearance of the source texture during texture transfer. We present \ourmethod, a novel approach that learns a volumetric texture field from a single textured mesh by mapping semantic features to surface colors. Using an efficient triplane-based architecture, our method enables semantic-aware texture transfer to a novel target mesh. Despite training on just one example, it generalizes effectively to diverse shapes within the same category. Extensive evaluation on our newly created benchmark dataset shows that \ourmethod{} achieves superior texture transfer quality and fast inference times compared to existing methods. Our approach advances single-example texture transfer, providing a practical solution for maintaining visual coherence across related 3D models in applications like game development and simulation.
The increasing integration of Visual Language Models (VLMs) into visualization systems demands a comprehensive understanding of their visual interpretation capabilities and constraints. While existing research has examined individual models, systematic comparisons of VLMs' visualization literacy remain unexplored. We bridge this gap through a rigorous, first-of-its-kind evaluation of four leading VLMs (GPT-4, Claude, Gemini, and Llama) using standardized assessments: the Visualization Literacy Assessment Test (VLAT) and Critical Thinking Assessment for Literacy in Visualizations (CALVI). Our methodology uniquely combines randomized trials with structured prompting techniques to control for order effects and response variability - a critical consideration overlooked in many VLM evaluations. Our analysis reveals that while specific models demonstrate competence in basic chart interpretation (Claude achieving 67.9% accuracy on VLAT), all models exhibit substantial difficulties in identifying misleading visualization elements (maximum 30.0\% accuracy on CALVI). We uncover distinct performance patterns: strong capabilities in interpreting conventional charts like line charts (76-96% accuracy) and detecting hierarchical structures (80-100% accuracy), but consistent difficulties with data-dense visualizations involving multiple encodings (bubble charts: 18.6-61.4%) and anomaly detection (25-30% accuracy). Significantly, we observe distinct uncertainty management behavior across models, with Gemini displaying heightened caution (22.5% question omission) compared to others (7-8%). These findings provide crucial insights for the visualization community by establishing reliable VLM evaluation benchmarks, identifying areas where current models fall short, and highlighting the need for targeted improvements in VLM architectures for visualization tasks.
Despite the remarkable acceleration of robotic development through advanced simulation technology, robotic applications are often subject to performance reductions in real-world deployment due to the inherent discrepancy between simulation and reality, often referred to as the "sim-to-real gap". This gap arises from factors like model inaccuracies, environmental variations, and unexpected disturbances. Similarly, model discrepancies caused by system degradation over time or minor changes in the system's configuration also hinder the effectiveness of the developed methodologies. Effectively closing these gaps is critical and remains an open challenge. This work proposes a lightweight conformal mapping framework to transfer control and planning policies from an expert teacher to a degraded less capable learner. The method leverages Schwarz-Christoffel Mapping (SCM) to geometrically map teacher control inputs into the learner's command space, ensuring maneuver consistency. To demonstrate its generality, the framework is applied to two representative types of control and planning methods in a path-tracking task: 1) a discretized motion primitives command transfer and 2) a continuous Model Predictive Control (MPC)-based command transfer. The proposed framework is validated through extensive simulations and real-world experiments, demonstrating its effectiveness in reducing the sim-to-real gap by closely transferring teacher commands to the learner robot.
Realistic crowd simulations are essential for immersive virtual environments, relying on both individual behaviors (microscopic dynamics) and overall crowd patterns (macroscopic characteristics). While recent data-driven methods like deep reinforcement learning improve microscopic realism, they often overlook critical macroscopic features such as crowd density and flow, which are governed by spatio-temporal spawn dynamics, namely, when and where agents enter a scene. Traditional methods, like random spawn rates, stochastic processes, or fixed schedules, are not guaranteed to capture the underlying complexity or lack diversity and realism. To address this issue, we propose a novel approach called nTPP-GMM that models spatio-temporal spawn dynamics using Neural Temporal Point Processes (nTPPs) that are coupled with a spawn-conditional Gaussian Mixture Model (GMM) for agent spawn and goal positions. We evaluate our approach by orchestrating crowd simulations of three diverse real-world datasets with nTPP-GMM. Our experiments demonstrate the orchestration with nTPP-GMM leads to realistic simulations that reflect real-world crowd scenarios and allow crowd analysis.
Android applications collecting data from users must protect it according to the current legal frameworks. Such data protection has become even more important since in 2018 the European Union rolled out the General Data Protection Regulation (GDPR). Since app developers are not legal experts, they find it difficult to integrate privacy-aware practices into source code development. Despite these legal obligations, developers have limited tool support to reason about data protection throughout their app development process. This paper explores the use of static program slicing and software visualization to analyze privacy-relevant data flows in Android apps. We introduce SliceViz, a web tool that analyzes an Android app by slicing all privacy-relevant data sources detected in the source code on the back-end. It then helps developers by visualizing these privacy-relevant program slices. We conducted a user study with 12 participants demonstrating that SliceViz effectively aids developers in identifying privacy-relevant properties in Android apps. Our findings indicate that program slicing can be employed to identify and reason about privacy-relevant data flows in Android applications. With further usability improvements, developers can be better equipped to handle privacy-sensitive information.
Missing data is prevalent in tabular machine learning (ML) models, and different missing data treatment methods can significantly affect ML model training results. However, little is known about how ML researchers and engineers choose missing data treatment methods and what factors affect their choices. To this end, we conducted a survey of 70 ML researchers and engineers. Our results revealed that most participants were not making informed decisions regarding missing data treatment, which could significantly affect the validity of the ML models trained by these researchers. We advocate for better education on missing data, more standardized missing data reporting, and better missing data analysis tools.
This paper propose iFlame, a novel transformer-based network architecture for mesh generation. While attention-based models have demonstrated remarkable performance in mesh generation, their quadratic computational complexity limits scalability, particularly for high-resolution 3D data. Conversely, linear attention mechanisms offer lower computational costs but often struggle to capture long-range dependencies, resulting in suboptimal outcomes. To address this trade-off, we propose an interleaving autoregressive mesh generation framework that combines the efficiency of linear attention with the expressive power of full attention mechanisms. To further enhance efficiency and leverage the inherent structure of mesh representations, we integrate this interleaving approach into an hourglass architecture, which significantly boosts efficiency. Our approach reduces training time while achieving performance comparable to pure attention-based models. To improve inference efficiency, we implemented a caching algorithm that almost doubles the speed and reduces the KV cache size by seven-eighths compared to the original Transformer. We evaluate our framework on ShapeNet and Objaverse, demonstrating its ability to generate high-quality 3D meshes efficiently. Our results indicate that the proposed interleaving framework effectively balances computational efficiency and generative performance, making it a practical solution for mesh generation. The training takes only 2 days with 4 GPUs on 39k data with a maximum of 4k faces on Objaverse.
The discovery of novel antibiotics is critical to address the growing antimicrobial resistance (AMR). However, pharmaceutical industries face high costs (over $1 billion), long timelines, and a high failure rate, worsened by the rediscovery of known compounds. We propose an LLM-based pipeline that acts as an alarm system, detecting prior evidence of antibiotic activity to prevent costly rediscoveries. The system integrates organism and chemical literature into a Knowledge Graph (KG), ensuring taxonomic resolution, synonym handling, and multi-level evidence classification. We tested the pipeline on a private list of 73 potential antibiotic-producing organisms, disclosing 12 negative hits for evaluation. The results highlight the effectiveness of the pipeline for evidence reviewing, reducing false negatives, and accelerating decision-making. The KG for negative hits and the user interface for interactive exploration will be made publicly available.
Proteins are complex biomolecules that play a central role in various biological processes, making them critical targets for breakthroughs in molecular biology, medical research, and drug discovery. Deciphering their intricate, hierarchical structures, and diverse functions is essential for advancing our understanding of life at the molecular level. Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data to address these challenges. In this paper, we provide a comprehensive review of PRL research, categorizing methodologies into five key areas: feature-based, sequence-based, structure-based, multimodal, and complex-based approaches. To support researchers in this rapidly evolving field, we introduce widely used databases for protein sequences, structures, and functions, which serve as essential resources for model development and evaluation. We also explore the diverse applications of these approaches in multiple domains, demonstrating their broad impact. Finally, we discuss pressing technical challenges and outline future directions to advance PRL, offering insights to inspire continued innovation in this foundational field.
Vision encoders typically generate a large number of visual tokens, providing information-rich representations but significantly increasing computational demands. This raises the question of whether all generated tokens are equally valuable or if some of them can be discarded to reduce computational costs without compromising quality. In this paper, we introduce a new method for determining feature utility based on the idea that less valuable features can be reconstructed from more valuable ones. We implement this concept by integrating an autoencoder with a Gumbel-Softmax selection mechanism, that allows identifying and retaining only the most informative visual tokens. To validate our approach, we compared the performance of the LLaVA-NeXT model, using features selected by our method with randomly selected features. We found that on OCR-based tasks, more than 50% of the visual context can be removed with minimal performance loss, whereas randomly discarding the same proportion of features significantly affects the model capabilities. Furthermore, in general-domain tasks, even randomly retaining only 30% of tokens achieves performance comparable to using the full set of visual tokens. Our results highlight a promising direction towards adaptive and efficient multimodal pruning that facilitates scalable and low-overhead inference without compromising performance.
Relational deep learning (RDL) settles among the most exciting advances in machine learning for relational databases, leveraging the representational power of message passing graph neural networks (GNNs) to derive useful knowledge and run predicting tasks on tables connected through primary-to-foreign key links. The RDL paradigm has been successfully applied to recommendation lately, through its most recent representative deep learning architecture namely, ContextGNN. While acknowledging ContextGNN's improved performance on real-world recommendation datasets and tasks, preliminary tests for the more traditional static link prediction task (aka personalized item recommendation) on the popular Amazon Book dataset have demonstrated how ContextGNN has still room for improvement compared to other state-of-the-art GNN-based recommender systems. To this end, with this paper, we integrate ContextGNN within Elliot, a popular framework for reproducibility and benchmarking analyses, counting around 50 state-of-the-art recommendation models from the literature to date. On such basis, we run preliminary experiments on three standard recommendation datasets and against six state-of-the-art GNN-based recommender systems, confirming similar trends to those observed by the authors in their original paper. The code is publicly available on GitHub: https://github.com/danielemalitesta/Rel-DeepLearning-RecSys.
Logical page segmentation is an important step in document analysis, enabling better semantic representations, information retrieval, and text understanding. Previous approaches define logical segmentation either through text or geometric objects, relying on OCR or precise geometry. To avoid the need for OCR, we define the task purely as segmentation in the image domain. Furthermore, to ensure the evaluation remains unaffected by geometrical variations that do not impact text segmentation, we propose to use only foreground text pixels in the evaluation metric and disregard all background pixels. To support research in logical document segmentation, we introduce TextBite, a dataset of historical Czech documents spanning the 18th to 20th centuries, featuring diverse layouts from newspapers, dictionaries, and handwritten records. The dataset comprises 8,449 page images with 78,863 annotated segments of logically and thematically coherent text. We propose a set of baseline methods combining text region detection and relation prediction. The dataset, baselines and evaluation framework can be accessed at https://github.com/DCGM/textbite-dataset.
Fractional-order differential equations (FDEs) enhance traditional differential equations by extending the order of differential operators from integers to real numbers, offering greater flexibility in modeling complex dynamical systems with nonlocal characteristics. Recent progress at the intersection of FDEs and deep learning has catalyzed a new wave of innovative models, demonstrating the potential to address challenges such as graph representation learning. However, training neural FDEs has primarily relied on direct differentiation through forward-pass operations in FDE numerical solvers, leading to increased memory usage and computational complexity, particularly in large-scale applications. To address these challenges, we propose a scalable adjoint backpropagation method for training neural FDEs by solving an augmented FDE backward in time, which substantially reduces memory requirements. This approach provides a practical neural FDE toolbox and holds considerable promise for diverse applications. We demonstrate the effectiveness of our method in several tasks, achieving performance comparable to baseline models while significantly reducing computational overhead.
Foundation models are at the forefront of an increasing number of critical applications. In regards to technologies such as additive manufacturing (AM), these models have the potential to dramatically accelerate process optimization and, in turn, design of next generation materials. A major challenge that impedes the construction of foundation process-property models is data scarcity. To understand the impact of this challenge, and since foundation models rely on data fusion, in this work we conduct controlled experiments where we focus on the transferability of information across different material systems and properties. More specifically, we generate experimental datasets from 17-4 PH and 316L stainless steels (SSs) in Laser Powder Bed Fusion (LPBF) where we measure the effect of five process parameters on porosity and hardness. We then leverage Gaussian processes (GPs) for process-property modeling in various configurations to test if knowledge about one material system or property can be leveraged to build more accurate machine learning models for other material systems or properties. Through extensive cross-validation studies and probing the GPs' interpretable hyperparameters, we study the intricate relation among data size and dimensionality, complexity of the process-property relations, noise, and characteristics of machine learning models. Our findings highlight the need for structured learning approaches that incorporate domain knowledge in building foundation process-property models rather than relying on uninformed data fusion in data-limited applications.
Large Language Models (LLMs) have demonstrated great promise in generating code, especially when used inside an evolutionary computation framework to iteratively optimize the generated algorithms. However, in some cases they fail to generate competitive algorithms or the code optimization stalls, and we are left with no recourse because of a lack of understanding of the generation process and generated codes. We present a novel approach to mitigate this problem by enabling users to analyze the generated codes inside the evolutionary process and how they evolve over repeated prompting of the LLM. We show results for three benchmark problem classes and demonstrate novel insights. In particular, LLMs tend to generate more complex code with repeated prompting, but additional complexity can hurt algorithmic performance in some cases. Different LLMs have different coding ``styles'' and generated code tends to be dissimilar to other LLMs. These two findings suggest that using different LLMs inside the code evolution frameworks might produce higher performing code than using only one LLM.
Despite significant recent advances in generative acoustic text-to-music (TTM) modeling, robust evaluation of these models lags behind, relying in particular on the popular Fr\'echet Audio Distance (FAD). In this work, we rigorously study the design space of reference-based divergence metrics for evaluating TTM models through (1) designing four synthetic meta-evaluations to measure sensitivity to particular musical desiderata, and (2) collecting and evaluating on MusicPrefs, the first open-source dataset of human preferences for TTM systems. We find that not only is the standard FAD setup inconsistent on both synthetic and human preference data, but that nearly all existing metrics fail to effectively capture desiderata, and are only weakly correlated with human perception. We propose a new metric, the MAUVE Audio Divergence (MAD), computed on representations from a self-supervised audio embedding model. We find that this metric effectively captures diverse musical desiderata (average rank correlation 0.84 for MAD vs. 0.49 for FAD and also correlates more strongly with MusicPrefs (0.62 vs. 0.14).
In this paper, we demonstrate how to leverage 2:4 sparsity, a popular hardware-accelerated GPU sparsity pattern, to activations to accelerate large language model training and inference. Crucially we exploit the intrinsic sparsity found in Squared-ReLU activations to provide this acceleration with no accuracy loss. Our approach achieves up to 1.3x faster Feed Forward Network (FFNs) in both the forwards and backwards pass. This work highlights the potential for sparsity to play a key role in accelerating large language model training and inference.
While detecting and avoiding bias in LLM-generated text is becoming increasingly important, media bias often remains subtle and subjective, making it particularly difficult to identify and mitigate. In this study, we assess media bias in LLM-generated content and LLMs' ability to detect subtle ideological bias. We conduct this evaluation using two datasets, PoliGen and EconoLex, covering political and economic discourse, respectively. We evaluate eight widely used LLMs by prompting them to generate articles and analyze their ideological preferences via self-assessment. By using self-assessment, the study aims to directly measure the models' biases rather than relying on external interpretations, thereby minimizing subjective judgments about media bias. Our results reveal a consistent preference of Democratic over Republican positions across all models. Conversely, in economic topics, biases vary among Western LLMs, while those developed in China lean more strongly toward socialism.
In addition to a proposed codeword, error correction decoders that provide blockwise soft output (SO) return an estimate of the likelihood that the decoding is correct. Following Forney, such estimates are traditionally only possible for list decoders where the soft output is the likelihood that a decoding is correct given it is assumed to be in the list. Recently, it has been established that Guessing Random Additive Noise Decoding (GRAND), Guessing Codeword Decoding (GCD), Ordered Statistics Decoding (OSD), and Successive Cancellation List (SCL) decoding can provide more accurate soft output, even without list decoding. Central to the improvement is a per-decoding estimate of the likelihood that a decoding has not been found that can be readily calculated during the decoding process. Here we explore how linear codebook constraints can be employed to further enhance the precision of such SO. We evaluate performance by adapting a forecasting statistic called the Brier Score. Results indicate that the SO generated by the approach is essentially as accurate as the maximum a posteriori estimate.
Large Language Models (LLMs) have emerged as powerful tools for generating human-like text, transforming human-machine interactions. However, their widespread adoption has raised concerns about their potential to influence public opinion and shape political narratives. In this work, we investigate the geopolitical biases in US and Chinese LLMs, focusing on how these models respond to questions related to geopolitics and international relations. We collected responses from ChatGPT and DeepSeek to a set of geopolitical questions and evaluated their outputs through both qualitative and quantitative analyses. Our findings show notable biases in both models, reflecting distinct ideological perspectives and cultural influences. However, despite these biases, for a set of questions, the models' responses are more aligned than expected, indicating that they can address sensitive topics without necessarily presenting directly opposing viewpoints. This study highlights the potential of LLMs to shape public discourse and underscores the importance of critically assessing AI-generated content, particularly in politically sensitive contexts.
3D intelligence leverages rich 3D features and stands as a promising frontier in AI, with 3D rendering fundamental to many downstream applications. 3D Gaussian Splatting (3DGS), an emerging high-quality 3D rendering method, requires significant computation, making real-time execution on existing GPU-equipped edge devices infeasible. Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs. This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline in modern GPUs. Instead of developing a dedicated accelerator, we enhance existing GPU rasterizer hardware to efficiently support 3DGS operations. Our results demonstrate a 23$\times$ increase in processing speed and a 24$\times$ reduction in energy consumption, with improvements yielding 6$\times$ faster end-to-end runtime for the original 3DGS algorithm and 4$\times$ for the latest efficiency-improved pipeline, achieving 24 FPS and 46 FPS respectively. These enhancements incur only a minimal area overhead of 0.2\% relative to the entire SoC chip area, underscoring the practicality and efficiency of our approach for enabling 3DGS rendering on resource-constrained platforms.
Advancements in vision and language foundation models have inspired the development of geo-foundation models (GeoFMs), enhancing performance across diverse geospatial tasks. However, many existing GeoFMs primarily focus on overhead remote sensing (RS) data while neglecting other data modalities such as ground-level imagery. A key challenge in multimodal GeoFM development is to explicitly model geospatial relationships across modalities, which enables generalizability across tasks, spatial scales, and temporal contexts. To address these limitations, we propose GAIR, a novel multimodal GeoFM architecture integrating overhead RS data, street view (SV) imagery, and their geolocation metadata. We utilize three factorized neural encoders to project an SV image, its geolocation, and an RS image into the embedding space. The SV image needs to be located within the RS image's spatial footprint but does not need to be at its geographic center. In order to geographically align the SV image and RS image, we propose a novel implicit neural representations (INR) module that learns a continuous RS image representation and looks up the RS embedding at the SV image's geolocation. Next, these geographically aligned SV embedding, RS embedding, and location embedding are trained with contrastive learning objectives from unlabeled data. We evaluate GAIR across 10 geospatial tasks spanning RS image-based, SV image-based, and location embedding-based benchmarks. Experimental results demonstrate that GAIR outperforms state-of-the-art GeoFMs and other strong baselines, highlighting its effectiveness in learning generalizable and transferable geospatial representations.
Flow matching offers a robust and stable approach to training diffusion models. However, directly applying flow matching to neural vocoders can result in subpar audio quality. In this work, we present WaveFM, a reparameterized flow matching model for mel-spectrogram conditioned speech synthesis, designed to enhance both sample quality and generation speed for diffusion vocoders. Since mel-spectrograms represent the energy distribution of waveforms, WaveFM adopts a mel-conditioned prior distribution instead of a standard Gaussian prior to minimize unnecessary transportation costs during synthesis. Moreover, while most diffusion vocoders rely on a single loss function, we argue that incorporating auxiliary losses, including a refined multi-resolution STFT loss, can further improve audio quality. To speed up inference without degrading sample quality significantly, we introduce a tailored consistency distillation method for WaveFM. Experiment results demonstrate that our model achieves superior performance in both quality and efficiency compared to previous diffusion vocoders, while enabling waveform generation in a single inference step.
Artificial intelligence (AI) is expected to revolutionize the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in a variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI's progress in medicine, however, has led to concerns regarding the potential effects of this technology upon relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI systems can be relied upon, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness. Insofar as patients are required to rely upon AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.
Graph Neural Networks (GNNs) have gained traction in Graph-based Machine Learning as a Service (GMLaaS) platforms, yet they remain vulnerable to graph-based model extraction attacks (MEAs), where adversaries reconstruct surrogate models by querying the victim model. Existing defense mechanisms, such as watermarking and fingerprinting, suffer from poor real-time performance, susceptibility to evasion, or reliance on post-attack verification, making them inadequate for handling the dynamic characteristics of graph-based MEA variants. To address these limitations, we propose ATOM, a novel real-time MEA detection framework tailored for GNNs. ATOM integrates sequential modeling and reinforcement learning to dynamically detect evolving attack patterns, while leveraging $k$-core embedding to capture the structural properties, enhancing detection precision. Furthermore, we provide theoretical analysis to characterize query behaviors and optimize detection strategies. Extensive experiments on multiple real-world datasets demonstrate that ATOM outperforms existing approaches in detection performance, maintaining stable across different time steps, thereby offering a more effective defense mechanism for GMLaaS environments.
This paper introduces Q-learning with gradient target tracking, a novel reinforcement learning framework that provides a learned continuous target update mechanism as an alternative to the conventional hard update paradigm. In the standard deep Q-network (DQN), the target network is a copy of the online network's weights, held fixed for a number of iterations before being periodically replaced via a hard update. While this stabilizes training by providing consistent targets, it introduces a new challenge: the hard update period must be carefully tuned to achieve optimal performance. To address this issue, we propose two gradient-based target update methods: DQN with asymmetric gradient target tracking (AGT2-DQN) and DQN with symmetric gradient target tracking (SGT2-DQN). These methods replace the conventional hard target updates with continuous and structured updates using gradient descent, which effectively eliminates the need for manual tuning. We provide a theoretical analysis proving the convergence of these methods in tabular settings. Additionally, empirical evaluations demonstrate their advantages over standard DQN baselines, which suggest that gradient-based target updates can serve as an effective alternative to conventional target update mechanisms in Q-learning.
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). owever, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at \href{https://github.com/TyroneLi/CUA_O3D}{CUA_O3D}.
In critical care settings, timely and accurate predictions can significantly impact patient outcomes, especially for conditions like sepsis, where early intervention is crucial. We aim to model patient-specific reward functions in a contextual multi-armed bandit setting. The goal is to leverage patient-specific clinical features to optimize decision-making under uncertainty. This paper proposes NeuroSep-CP-LCB, a novel integration of neural networks with contextual bandits and conformal prediction tailored for early sepsis detection. Unlike the algorithm pool selection problem in the previous paper, where the primary focus was identifying the most suitable pre-trained model for prediction tasks, this work directly models the reward function using a neural network, allowing for personalized and adaptive decision-making. Combining the representational power of neural networks with the robustness of conformal prediction intervals, this framework explicitly accounts for uncertainty in offline data distributions and provides actionable confidence bounds on predictions.
Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth
Simultaneously localizing camera poses and constructing Gaussian radiance fields in dynamic scenes establish a crucial bridge between 2D images and the 4D real world. Instead of removing dynamic objects as distractors and reconstructing only static environments, this paper proposes an efficient architecture that incrementally tracks camera poses and establishes the 4D Gaussian radiance fields in unknown scenarios by using a sequence of RGB-D images. First, by generating motion masks, we obtain static and dynamic priors for each pixel. To eliminate the influence of static scenes and improve the efficiency on learning the motion of dynamic objects, we classify the Gaussian primitives into static and dynamic Gaussian sets, while the sparse control points along with an MLP is utilized to model the transformation fields of the dynamic Gaussians. To more accurately learn the motion of dynamic Gaussians, a novel 2D optical flow map reconstruction algorithm is designed to render optical flows of dynamic objects between neighbor images, which are further used to supervise the 4D Gaussian radiance fields along with traditional photometric and geometric constraints. In experiments, qualitative and quantitative evaluation results show that the proposed method achieves robust tracking and high-quality view synthesis performance in real-world environments.
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models, trained under diverse configurations, were successfully deployed on real hardware. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
This paper presents a novel approach to motion planning for two-wheeled drones that can drive on the ground and fly in the air. Conventional methods for two-wheeled drone motion planning typically rely on gradient-based optimization and assume that obstacle shapes can be approximated by a differentiable form. To overcome this limitation, we propose a motion planning method based on Model Predictive Path Integral (MPPI) control, enabling navigation through arbitrarily shaped obstacles by switching between driving and flight modes. To handle the instability and rapid solution changes caused by mode switching, our proposed method switches the control space and utilizes the auxiliary controller for MPPI. Our simulation results demonstrate that the proposed method enables navigation in unstructured environments and achieves effective obstacle avoidance through mode switching.
We integrate random sketching techniques into block orthogonalization schemes needed for s-step GMRES. The resulting block orthogonalization schemes generate the basis vectors whose overall orthogonality error is bounded by machine precision as long as each of the corresponding block vectors are numerically full rank. We implement these randomized block orthogonalization schemes using standard distributed-memory linear algebra kernels for s-step GMRES available in the Trilinos software packages. Our performance results on the Perlmutter supercomputer (with four NVIDIA A100 GPUs per node) demonstrate that these randomized techniques can enhance the numerical stability of the orthogonalization and overall solver, without a significant increase in the execution time.
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. Code for CAARMA will be released.
Cloud services have become an essential infrastructure for enterprises and individuals. Access to these cloud services is typically governed by Identity and Access Management systems, where user authentication often relies on passwords. While best practices dictate the implementation of multi-factor authentication, it's a reality that many such users remain solely protected by passwords. This reliance on passwords creates a significant vulnerability, as these credentials can be compromised through various means, including side-channel attacks. This paper exploits keyboard acoustic emanations to infer typed natural language passphrases via unsupervised learning, necessitating no previous training data. Whilst this work focuses on short passphrases, it is also applicable to longer messages, such as confidential emails, where the margin for error is much greater, than with passphrases, making the attack even more effective in such a setting. Unlike traditional attacks that require physical access to the target device, acoustic side-channel attacks can be executed within the vicinity, without the user's knowledge, offering a worthwhile avenue for malicious actors. Our findings replicate and extend previous work, confirming that cross-correlation audio preprocessing outperforms methods like mel-frequency-cepstral coefficients and fast-fourier transforms in keystroke clustering. Moreover, we show that partial passphrase recovery through clustering and a dictionary attack can enable faster than brute-force attacks, further emphasizing the risks posed by this attack vector.
Semantic Interpretability in Reinforcement Learning (RL) enables transparency, accountability, and safer deployment by making the agent's decisions understandable and verifiable. Achieving this, however, requires a feature space composed of human-understandable concepts, which traditionally rely on human specification and fail to generalize to unseen environments. In this work, we introduce Semantically Interpretable Reinforcement Learning with Vision-Language Models Empowered Automation (SILVA), an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization. SILVA first queries a VLM to identify relevant semantic features for an unseen environment, then extracts these features from the environment. Finally, it trains an Interpretable Control Tree via RL, mapping the extracted features to actions in a transparent and interpretable manner. To address the computational inefficiency of extracting features directly with VLMs, we develop a feature extraction pipeline that generates a dataset for training a lightweight convolutional network, which is subsequently used during RL. By leveraging VLMs to automate tree-based RL, SILVA removes the reliance on human annotation previously required by interpretable models while also overcoming the inability of VLMs alone to generate valid robot policies, enabling semantically interpretable reinforcement learning without human-in-the-loop.
Diffusion Transformers (DiTs) have emerged as a leading architecture for text-to-image synthesis, producing high-quality and photorealistic images. However, the quadratic scaling properties of the attention in DiTs hinder image generation with higher resolution or on devices with limited resources. This work introduces an efficient diffusion transformer (EDiT) to alleviate these efficiency bottlenecks in conventional DiTs and Multimodal DiTs (MM-DiTs). First, we present a novel linear compressed attention method that uses a multi-layer convolutional network to modulate queries with local information while keys and values are spatially aggregated. Second, we formulate a hybrid attention scheme for multi-modal inputs that combines linear attention for image-to-image interactions and standard scaled dot-product attention for interactions involving prompts. Merging these two approaches leads to an expressive, linear-time Multimodal Efficient Diffusion Transformer (MM-EDiT). We demonstrate the effectiveness of the EDiT and MM-EDiT architectures by integrating them into PixArt-Sigma(conventional DiT) and Stable Diffusion 3.5-Medium (MM-DiT), achieving up to 2.2x speedup with comparable image quality after distillation.
This article provides a brief overview of the field of Natural Language Generation. The term Natural Language Generation (NLG), in its broadest definition, refers to the study of systems that verbalize some form of information through natural language. That information could be stored in a large database or knowledge graph (in data-to-text applications), but NLG researchers may also study summarisation (text-to-text) or image captioning (image-to-text), for example. As a subfield of Natural Language Processing, NLG is closely related to other sub-disciplines such as Machine Translation (MT) and Dialog Systems. Some NLG researchers exclude MT from their definition of the field, since there is no content selection involved where the system has to determine what to say. Conversely, dialog systems do not typically fall under the header of Natural Language Generation since NLG is just one component of dialog systems (the others being Natural Language Understanding and Dialog Management). However, with the rise of Large Language Models (LLMs), different subfields of Natural Language Processing have converged on similar methodologies for the production of natural language and the evaluation of automatically generated text.
Transformer-based LLMs spend most of their compute in large matrix multiplications for attention and feed-forward layers. Recognizing that the Q, K, and V linear projections within the Multi-Head Self-Attention (MHA) module represent a critical computational bottleneck, we strategically focused our efforts on accelerating these operations. We present a tiled matrix multiplication accelerator optimized for such workloads on a Xilinx KV260 on-board FPGA. Key innovations include persistent on-chip storage for one matrix operand, two-level tiling for data reuse, and a systolic-like unrolled compute engine. Implemented via high-level synthesis (HLS) and integrated with DistilBERT for Q, K, V projections, our accelerator achieves significant speedup and energy efficiency gains over CPU baselines. Standalone GEMM benchmarks show up to a 7x speedup over an ARM CPU (PyTorch) and ~200x over naive numpy, with a throughput of up to 3.1 GFLOPs on 768x3072 matrices. Although the overall end-to-end DistilBERT acceleration is more modest, our results validate the potential of FPGA-based acceleration for critical components of Transformer models.
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems that extend beyond the capabilities of standalone models. By empowering LLMs to perceive external environments, integrate multimodal information, and interact with various tools, these agentic systems exhibit greater autonomy and adaptability across complex tasks. This evolution brings new opportunities to recommender systems (RS): LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations, potentially reshaping the user experience and broadening the application scope of RS. Despite promising early results, fundamental challenges remain, including how to effectively incorporate external knowledge, balance autonomy with controllability, and evaluate performance in dynamic, multimodal settings. In this perspective paper, we first present a systematic analysis of LLM-ARS: (1) clarifying core concepts and architectures; (2) highlighting how agentic capabilities -- such as planning, memory, and multimodal reasoning -- can enhance recommendation quality; and (3) outlining key research questions in areas such as safety, efficiency, and lifelong personalization. We also discuss open problems and future directions, arguing that LLM-ARS will drive the next wave of RS innovation. Ultimately, we foresee a paradigm shift toward intelligent, autonomous, and collaborative recommendation experiences that more closely align with users' evolving needs and complex decision-making processes.
Maintaining engagement in immersive meetings is challenging, particularly when users must catch up on missed content after disruptions. While transcription interfaces can help, table-fixed panels have the potential to distract users from the group, diminishing social presence, while avatar-fixed captions fail to provide past context. We present EngageSync, a context-aware avatar-fixed transcription interface that adapts based on user engagement, offering live transcriptions and LLM-generated summaries to enhance catching up while preserving social presence. We implemented a live VR meeting setup for a 12-participant formative study and elicited design considerations. In two user studies with small (3 avatars) and mid-sized (7 avatars) groups, EngageSync significantly improved social presence (p < .05) and time spent gazing at others in the group instead of the interface over table-fixed panels. Also, it reduced re-engagement time and increased information recall (p < .05) over avatar-fixed interfaces, with stronger effects in mid-sized groups (p < .01).
Generative AI systems powered by Large Language Models (LLMs) usually use content moderation to prevent harmful content spread. To evaluate the robustness of content moderation, several metamorphic testing techniques have been proposed to test content moderation software. However, these techniques mainly focus on general users (e.g., text and image generation). Meanwhile, a recent study shows that developers consider using harmful keywords when naming software artifacts to be an unethical behavior. Exposure to harmful content in software artifacts can negatively impact the mental health of developers, making content moderation for Code Large Language Models (Code LLMs) essential. We conduct a preliminary study on program transformations that can be misused to introduce harmful content into auto-generated code, identifying 32 such transformations. To address this, we propose CHT, a coverage-guided harmfulness testing framework that generates prompts using diverse transformations and harmful keywords injected into benign programs. CHT evaluates output damage to assess potential risks in LLM-generated explanations and code. Our evaluation of four Code LLMs and GPT-4o-mini reveals that content moderation in LLM-based code generation is easily bypassed. To enhance moderation, we propose a two-phase approach that first detects harmful content before generating output, improving moderation effectiveness by 483.76\%.
Eye tracking (ET) is a key enabler for Augmented and Virtual Reality (AR/VR). Prototyping new ET hardware requires assessing the impact of hardware choices on eye tracking performance. This task is compounded by the high cost of obtaining data from sufficiently many variations of real hardware, especially for machine learning, which requires large training datasets. We propose a method for end-to-end evaluation of how hardware changes impact machine learning-based ET performance using only synthetic data. We utilize a dataset of real 3D eyes, reconstructed from light dome data using neural radiance fields (NeRF), to synthesize captured eyes from novel viewpoints and camera parameters. Using this framework, we demonstrate that we can predict the relative performance across various hardware configurations, accounting for variations in sensor noise, illumination brightness, and optical blur. We also compare our simulator with the publicly available eye tracking dataset from the Project Aria glasses, demonstrating a strong correlation with real-world performance. Finally, we present a first-of-its-kind analysis in which we vary ET camera positions, evaluating ET performance ranging from on-axis direct views of the eye to peripheral views on the frame. Such an analysis would have previously required manufacturing physical devices to capture evaluation data. In short, our method enables faster prototyping of ET hardware.
We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity. The test challenges aspects related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and optimal Bayesian inference for planning can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. Our results show no clear evidence of LLM convergence towards a defined level of intelligence, particularly AGI or ASI. We found that LLM model versions tend to be fragile and incremental, as new versions may perform worse than older ones, with progress largely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees model convergence from optimal inference based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. Our findings confirm suspicions regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language. Progress among different LLM versions from the same developers was found to be inconsistent and limited, particularly in the absence of a solid symbolic counterpart.
Speech errors are a natural part of communication, yet they rarely lead to complete communicative failure because both speakers and comprehenders can detect and correct errors. Although prior research has examined error monitoring and correction in production and comprehension separately, integrated investigation of both systems has been impeded by the scarcity of parallel data. In this study, we present SPACER, a parallel dataset that captures how naturalistic speech errors are corrected by both speakers and comprehenders. We focus on single-word substitution errors extracted from the Switchboard corpus, accompanied by speaker's self-repairs and comprehenders' responses from an offline text-editing experiment. Our exploratory analysis suggests asymmetries in error correction strategies: speakers are more likely to repair errors that introduce greater semantic and phonemic deviations, whereas comprehenders tend to correct errors that are phonemically similar to more plausible alternatives or do not fit into prior contexts. Our dataset enables future research on integrated approaches toward studying language production and comprehension.
Computer networks are the foundation of modern digital infrastructure, facilitating global communication and data exchange. As demand for reliable high-bandwidth connectivity grows, advanced network modeling techniques become increasingly essential to optimize performance and predict network behavior. Traditional modeling methods, such as packet-level simulators and queueing theory, have notable limitations --either being computationally expensive or relying on restrictive assumptions that reduce accuracy. In this context, the deep learning-based RouteNet family of models has recently redefined network modeling by showing an unprecedented cost-performance trade-off. In this work, we revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL), an emerging field that models higher-order interactions beyond standard graph-based methods. We demonstrate that, although originally formulated as a heterogeneous Graph Neural Network, RouteNet serves as the first instantiation of a new form of TDL. More specifically, this paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces, and shows that RouteNet's architecture can be naturally described as an ordered topological neural network. To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles --which we confirm through extensive testbed experiments--, laying the foundation for the next generation of ordered TDL-driven applications.
3D Gaussian Splatting (3DGS) has significantly improved the efficiency and realism of three-dimensional scene visualization in several applications, ranging from robotics to eXtended Reality (XR). This work presents SAGE (Semantic-Driven Adaptive Gaussian Splatting in Extended Reality), a novel framework designed to enhance the user experience by dynamically adapting the Level of Detail (LOD) of different 3DGS objects identified via a semantic segmentation. Experimental results demonstrate how SAGE effectively reduces memory and computational overhead while keeping a desired target visual quality, thus providing a powerful optimization for interactive XR applications.
Modern DRAM is vulnerable to read disturbance (e.g., RowHammer and RowPress) that significantly undermines the robust operation of the system. Repeatedly opening and closing a DRAM row (RowHammer) or keeping a DRAM row open for a long period of time (RowPress) induces bitflips in nearby unaccessed DRAM rows. Prior works on DRAM read disturbance either 1) perform experimental characterization using commercial-off-the-shelf (COTS) DRAM chips to demonstrate the high-level characteristics of the read disturbance bitflips, or 2) perform device-level simulations to understand the low-level error mechanisms of the read disturbance bitflips. In this paper, we attempt to align and cross-validate the real-chip experimental characterization results and state-of-the-art device-level studies of DRAM read disturbance. To do so, we first identify and extract the key bitflip characteristics of RowHammer and RowPress from the device-level error mechanisms studied in prior works. Then, we perform experimental characterization on 96 COTS DDR4 DRAM chips that directly match the data and access patterns studied in the device-level works. Through our experiments, we identify fundamental inconsistencies in the RowHammer and RowPress bitflip directions and access pattern dependence between experimental characterization results and the device-level error mechanisms. Based on our results, we hypothesize that either 1) the retention failure based DRAM architecture reverse-engineering methodologies do not fully work on modern DDR4 DRAM chips, or 2) existing device-level works do not fully uncover all the major read disturbance error mechanisms. We hope our findings inspire and enable future works to build a more fundamental and comprehensive understanding of DRAM read disturbance.
This letter studies the impact of fluid antenna system (FAS) technology on the performance of unmanned aerial vehicle (UAV)-assisted multiuser communication networks. Specifically, we consider a scenario where a fixed-position antenna (FPA) base station (BS) serves K FAS-equipped users with the assistance of a UAV acting as an aerial relay. The BS employs rate-splitting multiple access (RSMA), while the UAV operates in half-duplex (HD) mode using the decode-and-forward (DF) strategy. For this system, we derive a compact analytical expression for the outage probability (OP) and its asymptotic behavior in the high signal-to-noise ratio (SNR) regime, leveraging the multivariate t-distribution. Our results show how deploying FAS at ground users (GUs) in UAV-aided communications improves overall system performance compared to using FPA GUs.
TThe paper proposes the Consensus Augmented Lagrange Alternating Direction Inexact Newton (Consensus ALADIN) algorithm, a novel approach for solving distributed consensus optimization problems (DC). Consensus ALADIN allows each agent to independently solve its own nonlinear programming problem while coordinating with other agents by solving a consensus quadratic programming (QP) problem. Building on this, we propose Broyden-Fletcher-Goldfarb-Shanno (BFGS) Consensus ALADIN, a communication-and-computation-efficient Consensus ALADIN.BFGS Consensus ALADIN improves communication efficiency through BFGS approximation techniques and enhances computational efficiency by deriving a closed form for the consensus QP problem. Additionally, by replacing the BFGS approximation with a scaled identity matrix, we develop Reduced Consensus ALADIN, a more computationally efficient variant. We establish the convergence theory for Consensus ALADIN and demonstrate its effectiveness through application to a non-convex sensor allocation problem.
Large data applications rely on storing data in massive, sparse graphs with millions to trillions of nodes. Graph-based methods, such as node prediction, aim for computational efficiency regardless of graph size. Techniques like localized approximate personalized page rank (APPR) solve sparse linear systems with complexity independent of graph size, but is in terms of the maximum node degree, which can be much larger in practice than the average node degree for real-world large graphs. In this paper, we consider an \emph{online subsampled APPR method}, where messages are intentionally dropped at random. We use tools from graph sparsifiers and matrix linear algebra to give approximation bounds on the graph's spectral properties ($O(1/\epsilon^2)$ edges), and node classification performance (added $O(n\epsilon)$ overhead).
We study the problem of stabilizing an unknown partially observable linear time-invariant (LTI) system. For fully observable systems, leveraging an unstable/stable subspace decomposition approach, state-of-art sample complexity is independent from system dimension $n$ and only scales with respect to the dimension of the unstable subspace. However, it remains open whether such sample complexity can be achieved for partially observable systems because such systems do not admit a uniquely identifiable unstable subspace. In this paper, we propose LTS-P, a novel technique that leverages compressed singular value decomposition (SVD) on the ''lifted'' Hankel matrix to estimate the unstable subsystem up to an unknown transformation. Then, we design a stabilizing controller that integrates a robust stabilizing controller for the unstable mode and a small-gain-type assumption on the stable subspace. We show that LTS-P stabilizes unknown partially observable LTI systems with state-of-the-art sample complexity that is dimension-free and only scales with the number of unstable modes, which significantly reduces data requirements for high-dimensional systems with many stable modes.
The perception of flicker has been a prominent concern in illumination and electronic display fields for over a century. Traditional approaches often rely on Critical Flicker Frequency (CFF), primarily suited for high-contrast (full-on, full-off) flicker. To tackle varying contrast flicker, the International Committee for Display Metrology (ICDM) introduced a Temporal Contrast Sensitivity Function TCSF$_{IDMS}$ within the Information Display Measurements Standard (IDMS). Nevertheless, this standard overlooks crucial parameters: luminance, eccentricity, and area. Existing models incorporating these parameters are inadequate for flicker detection, especially at low spatial frequencies. To address these limitations, we extend the TCSF$_{IDMS}$ and combine it with a new spatial probability summation model to incorporate the effects of luminance, eccentricity, and area (elaTCSF). We train the elaTCSF on various flicker detection datasets and establish the first variable refresh rate flicker detection dataset for further verification. Additionally, we contribute to resolving a longstanding debate on whether the flicker is more visible in peripheral vision. We demonstrate how elaTCSF can be used to predict flicker due to low-persistence in VR headsets, identify flicker-free VRR operational ranges, and determine flicker sensitivity in lighting design.
Until quite recently, the backbone of nearly every state-of-the-art computer vision model has been the 2D convolution. At its core, a 2D convolution simultaneously mixes information across both the spatial and channel dimensions of a representation. Many recent computer vision architectures consist of sequences of isotropic blocks that disentangle the spatial and channel-mixing components. This separation of the operations allows us to more closely juxtapose the effects of spatial and channel mixing in deep learning. In this paper, we take an initial step towards garnering a deeper understanding of the roles of these mixing operations. Through our experiments and analysis, we discover that on both classical (ResNet) and cutting-edge (ConvMixer) models, we can reach nearly the same level of classification performance by and leaving the spatial mixers at their random initializations. Furthermore, we show that models with random, fixed spatial mixing are naturally more robust to adversarial perturbations. Lastly, we show that this phenomenon extends past the classification regime, as such models can also decode pixel-shuffled images.
We introduce BeaMsteerX (BMX), a novel mmWave hand hygiene gesture recognition technique that improves accuracy in longer ranges (1.5m). BMX steers a mmWave beam towards multiple directions around the subject, generating multiple views of the gesture that are then intelligently combined using deep learning to enhance gesture classification. We evaluated BMX using off-the-shelf mmWave radars and collected a total of 7,200 hand hygiene gesture data from 10 subjects performing a six-step hand-rubbing procedure, as recommended by the World Health Organization, using sanitizer, at 1.5m -- over five times longer than in prior works. BMX outperforms state-of-the-art approaches by 31--43% and achieves 91% accuracy at boresight by combining only two beams, demonstrating superior gesture classification in low SNR scenarios. BMX maintained its effectiveness even when the subject was positioned 30 degrees away from the boresight, exhibiting a modest 5% drop in accuracy.
In this paper, a thermodynamically consistent phase-field model is proposed to describe the mass transport and reaction processes of multiple species in a fluid. A key feature of this model is that reactions between different species occur only at the interface, and may induce deformation of the interface. For the governing equations derived based on the energy variational method, we propose a structure-preserving numerical scheme that satisfies the mass conservation and energy dissipation laws at the discrete level. Furthermore, we carry out a rigorous error analysis of the time-discrete scheme for a simplified case. A series of numerical experiments are conducted to validate the effectiveness of the model as well as the accuracy and stability of the scheme. In particular, we simulate microvessels with straight and bifurcated structures to illustrate the risk of microaneurysm formation.
Mainstream visual object tracking frameworks predominantly rely on template matching paradigms. Their performance heavily depends on the quality of template features, which becomes increasingly challenging to maintain in complex scenarios involving target deformation, occlusion, and background clutter. While existing spatiotemporal memory-based trackers emphasize memory capacity expansion, they lack effective mechanisms for dynamic feature selection and adaptive fusion. To address this gap, we propose a Dynamic Attention Mechanism in Spatiotemporal Memory Network (DASTM) with two key innovations: 1) A differentiable dynamic attention mechanism that adaptively adjusts channel-spatial attention weights by analyzing spatiotemporal correlations between the templates and memory features; 2) A lightweight gating network that autonomously allocates computational resources based on target motion states, prioritizing high-discriminability features in challenging scenarios. Extensive evaluations on OTB-2015, VOT 2018, LaSOT, and GOT-10K benchmarks demonstrate our DASTM's superiority, achieving state-of-the-art performance in success rate, robustness, and real-time efficiency, thereby offering a novel solution for real-time tracking in complex environments.
In recent years, Language Models for Code (LLM4Code) have significantly changed the landscape of software engineering (SE) on downstream tasks, such as code generation, by making software development more efficient. Therefore, a growing interest has emerged in further evaluating these Language Models to homogenize the quality assessment of generated code. As the current evaluation process can significantly overreact on accuracy-based metrics, practitioners often seek methods to interpret LLM4Code outputs beyond canonical benchmarks. While the majority of research reports on code generation effectiveness in terms of expected ground truth, scant attention has been paid to LLMs' explanations. In essence, the decision-making process to generate code is hard to interpret. To bridge this evaluation gap, we introduce code rationales (Code$Q$), a technique with rigorous mathematical underpinning, to identify subsets of tokens that can explain individual code predictions. We conducted a thorough Exploratory Analysis to demonstrate the method's applicability and a User Study to understand the usability of code-based explanations. Our evaluation demonstrates that Code$Q$ is a powerful interpretability method to explain how (less) meaningful input concepts (i.e., natural language particle `at') highly impact output generation. Moreover, participants of this study highlighted Code$Q$'s ability to show a causal relationship between the input and output of the model with readable and informative explanations on code completion and test generation tasks. Additionally, Code$Q$ also helps to uncover model rationale, facilitating comparison with a human rationale to promote a fair level of trust and distrust in the model.
Large Language Models (LLMs) have introduced a paradigm shift in interaction with AI technology, enabling knowledge workers to complete tasks by specifying their desired outcome in natural language. LLMs have the potential to increase productivity and reduce tedious tasks in an unprecedented way. A systematic study of LLM adoption for work can provide insight into how LLMs can best support these workers. To explore knowledge workers' current and desired usage of LLMs, we ran a survey (n=216). Workers described tasks they already used LLMs for, like generating code or improving text, but imagined a future with LLMs integrated into their workflows and data. We ran a second survey (n=107) a year later that validated our initial findings and provides insight into up-to-date LLM use by knowledge workers. We discuss implications for adoption and design of generative AI technologies for knowledge work.
The rapidly growing demand for on-chip edge intelligence on resource-constrained devices has motivated approaches to reduce energy and latency of deep learning models. Spiking neural networks (SNNs) have gained particular interest due to their promise to reduce energy consumption using event-based processing. We assert that while sigma-delta encoding in SNNs can take advantage of the temporal redundancy across video frames, they still involve a significant amount of redundant computations due to processing insignificant events. In this paper, we propose a region masking strategy that identifies regions of interest at the input of the SNN, thereby eliminating computation and data movement for events arising from unimportant regions. Our approach demonstrates that masking regions at the input not only significantly reduces the overall spiking activity of the network, but also provides significant improvement in throughput and latency. We apply region masking during video object detection on Loihi 2, demonstrating that masking approximately 60% of input regions can reduce energy-delay product by 1.65x over a baseline sigma-delta network, with a degradation in mAP@0.5 by 1.09%.
Vision-language models (VLMs) show great promise for 3D scene understanding but are mainly applied to indoor spaces or autonomous driving, focusing on low-level tasks like segmentation. This work expands their use to urban-scale environments by leveraging 3D reconstructions from multi-view aerial imagery. We propose OpenCity3D, an approach that addresses high-level tasks, such as population density estimation, building age classification, property price prediction, crime rate assessment, and noise pollution evaluation. Our findings highlight OpenCity3D's impressive zero-shot and few-shot capabilities, showcasing adaptability to new contexts. This research establishes a new paradigm for language-driven urban analytics, enabling applications in planning, policy, and environmental monitoring. See our project page: opencity3d.github.io
Physics-informed machine learning provides an approach to combining data and governing physics laws for solving complex partial differential equations (PDEs). However, efficiently solving PDEs with varying parameters and changing initial conditions and boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. We propose a hybrid framework that uses a neural network to learn B-spline control points to approximate solutions to PDEs with varying system and ICBC parameters. The proposed network can be trained efficiently as one can directly specify ICBCs without imposing losses, calculate physics-informed loss functions through analytical formulas, and requires only learning the weights of B-spline functions as opposed to both weights and basis as in traditional neural operator learning methods. We provide theoretical guarantees that the proposed B-spline networks serve as universal approximators for the set of solutions of PDEs with varying ICBCs under mild conditions and establish bounds on the generalization errors in physics-informed learning. We also demonstrate in experiments that the proposed B-spline network can solve problems with discontinuous ICBCs and outperforms existing methods, and is able to learn solutions of 3D dynamics with diverse initial conditions.
The displacement-actuated continuum robot as an abstraction has been shown as a key abstraction to significantly simplify and improve approaches due to its relation to the Clarke transform. To highlight further potentials, we revisit and extend this abstraction that features an increasingly popular length extension and an underutilized twisting. For each extension, the corresponding mapping from the joint values to the local coordinates of the manifold embedded in the joint spaces is provided. Each mapping is characterized by its compactness and linearity.
Tool learning can further broaden the usage scenarios of large language models (LLMs). However most of the existing methods either need to finetune that the model can only use tools seen in the training data, or add tool demonstrations into the prompt with lower efficiency. In this paper, we present a new Tool Learning method Chain-of-Tools. It makes full use of the powerful semantic representation capability of frozen LLMs to finish tool calling in CoT reasoning with a huge and flexible tool pool which may contain unseen tools. Especially, to validate the effectiveness of our approach in the massive unseen tool scenario, we construct a new dataset SimpleToolQuestions. We conduct experiments on two numerical reasoning benchmarks (GSM8K-XL and FuncQA) and two knowledge-based question answering benchmarks (KAMEL and SimpleToolQuestions). Experimental results show that our approach performs better than the baseline. We also identify dimensions of the model output that are critical in tool selection, enhancing the model interpretability. Our code and data are available at: https://github.com/fairyshine/Chain-of-Tools .
Recent advances in deep-learning based denoising methods have improved Low-Dose CT image quality. However, due to distinct HU distributions and diverse anatomical characteristics, a single model often struggles to generalize across multiple anatomies. To address this limitation, we introduce \textbf{Agent-Integrated Denoising Experts (A-IDE)} framework, which integrates three anatomical region-specialized RED-CNN models under the management of decision-making LLM agent. The agent analyzes semantic cues from BiomedCLIP to dynamically route incoming LDCT scans to the most appropriate expert model. We highlight three major advantages of our approach. A-IDE excels in heterogeneous, data-scarce environments. The framework automatically prevents overfitting by distributing tasks among multiple experts. Finally, our LLM-driven agentic pipeline eliminates the need for manual interventions. Experimental evaluations on the Mayo-2016 dataset confirm that A-IDE achieves superior performance in RMSE, PSNR, and SSIM compared to a single unified denoiser.
We propose a variant of Nim, named StrNim. Whereas a position in Nim is a tuple of non-negative integers, that in StrNim is a string, a sequence of characters. In every turn, each player shrinks the string, by removing a substring repeating the same character. As a first study on this new game, we present some sufficient conditions for the positions to be P-positions.
Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories. Although existing methods perform well on generic datasets, they struggle in fine-grained scenarios. We attribute this difficulty to their reliance on contrastive learning over global image features to automatically capture discriminative cues, which fails to capture the subtle local differences essential for distinguishing fine-grained categories. Therefore, in this paper, we propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges: the absence of annotations for novel classes complicates the extraction of the part features, and global contrastive learning prioritizes holistic feature invariance, inadvertently suppressing discriminative local part patterns. To address these challenges, we propose PartGCD, including 1) Adaptive Part Decomposition, which automatically extracts class-specific semantic parts via Gaussian Mixture Models, and 2) Part Discrepancy Regularization, enforcing explicit separation between part features to amplify fine-grained local part distinctions. Experiments demonstrate state-of-the-art performance across multiple fine-grained benchmarks while maintaining competitiveness on generic datasets, validating the effectiveness and robustness of our approach.
We present a formal analysis of quorum-based State Machine Replication (SMR) protocols in Proof-of-Stake (PoS) systems under a hybrid threat model comprising honest, Byzantine, and rational validators. Our analysis of traditional quorum-based protocols establishes two fundamental impossibility results: (1) in partially synchronous networks, no quorum-based protocol can achieve SMR when rational and Byzantine validators comprise more than $1/3$ of participants, and (2) in synchronous networks, SMR remains impossible when rational and Byzantine validators comprise $2/3$ or more of participants. To overcome these limitations, we propose two complementary solutions in our hybrid model. First, we introduce a protocol that enforces a bound on the volume of the total transacted amount that is finalized within any time window $\Delta$ and prove that this bound is necessary for secure SMR protocols in our model. Second, we present the \emph{strongest chain rule}, which enables efficient finalization of transactions when the majority of honest participants provably support the SMR execution. Through empirical analysis of Ethereum and Cosmos networks, we demonstrate that validator participation consistently exceeds the required ${5}/{6}$ threshold, establishing the practical feasibility of our solution in production PoS systems.
Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.
Human-LLM conversations are increasingly becoming more pervasive in peoples' professional and personal lives, yet many users still struggle to elicit helpful responses from LLM Chatbots. One of the reasons for this issue is users' lack of understanding in crafting effective prompts that accurately convey their information needs. Meanwhile, the existence of real-world conversational datasets on the one hand, and the text understanding faculties of LLMs on the other, present a unique opportunity to study this problem, and its potential solutions at scale. Thus, in this paper we present the first LLM-centric study of real human-AI chatbot conversations, focused on investigating aspects in which user queries fall short of expressing information needs, and the potential of using LLMs to rewrite suboptimal user prompts. Our findings demonstrate that rephrasing ineffective prompts can elicit better responses from a conversational system, while preserving the user's original intent. Notably, the performance of rewrites improves in longer conversations, where contextual inferences about user needs can be made more accurately. Additionally, we observe that LLMs often need to -- and inherently do -- make \emph{plausible} assumptions about a user's intentions and goals when interpreting prompts. Our findings largely hold true across conversational domains, user intents, and LLMs of varying sizes and families, indicating the promise of using prompt rewriting as a solution for better human-AI interactions.
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis.
The acid treatment of carbonate reservoirs is a widely employed technique for enhancing the productivity of oil and gas reservoirs. In this paper, we present a novel combined hybridized mixed discontinuous Galerkin (HMDG) finite element method to simulate the dissolution process near the wellbore, commonly referred to as the wormhole phenomenon. The primary contribution of this work lies in the application of hybridization techniques to both the pressure and concentration equations. Additionally, an upwind scheme is utilized to address convection-dominant scenarios, and a ``cut-off" operator is introduced to maintain the boundedness of porosity. Compared to traditional discontinuous Galerkin methods, the proposed approach results in a global system with fewer unknowns and sparser stencils, thereby significantly reducing computational costs. We analyze the existence and uniqueness of the new combined method and derive optimal error estimates using the developed technique. Numerical examples are provided to validate the theoretical analysis.
Continual learning aims to accumulate knowledge over a data stream while mitigating catastrophic forgetting. In Non-exemplar Class Incremental Learning (NECIL), forgetting arises during incremental optimization because old classes are inaccessible, hindering the retention of prior knowledge. To solve this, previous methods struggle in achieving the stability-plasticity balance in the training stages. However, we note that the testing stage is rarely considered among them, but is promising to be a solution to forgetting. Therefore, we propose RoSE, which is a simple yet effective method that \textbf{R}est\textbf{o}res forgotten knowledge through test-time \textbf{S}emantic \textbf{E}volution. Specifically designed for minimizing forgetting, RoSE is a test-time semantic drift compensation framework that enables more accurate drift estimation in a self-supervised manner. Moreover, to avoid incomplete optimization during online testing, we derive an analytical solution as an alternative to gradient descent. We evaluate RoSE on CIFAR-100, TinyImageNet, and ImageNet100 datasets, under both cold-start and warm-start settings. Our method consistently outperforms most state-of-the-art (SOTA) methods across various scenarios, validating the potential and feasibility of test-time evolution in NECIL.
Mobile Edge Computing (MEC) has emerged as a promising paradigm enabling vehicles to handle computation-intensive and time-sensitive applications for intelligent transportation. Due to the limited resources in MEC, effective resource management is crucial for improving system performance. While existing studies mostly focus on the job offloading problem and assume that job resource demands are fixed and given apriori, the joint consideration of job offloading (selecting the edge server for each job) and resource allocation (determining the bandwidth and computation resources for offloading and processing) remains underexplored. This paper addresses the joint problem for deadline-constrained jobs in MEC with both communication and computation resource constraints, aiming to maximize the total utility gained from jobs. To tackle this problem, we propose an approximation algorithm, $\mathtt{IDAssign}$, with an approximation bound of $\frac{1}{6}$, and experimentally evaluate the performance of $\mathtt{IDAssign}$ by comparing it to state-of-the-art heuristics using a real-world taxi trace and object detection applications.
This paper presents a novel approach to improving text-guided image editing using diffusion-based models. Text-guided image editing task poses key challenge of precisly locate and edit the target semantic, and previous methods fall shorts in this aspect. Our method introduces a Precise Semantic Localization strategy that leverages visual and textual self-attention to enhance the cross-attention map, which can serve as a regional cues to improve editing performance. Then we propose a Dual-Level Control mechanism for incorporating regional cues at both feature and latent levels, offering fine-grained control for more precise edits. To fully compare our methods with other DiT-based approaches, we construct the RW-800 benchmark, featuring high resolution images, long descriptive texts, real-world images, and a new text editing task. Experimental results on the popular PIE-Bench and RW-800 benchmarks demonstrate the superior performance of our approach in preserving background and providing accurate edits.
This paper analyzes the learnability of neuro-symbolic (NeSy) tasks within hybrid systems. We show that the learnability of NeSy tasks can be characterized by their derived constraint satisfaction problems (DCSPs). Specifically, a task is learnable if the corresponding DCSP has a unique solution; otherwise, it is unlearnable. For learnable tasks, we establish error bounds by exploiting the clustering property of the hypothesis space. Additionally, we analyze the asymptotic error for general NeSy tasks, showing that the expected error scales with the disagreement among solutions. Our results offer a principled approach to determining learnability and provide insights into the design of new algorithms.
A pervasive challenge in Reinforcement Learning (RL) is the "curse of dimensionality" which is the exponential growth in the state-action space when optimizing a high-dimensional target task. The framework of curriculum learning trains the agent in a curriculum composed of a sequence of related and more manageable source tasks. The expectation is that when some optimal decision rules are shared across source tasks and the target task, the agent could more quickly pick up the necessary skills to behave optimally in the environment, thus accelerating the learning process. However, this critical assumption of invariant optimal decision rules does not necessarily hold in many practical applications, specifically when the underlying environment contains unobserved confounders. This paper studies the problem of curriculum RL through causal lenses. We derive a sufficient graphical condition characterizing causally aligned source tasks, i.e., the invariance of optimal decision rules holds. We further develop an efficient algorithm to generate a causally aligned curriculum, provided with qualitative causal knowledge of the target task. Finally, we validate our proposed methodology through experiments in discrete and continuous confounded tasks with pixel observations.
Text-driven Human-Object Interaction (Text-to-HOI) generation is an emerging field with applications in animation, video games, virtual reality, and robotics. A key challenge in HOI generation is maintaining interaction consistency in long sequences. Existing Text-to-Motion-based approaches, such as discrete motion tokenization, cannot be directly applied to HOI generation due to limited data in this domain and the complexity of the modality. To address the problem of interaction consistency in long sequences, we propose an autoregressive diffusion model (ARDHOI) that predicts the next continuous token. Specifically, we introduce a Contrastive Variational Autoencoder (cVAE) to learn a physically plausible space of continuous HOI tokens, thereby ensuring that generated human-object motions are realistic and natural. For generating sequences autoregressively, we develop a Mamba-based context encoder to capture and maintain consistent sequential actions. Additionally, we implement an MLP-based denoiser to generate the subsequent token conditioned on the encoded context. Our model has been evaluated on the OMOMO and BEHAVE datasets, where it outperforms existing state-of-the-art methods in terms of both performance and inference speed. This makes ARDHOI a robust and efficient solution for text-driven HOI tasks
Applying imitation learning (IL) is challenging to nonprehensile manipulation tasks of invisible objects with partial observations, such as excavating buried rocks. The demonstrator must make such complex action decisions as exploring to find the object and task-oriented actions to complete the task while estimating its hidden state, perhaps causing inconsistent action demonstration and high cognitive load problems. For these problems, work in human cognitive science suggests that promoting the use of pre-designed, simple exploration rules for the demonstrator may alleviate the problems of action inconsistency and high cognitive load. Therefore, when performing imitation learning from demonstrations using such exploration rules, it is important to accurately imitate not only the demonstrator's task-oriented behavior but also his/her mode-switching behavior (exploratory or task-oriented behavior) under partial observation. Based on the above considerations, this paper proposes a novel imitation learning framework called Belief Exploration-Action Cloning (BEAC), which has a switching policy structure between a pre-designed exploration policy and a task-oriented action policy trained on the estimated belief states based on past history. In simulation and real robot experiments, we confirmed that our proposed method achieved the best task performance, higher mode and action prediction accuracies, while reducing the cognitive load in the demonstration indicated by a user study.
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
LiDAR-based 3D object detection and semantic segmentation are critical tasks in 3D scene understanding. Traditional detection and segmentation methods supervise their models through bounding box labels and semantic mask labels. However, these two independent labels inherently contain significant redundancy. This paper aims to eliminate the redundancy by supervising 3D object detection using only semantic labels. However, the challenge arises due to the incomplete geometry structure and boundary ambiguity of point-cloud instances, leading to inaccurate pseudo labels and poor detection results. To address these challenges, we propose a novel method, named Seg2Box. We first introduce a Multi-Frame Multi-Scale Clustering (MFMS-C) module, which leverages the spatio-temporal consistency of point clouds to generate accurate box-level pseudo-labels. Additionally, the Semantic?Guiding Iterative-Mining Self-Training (SGIM-ST) module is proposed to enhance the performance by progressively refining the pseudo-labels and mining the instances without generating pseudo-labels. Experiments on the Waymo Open Dataset and nuScenes Dataset show that our method significantly outperforms other competitive methods by 23.7\% and 10.3\% in mAP, respectively. The results demonstrate the great label-efficient potential and advancement of our method.
Large Language Models $($LLMs$)$ solve complex problems using training-free methods like prompt engineering and in-context learning, yet ensuring reasoning correctness remains challenging. While self-correction methods such as self-consistency and self-refinement aim to improve reliability, they often reinforce biases due to the lack of effective feedback mechanisms. Multi-Agent Debate $($MAD$)$ has emerged as an alternative, but we identify two key limitations: bias reinforcement, where debate amplifies model biases instead of correcting them, and lack of perspective diversity, as all agents share the same model and reasoning patterns, limiting true debate effectiveness. To systematically evaluate these issues, we introduce $\textit{MetaNIM Arena}$, a benchmark designed to assess LLMs in adversarial strategic decision-making, where dynamic interactions influence optimal decisions. To overcome MAD's limitations, we propose $\textbf{DReaMAD}$ $($$\textbf{D}$iverse $\textbf{Rea}$soning via $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{D}$ebate with Refined Prompt$)$, a novel framework that $(1)$ refines LLM's strategic prior knowledge to improve reasoning quality and $(2)$ promotes diverse viewpoints within a single model by systematically modifying prompts, reducing bias. Empirical results show that $\textbf{DReaMAD}$ significantly improves decision accuracy, reasoning diversity, and bias mitigation across multiple strategic tasks, establishing it as a more effective approach for LLM-based decision-making.
Communication scheduling aims to reduce communication bottlenecks in data parallel training (DP) by maximizing the overlap between computation and communication. However, existing schemes fall short due to three main issues: (1) hard data dependencies break some overlapping between communication and computation; (2) high coverage rates impair further improvement on performance; (3) imbalanced communication/computation times of tensors caused by partitioning/fusion strategies cause more bubbles. To address these drawbacks, we propose a new communication scheduling scheme DeFT, whose key insight is to mitigate data dependencies and support flexible scheduling in distributed training. DeFT uncovers new overlapping chances in training by transforming the scheduling problem into multiple knapsack problems. Specifically, DeFT eliminates hard dependencies with delayed updates, reducing the coverage rate by adjusting update frequency and utilizing heterogeneous communication links, merging the computation times of backward or forward as the knapsack capacity to avoid the negative impact of unbalanced tensors. Additionally, DeFT preserves training accuracy by adjusting its scheduling strategy via convergence loss quantification. Extensive experiments with 16 A100 GPUs showed that DeFT achieved speedups of 29% to 115% on three representative benchmarks compared to US-Byte and Bytescheduler with no loss of accuracy.
Spatial Transcriptomics (ST) reveals the spatial distribution of gene expression in tissues, offering critical insights into biological processes and disease mechanisms. However, predicting ST from H\&E-stained histology images is challenging due to the heterogeneous relationship between histomorphology and gene expression, which arises from substantial variability across different patients and tissue sections. A more practical and valuable approach is to utilize ST data from a few local regions to predict the spatial transcriptomic landscape across the remaining regions in H&E slides. In response, we propose PHG2ST, an ST-prompt guided histological hypergraph learning framework, which leverages sparse ST signals as prompts to guide histological hypergraph learning for global spatial gene expression prediction. Our framework fuses histological hypergraph representations at multiple scales through a masked ST-prompt encoding mechanism, improving robustness and generalizability. Benchmark evaluations on two public ST datasets demonstrate that PHG2ST outperforms the existing state-of-the-art methods and closely aligns with the ground truth. These results underscore the potential of leveraging sparse local ST data for scalable and cost-effective spatial gene expression mapping in real-world biomedical applications.
System identification is a fundamental problem in control and learning, particularly in high-stakes applications where data efficiency is critical. Classical approaches, such as the ordinary least squares estimator (OLS), achieve an $O(1/\sqrt{T})$ convergence rate under Gaussian noise assumptions, where $T$ is the number of samples. This rate has been shown to match the lower bound. However, in many practical scenarios, noise is known to be bounded, opening the possibility of improving sample complexity. In this work, we establish the minimax lower bound for system identification under bounded noise, proving that the $O(1/T)$ convergence rate is indeed optimal. We further demonstrate that OLS remains limited to an {$\Omega(1/\sqrt{T})$} convergence rate, making it fundamentally suboptimal in the presence of bounded noise. Finally, we instantiate two natural variations of OLS that obtain the optimal sample complexity.
This paper considers the problem of modeling articulated objects captured in 2D videos to enable novel view synthesis, while also being easily editable, drivable, and re-posable. To tackle this challenging problem, we propose RigGS, a new paradigm that leverages 3D Gaussian representation and skeleton-based motion representation to model dynamic objects without utilizing additional template priors. Specifically, we first propose skeleton-aware node-controlled deformation, which deforms a canonical 3D Gaussian representation over time to initialize the modeling process, producing candidate skeleton nodes that are further simplified into a sparse 3D skeleton according to their motion and semantic information. Subsequently, based on the resulting skeleton, we design learnable skin deformations and pose-dependent detailed deformations, thereby easily deforming the 3D Gaussian representation to generate new actions and render further high-quality images from novel views. Extensive experiments demonstrate that our method can generate realistic new actions easily for objects and achieve high-quality rendering.
In this paper, we propose a novel federated framework for constructing the digital twin (DT) model, referring to a living and self-evolving visualization model empowered by artificial intelligence, enabled by distributed sensing under edge-cloud collaboration. In this framework, the DT model to be built at the cloud is regarded as a global one being split into and integrating from multiple functional components, i.e., partial-DTs, created at various edge servers (ESs) using feature data collected by associated sensors. Considering time-varying DT evolutions and heterogeneities among partial-DTs, we formulate an online problem that jointly and dynamically optimizes partial-DT assignments from the cloud to ESs, ES-sensor associations for partial-DT creation, and as well as computation and communication resource allocations for global-DT integration. The problem aims to maximize the constructed DT's model quality while minimizing all induced costs, including energy consumption and configuration costs, in long runs. To this end, we first transform the original problem into an equivalent hierarchical game with an upper-layer two-sided matching game and a lower-layer overlapping coalition formation game. After analyzing these games in detail, we apply the Gale-Shapley algorithm and particularly develop a switch rules-based overlapping coalition formation algorithm to obtain short-term equilibria of upper-layer and lower-layer subgames, respectively. Then, we design a deep reinforcement learning-based solution, called DMO, to extend the result into a long-term equilibrium of the hierarchical game, thereby producing the solution to the original problem. Simulations show the effectiveness of the introduced framework, and demonstrate the superiority of the proposed solution over counterparts.
AI-driven multimodal interfaces have the potential to revolutionize industrial 3D CAD modeling by improving workflow efficiency and user experience. However, the integration of these technologies remains challenging due to software constraints, user adoption barriers, and limitations in AI model adaptability. This paper explores the role of multimodal AI in CAD environments, examining its current applications, key challenges, and future research directions. We analyze Bayesian workflow inference, multimodal input strategies, and collaborative AI-driven interfaces to identify areas where AI can enhance CAD design processes while addressing usability concerns in industrial manufacturing settings.
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
In a highly globalized world, it is important for multi-modal large language models (MLLMs) to recognize and respond correctly to mixed-cultural inputs. For example, a model should correctly identify kimchi (Korean food) in an image both when an Asian woman is eating it, as well as an African man is eating it. However, current MLLMs show an over-reliance on the visual features of the person, leading to misclassification of the entities. To examine the robustness of MLLMs to different ethnicity, we introduce MixCuBe, a cross-cultural bias benchmark, and study elements from five countries and four ethnicities. Our findings reveal that MLLMs achieve both higher accuracy and lower sensitivity to such perturbation for high-resource cultures, but not for low-resource cultures. GPT-4o, the best-performing model overall, shows up to 58% difference in accuracy between the original and perturbed cultural settings in low-resource cultures. Our dataset is publicly available at: https://huggingface.co/datasets/kyawyethu/MixCuBe.
Public key authenticated encryption with keyword search (PAEKS) represents a significant advancement of secure and searchable data sharing in public network systems, such as medical systems. It can effectively mitigate the risk of keyword guessing attacks (KGA), which is a critical issue in public key encryption with keyword search (PEKS). However, in scenarios with a large number of users, the enforced point-to-point access control necessitates that the data sender encrypt the same keyword using the public keys of multiple receivers to create indexes, while the data receiver also must generate trapdoors of size linear to senders in the system. The burden on users aiming for efficient data sharing is considerable, as the overheads increase linearly with the number of users. Furthermore, the majority of current PAEKS schemes lack expressive search functions, including conjunctions, disjunctions, or any monotone boolean formulas, which are prevalent in practical applications. To tackle the abovementioned challenges, we propose an efficient and expressive PAEKS scheme. In efficiency, one auxiliary server is integrated to assist users in generating indexes and trapdoors. Users encrypt with their respective private keys along with the public keys of the servers, facilitating secure and searchable data sharing while significantly minimizing overhead. Additionally, the LSSS is employed to implement expressive search, including monotone boolean queries. We also obfuscate the mapping relationship associated with the LSSS matrix to the keywords, thereby enhancing the privacy protection. Security analysis alongside theoretical and experimental evaluations of our scheme illustrates its practicality and efficiency in multi-user data sharing scenarios.
We introduce a novel approach for simultaneous self-supervised video alignment and action segmentation based on a unified optimal transport framework. In particular, we first tackle self-supervised video alignment by developing a fused Gromov-Wasserstein optimal transport formulation with a structural prior, which trains efficiently on GPUs and needs only a few iterations for solving the optimal transport problem. Our single-task method achieves the state-of-the-art performance on multiple video alignment benchmarks and outperforms VAVA, which relies on a traditional Kantorovich optimal transport formulation with an optimality prior. Furthermore, we extend our approach by proposing a unified optimal transport framework for joint self-supervised video alignment and action segmentation, which requires training and storing a single model and saves both time and memory consumption as compared to two different single-task models. Extensive evaluations on several video alignment and action segmentation datasets demonstrate that our multi-task method achieves comparable video alignment yet superior action segmentation results over previous methods in video alignment and action segmentation respectively. Finally, to the best of our knowledge, this is the first work to unify video alignment and action segmentation into a single model.
We are at a turning point for language models that accept audio input. The latest end-to-end audio language models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this position paper, we urge a closer examination of how these models are built and deployed. We argue that the principle of least privilege should guide decisions on whether to deploy cascaded or end-to-end models. Specifically, evaluations should assess (1) whether end-to-end modeling is necessary for a given application; and (2), the appropriate scope of information access. Finally, We highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
Designing high-performance routing protocols for flying ad hoc networks (FANETs) is challenging due to the diversity of applications and the dynamics of network topology. The existing general-purpose routing protocols for ad hoc networks often oversimplify mobility patterns and disregard the unequal importance of nodes, resulting in suboptimal routing decisions that are unsuitable for task-oriented FANETs. To break the bottleneck, in this paper we propose a betweenness centrality based dynamic source routing (BC-DSR) protocol for a flying ad hoc network (FANET) in marching formation. Firstly, we introduce a Gauss-Markov group (GMG) mobility model based on the leader-follower pattern, which accurately captures the temporal and spatial correlations of node movements in the realistic marching formation. Besides, we exploit the concept of BC defined in graph theory to measure the structural unequal importance of relay nodes, i.e., to determine link weights, in the particular marching formation topology. The path of least cost is calculated relying on a weighted directed graph constructed. The ns-3 based simulation results demonstrate that our BCDSR protocol achieves higher packet-delivery ratio and lower average end-to-end latency and routing overhead ratio than representative benchmark protocols used in FANETs, while maintaining a reasonably small network jitter.
Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
This paper presents a new algorithmic fairness framework called $\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ Fair Machine Learning ($\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ FML), designed to optimize fairness levels across sociodemographic attributes. Our framework employs a new family of surrogate loss functions, paired with loss reweighting techniques, allowing precise control over fairness-accuracy trade-offs through tunable hyperparameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$. To efficiently solve the learning objective, we propose Parallel Stochastic Gradient Descent with Surrogate Loss (P-SGD-S) and establish convergence guarantees for both convex and nonconvex loss functions. Experimental results demonstrate that our framework improves overall accuracy while reducing fairness violations, offering a smooth trade-off between standard empirical risk minimization and strict minimax fairness. Results across multiple datasets confirm its adaptability, ensuring fairness improvements without excessive performance degradation.
Despite decades of advancements in automated ligand screening, large-scale drug discovery remains resource-intensive and requires post-processing hit selection, a step where chemists manually select a few promising molecules based on their chemical intuition. This creates a major bottleneck in the virtual screening process for drug discovery, demanding experts to repeatedly balance complex trade-offs among drug properties across a vast pool of candidates. To improve the efficiency and reliability of this process, we propose a novel human-centered framework named CheapVS that allows chemists to guide the ligand selection process by providing preferences regarding the trade-offs between drug properties via pairwise comparison. Our framework combines preferential multi-objective Bayesian optimization with a docking model for measuring binding affinity to capture human chemical intuition for improving hit identification. Specifically, on a library of 100K chemical candidates targeting EGFR and DRD2, CheapVS outperforms state-of-the-art screening methods in identifying drugs within a limited computational budget. Notably, our method can recover up to 16/37 EGFR and 37/58 DRD2 known drugs while screening only 6% of the library, showcasing its potential to significantly advance drug discovery.
While Multimodal Large Language Models (MLLMs) excel at generalizing across modalities and tasks, effectively adapting them to specific downstream tasks while simultaneously retaining both general and specialized knowledge remains challenging. Although Low-Rank Adaptation (LoRA) is widely used to efficiently acquire specialized knowledge in MLLMs, it introduces substantial harmful redundancy during visual instruction tuning, which exacerbates the forgetting of general knowledge and degrades downstream task performance. To address this issue, we propose LoRASculpt to eliminate harmful redundant parameters, thereby harmonizing general and specialized knowledge. Specifically, under theoretical guarantees, we introduce sparse updates into LoRA to discard redundant parameters effectively. Furthermore, we propose a Conflict Mitigation Regularizer to refine the update trajectory of LoRA, mitigating knowledge conflicts with the pretrained weights. Extensive experimental results demonstrate that even at very high degree of sparsity ($\le$ 5%), our method simultaneously enhances generalization and downstream task performance. This confirms that our approach effectively mitigates the catastrophic forgetting issue and further promotes knowledge harmonization in MLLMs.
Symmetric matrix decomposition is an active research area in machine learning. This paper focuses on exploiting the low-rank structure of non-negative and sparse symmetric matrices via the rectified linear unit (ReLU) activation function. We propose the ReLU-based nonlinear symmetric matrix decomposition (ReLU-NSMD) model, introduce an accelerated alternating partial Bregman (AAPB) method for its solution, and present the algorithm's convergence results. Our algorithm leverages the Bregman proximal gradient framework to overcome the challenge of estimating the global $L$-smooth constant in the classic proximal gradient algorithm. Numerical experiments on synthetic and real datasets validate the effectiveness of our model and algorithm.
Flow correlation attacks is an efficient network attacks, aiming to expose those who use anonymous network services, such as Tor. Conducting such attacks during the early stages of network communication is particularly critical for scenarios demanding rapid decision-making, such as cybercrime detection or financial fraud prevention. Although recent studies have made progress in flow correlation attacks techniques, research specifically addressing flow correlation with early network traffic flow remains limited. Moreover, due to factors such as model complexity, training costs, and real-time requirements, existing technologies cannot be directly applied to flow correlation with early network traffic flow. In this paper, we propose flow correlation attack with early network traffic, named Early-MFC, based on multi-view triplet networks. The proposed approach extracts multi-view traffic features from the payload at the transport layer and the Inter-Packet Delay. It then integrates multi-view flow information, converting the extracted features into shared embeddings. By leveraging techniques such as metric learning and contrastive learning, the method optimizes the embeddings space by ensuring that similar flows are mapped closer together while dissimilar flows are positioned farther apart. Finally, Bayesian decision theory is applied to determine flow correlation, enabling high-accuracy flow correlation with early network traffic flow. Furthermore, we investigate flow correlation attacks under extra-early network traffic flow conditions. To address this challenge, we propose Early-MFC+, which utilizes payload data to construct embedded feature representations, ensuring robust performance even with minimal packet availability.
Despite advances in indoor 3D scene layout generation, synthesizing scenes with dense object arrangements remains challenging. Existing methods primarily focus on large furniture while neglecting smaller objects, resulting in unrealistically empty scenes. Those that place small objects typically do not honor arrangement specifications, resulting in largely random placement not following the text description. We present HSM, a hierarchical framework for indoor scene generation with dense object arrangements across spatial scales. Indoor scenes are inherently hierarchical, with surfaces supporting objects at different scales, from large furniture on floors to smaller objects on tables and shelves. HSM embraces this hierarchy and exploits recurring cross-scale spatial patterns to generate complex and realistic indoor scenes in a unified manner. Our experiments show that HSM outperforms existing methods by generating scenes that are more realistic and better conform to user input across room types and spatial configurations.
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We consider the scenario where a servicer, equipped with a robot arm, must dislodge a client, a time-varying system composed of an underpowered jammed solar panel with a hybrid hinge system on a space station. Our approach leverages online set-membership identification to reduce the uncertainty to provide robust safety guarantees during dislodging despite bounded disturbances while balancing exploration and exploitation effectively in the parameter space. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in zero-gravity and gravity environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
This work investigates the feasibility of using Physics-Informed Neural Networks (PINNs) as surrogate models for river stage prediction, aiming to reduce computational cost while maintaining predictive accuracy. Our primary contribution demonstrates that PINNs can successfully approximate HEC-RAS numerical solutions when trained on a single river, achieving strong predictive accuracy with generally low relative errors, though some river segments exhibit higher deviations. By integrating the governing Saint-Venant equations into the learning process, the proposed PINN-based surrogate model enforces physical consistency and significantly improves computational efficiency compared to HEC-RAS. We evaluate the model's performance in terms of accuracy and computational speed, demonstrating that it closely approximates HEC-RAS predictions while enabling real-time inference. These results highlight the potential of PINNs as effective surrogate models for single-river hydrodynamics, offering a promising alternative for computationally efficient river stage forecasting. Future work will explore techniques to enhance PINN training stability and robustness across a more generalized multi-river model.
Large Language Models (LLMs) have demonstrated remarkable performance in natural language generation tasks, yet their uncontrolled outputs pose significant ethical and safety risks. Recently, representation engineering methods have shown promising results in steering model behavior by modifying the rich semantic information encoded in activation vectors. However, due to the difficulty of precisely disentangling semantic directions within high-dimensional representation space, existing approaches suffer from three major limitations: lack of fine-grained control, quality degradation of generated content, and poor interpretability. To address these challenges, we propose a sparse encoding-based representation engineering method, named SRE, which decomposes polysemantic activations into a structured, monosemantic feature space. By leveraging sparse autoencoding, our approach isolates and adjusts only task-specific sparse feature dimensions, enabling precise and interpretable steering of model behavior while preserving content quality. We validate our method on three critical domains, i.e., safety, fairness, and truthfulness using the open-source LLM Gemma-2-2B-it. Experimental results show that SRE achieves superior controllability while maintaining the overall quality of generated content (i.e., controllability and quality), demonstrating its effectiveness as a fine-grained and interpretable activation steering framework.
Deep neural networks (DNNs) often struggle with out-of-distribution data, limiting their reliability in diverse realworld applications. To address this issue, domain generalization methods have been developed to learn domain-invariant features from single or multiple training domains, enabling generalization to unseen testing domains. However, existing approaches usually overlook the impact of style frequency within the training set. This oversight predisposes models to capture spurious visual correlations caused by style confounding factors, rather than learning truly causal representations, thereby undermining inference reliability. In this work, we introduce Style Deconfounding Causal Learning (SDCL), a novel causal inference-based framework designed to explicitly address style as a confounding factor. Our approaches begins with constructing a structural causal model (SCM) tailored to the domain generalization problem and applies a backdoor adjustment strategy to account for style influence. Building on this foundation, we design a style-guided expert module (SGEM) to adaptively clusters style distributions during training, capturing the global confounding style. Additionally, a back-door causal learning module (BDCL) performs causal interventions during feature extraction, ensuring fair integration of global confounding styles into sample predictions, effectively reducing style bias. The SDCL framework is highly versatile and can be seamlessly integrated with state-of-the-art data augmentation techniques. Extensive experiments across diverse natural and medical image recognition tasks validate its efficacy, demonstrating superior performance in both multi-domain and the more challenging single-domain generalization scenarios.
Language models pretrained on text-only corpora often struggle with tasks that require auditory commonsense knowledge. Previous work addresses this problem by augmenting the language model to retrieve knowledge from external audio databases. This approach has several limitations, such as the potential lack of relevant audio in databases and the high costs associated with constructing and querying the databases. To address these issues, we propose Imagine to Hear, a novel approach that dynamically generates auditory knowledge using generative models. Our framework detects multiple audio-related textual spans from the given prompt and generates corresponding auditory knowledge. We develop several mechanisms to efficiently process multiple auditory knowledge, including a CLAP-based rejection sampler and a language-audio fusion module. Our experiments show that our method achieves state-of-the-art performance on AuditoryBench without relying on external databases, highlighting the effectiveness of our generation-based approach.
Visual Information Extraction (VIE), aiming at extracting structured information from visually rich document images, plays a pivotal role in document processing. Considering various layouts, semantic scopes, and languages, VIE encompasses an extensive range of types, potentially numbering in the thousands. However, many of these types suffer from a lack of training data, which poses significant challenges. In this paper, we propose a novel generative model, named Generative Compositor, to address the challenge of few-shot VIE. The Generative Compositor is a hybrid pointer-generator network that emulates the operations of a compositor by retrieving words from the source text and assembling them based on the provided prompts. Furthermore, three pre-training strategies are employed to enhance the model's perception of spatial context information. Besides, a prompt-aware resampler is specially designed to enable efficient matching by leveraging the entity-semantic prior contained in prompts. The introduction of the prompt-based retrieval mechanism and the pre-training strategies enable the model to acquire more effective spatial and semantic clues with limited training samples. Experiments demonstrate that the proposed method achieves highly competitive results in the full-sample training, while notably outperforms the baseline in the 1-shot, 5-shot, and 10-shot settings.
Hand gesture-based Sign Language Recognition (SLR) serves as a crucial communication bridge between deaf and non-deaf individuals. Existing SLR systems perform well for their cultural SL but may struggle with multi-cultural sign languages (McSL). To address these challenges, this paper proposes a Stack Spatial-Temporal Transformer Network that leverages multi-head attention mechanisms to capture both spatial and temporal dependencies with hierarchical features using the Stack Transfer concept. In the proceed, firstly, we applied a fully connected layer to make a embedding vector which has high expressive power from the original dataset, then fed them a stack newly proposed transformer to achieve hierarchical features with short-range and long-range dependency. The network architecture is composed of several stages that process spatial and temporal relationships sequentially, ensuring effective feature extraction. After making the fully connected layer, the embedding vector is processed by the Spatial Multi-Head Attention Transformer, which captures spatial dependencies between joints. In the next stage, the Temporal Multi-Head Attention Transformer captures long-range temporal dependencies, and again, the features are concatenated with the output using another skip connection. The processed features are then passed to the Feed-Forward Network (FFN), which refines the feature representations further. After the FFN, additional skip connections are applied to combine the output with earlier layers, followed by a final normalization layer to produce the final output feature tensor. This process is repeated for 10 transformer blocks. The extensive experiment shows that the JSL, KSL and ASL datasets achieved good performance accuracy. Our approach demonstrates improved performance in McSL, and it will be consider as a novel work in this domain.
Fully comprehending scientific papers by machines reflects a high level of Artificial General Intelligence, requiring the ability to reason across fragmented and heterogeneous sources of information, presenting a complex and practically significant challenge. While Vision-Language Models (VLMs) have made remarkable strides in various tasks, particularly those involving reasoning with evidence source from single image or text page, their ability to use cross-source information for reasoning remains an open problem. This work presents MMCR, a high-difficulty benchmark designed to evaluate VLMs' capacity for reasoning with cross-source information from scientific papers. The benchmark comprises 276 high-quality questions, meticulously annotated by humans across 7 subjects and 10 task types. Experiments with 18 VLMs demonstrate that cross-source reasoning presents a substantial challenge for existing models. Notably, even the top-performing model, GPT-4o, achieved only 48.55% overall accuracy, with only 20% accuracy in multi-table comprehension tasks, while the second-best model, Qwen2.5-VL-72B, reached 39.86% overall accuracy. Furthermore, we investigated the impact of the Chain-of-Thought (CoT) technique on cross-source reasoning and observed a detrimental effect on small models, whereas larger models demonstrated substantially enhanced performance. These results highlight the pressing need to develop VLMs capable of effectively utilizing cross-source information for reasoning.
Understanding the relationship between textual news and time-series evolution is a critical yet under-explored challenge in applied data science. While multimodal learning has gained traction, existing multimodal time-series datasets fall short in evaluating cross-modal reasoning and complex question answering, which are essential for capturing complex interactions between narrative information and temporal patterns. To bridge this gap, we introduce Multimodal Time Series Benchmark (MTBench), a large-scale benchmark designed to evaluate large language models (LLMs) on time series and text understanding across financial and weather domains. MTbench comprises paired time series and textual data, including financial news with corresponding stock price movements and weather reports aligned with historical temperature records. Unlike existing benchmarks that focus on isolated modalities, MTbench provides a comprehensive testbed for models to jointly reason over structured numerical trends and unstructured textual narratives. The richness of MTbench enables formulation of diverse tasks that require a deep understanding of both text and time-series data, including time-series forecasting, semantic and technical trend analysis, and news-driven question answering (QA). These tasks target the model's ability to capture temporal dependencies, extract key insights from textual context, and integrate cross-modal information. We evaluate state-of-the-art LLMs on MTbench, analyzing their effectiveness in modeling the complex relationships between news narratives and temporal patterns. Our findings reveal significant challenges in current models, including difficulties in capturing long-term dependencies, interpreting causality in financial and weather trends, and effectively fusing multimodal information.
On-device transfer learning is crucial for adapting a common backbone model to the unique environment of each edge device. Tiny microcontrollers, such as the Raspberry Pi Pico, are key targets for on-device learning but often lack floating-point units, necessitating integer-only training. Dynamic computation of quantization scale factors, which is adopted in former studies, incurs high computational costs. Therefore, this study focuses on integer-only training with static scale factors, which is challenging with existing training methods. We propose a new training method named PRIOT, which optimizes the network by pruning selected edges rather than updating weights, allowing effective training with static scale factors. The pruning pattern is determined by the edge-popup algorithm, which trains a parameter named score assigned to each edge instead of the original parameters and prunes the edges with low scores before inference. Additionally, we introduce a memory-efficient variant, PRIOT-S, which only assigns scores to a small fraction of edges. We implement PRIOT and PRIOT-S on the Raspberry Pi Pico and evaluate their accuracy and computational costs using a tiny CNN model on the rotated MNIST dataset and the VGG11 model on the rotated CIFAR-10 dataset. Our results demonstrate that PRIOT improves accuracy by 8.08 to 33.75 percentage points over existing methods, while PRIOT-S reduces memory footprint with minimal accuracy loss.
The widespread deployment of general-purpose AI (GPAI) systems introduces significant new risks. Yet the infrastructure, practices, and norms for reporting flaws in GPAI systems remain seriously underdeveloped, lagging far behind more established fields like software security. Based on a collaboration between experts from the fields of software security, machine learning, law, social science, and policy, we identify key gaps in the evaluation and reporting of flaws in GPAI systems. We call for three interventions to advance system safety. First, we propose using standardized AI flaw reports and rules of engagement for researchers in order to ease the process of submitting, reproducing, and triaging flaws in GPAI systems. Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs, borrowing from bug bounties, with legal safe harbors to protect researchers. Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports across the many stakeholders who may be impacted. These interventions are increasingly urgent, as evidenced by the prevalence of jailbreaks and other flaws that can transfer across different providers' GPAI systems. By promoting robust reporting and coordination in the AI ecosystem, these proposals could significantly improve the safety, security, and accountability of GPAI systems.
Acoustic scene recordings are often collected from a diverse range of cities. Most existing acoustic scene classification (ASC) approaches focus on identifying common acoustic scene patterns across cities to enhance generalization. In contrast, we hypothesize that city-specific environmental and cultural differences in acoustic features are beneficial for the ASC task. In this paper, we introduce City2Scene, a novel framework that leverages city features to improve ASC. City2Scene transfers the city-specific knowledge from city classification models to a scene classification model using knowledge distillation. We evaluated City2Scene on the DCASE Challenge Task 1 datasets, where each audio clip is annotated with both scene and city labels. Experimental results demonstrate that city features provide valuable information for classifying scenes. By distilling the city-specific knowledge, City2Scene effectively improves accuracy for various state-of-the-art ASC backbone models, including both CNNs and Transformers.
Nearly all identifiability results in unsupervised representation learning inspired by, e.g., independent component analysis, factor analysis, and causal representation learning, rely on assumptions of additive independent noise or noiseless regimes. In contrast, we study the more general case where noise can take arbitrary forms, depend on latent variables, and be non-invertibly entangled within a nonlinear function. We propose a general framework for identifying latent variables in the nonparametric noisy settings. We first show that, under suitable conditions, the generative model is identifiable up to certain submanifold indeterminacies even in the presence of non-negligible noise. Furthermore, under the structural or distributional variability conditions, we prove that latent variables of the general nonlinear models are identifiable up to trivial indeterminacies. Based on the proposed theoretical framework, we have also developed corresponding estimation methods and validated them in various synthetic and real-world settings. Interestingly, our estimate of the true GDP growth from alternative measurements suggests more insightful information on the economies than official reports. We expect our framework to provide new insight into how both researchers and practitioners deal with latent variables in real-world scenarios.
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
Visual question answering (VQA) has emerged as a flexible approach for extracting specific pieces of information from document images. However, existing work typically queries each field in isolation, overlooking potential dependencies across multiple items. This paper investigates the merits of extracting multiple fields jointly versus separately. Through experiments on multiple large vision language models and datasets, we show that jointly extracting fields often improves accuracy, especially when the fields share strong numeric or contextual dependencies. We further analyze how performance scales with the number of requested items and use a regression based metric to quantify inter field relationships. Our results suggest that multi field prompts can mitigate confusion arising from similar surface forms and related numeric values, providing practical methods for designing robust VQA systems in document information extraction tasks.
Knowledge distillation can be a cost-effective technique to distill knowledge in Large Language Models, if the teacher output logits can be pre-computed and cached. However, successfully applying this to pre-training remains largely unexplored. In this work, we prove that naive approaches for sparse knowledge distillation such as caching Top-K probabilities, while intuitive, provide biased estimates of teacher probability distribution to the student, resulting in suboptimal performance and calibration. We propose an importance-sampling-based method `Random Sampling Knowledge Distillation', which provides unbiased estimates, preserves the gradient in expectation, and requires storing significantly sparser logits. Our method enables faster training of student models with marginal overhead (<10%) compared to cross-entropy based training, while maintaining competitive performance compared to full distillation, across a range of model sizes from 300M to 3B.
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
Multi-label classification is crucial for comprehensive image understanding, yet acquiring accurate annotations is challenging and costly. To address this, a recent study suggests exploiting unsupervised multi-label classification leveraging CLIP, a powerful vision-language model. Despite CLIP's proficiency, it suffers from view-dependent predictions and inherent bias, limiting its effectiveness. We propose a novel method that addresses these issues by leveraging multiple views near target objects, guided by Class Activation Mapping (CAM) of the classifier, and debiasing pseudo-labels derived from CLIP predictions. Our Classifier-guided CLIP Distillation (CCD) enables selecting multiple local views without extra labels and debiasing predictions to enhance classification performance. Experimental results validate our method's superiority over existing techniques across diverse datasets. The code is available at https://github.com/k0u-id/CCD.
The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
Accurately predicting click-through rates (CTR) under stringent privacy constraints poses profound challenges, particularly when user-item interactions are sparse and fragmented across domains. Conventional cross-domain CTR (CCTR) methods frequently assume homogeneous feature spaces and rely on centralized data sharing, neglecting complex inter-domain discrepancies and the subtle trade-offs imposed by privacy-preserving protocols. Here, we present Federated Cross-Domain CTR Prediction with Large Language Model Augmentation (FedCCTR-LM), a federated framework engineered to address these limitations by synchronizing data augmentation, representation disentanglement, and adaptive privacy protection. Our approach integrates three core innovations. First, the Privacy-Preserving Augmentation Network (PrivAugNet) employs large language models to enrich user and item representations and expand interaction sequences, mitigating data sparsity and feature incompleteness. Second, the Independent Domain-Specific Transformer with Contrastive Learning (IDST-CL) module disentangles domain-specific and shared user preferences, employing intra-domain representation alignment (IDRA) and crossdomain representation disentanglement (CDRD) to refine the learned embeddings and enhance knowledge transfer across domains. Finally, the Adaptive Local Differential Privacy (AdaLDP) mechanism dynamically calibrates noise injection to achieve an optimal balance between rigorous privacy guarantees and predictive accuracy. Empirical evaluations on four real-world datasets demonstrate that FedCCTR-LM substantially outperforms existing baselines, offering robust, privacy-preserving, and generalizable cross-domain CTR prediction in heterogeneous, federated environments.
We propose a fourth-order cut-cell method for solving the two-dimensional advection-diffusion equation with moving boundaries on a Cartesian grid. We employ the ARMS technique to give an explicit and accurate representation of moving boundaries, and introduce a cell-merging technique to overcome discontinuities caused by topological changes in cut cells and the small cell problem. We use a polynomial interpolation technique base on poised lattice generation to achieve fourth-order spatial discretization, and use a fourth-order implicit-explicit Runge-Kutta scheme for time integration. Numerical tests are performed on various moving regions, with advection velocity both matching and differing from boundary velocity, which demonstrate the fourth-order accuracy of the proposed method.
The rotatable reconfigurable intelligent surface (RIS) can enhance mobile edge computing (MEC) performance by optimizing its orientation to improve the gain of received and transmitted signals. This correspondence investigates a rotatable RIS-assisted MEC system, aimed at minimizing energy consumption for multiple moving user equipment (UEs) through the joint design of RIS orientation, discrete phase shift, computation resource allocation, transmitting power and task offloading strategies. Considering the mobility of UEs, this problem is formulated as a sequential decision-making across multiple time slots. To address this challenge, a soft actor-critic (SAC)-based algorithm is proposed to optimize RIS orientation, phase shift and task offloading strategies, while computation resource allocation and transmitting power are determined based on the actions. Numerical results demonstrate that the proposed scheme exhibits superior convergence and performance compared to benchmarks. Additionally, the rotatable RIS scheme reduces total energy consumption by up to 47.3% compared to the fixed RIS, enhancing MEC system performance.
Appraisal theories suggest that emotions arise from subjective evaluations of events, referred to as appraisals. The taxonomy of appraisals is quite diverse, and they are usually given ratings on a Likert scale to be annotated in an experiencer-annotator or reader-annotator paradigm. This paper studies GPT-4 as a reader-annotator of 21 specific appraisal ratings in different prompt settings, aiming to evaluate and improve its performance compared to human annotators. We found that GPT-4 is an effective reader-annotator that performs close to or even slightly better than human annotators, and its results can be significantly improved by using a majority voting of five completions. GPT-4 also effectively predicts appraisal ratings and emotion labels using a single prompt, but adding instruction complexity results in poorer performance. We also found that longer event descriptions lead to more accurate annotations for both model and human annotator ratings. This work contributes to the growing usage of LLMs in psychology and the strategies for improving GPT-4 performance in annotating appraisals.
Relying on a large corpus of natural interactions between visitors and a robot in a museum setting, we study a recurrent practice through which humans "worked" to maintain the robot as a competent participant: the description by bystanders, in a way that was made accessible to the main speaker, of the social action that the robot was taken to be accomplishing. Doing so, bystanders maintained the robot's (sometimes incongruous) behaviour as relevant to the activity at hand and preserved the robot itself as a competent participant. Relying on these data, we argue that ex ante definitions of a robot as "social" (i.e. before any interaction occurred) run the risk of naturalizing as self-evident the observable result from micro-sociological processes: namely, the interactional work of co-present humans through which the robot's conduct is reconfigured as contextually relevant.
We consider the problem of the verification of an LTL specification $\varphi$ on a system $S$ given some prior knowledge $K$, an LTL formula that $S$ is known to satisfy. The automata-theoretic approach to LTL model checking is implemented as an emptiness check of the product $S\otimes A_{\lnot\varphi}$ where $A_{\lnot\varphi}$ is an automaton for the negation of the property. We propose new operations that simplify an automaton $A_{\lnot\varphi}$ \emph{given} some knowledge automaton $A_K$, to produce an automaton $B$ that can be used instead of $A_{\lnot\varphi}$ for more efficient model checking. Our evaluation of these operations on a large benchmark derived from the MCC'22 competition shows that even with simple knowledge, half of the problems can be definitely answered without running an LTL model checker, and the remaining problems can be simplified significantly.
As large language models (LLMs) have shown great success in many tasks, they are used in various applications. While a lot of works have focused on the efficiency of single-LLM application (e.g., offloading, request scheduling, parallelism strategy selection), multi-LLM applications receive less attention, particularly in offline inference scenarios. In this work, we aim to improve the offline end-to-end inference efficiency of multi-LLM applications in the single-node multi-GPU environment. The problem involves two key decisions: (1) determining which LLMs to run concurrently each time (we may not run all the models at the same time), and (2) selecting a parallelism strategy to use for each LLM. This problem is NP-hard. Naive solutions may not work well because the running time for a model to complete a set of requests depends on the request workload and the selected parallelism strategy, and they lack an accurate model of the running time. As the LLM output lengths are unknown before running, to estimate the model running time, we propose a sampling-then-simulation method which first estimates the output lengths by sampling from an empirical cumulative function we obtained from a large dataset in advance, and then simulates the LLM inference process accordingly. Based on the simulation, we estimate the per-iteration latencys to get the total latency. A greedy method is proposed to optimize the scheduling of the LLMs in the application across the GPUs. We then propose a framework SamuLLM which contains two phases: planning, which calls the greedy method for an application and running, which runs the application and dynamically adjust the model scheduling based on the runtime information. Experiments on 3 applications and a mixed application show that SamuLLM can achieve 1.0-2.4$\times$ end-to-end speedups compared to the competitors.
In this short paper, we propose a technique for AI-based identification of modulation and coding schemes (MCS) in surrounding cellular signals. Based on the created MCS map, we evaluate the performance of indoor localization techniques.
Transaction graphs, which represent financial and trade transactions between entities such as bank accounts and companies, can reveal patterns indicative of financial crimes like money laundering and fraud. However, effective detection of such cases requires node and edge classification methods capable of addressing the unique challenges of transaction graphs, including rich edge features, multigraph structures and temporal dynamics. To tackle these challenges, we propose TeMP-TraG, a novel graph neural network mechanism that incorporates temporal dynamics into message passing. TeMP-TraG prioritises more recent transactions when aggregating node messages, enabling better detection of time-sensitive patterns. We demonstrate that TeMP-TraG improves four state-of-the-art graph neural networks by 6.19% on average. Our results highlight TeMP-TraG as an advancement in leveraging transaction graphs to combat financial crime.
Wearable robotics for lower-limb assistance have become a pivotal area of research, aiming to enhance mobility for individuals with physical impairments or augment the performance of able-bodied users. Accurate and adaptive control systems are essential to ensure seamless interaction between the wearer and the robotic device, particularly when navigating diverse and dynamic terrains. Despite the recent advances in neural networks for time series analysis, no attempts have been directed towards the classification of ground conditions, categorized into five classes and subsequently determining the ramp's slope and stair's height. In this respect, this paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters across diverse terrains. All the models are trained on the publicly available CAMARGO 2021 dataset. IMU-only data equally or outperformed IMU+EMG inputs, promoting a cost-effective and efficient design. Indeeds, using three IMU sensors, the LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58{\deg}) and the CNN-LSTM a stair height (15.65 +- 7.40 mm) estimations. As a further contribution, SHAP analysis justified sensor reduction without performance loss, ensuring a lightweight setup. The system operates with ~2 ms inference time, supporting real-time applications. The code is code available at https://github.com/cosbidev/Human-Locomotion-Identification.
Multimodal scientific problems (MSPs) involve complex issues that require the integration of multiple modalities, such as text and diagrams, presenting a significant challenge in artificial intelligence. While progress has been made in addressing traditional scientific problems, MSPs still face two primary issues: the challenge of multi-modal comprehensive reasoning in scientific problem-solving and the lack of reflective and rethinking capabilities. To address these issues, we introduce a Multi-Agent framework based on the Big Seven Personality and Socratic guidance (MAPS). This framework employs seven distinct agents that leverage feedback mechanisms and the Socratic method to guide the resolution of MSPs. To tackle the first issue, we propose a progressive four-agent solving strategy, where each agent focuses on a specific stage of the problem-solving process. For the second issue, we introduce a Critic agent, inspired by Socratic questioning, which prompts critical thinking and stimulates autonomous learning. We conduct extensive experiments on the EMMA, Olympiad, and MathVista datasets, achieving promising results that outperform the current SOTA model by 15.84% across all tasks. Meanwhile, the additional analytical experiments also verify the model's progress as well as generalization ability.
Traffic Salient Object Detection (TSOD) aims to segment the objects critical to driving safety by combining semantic (e.g., collision risks) and visual saliency. Unlike SOD in natural scene images (NSI-SOD), which prioritizes visually distinctive regions, TSOD emphasizes the objects that demand immediate driver attention due to their semantic impact, even with low visual contrast. This dual criterion, i.e., bridging perception and contextual risk, re-defines saliency for autonomous and assisted driving systems. To address the lack of task-specific benchmarks, we collect the first large-scale TSOD dataset with pixel-wise saliency annotations, named TSOD10K. TSOD10K covers the diverse object categories in various real-world traffic scenes under various challenging weather/illumination variations (e.g., fog, snowstorms, low-contrast, and low-light). Methodologically, we propose a Mamba-based TSOD model, termed Tramba. Considering the challenge of distinguishing inconspicuous visual information from complex traffic backgrounds, Tramba introduces a novel Dual-Frequency Visual State Space module equipped with shifted window partitioning and dilated scanning to enhance the perception of fine details and global structure by hierarchically decomposing high/low-frequency components. To emphasize critical regions in traffic scenes, we propose a traffic-oriented Helix 2D-Selective-Scan (Helix-SS2D) mechanism that injects driving attention priors while effectively capturing global multi-direction spatial dependencies. We establish a comprehensive benchmark by evaluating Tramba and 22 existing NSI-SOD models on TSOD10K, demonstrating Tramba's superiority. Our research establishes the first foundation for safety-aware saliency analysis in intelligent transportation systems.
Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
The existing segment routing (SR) methods need to determine the routing first and then use path segmentation approaches to select swap nodes to form a segment routing path (SRP). They require re-segmentation of the path when the routing changes. Furthermore, they do not consider the flow table issuance time, which cannot maximize the speed of issuance flow table. To address these issues, this paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies for selecting the appropriate swap nodes to reduce flow table issuance time. It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model. First, a traffic matrix is designed as the state space for the deep reinforcement learning agent; this matrix includes multiple QoS performance indicators, flow table issuance time overhead and SR label stack depth. Second, the action selection strategy and corresponding reward function are designed, where the agent selects the next node considering the routing; in addition, the action selection strategy whether the newly added node is selected as the swap node and the corresponding reward function are designed considering the time cost factor for the controller to issue the flow table to the swap node. Finally, a series of experiments and their results show that, compared with the existing methods, the designed segmented route optimization model and the intelligent solution algorithm (DRL-SR) can reduce the time overhead required to complete the segmented route establishment task while optimizing performance metrics such as throughput, delays and packet losses.
In this paper, we investigate beamforming design and trajectory optimization for a multi-unmanned aerial vehicle (UAV)-assisted integrated sensing and communication (ISAC) system. The proposed system employs multiple UAVs equipped with dual-functional radar-communication capabilities to simultaneously perform target sensing and provide communication services to users. We formulate a joint optimization problem that aims to maximize the sum rate of users while maintaining target sensing performance through coordinated beamforming and UAV trajectory design. To address this challenging non-convex problem, we develop a block coordinated descent (BCD)-based iterative algorithm that decomposes the original problem into tractable subproblems. Then, the beamforming design problem is addressed using fractional programming, while the UAV trajectory is refined through the deep deterministic policy gradient (DDPG) algorithm. The simulation results demonstrate that the proposed joint optimization approach achieves significant performance improvements in both communication throughput and sensing accuracy compared to conventional, separated designs. We also show that proper coordination of multiple UAVs through optimized trajectories and beamforming patterns can effectively balance the tradeoff between sensing and communication objectives.
Temporal action detection (TAD) aims to identify and localize action instances in untrimmed videos, which is essential for various video understanding tasks. However, recent improvements in model performance, driven by larger feature extractors and datasets, have led to increased computational demands. This presents a challenge for applications like autonomous driving and robotics, which rely on limited computational resources. While existing channel pruning methods can compress these models, reducing the number of channels often hinders the parallelization efficiency of GPU, due to the inefficient multiplication between small matrices. Instead of pruning channels, we propose a Progressive Block Drop method that reduces model depth while retaining layer width. In this way, we still use large matrices for computation but reduce the number of multiplications. Our approach iteratively removes redundant blocks in two steps: first, we drop blocks with minimal impact on model performance; and second, we employ a parameter-efficient cross-depth alignment technique, fine-tuning the pruned model to restore model accuracy. Our method achieves a 25% reduction in computational overhead on two TAD benchmarks (THUMOS14 and ActivityNet-1.3) to achieve lossless compression. More critically, we empirically show that our method is orthogonal to channel pruning methods and can be combined with it to yield further efficiency gains.
We introduce a new framework that employs Malliavin calculus to derive explicit expressions for the score function -- i.e., the gradient of the log-density -- associated with solutions to stochastic differential equations (SDEs). Our approach integrates classical integration-by-parts techniques with modern tools, such as Bismut's formula and Malliavin calculus, to address linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint (the Malliavin divergence or the Skorokhod integral), Bismut's formula, and diffusion generative models, thus providing a systematic method for computing $\nabla \log p_t(x)$. For the linear case, we present a detailed study proving that our formula is equivalent to the actual score function derived from the solution of the Fokker--Planck equation for linear SDEs. Additionally, we derive a closed-form expression for $\nabla \log p_t(x)$ for nonlinear SDEs with state-independent diffusion coefficients. These advancements provide fresh theoretical insights into the smoothness and structure of probability densities and practical implications for score-based generative modelling, including the design and analysis of new diffusion models. Moreover, our findings promote the adoption of the robust Malliavin calculus framework in machine learning research. These results directly apply to various pure and applied mathematics fields, such as generative modelling, the study of SDEs driven by fractional Brownian motion, and the Fokker--Planck equations associated with nonlinear SDEs.
This paper is concerned with the computation of the capacity region of a continuous, Gaussian vector broadcast channel (BC) with covariance matrix constraints. Since the decision variables of the corresponding optimization problem are Gaussian distributed, they can be characterized by a finite number of parameters. Consequently, we develop new Blahut-Arimoto (BA)-type algorithms that can compute the capacity without discretizing the channel. First, by exploiting projection and an approximation of the Lagrange multiplier, which are introduced to handle certain positive semidefinite constraints in the optimization formulation, we develop the Gaussian BA algorithm with projection (GBA-P). Then, we demonstrate that one of the subproblems arising from the alternating updates admits a closed-form solution. Based on this result, we propose the Gaussian BA algorithm with alternating updates (GBA-A) and establish its convergence guarantee. Furthermore, we extend the GBA-P algorithm to compute the capacity region of the Gaussian vector BC with both private and common messages. All the proposed algorithms are parameter-free. Lastly, we present numerical results to demonstrate the effectiveness of the proposed algorithms.
An AI design framework was developed based on three core principles, namely understandability, trust, and usability. The framework was conceptualized by synthesizing evidence from the literature and by consulting with experts. The initial version of the AI Explainability Framework was validated based on an in-depth expert engagement and review process. For evaluation purposes, an AI-anchored prototype, incorporating novel explainability features, was built and deployed online. The primary function of the prototype was to predict the postpartum depression risk using analytics models. The development of the prototype was carried out in an iterative fashion, based on a pilot-level formative evaluation, followed by refinements and summative evaluation. The System Explainability Scale (SES) metric was developed to measure the influence of the three dimensions of the AI Explainability Framework. For the summative stage, a comprehensive usability test was conducted involving 20 clinicians, and the SES metric was used to assess clinicians` satisfaction with the tool. On a 5-point rating system, the tool received high scores for the usability dimension, followed by trust and understandability. The average explainability score was 4.56. In terms of understandability, trust, and usability, the average score was 4.51, 4.53 and 4.71 respectively. Overall, the 13-item SES metric showed strong internal consistency with Cronbach`s alpha of 0.84 and a positive correlation coefficient (Spearman`s rho = 0.81, p<0.001) between the composite SES score and explainability. A major finding was that the framework, combined with the SES usability metric, provides a straightforward approach for developing AI-based healthcare tools that lower the challenges associated with explainability.
In recent years, the field of image generation has witnessed significant advancements, particularly in fine-tuning methods that align models with universal human preferences. This paper explores the critical role of preference data in the training process of diffusion models, particularly in the context of Diffusion-DPO and its subsequent adaptations. We investigate the complexities surrounding universal human preferences in image generation, highlighting the subjective nature of these preferences and the challenges posed by minority samples in preference datasets. Through pilot experiments, we demonstrate the existence of minority samples and their detrimental effects on model performance. We propose Adaptive-DPO -- a novel approach that incorporates a minority-instance-aware metric into the DPO objective. This metric, which includes intra-annotator confidence and inter-annotator stability, distinguishes between majority and minority samples. We introduce an Adaptive-DPO loss function which improves the DPO loss in two ways: enhancing the model's learning of majority labels while mitigating the negative impact of minority samples. Our experiments demonstrate that this method effectively handles both synthetic minority data and real-world preference data, paving the way for more effective training methodologies in image generation tasks.
Large Language Models (LLMs) have become pivotal tools for automating code generation in software development. However, these models face significant challenges in producing version-aware code for rapidly evolving languages like Rust, where frequent Application Programming Interfaces (API) changes across versions lead to compatibility issues and correctness errors. Existing benchmarks lack systematic evaluation of how models navigate API transitions, relying on labor-intensive manual curation and offering limited version-specific insights. To address this gap, we present RustEvo, a novel framework for constructing dynamic benchmarks that evaluate the ability of LLMs to adapt to evolving Rust APIs. RustEvo automates dataset creation by synthesizing 588 API changes (380 from Rust standard libraries, 208 from 15 third-party crates) into programming tasks mirroring real-world challenges. These tasks cover four API evolution categories: Stabilizations, Signature Changes, Behavioral Changes, and Deprecations, reflecting their actual distribution in the Rust ecosystem. Experiments on state-of-the-art (SOTA) LLMs reveal significant performance variations: models achieve a 65.8% average success rate on stabilized APIs but only 38.0% on behavioral changes, highlighting difficulties in detecting semantic shifts without signature alterations. Knowledge cutoff dates strongly influence performance, with models scoring 56.1% on before-cutoff APIs versus 32.5% on after-cutoff tasks. Retrieval-Augmented Generation (RAG) mitigates this gap, improving success rates by 13.5% on average for APIs released after model training. Our findings underscore the necessity of our evolution-aware benchmarks to advance the adaptability of LLMs in fast-paced software ecosystems. The framework and the benchmarks are publicly released at https://github.com/SYSUSELab/RustEvo.
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
Recommender Systems (RS) aim to generate personalized ranked lists for each user and are evaluated using ranking metrics. Although personalized ranking is a fundamental aspect of RS, this critical property is often overlooked in the design of model architectures. To address this issue, we propose Rankformer, a ranking-inspired recommendation model. The architecture of Rankformer is inspired by the gradient of the ranking objective, embodying a unique (graph) transformer architecture -- it leverages global information from all users and items to produce more informative representations and employs specific attention weights to guide the evolution of embeddings towards improved ranking performance. We further develop an acceleration algorithm for Rankformer, reducing its complexity to a linear level with respect to the number of positive instances. Extensive experimental results demonstrate that Rankformer outperforms state-of-the-art methods. The code is available at https://github.com/StupidThree/Rankformer.
The analysis of electrophysiological data is crucial for certain surgical procedures such as deep brain stimulation, which has been adopted for the treatment of a variety of neurological disorders. During the procedure, auditory analysis of these signals helps the clinical team to infer the neuroanatomical location of the stimulation electrode and thus optimize clinical outcomes. This task is complex, and requires an expert who in turn requires significant training. In this paper, we propose a generative neural network, called MerGen, capable of simulating de novo electrophysiological recordings, with a view to providing a realistic learning tool for clinicians trainees for identifying these signals. We demonstrate that the generated signals are perceptually indistinguishable from real signals by experts in the field, and that it is even possible to condition the generation efficiently to provide a didactic simulator adapted to a particular surgical scenario. The efficacy of this conditioning is demonstrated, comparing it to intra-observer and inter-observer variability amongst experts. We also demonstrate the use of this network for data augmentation for automatic signal classification which can play a role in decision-making support in the operating theatre.
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPO (TEMporal Preference Optimization), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and ``Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPO as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
Dynamic image degradations, including noise, blur and lighting inconsistencies, pose significant challenges in image restoration, often due to sensor limitations or adverse environmental conditions. Existing Deep Unfolding Networks (DUNs) offer stable restoration performance but require manual selection of degradation matrices for each degradation type, limiting their adaptability across diverse scenarios. To address this issue, we propose the Vision-Language-guided Unfolding Network (VLU-Net), a unified DUN framework for handling multiple degradation types simultaneously. VLU-Net leverages a Vision-Language Model (VLM) refined on degraded image-text pairs to align image features with degradation descriptions, selecting the appropriate transform for target degradation. By integrating an automatic VLM-based gradient estimation strategy into the Proximal Gradient Descent (PGD) algorithm, VLU-Net effectively tackles complex multi-degradation restoration tasks while maintaining interpretability. Furthermore, we design a hierarchical feature unfolding structure to enhance VLU-Net framework, efficiently synthesizing degradation patterns across various levels. VLU-Net is the first all-in-one DUN framework and outperforms current leading one-by-one and all-in-one end-to-end methods by 3.74 dB on the SOTS dehazing dataset and 1.70 dB on the Rain100L deraining dataset.
Humans and robots are increasingly working in personal and professional settings. In workplace settings, humans and robots may work together as colleagues, potentially leading to social expectations, or violation thereof. Extant research has primarily sought to understand social interactions and expectations in personal rather than professional settings, and none of these studies have examined negative outcomes arising from violations of social expectations. This paper reports the results of a 2x3 online experiment that used a unique first-person perspective video to immerse participants in a collaborative workplace setting. The results are nuanced and reveal that while robots are expected to act in accordance with social expectations despite human behavior, there are benefits for robots perceived as being the bigger person in the face of human rudeness. Theoretical and practical implications are provided which discuss the import of these findings for the design of social robots.
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
Decision-making processes in healthcare can be highly complex and challenging. Machine Learning tools offer significant potential to assist in these processes. However, many current methodologies rely on complex models that are not easily interpretable by experts. This underscores the need to develop interpretable models that can provide meaningful support in clinical decision-making. When approaching such tasks, humans typically compare the situation at hand to a few key examples and representative cases imprinted in their memory. Using an approach which selects such exemplary cases and grounds its predictions on them could contribute to obtaining high-performing interpretable solutions to such problems. To this end, we evaluate PivotTree, an interpretable prototype selection model, on an oral lesion detection problem, specifically trying to detect the presence of neoplastic, aphthous and traumatic ulcerated lesions from oral cavity images. We demonstrate the efficacy of using such method in terms of performance and offer a qualitative and quantitative comparison between exemplary cases and ground-truth prototypes selected by experts.
Tiny Machine Learning (TinyML) is a novel research field aiming at integrating Machine Learning (ML) within embedded devices with limited memory, computation, and energy. Recently, a new branch of TinyML has emerged, focusing on integrating ML directly into the sensors to further reduce the power consumption of embedded devices. Interestingly, despite their state-of-the-art performance in many tasks, none of the current solutions in the literature aims to optimize the implementation of Convolutional Neural Networks (CNNs) operating directly into sensors. In this paper, we introduce for the first time in the literature the optimized design and implementation of Depth-First CNNs operating on the Intelligent Sensor Processing Unit (ISPU) within an Inertial Measurement Unit (IMU) by STMicroelectronics. Our approach partitions the CNN between the ISPU and the microcontroller (MCU) and employs an Early-Exit mechanism to stop the computations on the IMU when enough confidence about the results is achieved, hence significantly reducing power consumption. When using a NUCLEO-F411RE board, this solution achieved an average current consumption of 4.8 mA, marking an 11% reduction compared to the regular inference pipeline on the MCU, while having equal accuracy.
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To cope with these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we have designed an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout-adjusting strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
Artificial neural networks (ANNs), have become ubiquitous and revolutionized many applications ranging from computer vision to medical diagnoses. However, they offer a fundamentally connectionist and distributed approach to computing, in stark contrast to classical computers that use the von Neumann architecture. This distinction has sparked renewed interest in developing unconventional hardware to support more efficient implementations of ANNs, rather than merely emulating them on traditional systems. Photonics stands out as a particularly promising platform, providing scalability, high speed, energy efficiency, and the ability for parallel information processing. However, fully realized autonomous optical neural networks (ONNs) with in-situ learning capabilities are still rare. In this work, we demonstrate a fully autonomous and parallel ONN using a multimode vertical cavity surface emitting laser (VCSEL) using off-the-shelf components. Our ONN is highly efficient and is scalable both in network size and inference bandwidth towards the GHz range. High performance hardware-compatible optimization algorithms are necessary in order to minimize reliance on external von Neumann computers to fully exploit the potential of ONNs. As such we present and extensively study several algorithms which are broadly compatible with a wide range of systems. We then apply these algorithms to optimize our ONN, and benchmark them using the MNIST dataset. We show that our ONN can achieve high accuracy and convergence efficiency, even under limited hardware resources. Crucially, we compare these different algorithms in terms of scaling and optimization efficiency in term of convergence time which is crucial when working with limited external resources. Our work provides some guidance for the design of future ONNs as well as a simple and flexible way to train them.
Personalized portrait synthesis, essential in domains like social entertainment, has recently made significant progress. Person-wise fine-tuning based methods, such as LoRA and DreamBooth, can produce photorealistic outputs but need training on individual samples, consuming time and resources and posing an unstable risk. Adapter based techniques such as IP-Adapter freeze the foundational model parameters and employ a plug-in architecture to enable zero-shot inference, but they often exhibit a lack of naturalness and authenticity, which are not to be overlooked in portrait synthesis tasks. In this paper, we introduce a parameter-efficient adaptive generation method, namely HyperLoRA, that uses an adaptive plug-in network to generate LoRA weights, merging the superior performance of LoRA with the zero-shot capability of adapter scheme. Through our carefully designed network structure and training strategy, we achieve zero-shot personalized portrait generation (supporting both single and multiple image inputs) with high photorealism, fidelity, and editability.
Vision-Language Models (VLMs) like CLIP offer promising solutions for Dynamic Facial Expression Recognition (DFER) but face challenges such as inefficient full fine-tuning, high complexity, and poor alignment between textual and visual representations. Additionally, existing methods struggle with ineffective temporal modeling. To address these issues, we propose PE-CLIP, a parameter-efficient fine-tuning (PEFT) framework that adapts CLIP for DFER while significantly reducing trainable parameters while maintaining high accuracy. PE-CLIP introduces two specialized adapters: a Temporal Dynamic Adapter (TDA) and a Shared Adapter (ShA). The TDA is a GRU-based module with dynamic scaling that captures sequential dependencies while emphasizing informative temporal features and suppressing irrelevant variations. The ShA is a lightweight adapter that refines representations within both textual and visual encoders, ensuring consistency and efficiency. Additionally, we integrate Multi-modal Prompt Learning (MaPLe), introducing learnable prompts for visual and action unit-based textual inputs, enhancing semantic alignment between modalities and enabling efficient CLIP adaptation for dynamic tasks. We evaluate PE-CLIP on two benchmark datasets, DFEW and FERV39K, achieving competitive performance compared to state-of-the-art methods while requiring fewer trainable parameters. By balancing efficiency and accuracy, PE-CLIP sets a new benchmark in resource-efficient DFER. The source code of the proposed PE-CLIP will be publicly available at https://github.com/Ibtissam-SAADI/PE-CLIP .
We present \textit{MagicColor}, a diffusion-based framework for multi-instance sketch colorization. The production of multi-instance 2D line art colorization adheres to an industry-standard workflow, which consists of three crucial stages: the design of line art characters, the coloring of individual objects, and the refinement process. The artists are required to repeat the process of coloring each instance one by one, which is inaccurate and inefficient. Meanwhile, current generative methods fail to solve this task due to the challenge of multi-instance pair data collection. To tackle these challenges, we incorporate three technical designs to ensure precise character detail transcription and achieve multi-instance sketch colorization in a single forward. Specifically, we first propose the self-play training strategy to solve the lack of training data. Then we introduce an instance guider to feed the color of the instance. To achieve accurate color matching, we present fine-grained color matching with edge loss to enhance visual quality. Equipped with the proposed modules, MagicColor enables automatically transforming sketches into vividly-colored images with accurate consistency and multi-instance control. Experiments on our collected datasets show that our model outperforms existing methods regarding chromatic precision. Specifically, our model critically automates the colorization process with zero manual adjustments, so novice users can produce stylistically consistent artwork by providing reference instances and the original line art. Our code and additional details are available at https://yinhan-zhang.github.io/color
Stack-based memory corruption vulnerabilities have long been exploited by attackers to execute arbitrary code or perform unauthorized memory operations. Various defense mechanisms have been introduced to mitigate stack memory errors, but they typically focus on specific attack types, incur substantial performance overhead, or suffer from compatibility limitations.In this paper, we present CleanStack, an efficient, highly compatible, and comprehensive stack protection mech anism. CleanStack isolates stack objects influenced by external input from other safe stack objects, thereby preventing attackers from modifying return addresses via controlled stack objects. Additionally, by randomizing the placement of tainted stack objects within the Unclean Stack, CleanStack mitigates non control data attacks by preventing attackers from predicting the stack layout.A key component of CleanStack is the identifica tion of tainted stack objects. We analyze both static program analysis and heuristic methods for this purpose. To maximize compatibility, we adopt a heuristic approach and implement CleanStack within the LLVM compiler framework, applying it to SPEC CPU2017 benchmarks and a real-world application.Our security evaluation demonstrates that CleanStack significantly reduces the exploitability of stack-based memory errors by providing a dual-stack system with isolation and randomization. Performance evaluation results indicate that CleanStack incurs an execution overhead of only 1.73% on the SPEC CPU2017 benchmark while introducing a minimal memory overhead of just 0.04%. Compared to existing stack protection techniques, CleanStack achieves an optimal balance between protection coverage, runtime overhead, and compatibility, making it one of the most comprehensive and efficient stack security solutions to date.
Deep learning approaches are becoming increasingly attractive for equation discovery. We show the advantages and disadvantages of using neural-guided equation discovery by giving an overview of recent papers and the results of experiments using our modular equation discovery system MGMT ($\textbf{M}$ulti-Task $\textbf{G}$rammar-Guided $\textbf{M}$onte-Carlo $\textbf{T}$ree Search for Equation Discovery). The system uses neural-guided Monte-Carlo Tree Search (MCTS) and supports both supervised and reinforcement learning, with a search space defined by a context-free grammar. We summarize seven desirable properties of equation discovery systems, emphasizing the importance of embedding tabular data sets for such learning approaches. Using the modular structure of MGMT, we compare seven architectures (among them, RNNs, CNNs, and Transformers) for embedding tabular datasets on the auxiliary task of contrastive learning for tabular data sets on an equation discovery task. For almost all combinations of modules, supervised learning outperforms reinforcement learning. Moreover, our experiments indicate an advantage of using grammar rules as action space instead of tokens. Two adaptations of MCTS -- risk-seeking MCTS and AmEx-MCTS -- can improve equation discovery with that kind of search.
As robots enter the messy human world so the vital matter of safety takes on a fresh complexion with physical contact becoming inevitable and even desirable. We report on an artistic-exploration of how dancers, working as part of a multidisciplinary team, engaged in contact improvisation exercises to explore the opportunities and challenges of dancing with cobots. We reveal how they employed their honed bodily senses and physical skills to engage with the robots aesthetically and yet safely, interleaving improvised physical manipulations with reflections to grow their knowledge of how the robots behaved and felt. We introduce somatic safety, a holistic mind-body approach in which safety is learned, felt and enacted through bodily contact with robots in addition to being reasoned about. We conclude that robots need to be better designed for people to hold them and might recognise tacit safety cues among people.We propose that safety should be learned through iterative bodily experience interleaved with reflection.
Compared with natural images, remote sensing images (RSIs) have the unique characteristic. i.e., larger intraclass variance, which makes semantic segmentation for remote sensing images more challenging. Moreover, existing semantic segmentation models for remote sensing images usually employ a vanilla softmax classifier, which has three drawbacks: (1) non-direct supervision for the pixel representations during training; (2) inadequate modeling ability of parametric softmax classifiers under large intraclass variance; and (3) opaque process of classification decision. In this paper, we propose a novel classifier (called CenterSeg) customized for RSI semantic segmentation, which solves the abovementioned problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy. Specifically, for each class, our CenterSeg obtains local class centers by aggregating corresponding pixel features based on ground-truth masks, and generates multiple prototypes through hard attention assignment and momentum updating. In addition, we introduce the Grassmann manifold and constrain the joint embedding space of pixel features and prototypes based on two additional regularization terms. Especially, during the inference, CenterSeg can further provide interpretability to the model by restricting the prototype as a sample of the training set. Experimental results on three remote sensing segmentation datasets validate the effectiveness of the model. Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability. Code is available at https://github.com/xwmaxwma/rssegmentation.
Drones have become essential tools for reconstructing wild scenes due to their outstanding maneuverability. Recent advances in radiance field methods have achieved remarkable rendering quality, providing a new avenue for 3D reconstruction from drone imagery. However, dynamic distractors in wild environments challenge the static scene assumption in radiance fields, while limited view constraints hinder the accurate capture of underlying scene geometry. To address these challenges, we introduce DroneSplat, a novel framework designed for robust 3D reconstruction from in-the-wild drone imagery. Our method adaptively adjusts masking thresholds by integrating local-global segmentation heuristics with statistical approaches, enabling precise identification and elimination of dynamic distractors in static scenes. We enhance 3D Gaussian Splatting with multi-view stereo predictions and a voxel-guided optimization strategy, supporting high-quality rendering under limited view constraints. For comprehensive evaluation, we provide a drone-captured 3D reconstruction dataset encompassing both dynamic and static scenes. Extensive experiments demonstrate that DroneSplat outperforms both 3DGS and NeRF baselines in handling in-the-wild drone imagery.
Embodied decision-making is fundamental for AI agents operating in real-world environments. While Visual Language Models (VLMs) have advanced this capability, they still struggle with complex decisions, particularly in human-centered situations that require deep reasoning about human needs and values. In this study, we systematically evaluate open-sourced VLMs on multimodal human-centered decision-making tasks. We find that LLMs receiving only textual descriptions unexpectedly outperform their VLM counterparts of similar scale that process actual images, suggesting that visual alignment may hinder VLM abilities. To address this challenge, we propose a novel text-only training approach with synthesized textual data. This method strengthens VLMs' language components and transfers the learned abilities to multimodal inference, eliminating the need for expensive image-text paired data. Furthermore, we show that VLMs can achieve substantial performance gains through self-improvement, using training data generated by their LLM counterparts rather than relying on larger teacher models like GPT-4. Our findings establish a more efficient and scalable approach to enhancing VLMs' human-centered decision-making capabilities, opening new avenues for optimizing VLMs through self-improvement mechanisms.
Computational notebooks, while essential for data science, are limited by their one-dimensional interface, which poorly aligns with non-linear developer workflows and complicates collaboration and human-AI interaction. In this work, we focus on features of Computational Canvas, a novel two-dimensional interface that evolves notebooks to enhance data analysis and AI-assisted development within integrated development environments (IDEs). We present vital features, including freely arrangeable code cells, separate environments, and improved output management. These features are designed to facilitate intuitive organization, visual exploration, and natural collaboration with other users and AI agents. We also show the implementation of Computational Canvas with designed features as a Visual Studio Code plugin. By shifting from linear to two-dimensional spatial interfaces, we aim to significantly boost developers' productivity in data exploration, experimentation, and AI-assisted development, addressing the current limitations of traditional notebooks and fostering more flexible, collaborative data science workflows.
Context and motivation: In recent years, behavior trees have gained growing interest within the robotics community as a specification and control switching mechanism for the different tasks that form a robotics mission. Problem: Given the rising complexity and prevalence of robotic systems, it is increasingly challenging and important for practitioners to design high-quality missions that meet certain qualities, for instance, to consider potential failures or mitigate safety risks. In software requirements engineering, quality or non-functional requirements have long been recognized as a key factor in system success. Currently, qualities are not represented in behavior tree models, which capture a robotic mission, making it difficult to assess the extent to which different mission components comply with those qualities. Principal ideas: In this paper, we propose an extension for behavior trees to have qualities and quality requirements explicitly represented in robotics missions. We provide a meta-model for the extension, develop a domain-specific language (DSL), and describe how we integrated our DSL in one of the most used languages in robotics for developing behavior trees, BehaviorTree.CPP. A preliminary evaluation of the implemented DSL shows promising results for the feasibility of our approach and the need for similar DSLs. Contribution: Our approach paves the way for incorporating qualities into the behavior model of robotics missions. This promotes early expression of qualities in robotics missions, and a better overview of missions components and their contribution to the satisfaction of quality concerns.
Depth completion involves predicting dense depth maps from sparse LiDAR inputs. However, sparse depth annotations from sensors limit the availability of dense supervision, which is necessary for learning detailed geometric features. In this paper, we propose a two-stage knowledge distillation framework that leverages powerful monocular foundation models to provide dense supervision for depth completion. In the first stage, we introduce a pre-training strategy that generates diverse training data from natural images, which distills geometric knowledge to depth completion. Specifically, we simulate LiDAR scans by utilizing monocular depth and mesh reconstruction, thereby creating training data without requiring ground-truth depth. Besides, monocular depth estimation suffers from inherent scale ambiguity in real-world settings. To address this, in the second stage, we employ a scale- and shift-invariant loss (SSI Loss) to learn real-world scales when fine-tuning on real-world datasets. Our two-stage distillation framework enables depth completion models to harness the strengths of monocular foundation models. Experimental results demonstrate that models trained with our two-stage distillation framework achieve state-of-the-art performance, ranking \textbf{first place} on the KITTI benchmark. Code is available at https://github.com/Sharpiless/DMD3C
Can a memory manager be built with fast bump-pointer allocation, single-pass heap tracing, and a low upper bound on memory overhead? The Immix collector answered in the affirmative for the first two, but the granularity at which it reclaims memory means that in the worst case a tiny object can keep two 128-byte lines of memory from being re-used for allocation. This paper takes Immix to an extreme of precision, allowing all free space between objects to be reclaimed, down to the limit of the allocator's minimum alignment. We present the design of this Nofl layout, build a collector library around it, and build a new Scheme-to-C compiler as a workbench. We make a first evaluation of the Nofl-based mostly-marking collector when compared to standard copying and mark-sweep collectors and run against a limited set of microbenchmarks, finding that Nofl outperforms the others for tight-to-adequate heap sizes.
A Decentralized Identifier (DID) empowers an entity to prove control over a unique and self-issued identifier without relying on any identity provider. The public key material for the proof is encoded into an associated DID document (DDO). This is preferable shared via a distributed ledger because it guarantees algorithmically that everyone has access to the latest state of any tamper-proof DDO but only the entities in control of a DID are able to update theirs. Yet, it is possible to grant deputies the authority to update the DDO on behalf of the DID owner. However, the DID specification leaves largely open on how authorizations over a DDO are managed and enforced among multiple deputies. This article investigates what it means to govern a DID and discusses various forms of how a DID can be controlled by potentially more than one entity. It also presents a prototype of a DID-conform identifier management system where a selected set of governance policies are deployed as Smart Contracts. The article highlights the critical role of governance for the trustworthy and flexible deployment of ledger-anchored DIDs across various domains.
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
Deep neural networks (DNNs) has shown great promise in computer vision tasks. However, machine vision achieved by DNNs cannot be as robust as human perception. Adversarial attacks and data distribution shifts have been known as two major scenarios which degrade machine performance and obstacle the wide deployment of machines "in the wild". In order to break these obstructions and facilitate the research of model robustness, we develop EasyRobust, a comprehensive and easy-to-use toolkit for training, evaluation and analysis of robust vision models. EasyRobust targets at two types of robustness: 1) Adversarial robustness enables the model to defense against malicious inputs crafted by worst-case perturbations, also known as adversarial examples; 2) Non-adversarial robustness enhances the model performance on natural test images with corruptions or distribution shifts. Thorough benchmarks on image classification enable EasyRobust to provide an accurate robustness evaluation on vision models. We wish our EasyRobust can help for training practically-robust models and promote academic and industrial progress in closing the gap between human and machine vision. Codes and models of EasyRobust have been open-sourced in https://github.com/alibaba/easyrobust.
Achieving meticulous segmentation of tooth point clouds from intra-oral scans stands as an indispensable prerequisite for various orthodontic applications. Given the labor-intensive nature of dental annotation, a significant amount of data remains unlabeled, driving increasing interest in semi-supervised approaches. One primary challenge of existing semi-supervised medical segmentation methods lies in noisy pseudo labels generated for unlabeled data. To address this challenge, we propose GeoT, the first framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation. Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors through two key components: point-level geometric regularization (PLGR) to enhance consistency between point adjacency relationships in 3D and IDTM spaces, and class-level geometric smoothing (CLGS) to leverage the fixed spatial distribution of tooth categories for optimal IDTM estimation. Extensive experiments performed on the public Teeth3DS dataset and private dataset demonstrate that our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20\%$ of the labeled data.
Diffusion models have shown impressive performance in capturing complex and multi-modal action distributions for game agents, but their slow inference speed prevents practical deployment in real-time game environments. While consistency models offer a promising approach for one-step generation, they often suffer from training instability and performance degradation when applied to policy learning. In this paper, we present CPQE (Consistency Policy with Q-Ensembles), which combines consistency models with Q-ensembles to address these challenges.CPQE leverages uncertainty estimation through Q-ensembles to provide more reliable value function approximations, resulting in better training stability and improved performance compared to classic double Q-network methods. Our extensive experiments across multiple game scenarios demonstrate that CPQE achieves inference speeds of up to 60 Hz -- a significant improvement over state-of-the-art diffusion policies that operate at only 20 Hz -- while maintaining comparable performance to multi-step diffusion approaches. CPQE consistently outperforms state-of-the-art consistency model approaches, showing both higher rewards and enhanced training stability throughout the learning process. These results indicate that CPQE offers a practical solution for deploying diffusion-based policies in games and other real-time applications where both multi-modal behavior modeling and rapid inference are critical requirements.
Building Free-Viewpoint Videos in a streaming manner offers the advantage of rapid responsiveness compared to offline training methods, greatly enhancing user experience. However, current streaming approaches face challenges of high per-frame reconstruction time (10s+) and error accumulation, limiting their broader application. In this paper, we propose Instant Gaussian Stream (IGS), a fast and generalizable streaming framework, to address these issues. First, we introduce a generalized Anchor-driven Gaussian Motion Network, which projects multi-view 2D motion features into 3D space, using anchor points to drive the motion of all Gaussians. This generalized Network generates the motion of Gaussians for each target frame in the time required for a single inference. Second, we propose a Key-frame-guided Streaming Strategy that refines each key frame, enabling accurate reconstruction of temporally complex scenes while mitigating error accumulation. We conducted extensive in-domain and cross-domain evaluations, demonstrating that our approach can achieve streaming with a average per-frame reconstruction time of 2s+, alongside a enhancement in view synthesis quality.
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
This short paper proposes to learn models of satisfiability modulo theories (SMT) formulas during solving. Specifically, we focus on infinite models for problems in the logic of linear arithmetic with uninterpreted functions (UFLIA). The constructed models are piecewise linear. Such models are useful for satisfiable problems but also provide an alternative driver for model-based quantifier instantiation (MBQI).
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at this http URL
Vehicle cybersecurity has emerged as a critical concern, driven by the innovation in the automotive industry, e.g., automomous, electric, or connnected vehicles. Current efforts to address these challenges are constrained by the limited computational resources of vehicles and the reliance on connected infrastructures. This motivated the foundation of Vehicle Security Operations Centers (VSOCs) that extend IT-based Security Operations Centers (SOCs) to cover the entire automotive ecosystem, both the in-vehicle and off-vehicle scopes. Security Orchestration, Automation, and Response (SOAR) tools are considered key for impelementing an effective cybersecurity solution. However, existing state-of-the-art solutions depend on infrastructure networks such as 4G, 5G, and WiFi, which often face scalability and congestion issues. To address these limitations, we propose a novel SOAR architecture EVSOAR that leverages the EV charging stations for connectivity and computing to enhance vehicle cybersecurity. Our EV-specific SOAR architecture enables real-time analysis and automated responses to cybersecurity threats closer to the EV, reducing the cellular latency, bandwidth, and interference limitations. Our experimental results demonstrate a significant improvement in latency, stability, and scalability through the infrastructure and the capacity to deploy computationally intensive applications, that are otherwise infeasible within the resource constraints of individual vehicles.
We present STFTCodec, a novel spectral-based neural audio codec that efficiently compresses audio using Short-Time Fourier Transform (STFT). Unlike waveform-based approaches that require large model capacity and substantial memory consumption, this method leverages STFT for compact spectral representation and introduces unwrapped phase derivatives as auxiliary features. Our architecture employs parallel magnitude and phase processing branches enhanced by advanced feature extraction mechanisms. By relaxing strict phase reconstruction constraints while maintaining phase-aware processing, we achieve superior perceptual quality. Experimental results demonstrate that STFTCodec outperforms both waveform-based and spectral-based approaches across multiple bitrates, while offering unique flexibility in compression ratio adjustment through STFT parameter modification without architectural changes.
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Parameter Efficient Fine-tuning. While pretrained time series foundation models are gaining popularity, they face the following challenges: (1) Unlike natural language tasks, time series data vary in frequency, channel numbers, historical/prediction lengths. For long-term forecasting tasks in particular, tailored fine-tuning can significantly enhance performance.(2) Existing parameter-efficient tuning methods like LoRA remain applicable but require adaptation to temporal characteristics. To address these challenges, our TRACE framework introduces two key innovations: (1) Gated DSIC (Gated Dynamic Simulation Importance Calculation), an unbiased LoRA module importance selection mechanism that ensures conditional parameter consistency before and after masking. Experiments demonstrate that Gated DSIC outperforms common fine-tuning. (2) Reconstructed prediction heads for long-term forecasting tasks, which achieve comparable or superior performance to linear probing heads while drastically reducing parameter counts. Extensive experiments on long-/short-term forecasting and anomaly detection tasks across diverse datasets, coupled with ablation studies, validate the effectiveness of our method.
In a 'digital by default' society, essential services must be accessed online. This opens users to digital deception not only from criminal fraudsters but from a range of actors in a marketised digital economy. Using grounded empirical research from northern England, we show how supposedly 'trusted' actors, such as governments,(re)produce the insecurities and harms that they seek to prevent. Enhanced by a weakening of social institutions amid a drive for efficiency and scale, this has built a constricted, unpredictable digital channel. We conceptualise this as a "snipers' alley". Four key snipers articulated by participants' lived experiences are examined: 1) Governments; 2) Business; 3) Criminal Fraudsters; and 4) Friends and Family to explore how snipers are differentially experienced and transfigure through this constricted digital channel. We discuss strategies to re-configure the alley, and how crafting and adopting opportunity models can enable more equitable forms of security for all.
Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.
Large pretrained visual foundation models exhibit impressive general capabilities. However, the extensive prior knowledge inherent in these models can sometimes be a double-edged sword when adapting them to downstream tasks in specific domains. In the context of semi-supervised medical image segmentation with domain shift, foundation models like MedSAM tend to make overconfident predictions, some of which are incorrect. The error accumulation hinders the effective utilization of unlabeled data and limits further improvements. In this paper, we introduce a Synergistic training framework for Foundation and Conventional models (SynFoC) to address the issue. We observe that a conventional model trained from scratch has the ability to correct the high-confidence mispredictions of the foundation model, while the foundation model can supervise it with high-quality pseudo-labels in the early training stages. Furthermore, to enhance the collaborative training effectiveness of both models and promote reliable convergence towards optimization, the consensus-divergence consistency regularization is proposed. We demonstrate the superiority of our method across four public multi-domain datasets. In particular, our method improves the Dice score by 10.31\% on the Prostate dataset. Our code is available at https://github.com/MQinghe/SynFoC .
Background: Despite its impact on innovation, gender diversity remains far from fully being achieved in open-source projects. Aims: We examine gender diversity in Hugging Face (HF) organizations, investigating its impact on innovation and team dynamics in open-source development projects. Method: We conducted a repository mining study, focusing on ML model development projects on HF, to explore the involvement of women in collaborative processes. Results: Women are highly underrepresented in both organizations and commits distribution, which is also found when analyzing individual developers. Conclusions: Addressing gender disparities is essential to create more equitable, diverse, and inclusive open-source ecosystems.
Owing to the capability for reliable and all-weather long-range sensing, the fusion of LiDAR and Radar has been widely applied to autonomous vehicles for robust perception. In practical operation, well manually calibrated extrinsic parameters, which are crucial for the fusion of multi-modal sensors, may drift due to the vibration. To address this issue, we present a novel targetless calibration approach, termed LiRaCo, for the extrinsic 6DoF calibration of LiDAR and Radar sensors. Although both types of sensors can obtain geometric information, bridging the geometric correspondences between multi-modal data without any clues of explicit artificial markers is nontrivial, mainly due to the low vertical resolution of scanning Radar. To achieve the targetless calibration, LiRaCo leverages a spatial occupancy consistency between LiDAR point clouds and Radar scans in a common cylindrical representation, considering the increasing data sparsity with distance for both sensors. Specifically, LiRaCo expands the valid Radar scanned pixels into 3D occupancy grids to constrain LiDAR point clouds based on spatial consistency. Consequently, a cost function involving extrinsic calibration parameters is formulated based on the spatial overlap of 3D grids and LiDAR points. Extrinsic parameters are finally estimated by optimizing the cost function. Comprehensive quantitative and qualitative experiments on two real outdoor datasets with different LiDAR sensors demonstrate the feasibility and accuracy of the proposed method. The source code will be publicly available.
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
As large language models have shown remarkable capabilities in conversing via natural language, the question arises as to how LLMs could potentially assist chemical engineers in research and industry with domain-specific tasks. We generate dynamic chemical reactor models in Modelica code format from textual descriptions as user input. We fine-tune Llama 3.1 8B Instruct on synthetically generated Modelica code for different reactor scenarios. We compare the performance of our fine-tuned model to the baseline Llama 3.1 8B Instruct model and GPT4o. We manually assess the models' predictions regarding the syntactic and semantic accuracy of the generated dynamic models. We find that considerable improvements are achieved by the fine-tuned model with respect to both the semantic and the syntactic accuracy of the Modelica models. However, the fine-tuned model lacks a satisfactory ability to generalize to unseen scenarios compared to GPT4o.
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
Quantum key distribution (QKD) enables unconditionally secure symmetric key exchange between parties. However, terrestrial fibre-optic links face inherent distance constraints due to quantum signal degradation. Traditional solutions to overcome these limits rely on trusted relay nodes, which perform intermediate re-encryption of keys using one-time pad (OTP) encryption. This approach, however, exposes keys as plaintext at each relay, requiring significant trust and stringent security controls at every intermediate node. These "trusted" relays become a security liability if compromised. To address this issue, we propose a zero-trust relay design that applies fully homomorphic encryption (FHE) to perform intermediate OTP re-encryption without exposing plaintext keys, effectively mitigating the risks associated with potentially compromised or malicious relay nodes. Additionally, the architecture enhances crypto-agility by incorporating external quantum random number generators, thus decoupling key generation from specific QKD hardware and reducing vulnerabilities tied to embedded key-generation modules. The solution is designed with the existing European Telecommunication Standards Institute (ETSI) QKD standards in mind, enabling straightforward integration into current infrastructures. Its feasibility has been successfully demonstrated through a hybrid network setup combining simulated and commercially available QKD equipment. The proposed zero-trust architecture thus significantly advances the scalability and practical security of large-scale QKD networks, greatly reducing reliance on fully trusted infrastructure.
This study employs the Paul-Elder Critical Thinking Model and Tan's argumentative writing framework to create a structured methodology. This methodology, ChatGPT Guideline for Critical Argumentative Writing (CGCAW) framework, integrates the models with ChatGPT's capabilities to guide L2 learners in utilizing ChatGPT to enhance their critical thinking skills. A quantitative experiment was conducted with 10 participants from a state university, divided into experimental and control groups. The experimental group utilized the CGCAW framework, while the control group used ChatGPT without specific guidelines. Participants wrote an argumentative essay within a 40-minute timeframe, and essays were evaluated by three assessors: ChatGPT, Grammarly, and a course instructor. Results indicated that the experimental group showed improvements in clarity, logical coherence, and use of evidence, demonstrating ChatGPT's potential to enhance specific aspects of argumentative writing. However, the control group performed better in overall language mechanics and articulation of main arguments, indicating areas where the CGCAW framework could be further refined. This study highlights the need for further research to optimize the use of AI tools like ChatGPT in L2 learning environments to enhance critical thinking and writing skills.
Nowadays, robots are increasingly operated in environments shared with humans, where conflicts between human and robot behaviors may compromise safety. This paper presents a proactive behavioral conflict avoidance framework based on the principle of adaptation to trends for quadruped robots that not only ensures the robot's safety but also minimizes interference with human activities. It can proactively avoid potential conflicts with approaching humans or other dynamic objects, whether the robot is stationary or in motion, then swiftly resume its tasks once the conflict subsides. An enhanced approach is proposed to achieve precise human detection and tracking on vibratory robot platform equipped with low-cost hybrid solid-state LiDAR. When potential conflict detected, the robot selects an avoidance point and executes an evasion maneuver before resuming its task. This approach contrasts with conventional methods that remain goal-driven, often resulting in aggressive behaviors, such as forcibly bypassing obstacles and causing conflicts or becoming stuck in deadlock scenarios. The selection of avoidance points is achieved by integrating static and dynamic obstacle to generate a potential field map. The robot then searches for feasible regions within this map and determines the optimal avoidance point using an evaluation function. Experimental results demonstrate that the framework significantly reduces interference with human activities, enhances the safety of both robots and persons.
Mitigating shortcuts, where models exploit spurious correlations in training data, remains a significant challenge for improving generalization. Regularization methods have been proposed to address this issue by enhancing model generalizability. However, we demonstrate that these methods can sometimes overregularize, inadvertently suppressing causal features along with spurious ones. In this work, we analyze the theoretical mechanisms by which regularization mitigates shortcuts and explore the limits of its effectiveness. Additionally, we identify the conditions under which regularization can successfully eliminate shortcuts without compromising causal features. Through experiments on synthetic and real-world datasets, our comprehensive analysis provides valuable insights into the strengths and limitations of regularization techniques for addressing shortcuts, offering guidance for developing more robust models.
Existing class incremental learning is mainly designed for single-label classification task, which is ill-equipped for multi-label scenarios due to the inherent contradiction of learning objectives for samples with incomplete labels. We argue that the main challenge to overcome this contradiction in multi-label class-incremental learning (MLCIL) lies in the model's inability to clearly distinguish between known and unknown knowledge. This ambiguity hinders the model's ability to retain historical knowledge, master current classes, and prepare for future learning simultaneously. In this paper, we target at specifying what is known or not to accommodate Historical, Current, and Prospective knowledge for MLCIL and propose a novel framework termed as HCP. Specifically, (i) we clarify the known classes by dynamic feature purification and recall enhancement with distribution prior, enhancing the precision and retention of known information. (ii) We design prospective knowledge mining to probe the unknown, preparing the model for future learning. Extensive experiments validate that our method effectively alleviates catastrophic forgetting in MLCIL, surpassing the previous state-of-the-art by 3.3% on average accuracy for MS-COCO B0-C10 setting without replay buffers.
The range of potential applications of acoustic analysis is wide. Classification of sounds, in particular, is a typical machine learning task that received a lot of attention in recent years. The most common approaches to sound classification are sub-symbolic, typically based on neural networks, and result in black-box models with high performances but very low transparency. In this work, we consider several audio tasks, namely, age and gender recognition, emotion classification, and respiratory disease diagnosis, and we approach them with a symbolic technique, that is, (modal) decision tree learning. We prove that such tasks can be solved using the same symbolic pipeline, that allows to extract simple rules with very high accuracy and low complexity. In principle, all such tasks could be associated to an autonomous conversation system, which could be useful in different contexts, such as an automatic reservation agent for an hospital or a clinic.
We prove that polynomial calculus (and hence also Nullstellensatz) over any field requires linear degree to refute that sparse random regular graphs, as well as sparse Erd\H{o}s-R\'{e}nyi random graphs, are $3$-colourable. Using the known relation between size and degree for polynomial calculus proofs, this implies strongly exponential lower bounds on proof size.
Supervised contrastive learning (SupCon) has proven to be a powerful alternative to the standard cross-entropy loss for classification of multi-class balanced datasets. However, it struggles to learn well-conditioned representations of datasets with long-tailed class distributions. This problem is potentially exacerbated for binary imbalanced distributions, which are commonly encountered during many real-world problems such as medical diagnosis. In experiments on seven binary datasets of natural and medical images, we show that the performance of SupCon decreases with increasing class imbalance. To substantiate these findings, we introduce two novel metrics that evaluate the quality of the learned representation space. By measuring the class distribution in local neighborhoods, we are able to uncover structural deficiencies of the representation space that classical metrics cannot detect. Informed by these insights, we propose two new supervised contrastive learning strategies tailored to binary imbalanced datasets that improve the structure of the representation space and increase downstream classification accuracy over standard SupCon by up to 35%. We make our code available.
A representation of the cause-effect mechanism is needed to enable artificial intelligence to represent how the world works. Bayesian Networks (BNs) have proven to be an effective and versatile tool for this task. BNs require constructing a structure of dependencies among variables and learning the parameters that govern these relationships. These tasks, referred to as structural learning and parameter learning, are actively investigated by the research community, with several algorithms proposed and no single method having established itself as standard. A wide range of software, tools, and packages have been developed for BNs analysis and made available to academic researchers and industry practitioners. As a consequence of having no one-size-fits-all solution, moving the first practical steps and getting oriented into this field is proving to be challenging to outsiders and beginners. In this paper, we review the most relevant tools and software for BNs structural and parameter learning to date, providing our subjective recommendations directed to an audience of beginners. In addition, we provide an extensive easy-to-consult overview table summarizing all software packages and their main features. By improving the reader understanding of which available software might best suit their needs, we improve accessibility to the field and make it easier for beginners to take their first step into it.
Climate change is one of the most critical challenges of the twenty-first century. Public understanding of climate issues and of the goals regarding the climate transition is essential to translate awareness into concrete actions. Social media platforms play a crucial role in disseminating information about climate change and climate policy. In this context, we propose a model that analyses the Supply and Demand of information to better understand information circulation and information voids within the Italian climate-transition discourse. We conceptualise information supply as the production of content on Facebook and Instagram while leveraging Google searches to capture information demand. Our findings highlight the persistence of information voids, which can hinder informed decision-making and collective action. Furthermore, we observe that the dynamics of information supply and demand on climate-related topics tend to intensify in response to significant external events, shaping public attention and social media discourse.
In the computer vision community, the preference for pre-training visual models has largely shifted toward sRGB images due to their ease of acquisition and compact storage. However, camera RAW images preserve abundant physical details across diverse real-world scenarios. Despite this, most existing visual perception methods that utilize RAW data directly integrate image signal processing (ISP) stages with subsequent network modules, often overlooking potential synergies at the model level. Building on recent advances in adapter-based methodologies in both NLP and computer vision, we propose RAW-Adapter, a novel framework that incorporates learnable ISP modules as input-level adapters to adjust RAW inputs. At the same time, it employs model-level adapters to seamlessly bridge ISP processing with high-level downstream architectures. Moreover, RAW-Adapter serves as a general framework applicable to various computer vision frameworks. Furthermore, we introduce RAW-Bench, which incorporates 17 types of RAW-based common corruptions, including lightness degradations, weather effects, blurriness, camera imaging degradations, and variations in camera color response. Using this benchmark, we systematically compare the performance of RAW-Adapter with state-of-the-art (SOTA) ISP methods and other RAW-based high-level vision algorithms. Additionally, we propose a RAW-based data augmentation strategy to further enhance RAW-Adapter's performance and improve its out-of-domain (OOD) generalization ability. Extensive experiments substantiate the effectiveness and efficiency of RAW-Adapter, highlighting its robust performance across diverse scenarios.
Humans can intuitively decompose an image into a sequence of strokes to create a painting, yet existing methods for generating drawing processes are limited to specific data types and often rely on expensive human-annotated datasets. We propose a novel self-supervised framework for generating drawing processes from any type of image, treating the task as a video generation problem. Our approach reverses the drawing process by progressively removing strokes from a reference image, simulating a human-like creation sequence. Crucially, our method does not require costly datasets of real human drawing processes; instead, we leverage depth estimation and stroke rendering to construct a self-supervised dataset. We model human drawings as "refinement" and "layering" processes and introduce depth fusion layers to enable video generation models to learn and replicate human drawing behavior. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to generate realistic drawings without the need for real drawing process data.
Realistic 3D full-body talking avatars hold great potential in AR, with applications ranging from e-commerce live streaming to holographic communication. Despite advances in 3D Gaussian Splatting (3DGS) for lifelike avatar creation, existing methods struggle with fine-grained control of facial expressions and body movements in full-body talking tasks. Additionally, they often lack sufficient details and cannot run in real-time on mobile devices. We present TaoAvatar, a high-fidelity, lightweight, 3DGS-based full-body talking avatar driven by various signals. Our approach starts by creating a personalized clothed human parametric template that binds Gaussians to represent appearances. We then pre-train a StyleUnet-based network to handle complex pose-dependent non-rigid deformation, which can capture high-frequency appearance details but is too resource-intensive for mobile devices. To overcome this, we "bake" the non-rigid deformations into a lightweight MLP-based network using a distillation technique and develop blend shapes to compensate for details. Extensive experiments show that TaoAvatar achieves state-of-the-art rendering quality while running in real-time across various devices, maintaining 90 FPS on high-definition stereo devices such as the Apple Vision Pro.
An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.
Causal discovery aims to extract qualitative causal knowledge in the form of causal graphs from data. Because causal ground truth is rarely known in the real world, simulated data plays a vital role in evaluating the performance of the various causal discovery algorithms proposed in the literature. But recent work highlighted certain artifacts of commonly used data generation techniques for a standard class of structural causal models (SCM) that may be nonphysical, including var- and R2-sortability, where the variables' variance and coefficients of determination (R2) after regressing on all other variables, respectively, increase along the causal order. Some causal methods exploit such artifacts, leading to unrealistic expectations for their performance on real-world data. Some modifications have been proposed to remove these artifacts; notably, the internally-standardized structural causal model (iSCM) avoids varsortability and largely alleviates R2-sortability on sparse causal graphs, but exhibits a reversed R2-sortability pattern for denser graphs not featured in their work. We analyze which sortability patterns we expect to see in real data, and propose a method for drawing coefficients that we argue more effectively samples the space of SCMs. Finally, we propose a novel extension of our SCM generation method to the time series setting.
The increasing complexity of embedded hardware platforms poses significant challenges for real-time workloads. Architectural features such as Intel RDT, Arm QoS, and Arm MPAM are either unavailable on commercial embedded platforms or designed primarily for server environments optimized for average-case performance and might fail to deliver the expected real-time guarantees. Arm DynamIQ Shared Unit (DSU) includes isolation features-among others, hardware per-way cache partitioning-that can improve the real-time guarantees of complex embedded multicore systems and facilitate real-time analysis. However, the DSU also targets average cases, and its real-time capabilities have not yet been evaluated. This paper presents the first comprehensive analysis of three real-world deployments of the Arm DSU on Rockchip RK3568, Rockchip RK3588, and NVIDIA Orin platforms. We integrate support for the DSU at the operating system and hypervisor level and conduct a large-scale evaluation using both synthetic and real-world benchmarks with varying types and intensities of interference. Our results make extensive use of performance counters and indicate that, although effective, the quality of partitioning and isolation provided by the DSU depends on the type and the intensity of the interfering workloads. In addition, we uncover and analyze in detail the correlation between benchmarks and different types and intensities of interference.
Studies on evaluation metrics and LLM-as-a-Judge models for automatic text summarization have largely been focused on English, limiting our understanding of their effectiveness in other languages. Through our new dataset BASSE (BAsque and Spanish Summarization Evaluation), we address this situation by collecting human judgments on 2,040 abstractive summaries in Basque and Spanish, generated either manually or by five LLMs with four different prompts. For each summary, annotators evaluated five criteria on a 5-point Likert scale: coherence, consistency, fluency, relevance, and 5W1H. We use these data to reevaluate traditional automatic metrics used for evaluating summaries, as well as several LLM-as-a-Judge models that show strong performance on this task in English. Our results show that currently proprietary judge LLMs have the highest correlation with human judgments, followed by criteria-specific automatic metrics, while open-sourced judge LLMs perform poorly. We release BASSE and our code publicly, along with the first large-scale Basque summarization dataset containing 22,525 news articles with their subheads.
Generating text descriptions of objects in 3D indoor scenes is an important building block of embodied understanding. Existing methods do this by describing objects at a single level of detail, which often does not capture fine-grained details such as varying textures, materials, and shapes of the parts of objects. We propose the task of expressive 3D captioning: given an input 3D scene, describe objects at multiple levels of detail: a high-level object description, and a low-level description of the properties of its parts. To produce such captions, we present ExCap3D, an expressive 3D captioning model which takes as input a 3D scan, and for each detected object in the scan, generates a fine-grained collective description of the parts of the object, along with an object-level description conditioned on the part-level description. We design ExCap3D to encourage semantic consistency between the generated text descriptions, as well as textual similarity in the latent space, to further increase the quality of the generated captions. To enable this task, we generated the ExCap3D Dataset by leveraging a visual-language model (VLM) for multi-view captioning. The ExCap3D Dataset contains captions on the ScanNet++ dataset with varying levels of detail, comprising 190k text descriptions of 34k 3D objects in 947 indoor scenes. Our experiments show that the object- and part-level of detail captions generated by ExCap3D are of higher quality than those produced by state-of-the-art methods, with a Cider score improvement of 17% and 124% for object- and part-level details respectively. Our code, dataset and models will be made publicly available.
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
Video Camouflaged Object Detection (VCOD) aims to segment objects whose appearances closely resemble their surroundings, posing a challenging and emerging task. Existing vision models often struggle in such scenarios due to the indistinguishable appearance of camouflaged objects and the insufficient exploitation of dynamic information in videos. To address these challenges, we propose an end-to-end VCOD framework inspired by human memory-recognition, which leverages historical video information by integrating memory reference frames for camouflaged sequence processing. Specifically, we design a dual-purpose decoder that simultaneously generates predicted masks and scores, enabling reference frame selection based on scores while introducing auxiliary supervision to enhance feature extraction.Furthermore, this study introduces a novel reference-guided multilevel asymmetric attention mechanism, effectively integrating long-term reference information with short-term motion cues for comprehensive feature extraction. By combining these modules, we develop the Scoring, Remember, and Reference (SRR) framework, which efficiently extracts information to locate targets and employs memory guidance to improve subsequent processing. With its optimized module design and effective utilization of video data, our model achieves significant performance improvements, surpassing existing approaches by 10% on benchmark datasets while requiring fewer parameters (54M) and only a single pass through the video. The code will be made publicly available.
This paper addresses the critical challenge of optimizing electric vehicle charging station placement through a novel data-driven methodology employing causal discovery techniques. While traditional approaches prioritize economic factors or power grid constraints, they often neglect empirical charging patterns that ultimately determine station utilization. We analyze extensive charging data from Palo Alto and Boulder (337,344 events across 100 stations) to uncover latent relationships between station characteristics and utilization. Applying structural learning algorithms (NOTEARS and DAGMA) to this data reveals that charging demand is primarily determined by three factors: proximity to amenities, EV registration density, and adjacency to high-traffic routes. These findings, consistent across multiple algorithms and urban contexts, challenge conventional infrastructure distribution strategies. We develop an optimization framework that translates these insights into actionable placement recommendations, identifying locations likely to experience high utilization based on the discovered dependency structures. The resulting site selection model prioritizes strategic clustering in high-amenity areas with substantial EV populations rather than uniform spatial distribution. Our approach contributes a framework that integrates empirical charging behavior into infrastructure planning, potentially enhancing both station utilization and user convenience. By focusing on data-driven insights instead of theoretical distribution models, we provide a more effective strategy for expanding charging networks that can adjust to various stages of EV market development.
Diffusion models have demonstrated remarkable synthesis quality and diversity in generating co-speech gestures. However, the computationally intensive sampling steps associated with diffusion models hinder their practicality in real-world applications. Hence, we present DIDiffGes, for a Decoupled Semi-Implicit Diffusion model-based framework, that can synthesize high-quality, expressive gestures from speech using only a few sampling steps. Our approach leverages Generative Adversarial Networks (GANs) to enable large-step sampling for diffusion model. We decouple gesture data into body and hands distributions and further decompose them into marginal and conditional distributions. GANs model the marginal distribution implicitly, while L2 reconstruction loss learns the conditional distributions exciplictly. This strategy enhances GAN training stability and ensures expressiveness of generated full-body gestures. Our framework also learns to denoise root noise conditioned on local body representation, guaranteeing stability and realism. DIDiffGes can generate gestures from speech with just 10 sampling steps, without compromising quality and expressiveness, reducing the number of sampling steps by a factor of 100 compared to existing methods. Our user study reveals that our method outperforms state-of-the-art approaches in human likeness, appropriateness, and style correctness. Project is https://cyk990422.github.io/DIDiffGes.
Neuromorphic Continual Learning (NCL) paradigm leverages Spiking Neural Networks (SNNs) to enable continual learning (CL) capabilities for AI systems to adapt to dynamically changing environments. Currently, the state-of-the-art employ a memory replay-based method to maintain the old knowledge. However, this technique relies on long timesteps and compression-decompression steps, thereby incurring significant latency and energy overheads, which are not suitable for tightly-constrained embedded AI systems (e.g., mobile agents/robotics). To address this, we propose Replay4NCL, a novel efficient memory replay-based methodology for enabling NCL in embedded AI systems. Specifically, Replay4NCL compresses the latent data (old knowledge), then replays them during the NCL training phase with small timesteps, to minimize the processing latency and energy consumption. To compensate the information loss from reduced spikes, we adjust the neuron threshold potential and learning rate settings. Experimental results on the class-incremental scenario with the Spiking Heidelberg Digits (SHD) dataset show that Replay4NCL can preserve old knowledge with Top-1 accuracy of 90.43% compared to 86.22% from the state-of-the-art, while effectively learning new tasks, achieving 4.88x latency speed-up, 20% latent memory saving, and 36.43% energy saving. These results highlight the potential of our Replay4NCL methodology to further advances NCL capabilities for embedded AI systems.
We demonstrate end-to-end 5G Open RAN over PON using off-the-shelf open networking hardware and open source RAN software. The implementation of the Cooperative Transport Interface provides timely synchronisation of PON and RAN schedulers.
With the growing interconnection between In-Vehicle Networks (IVNs) and external environments, intelligent vehicles are increasingly vulnerable to sophisticated external network attacks. This paper proposes ATHENA, the first IVN intrusion detection framework that adopts a vehicle-cloud integrated architecture to achieve better security performance for the resource-constrained vehicular environment. Specifically, in the cloud with sufficient resources, ATHENA uses the clustering method of multi-distribution mixture model combined with deep data mining technology to generate the raw Payload Rule Bank of IVN CAN messages, and then improves the rule quality with the help of exploitation on the first-principled physical knowledge of the vehicle system, after which the payload rules are periodically sent to the vehicle terminal. At the vehicle terminal, a simple LSTM component is used to generate the Time Rule Bank representing the long-term time series dependencies and the periodic characteristics of CAN messages, but not for any detection tasks as in traditional usage scenarios, where only the generated time rules are the candidates for further IVN intrusion detection tasks. Based on both the payload and time rules generated from cloud and vehicle terminal, ATHENA can achieve efficient intrusion detection capability by simple rule-base matching operations, rather than using complex black-box reasoning of resource-intensive neural network models, which is in fact only used for rule logic generation phase instead of the actual intrusion detection phase in our framework. Comparative experimental results on the ROAD dataset, which is current the most outstanding real-world in-vehicle CAN dataset covering new instances of sophisticated and stealthy masquerade attacks, demonstrate ATHENA significantly outperforms the state-of-the-art IVN intrusion detection methods in detecting complex attacks.
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
Federated learning (FL) allows collaborative machine learning (ML) model training among decentralized clients' information, ensuring data privacy. The decentralized nature of FL deals with non-independent and identically distributed (non-IID) data. This open problem has notable consequences, such as decreased model performance and more significant convergence times. Despite its importance, experimental studies systematically addressing all types of data heterogeneity (a.k.a. non-IIDness) remain scarce. We aim to fill this gap by assessing and quantifying the non-IID effect through a thorough empirical analysis. We use the Hellinger Distance (HD) to measure differences in distribution among clients. Our study benchmarks four state-of-the-art strategies for handling non-IID data, including label, feature, quantity, and spatiotemporal skewness, under realistic and controlled conditions. This is the first comprehensive analysis of the spatiotemporal skew effect in FL. Our findings highlight the significant impact of label and spatiotemporal skew non-IID types on FL model performance, with notable performance drops occurring at specific HD thresholds. Additionally, the FL performance is heavily affected mainly when the non-IIDness is extreme. Thus, we provide recommendations for FL research to tackle data heterogeneity effectively. Our work represents the most extensive examination of non-IIDness in FL, offering a robust foundation for future research.
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.
We implement a ML-based attention framework with component-specific decoders, improving optical power spectrum prediction in multi-span networks. By reducing the need for in-depth training on each component, the framework can be scaled to multi-span topologies with minimal data collection, making it suitable for brown-field scenarios.
Large Language Models (LLMs) encapsulate a surprising amount of factual world knowledge. However, their performance on temporal questions and historical knowledge is limited because they often cannot understand temporal scope and orientation or neglect the temporal aspect altogether. In this study, we aim to measure precisely how robust LLMs are for question answering based on their ability to process temporal information and perform tasks requiring temporal reasoning and temporal factual knowledge. Specifically, we design eight time-sensitive robustness tests for factual information to check the sensitivity of six popular LLMs in the zero-shot setting. Overall, we find LLMs lacking temporal robustness, especially to temporal reformulations and the use of different granularities of temporal references. We show how a selection of these eight tests can be used automatically to judge a model's temporal robustness for user questions on the fly. Finally, we apply the findings of this study to improve the temporal QA performance by up to 55 percent.
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
Masked Generative Image Transformers (MaskGIT) have emerged as a scalable and efficient image generation framework, able to deliver high-quality visuals with low inference costs. However, MaskGIT's token unmasking scheduler, an essential component of the framework, has not received the attention it deserves. We analyze the sampling objective in MaskGIT, based on the mutual information between tokens, and elucidate its shortcomings. We then propose a new sampling strategy based on our Halton scheduler instead of the original Confidence scheduler. More precisely, our method selects the token's position according to a quasi-random, low-discrepancy Halton sequence. Intuitively, that method spreads the tokens spatially, progressively covering the image uniformly at each step. Our analysis shows that it allows reducing non-recoverable sampling errors, leading to simpler hyper-parameters tuning and better quality images. Our scheduler does not require retraining or noise injection and may serve as a simple drop-in replacement for the original sampling strategy. Evaluation of both class-to-image synthesis on ImageNet and text-to-image generation on the COCO dataset demonstrates that the Halton scheduler outperforms the Confidence scheduler quantitatively by reducing the FID and qualitatively by generating more diverse and more detailed images. Our code is at https://github.com/valeoai/Halton-MaskGIT.
Psychophysiological methods present a promising approach to fostering enhanced mutual communication and collaboration between human workers and robots. Despite their potential, there is still limited understanding of how to effectively integrate psychophysiological methods to improve human-robot collaboration (HRC) in construction. This paper addresses this gap by critically reviewing the use of psychophysiological methods for HRC within construction environments, employing a concept-methodology-value philosophical framework. The analysis reveals that measuring brain activity using electroencephalography is the most widely used method, while most of the works are still at the proof of concept stage and lack empirical evidence. Three potential research directions were proposed: the integration of multi-modal psychophysiological signals, enriching the existing experimental settings for better generalizability, and leveraging advanced biocompatible or contactless technologies for effective signal detection. The findings should benefit subsequent exploration and practical applications of psychophysiological methods to enable better implementation of robots and support HRC in construction.
We introduce a ML-based architecture for network operators to detect impairments from specific OSaaS users while blind to the users' internal spectrum details. Experimental studies with three OSaaS users demonstrate the model's capability to accurately classify the source of impairments, achieving classification accuracy of 94.2%.
The CLIP model has demonstrated significant advancements in aligning visual and language modalities through large-scale pre-training on image-text pairs, enabling strong zero-shot classification and retrieval capabilities on various domains. However, CLIP's training remains computationally intensive, with high demands on both data processing and memory. To address these challenges, recent masking strategies have emerged, focusing on the selective removal of image patches to improve training efficiency. Although effective, these methods often compromise key semantic information, resulting in suboptimal alignment between visual features and text descriptions. In this work, we present a concise yet effective approach called Patch Generation-to-Selection to enhance CLIP's training efficiency while preserving critical semantic content. Our method introduces a gradual masking process in which a small set of candidate patches is first pre-selected as potential mask regions. Then, we apply Sobel edge detection across the entire image to generate an edge mask that prioritizes the retention of the primary object areas. Finally, similarity scores between the candidate mask patches and their neighboring patches are computed, with optimal transport normalization refining the selection process to ensure a balanced similarity matrix. Our approach, CLIP-PGS, sets new state-of-the-art results in zero-shot classification and retrieval tasks, achieving superior performance in robustness evaluation and language compositionality benchmarks.
Artificial intelligence (AI) systems powered by large language models have become increasingly prevalent in modern society, enabling a wide range of applications through natural language interaction. As AI agents proliferate in our daily lives, their generic and uniform expressiveness presents a significant limitation to their appeal and adoption. Personality expression represents a key prerequisite for creating more human-like and distinctive AI systems. We show that AI models can express deterministic and consistent personalities when instructed using established psychological frameworks, with varying degrees of accuracy depending on model capabilities. We find that more advanced models like GPT-4o and o1 demonstrate the highest accuracy in expressing specified personalities across both Big Five and Myers-Briggs assessments, and further analysis suggests that personality expression emerges from a combination of intelligence and reasoning capabilities. Our results reveal that personality expression operates through holistic reasoning rather than question-by-question optimization, with response-scale metrics showing higher variance than test-scale metrics. Furthermore, we find that model fine-tuning affects communication style independently of personality expression accuracy. These findings establish a foundation for creating AI agents with diverse and consistent personalities, which could significantly enhance human-AI interaction across applications from education to healthcare, while additionally enabling a broader range of more unique AI agents. The ability to quantitatively assess and implement personality expression in AI systems opens new avenues for research into more relatable, trustworthy, and ethically designed AI.
This paper considers the unsourced random access (URA) problem with a random and unknown number of active users in multiple-input multiple-output (MIMO) quasi-static Rayleigh fading channels. We derive non-asymptotic achievability bounds on the probability of incorrectly estimating the number of active users, and provide scaling laws on the gap between the estimated and true numbers of active users. We prove that the error probability reaches a plateau as the power $P$ and blocklength $n$ increase, whereas it decays exponentially with the number $L$ of receive antennas and eventually vanishes. Then, we explore the fundamental limits of URA by deriving non-asymptotic achievability bounds and converse bounds (including two single-user converse bounds and one multi-user ensemble converse bound) on the minimum energy-per-bit required by each active user to transmit $J$ bits with blocklength $n$ under misdetection and false-alarm constraints. Numerical results show that the extra required energy-per-bit due to the uncertainty in the number ${\rm{K}}_a$ of active users decreases as $L$ and $\mathbb{E}[{\rm{K}}_a]$ increase and the error requirement becomes milder. In the non-asymptotic regime, using codewords distributed on a sphere outperforms Gaussian random coding. Existing schemes are shown to exhibit a large gap to our bounds when the number of active users is large, calling for more advanced schemes that perform energy-efficiently in this case. In the asymptotic regime with $n\to\infty$, we establish scaling laws on the minimum required $P$ and $L$ to reliably support ${\rm{K}}_a$ active users as functions of $n$, which highlight the potential of MIMO in enabling low-cost communication and indicate that it is possible for the minimum required $P$ and $L$ to remain on the same order when the number of active users increases but stays below a threshold.
Structure-from-Motion (SfM) is the task of estimating 3D structure and camera poses from images. We define Collaborative SfM (ColabSfM) as sharing distributed SfM reconstructions. Sharing maps requires estimating a joint reference frame, which is typically referred to as registration. However, there is a lack of scalable methods and training datasets for registering SfM reconstructions. In this paper, we tackle this challenge by proposing the scalable task of point cloud registration for SfM reconstructions. We find that current registration methods cannot register SfM point clouds when trained on existing datasets. To this end, we propose a SfM registration dataset generation pipeline, leveraging partial reconstructions from synthetically generated camera trajectories for each scene. Finally, we propose a simple but impactful neural refiner on top of the SotA registration method RoITr that yields significant improvements, which we call RefineRoITr. Our extensive experimental evaluation shows that our proposed pipeline and model enables ColabSfM. Code is available at https://github.com/EricssonResearch/ColabSfM
The gain spectrum of an Erbium-Doped Fiber Amplifier (EDFA) has a complex dependence on channel loading, pump power, and operating mode, making accurate modeling difficult to achieve. Machine Learning (ML) based modeling methods can achieve high accuracy, but they require comprehensive data collection. We present a novel ML-based Semi-Supervised, Self-Normalizing Neural Network (SS-NN) framework to model the wavelength dependent gain of EDFAs using minimal data, which achieve a Mean Absolute Error (MAE) of 0.07/0.08 dB for booster/pre-amplifier gain prediction. We further perform Transfer Learning (TL) using a single additional measurement per target-gain setting to transfer this model among 22 EDFAs in Open Ireland and COSMOS testbeds, which achieves a MAE of less than 0.19 dB even when operated across different amplifier types. We show that the SS-NN model achieves high accuracy for gain spectrum prediction with minimal data requirement when compared with current benchmark methods.
Recent 3D face editing methods using masks have produced high-quality edited images by leveraging Neural Radiance Fields (NeRF). Despite their impressive performance, existing methods often provide limited user control due to the use of pre-trained segmentation masks. To utilize masks with a desired layout, an extensive training dataset is required, which is challenging to gather. We present FFaceNeRF, a NeRF-based face editing technique that can overcome the challenge of limited user control due to the use of fixed mask layouts. Our method employs a geometry adapter with feature injection, allowing for effective manipulation of geometry attributes. Additionally, we adopt latent mixing for tri-plane augmentation, which enables training with a few samples. This facilitates rapid model adaptation to desired mask layouts, crucial for applications in fields like personalized medical imaging or creative face editing. Our comparative evaluations demonstrate that FFaceNeRF surpasses existing mask based face editing methods in terms of flexibility, control, and generated image quality, paving the way for future advancements in customized and high-fidelity 3D face editing. The code is available on the {\href{https://kwanyun.github.io/FFaceNeRF_page/}{project-page}}.
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
We introduce R2LDM, an innovative approach for generating dense and accurate 4D radar point clouds, guided by corresponding LiDAR point clouds. Instead of utilizing range images or bird's eye view (BEV) images, we represent both LiDAR and 4D radar point clouds using voxel features, which more effectively capture 3D shape information. Subsequently, we propose the Latent Voxel Diffusion Model (LVDM), which performs the diffusion process in the latent space. Additionally, a novel Latent Point Cloud Reconstruction (LPCR) module is utilized to reconstruct point clouds from high-dimensional latent voxel features. As a result, R2LDM effectively generates LiDAR-like point clouds from paired raw radar data. We evaluate our approach on two different datasets, and the experimental results demonstrate that our model achieves 6- to 10-fold densification of radar point clouds, outperforming state-of-the-art baselines in 4D radar point cloud super-resolution. Furthermore, the enhanced radar point clouds generated by our method significantly improve downstream tasks, achieving up to 31.7% improvement in point cloud registration recall rate and 24.9% improvement in object detection accuracy.
In this paper, we tackle the critical challenge of compressing large language models (LLMs) to facilitate their practical deployment and broader adoption. We introduce a novel post-training compression paradigm that focuses on low-rank decomposition of LLM weights. Our analysis identifies two main challenges in this task: the variability in LLM activation distributions and handling unseen activations from different datasets and models. To address these challenges, we propose a nested activation-aware framework (NSVD) for LLMs, a training-free approach designed to enhance the accuracy of low-rank decompositions by managing activation outliers through transforming the weight matrix based on activation distribution and the original weight matrix. This method allows for the absorption of outliers into the transformed weight matrix, improving decomposition accuracy. Our comprehensive evaluation across eight datasets and six models from three distinct LLM families demonstrates the superiority of NSVD over current state-of-the-art methods, especially at medium to large compression ratios or in multilingual and multitask settings.
Transparent and specular objects are frequently encountered in daily life, factories, and laboratories. However, due to the unique optical properties, the depth information on these objects is usually incomplete and inaccurate, which poses significant challenges for downstream robotics tasks. Therefore, it is crucial to accurately restore the depth information of transparent and specular objects. Previous depth completion methods for these objects usually use RGB information as an additional channel of the depth image to perform depth prediction. Due to the poor-texture characteristics of transparent and specular objects, these methods that rely heavily on color information tend to generate structure-less depth predictions. Moreover, these 2D methods cannot effectively explore the 3D structure hidden in the depth channel, resulting in depth ambiguity. To this end, we propose a geometry-aware assisted depth completion method for transparent and specular objects, which focuses on exploring the 3D structural cues of the scene. Specifically, besides extracting 2D features from RGB-D input, we back-project the input depth to a point cloud and build the 3D branch to extract hierarchical scene-level 3D structural features. To exploit 3D geometric information, we design several gated cross-modal fusion modules to effectively propagate multi-level 3D geometric features to the image branch. In addition, we propose an adaptive correlation aggregation strategy to appropriately assign 3D features to the corresponding 2D features. Extensive experiments on ClearGrasp, OOD, TransCG, and STD datasets show that our method outperforms other state-of-the-art methods. We further demonstrate that our method significantly enhances the performance of downstream robotic grasping tasks.
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
During last several years, our research team worked on development of a spiking neural network (SNN) architecture, which could be used in the wide range of supervised learning classification tasks. It should work under the condition, that all participating signals (the classified object description, correct class label and SNN decision) should have spiking nature. As a result, the CoLaNET (columnar layered network) SNN architecture was invented. The distinctive feature of this architecture is a combination of prototypical network structures corresponding to different classes and significantly distinctive instances of one class (=columns) and functionally differing populations of neurons inside columns (=layers). The other distinctive feature is a novel combination of anti-Hebbian and dopamine-modulated plasticity. While CoLaNET is relatively simple, it includes several hyperparameters. Their choice for particular classification tasks is not trivial. Besides that, specific features of the data classified (e.g. classification of separate pictures like in MNIST dataset vs. classifying objects in a continuous video stream) require certain modifications of CoLaNET structure. To solve these problems, the deep mathematical exploration of CoLaNET should be carried out. However, SNNs, being stochastic discrete systems, are usually very hard for exact mathematical analysis. To make it easier, I developed a continuous numeric (non-spiking) machine learning algorithm which approximates CoLaNET behavior with satisfactory accuracy. It is described in the paper. At present, it is being studied by exact analytic methods. We hope that the results of this study could be applied to direct calculation of CoLaNET hyperparameters and optimization of its structure.
Given a circuit $C : \{0,1\}^n \to \{0,1\}^m$ from a circuit class $F$, with $m > n$, finding a $y \in \{0,1\}^m$ such that $\forall x \in \{0,1\}^n$, $C(x) \ne y$, is the range avoidance problem (denoted by $F$-$avoid$). Deterministic polynomial time algorithms (even with access to $NP$ oracles) solving this problem is known to imply explicit constructions of various pseudorandom objects like hard Boolean functions, linear codes, PRGs etc. Deterministic polynomial time algorithms are known for $NC^0_2$-$avoid$ when $m > n$, and for $NC^0_3$-$avoid$ when $m \ge \frac{n^2}{\log n}$, where $NC^0_k$ is the class of circuits with bounded fan-in which have constant depth and the output depends on at most $k$ of the input bits. On the other hand, it is also known that $NC^0_3$-$avoid$ when $m = n+O\left(n^{2/3}\right)$ is at least as hard as explicit construction of rigid matrices. In this paper, we propose a new approach to solving range avoidance problem via hypergraphs. We formulate the problem in terms of Turan-type problems in hypergraphs of the following kind - for a fixed $k$-uniform hypergraph $H'$, what is the maximum number of edges that can exist in a $k$-uniform hypergraph $H$ which does not have a sub-hypergraph isomorphic to $H'$? We use our approach to show (using known Turan-type bounds) that there is a constant $c$ such that $mon$-$NC^0_3$-$avoid$ can be solved in deterministic polynomial time when $m > cn^2$. To improve the stretch constraint to linear, we show a new Turan-type theorem for a hypergraph structure (which we call the the loose $chi$-cycles) and use it to show that $mon$-$NC^0_3$-$avoid$ can be solved in deterministic polynomial time when $m > n$, thus improving the known bounds of $NC^0_3$-avoid for the case of monotone circuits.
Egocentric video has seen increased interest in recent years, as it is used in a range of areas. However, most existing datasets are limited to a single perspective. In this paper, we present the CASTLE 2024 dataset, a multimodal collection containing ego- and exo-centric (i.e., first- and third-person perspective) video and audio from 15 time-aligned sources, as well as other sensor streams and auxiliary data. The dataset was recorded by volunteer participants over four days in a fixed location and includes the point of view of 10 participants, with an additional 5 fixed cameras providing an exocentric perspective. The entire dataset contains over 600 hours of UHD video recorded at 50 frames per second. In contrast to other datasets, CASTLE 2024 does not contain any partial censoring, such as blurred faces or distorted audio. The dataset is available via https://castle-dataset.github.io/.
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset1 and the code for reproducing our evaluation results2 are made publicly available.
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at \href{https://lamour-rl.github.io/}{https://lamour-rl.github.io/}.
As creative writing tasks do not have singular correct answers, large language models (LLMs) trained to perform these tasks should be able to generate diverse valid outputs. However, LLM post-training often focuses on improving generation quality but neglects to facilitate output diversity. Hence, in creative writing generation, we investigate post-training approaches to promote both output diversity and quality. Our core idea is to include deviation -- the degree of difference between a training sample and all other samples with the same prompt -- in the training objective to facilitate learning from rare high-quality instances. By adopting our approach to direct preference optimization (DPO) and odds ratio preference optimization (ORPO), we demonstrate that we can promote the output diversity of trained models while minimally decreasing quality. Our best model with 8B parameters could achieve on-par diversity as a human-created dataset while having output quality similar to the best instruction-tuned models we examined, GPT-4o and DeepSeek-R1. We further validate our approaches with a human evaluation, an ablation, and a comparison to an existing diversification approach, DivPO.
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
Evaluating creative text such as human-written stories using language models has always been a challenging task -- owing to the subjectivity of multi-annotator ratings. To mimic the thinking process of humans, chain of thought (CoT) generates free-text explanations that help guide a model's predictions and Self-Consistency (SC) marginalizes predictions over multiple generated explanations. In this study, we discover that the widely-used self-consistency reasoning methods cause suboptimal results due to an objective mismatch between generating 'fluent-looking' explanations vs. actually leading to a good rating prediction for an aspect of a story. To overcome this challenge, we propose $\textbf{C}$hain-$\textbf{o}$f-$\textbf{Ke}$ywords (CoKe), that generates a sequence of keywords $\textit{before}$ generating a free-text rationale, that guide the rating prediction of our evaluation language model. Then, we generate a diverse set of such keywords, and aggregate the scores corresponding to these generations. On the StoryER dataset, CoKe based on our small fine-tuned evaluation models not only reach human-level performance and significantly outperform GPT-4 with a 2x boost in correlation with human annotators, but also requires drastically less number of parameters.
In 2002, Johnson et al. posed an open problem at the Cryptographers' Track of the RSA Conference: how to construct a secure homomorphic signature on a semigroup, rather than on a group. In this paper, we introduce, for the first time, a semigroup-homomorphic signature scheme. Under certain conditions, we prove that the security of this scheme is based on the hardness of the Short Integer Solution (SIS) problem and is tightly secure. Furthermore, we extend it to a linear semigroup-homomorphic signature scheme over lattices, and this scheme can also ensure privacy.
The weights of neural networks (NNs) have recently gained prominence as a new data modality in machine learning, with applications ranging from accuracy and hyperparameter prediction to representation learning or weight generation. One approach to leverage NN weights involves training autoencoders (AEs), using contrastive and reconstruction losses. This allows such models to be applied to a wide variety of downstream tasks, and they demonstrate strong predictive performance and low reconstruction error. However, despite the low reconstruction error, these AEs reconstruct NN models with deteriorated performance compared to the original ones, limiting their usability with regard to model weight generation. In this paper, we identify a limitation of weight-space AEs, specifically highlighting that a structural loss, that uses the Euclidean distance between original and reconstructed weights, fails to capture some features critical for reconstructing high-performing models. We analyze the addition of a behavioral loss for training AEs in weight space, where we compare the output of the reconstructed model with that of the original one, given some common input. We show a strong synergy between structural and behavioral signals, leading to increased performance in all downstream tasks evaluated, in particular NN weights reconstruction and generation.
Speech Enhancement techniques have become core technologies in mobile devices and voice software simplifying downstream speech tasks. Still, modern Deep Learning (DL) solutions often require high amount of computational resources what makes their usage on low-resource devices challenging. We present HiFi-Stream, an optimized version of recently published HiFi++ model. Our experiments demonstrate that HiFiStream saves most of the qualities of the original model despite its size and computational complexity: the lightest version has only around 490k parameters which is 3.5x reduction in comparison to the original HiFi++ making it one of the smallest and fastest models available. The model is evaluated in streaming setting where it demonstrates its superior performance in comparison to modern baselines.
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.
In this work, we develop a cut-based unfitted finite element formulation for solving nonlinear, nonstationary fluid-structure interaction with contact in Eulerian coordinates. In the Eulerian description fluid flow modeled by the incompressible Navier-Stokes equations remains in Eulerian coordinates, while elastic solids are transformed from Lagrangian coordinates into the Eulerian system. A monolithic description is adopted. For the spatial discretization, we employ an unfitted finite element method with ghost penalties based on inf-sup stable finite elements. To handle contact, we use a relaxation of the contact condition in combination with a unified Nitsche approach that takes care implicitly of the switch between fluid-structure interaction and contact conditions. The temporal discretization is based on a backward Euler scheme with implicit extensions of solutions at the previous time step. The nonlinear system is solved with a semi-smooth Newton's method with line search. Our formulation, discretization and implementation are substantiated with an elastic falling ball that comes into contact with the bottom boundary, constituting a challenging state-of-the-art benchmark.
Developing clinically viable tissue-engineered cardiovascular implants remains a formidable challenge. Achieving reliable and durable outcomes requires a deeper understanding of the fundamental mechanisms driving tissue evolution during in vitro maturation. Although considerable progress has been made in modeling soft tissue growth and remodeling, studies focused on the early stages of tissue engineering remain limited. Here, we present a general, thermodynamically consistent model to predict tissue evolution and mechanical response throughout maturation. The formulation utilizes a stress-driven homeostatic surface to capture volumetric growth, coupled with an energy-based approach to describe collagen densification via the strain energy of the fibers. We further employ a co-rotated intermediate configuration to ensure the model's consistency and generality. The framework is demonstrated with two numerical examples: a uniaxially constrained tissue strip validated against experimental data, and a biaxially constrained specimen subjected to a perturbation load. These results highlight the potential of the proposed model to advance the design and optimization of tissue-engineered implants with clinically relevant performance.
Steering estimation is a critical task in autonomous driving, traditionally relying on 2D image-based models. In this work, we explore the advantages of incorporating 3D spatial information through hybrid architectures that combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling, using LiDAR-based point clouds as input. We systematically evaluate four hybrid 3D models, all of which outperform the 2D-only baseline, with the Graph Neural Network (GNN) - RNN model yielding the best results. To reduce reliance on LiDAR, we leverage a pretrained unified model to estimate depth from monocular images, reconstructing pseudo-3D point clouds. We then adapt the GNN-RNN model, originally designed for LiDAR-based point clouds, to work with these pseudo-3D representations, achieving comparable or even superior performance compared to the LiDAR-based model. Additionally, the unified model provides semantic labels for each point, enabling a more structured scene representation. To further optimize graph construction, we introduce an efficient connectivity strategy where connections are predominantly formed between points of the same semantic class, with only 20\% of inter-class connections retained. This targeted approach reduces graph complexity and computational cost while preserving critical spatial relationships. Finally, we validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models. Our findings highlight the advantages of 3D spatial information and efficient graph construction for steering estimation, while maintaining the cost-effectiveness of monocular images and avoiding the expense of LiDAR-based systems.
In the domain of image generation, latent-based generative models occupy a dominant status; however, these models rely heavily on image tokenizer. To meet modeling requirements, autoregressive models possessing the characteristics of scalability and flexibility embrace a discrete-valued tokenizer, but face the challenge of poor image generation quality. In contrast, diffusion models take advantage of the continuous-valued tokenizer to achieve better generation quality but are subject to low efficiency and complexity. The existing hybrid models are mainly to compensate for information loss and simplify the diffusion learning process. The potential of merging discrete-valued and continuous-valued tokens in the field of image generation has not yet been explored. In this paper, we propose D2C, a novel two-stage method to enhance model generation capacity. In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator. Then in the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence. In addition, we design two kinds of fusion modules for seamless interaction. On the ImageNet-256 benchmark, extensive experiment results validate that our model achieves superior performance compared with several continuous-valued and discrete-valued generative models on the class-conditional image generation tasks.
In many proportional parliamentary elections, electoral thresholds (typically 3-5%) are used to promote stability and governability by preventing the election of parties with very small representation. However, these thresholds often result in a significant number of "wasted votes" cast for parties that fail to meet the threshold, which reduces representativeness. One proposal is to allow voters to specify replacement votes, by either indicating a second choice party or by ranking a subset of the parties, but there are several ways of deciding on the scores of the parties (and thus the composition of the parliament) given those votes. We introduce a formal model of party voting with thresholds, and compare a variety of party selection rules axiomatically, and experimentally using a dataset we collected during the 2024 European election in France. We identify three particularly attractive rules, called Direct Winners Only (DO), Single Transferable Vote (STV) and Greedy Plurality (GP).
This study investigates cross-cultural differences in the perception of AI-driven chatbots between Germany and South Korea, focusing on topic dependency and explainability. Using a custom AI chat interface, ExplainitAI, we systematically examined these factors with quota-based samples from both countries (N = 297). Our findings revealed significant cultural distinctions: Korean participants exhibited higher trust, more positive user experience ratings, and more favorable perception of AI compared to German participants. Additionally, topic dependency was a key factor, with participants reporting lower trust in AI when addressing societally debated topics (e.g., migration) versus health or entertainment topics. These perceptions were further influenced by interactions among cultural context, content domains, and explainability conditions. The result highlights the importance of integrating cultural and contextual nuances into the design of AI systems, offering actionable insights for the development of culturally adaptive and explainable AI tailored to diverse user needs and expectations across domains.
Deformable shape representations, parameterized by deformations relative to a given template, have proven effective for improved image analysis tasks. However, their broader applicability is hindered by two major challenges. First, existing methods mainly rely on a known template during testing, which is impractical and limits flexibility. Second, they often struggle to capture fine-grained, voxel-level distinctions between similar shapes (e.g., anatomical variations among healthy individuals, those with mild cognitive impairment, and diseased states). To address these limitations, we propose a novel framework - Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces and demonstrate its effectiveness in the context of image classification. Our CoRLD leverages a class-aware contrastive supervised learning objective in latent deformation spaces, promoting proximity among representations of similar classes while ensuring separation of dissimilar groups. In contrast to previous deep learning networks that require a reference image as input to predict deformation changes, our approach eliminates this dependency. Instead, template images are utilized solely as ground truth in the loss function during the training process, making our model more flexible and generalizable to a wide range of medical applications. We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans. Experimental results show that our model effectively extracts deformable shape features, which can be easily integrated with existing classifiers to substantially boost the classification accuracy. Our code is available at GitHub.
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
Recent studies have identified a critical challenge in deep neural networks (DNNs) known as ``robust fairness", where models exhibit significant disparities in robust accuracy across different classes. While prior work has attempted to address this issue in adversarial robustness, the study of worst-class certified robustness for smoothed classifiers remains unexplored. Our work bridges this gap by developing a PAC-Bayesian bound for the worst-class error of smoothed classifiers. Through theoretical analysis, we demonstrate that the largest eigenvalue of the smoothed confusion matrix fundamentally influences the worst-class error of smoothed classifiers. Based on this insight, we introduce a regularization method that optimizes the largest eigenvalue of smoothed confusion matrix to enhance worst-class accuracy of the smoothed classifier and further improve its worst-class certified robustness. We provide extensive experimental validation across multiple datasets and model architectures to demonstrate the effectiveness of our approach.
The ability of machine learning (ML) classification models to resist small, targeted input perturbations - known as adversarial attacks - is a key measure of their safety and reliability. We show that floating-point non associativity (FPNA) coupled with asynchronous parallel programming on GPUs is sufficient to result in misclassification, without any perturbation to the input. Additionally, we show this misclassification is particularly significant for inputs close to the decision boundary and that standard adversarial robustness results may be overestimated up to 4.6% when not considering machine-level details. We first study a linear classifier, before focusing on standard Graph Neural Network (GNN) architectures and datasets. We present a novel black-box attack using Bayesian optimization to determine external workloads that bias the output of reductions on GPUs and reliably lead to misclassification. Motivated by these results, we present a new learnable permutation (LP) gradient-based approach, to learn floating point operation orderings that lead to misclassifications, making the assumption that any reduction or permutation ordering is possible. This LP approach provides a worst-case estimate in a computationally efficient manner, avoiding the need to run identical experiments tens of thousands of times over a potentially large set of possible GPU states or architectures. Finally, we investigate parallel reduction ordering across different GPU architectures for a reduction under three conditions: (1) executing external background workloads, (2) utilizing multi-GPU virtualization, and (3) applying power capping. Our results demonstrate that parallel reduction ordering varies significantly across architectures under the first two conditions. The results and methods developed here can help to include machine-level considerations into adversarial robustness assessments.
Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.
Programming language and library choices are crucial to software reliability and security. Poor or inconsistent choices can lead to increased technical debt, security vulnerabilities, and even catastrophic failures in safety-critical systems. As Large Language Models (LLMs) play an increasing role in code generation, it is essential to understand how they make these decisions. However, little is known about their preferences when selecting programming languages and libraries for different coding tasks. To fill this gap, this study provides the first in-depth investigation into LLM preferences for programming languages and libraries used when generating code. We assess the preferences of eight diverse LLMs by prompting them to complete various coding tasks, including widely-studied benchmarks and the more practical task of generating the initial structural code for new projects (a crucial step that often determines a project's language or library choices). Our findings reveal that LLMs heavily favour Python when solving language-agnostic problems, using it in 90%-97% of cases for benchmark tasks. Even when generating initial project code where Python is not a suitable language, it remains the most-used language in 58% of instances. Moreover, LLMs contradict their own language recommendations in 83% of project initialisation tasks, raising concerns about their reliability in guiding language selection. Similar biases toward well-established libraries further create serious discoverability challenges for newer open-source projects. These results highlight the need to improve LLMs' adaptability to diverse programming contexts and to develop mechanisms for mitigating programming language and library bias.
We propose PolyRad, a novel radar-guided depth estimation method that introduces polynomial fitting to transform scaleless depth predictions from pretrained monocular depth estimation (MDE) models into metric depth maps. Unlike existing approaches that rely on complex architectures or expensive sensors, our method is grounded in a simple yet fundamental insight: using polynomial coefficients predicted from cheap, ubiquitous radar data to adaptively adjust depth predictions non-uniformly across depth ranges. Although MDE models often infer reasonably accurate local depth structure within each object or local region, they may misalign these regions relative to one another, making a linear scale-and-shift transformation insufficient given three or more of these regions. In contrast, PolyRad generalizes beyond linear transformations and is able to correct such misalignments by introducing inflection points. Importantly, our polynomial fitting framework preserves structural consistency through a novel training objective that enforces monotonicity via first-derivative regularization. PolyRad achieves state-of-the-art performance on the nuScenes, ZJU-4DRadarCam, and View-of-Delft datasets, outperforming existing methods by 30.3% in MAE and 37.2% in RMSE.
Deepfake detection is crucial for curbing the harm it causes to society. However, current Deepfake detection methods fail to thoroughly explore artifact information across different domains due to insufficient intrinsic interactions. These interactions refer to the fusion and coordination after feature extraction processes across different domains, which are crucial for recognizing complex forgery clues. Focusing on more generalized Deepfake detection, in this work, we introduce a novel bi-directional attention module to capture the local positional information of artifact clues from the spatial domain. This enables accurate artifact localization, thus addressing the coarse processing with artifact features. To further address the limitation that the proposed bi-directional attention module may not well capture global subtle forgery information in the artifact feature (e.g., textures or edges), we employ a fine-grained frequency attention module in the frequency domain. By doing so, we can obtain high-frequency information in the fine-grained features, which contains the global and subtle forgery information. Although these features from the diverse domains can be effectively and independently improved, fusing them directly does not effectively improve the detection performance. Therefore, we propose a feature superposition strategy that complements information from spatial and frequency domains. This strategy turns the feature components into the form of wave-like tokens, which are updated based on their phase, such that the distinctions between authentic and artifact features can be amplified. Our method demonstrates significant improvements over state-of-the-art (SOTA) methods on five public Deepfake datasets in capturing abnormalities across different manipulated operations and real-life.
The Babu\v{s}ka or plate paradox concerns the failure of convergence when a domain with curved boundary is approximated by polygonal domains in linear bending problems with simple support boundary conditions. It can be explained via a boundary integral representation of the total Gaussian curvature that is part of the Kirchhoff--Love bending energy. It is shown that the paradox also occurs for a nonlinear bending-folding model which enforces vanishing Gaussian curvature. A simple remedy that is compatible with simplicial finite element methods to avoid wrong convergence is devised.
Containers are used to carve out a class of strictly positive data types in terms of shapes and positions. They can be interpreted via a fully-faithful functor into endofunctors on Set. Monadic containers are those containers whose interpretation as a Set functor carries a monad structure. The category of containers is closed under container composition and is a monoidal category, whereas monadic containers do not in general compose. In this paper, we develop a characterisation of distributive laws of monadic containers. Distributive laws were introduced as a sufficient condition for the composition of the underlying functors of two monads to also carry a monad structure. Our development parallels Ahman and Uustalu's characterisation of distributive laws of directed containers, i.e. containers whose Set functor interpretation carries a comonad structure. Furthermore, by combining our work with theirs, we construct characterisations of mixed distributive laws (i.e. of directed containers over monadic containers and vice versa), thereby completing the 'zoo' of container characterisations of (co)monads and their distributive laws. We have found these characterisations amenable to development of existence and uniqueness proofs of distributive laws, particularly in the mechanised setting of Cubical Agda, in which most of the theory of this paper has been formalised.
Scientific software often offers numerous (open or closed-source) alternatives for a given problem. A user needs to make an informed choice by selecting the best option based on specific metrics. However, setting up benchmarks ad-hoc can become overwhelming as the parameter space expands rapidly. Very often, the design of the benchmark is also not fully set at the start of some project. For instance, adding new libraries, adapting metrics, or introducing new benchmark cases during the project can significantly increase complexity and necessitate laborious re-evaluation of previous results. This paper presents a proven approach that utilizes established Continuous Integration tools and practices to achieve high automation of benchmark execution and reporting. Our use case is the numerical integration (quadrature) on arbitrary domains, which are bounded by implicitly or parametrically defined curves or surfaces in 2D or 3D.
Detecting infrared small targets in complex backgrounds remains a challenging task because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a novel network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Detection Attention mechanism(MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB redistributes input feature channels, facilitating the efficient transmission of beneficial features and further enhancing the model detection capability in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves outstanding small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43\%, 94.56\%, and 67.08\% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
In this work, we augment reinforcement learning with an inference-time collision model to ensure safe and efficient container management in a waste-sorting facility with limited processing capacity. Each container has two optimal emptying volumes that trade off higher throughput against overflow risk. Conventional reinforcement learning (RL) approaches struggle under delayed rewards, sparse critical events, and high-dimensional uncertainty -- failing to consistently balance higher-volume empties with the risk of safety-limit violations. To address these challenges, we propose a hybrid method comprising: (1) a curriculum-learning pipeline that incrementally trains a PPO agent to handle delayed rewards and class imbalance, and (2) an offline pairwise collision model used at inference time to proactively avert collisions with minimal online cost. Experimental results show that our targeted inference-time collision checks significantly improve collision avoidance, reduce safety-limit violations, maintain high throughput, and scale effectively across varying container-to-PU ratios. These findings offer actionable guidelines for designing safe and efficient container-management systems in real-world facilities.
Model customization requires high-quality and diverse datasets, but acquiring such data remains challenging and costly. Although large language models (LLMs) can synthesize training data, current approaches are constrained by limited seed data, model bias and insufficient control over the generation process, resulting in limited diversity and biased distribution with the increase of data scales. To tackle this challenge, we present TreeSynth, a tree-guided subspace-based data synthesis framework that recursively partitions the entire data space into hierar-chical subspaces, enabling comprehensive and diverse scaling of data synthesis. Briefly, given a task-specific description, we construct a data space partitioning tree by iteratively executing criteria determination and subspace coverage steps. This hierarchically divides the whole space (i.e., root node) into mutually exclusive and complementary atomic subspaces (i.e., leaf nodes). By collecting synthesized data according to the attributes of each leaf node, we obtain a diverse dataset that fully covers the data space. Empirically, our extensive experiments demonstrate that TreeSynth surpasses both human-designed datasets and the state-of-the-art data synthesis baselines, achieving maximum improvements of 45.2% in data diversity and 17.6% in downstream task performance across various models and tasks. Hopefully, TreeSynth provides a scalable solution to synthesize diverse and comprehensive datasets from scratch without human intervention.
Recovering high-quality 3D facial textures from single-view 2D images is a challenging task, especially under constraints of limited data and complex facial details such as makeup, wrinkles, and occlusions. In this paper, we introduce FreeUV, a novel ground-truth-free UV texture recovery framework that eliminates the need for annotated or synthetic UV data. FreeUV leverages pre-trained stable diffusion model alongside a Cross-Assembly inference strategy to fulfill this objective. In FreeUV, separate networks are trained independently to focus on realistic appearance and structural consistency, and these networks are combined during inference to generate coherent textures. Our approach accurately captures intricate facial features and demonstrates robust performance across diverse poses and occlusions. Extensive experiments validate FreeUV's effectiveness, with results surpassing state-of-the-art methods in both quantitative and qualitative metrics. Additionally, FreeUV enables new applications, including local editing, facial feature interpolation, and multi-view texture recovery. By reducing data requirements, FreeUV offers a scalable solution for generating high-fidelity 3D facial textures suitable for real-world scenarios.
Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.
The commodity and widespread use of online shopping are having an unprecedented impact on climate, with emission figures from key actors that are easily comparable to those of a large-scale metropolis. Despite online shopping being fueled by recommender systems (RecSys) algorithms, the role and potential of the latter in promoting more sustainable choices is little studied. One of the main reasons for this could be attributed to the lack of a dataset containing carbon footprint emissions for the items. While building such a dataset is a rather challenging task, its presence is pivotal for opening the doors to novel perspectives, evaluations, and methods for RecSys research. In this paper, we target this bottleneck and study the environmental role of RecSys algorithms. First, we mine a dataset that includes carbon footprint emissions for its items. Then, we benchmark conventional RecSys algorithms in terms of accuracy and sustainability as two faces of the same coin. We find that RecSys algorithms optimized for accuracy overlook greenness and that longer recommendation lists are greener but less accurate. Then, we show that a simple reranking approach that accounts for the item's carbon footprint can establish a better trade-off between accuracy and greenness. This reranking approach is modular, ready to use, and can be applied to any RecSys algorithm without the need to alter the underlying mechanisms or retrain models. Our results show that a small sacrifice of accuracy can lead to significant improvements of recommendation greenness across all algorithms and list lengths. Arguably, this accuracy-greenness trade-off could even be seen as an enhancement of user satisfaction, particularly for purpose-driven users who prioritize the environmental impact of their choices. We anticipate this work will serve as the starting point for studying RecSys for more sustainable recommendations.
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
News outlets' competition for attention in news interfaces has highlighted the need for demographically-aware saliency prediction models. Despite recent advancements in saliency detection applied to user interfaces (UI), existing datasets are limited in size and demographic representation. We present a deep learning framework that enhances the SaRa (Saliency Ranking) model with DeepGaze IIE, improving Salient Object Ranking (SOR) performance by 10.7%. Our framework optimizes three key components: saliency map generation, grid segment scoring, and map normalization. Through a two-fold experiment using eye-tracking (30 participants) and mouse-tracking (375 participants aged 13--70), we analyze attention patterns across demographic groups. Statistical analysis reveals significant age-based variations (p < 0.05, {\epsilon^2} = 0.042), with older users (36--70) engaging more with textual content and younger users (13--35) interacting more with images. Mouse-tracking data closely approximates eye-tracking behavior (sAUC = 0.86) and identifies UI elements that immediately stand out, validating its use in large-scale studies. We conclude that saliency studies should prioritize gathering data from a larger, demographically representative sample and report exact demographic distributions.
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% mAP@0.5 with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .
The increasing integration of renewable energy sources has led to greater volatility and unpredictability in electricity generation, posing challenges to grid stability. Ancillary service markets, such as the German control reserve market, allow industrial consumers and producers to offer flexibility in their power consumption or generation, contributing to grid stability while earning additional income. However, many participants use simple bidding strategies that may not maximize their revenues. This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market. We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models. To address the asymmetry in the revenue function of pay-as-bid markets, we introduce an offset adjustment technique that enhances the practical applicability of the forecasting models. Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models. When analyzing the relationship between the model forecasting errors and the revenue, a negative correlation is measured for three markets; according to the results, a reduction of 1 EUR/MW model price forecasting error (MAE) statistically leads to a yearly revenue increase between 483 EUR/MW and 3,631 EUR/MW. The proposed methodology enables industrial participants to optimize their bidding strategies, leading to increased earnings and contributing to the efficiency and stability of the electrical grid.
This paper introduces a novel mathematical framework for analyzing cyber threat campaigns through fractal geometry. By conceptualizing hierarchical taxonomies (MITRE ATT&CK, DISARM) as snowflake-like structures with tactics, techniques, and sub-techniques forming concentric layers, we establish a rigorous method for campaign comparison using Hutchinson's Theorem and Hausdorff distance metrics. Evaluation results confirm that our fractal representation preserves hierarchical integrity while providing a dimensionality-based complexity assessment that correlates with campaign complexity. The proposed methodology bridges taxonomy-driven cyber threat analysis and computational geometry, providing analysts with both mathematical rigor and interpretable visualizations for addressing the growing complexity of adversarial operations across multiple threat domains.
Infrastructure as Code (IaC) enables scalable and automated IT infrastructure management but is prone to errors that can lead to security vulnerabilities, outages, and data loss. While prior research has focused on detecting IaC issues, Automated Program Repair (APR) remains underexplored, largely due to the lack of suitable specifications. In this work, we propose InfraFix, the first technology-agnostic framework for repairing IaC scripts. Unlike prior approaches, InfraFix allows APR techniques to be guided by diverse information sources. Additionally, we introduce a novel approach for generating repair scenarios, enabling large-scale evaluation of APR techniques for IaC. We implement and evaluate InfraFix using an SMT-based repair module and a state inference module that uses system calls, demonstrating its effectiveness across 254,755 repair scenarios with a success rate of 95.5%. Our work provides a foundation for advancing APR in IaC by enabling researchers to experiment with new state inference and repair techniques using InfraFix and to evaluate their approaches at scale with our repair scenario generation method.
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.
As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
To exploit the compliant capabilities of soft robot arms we require controller which can exploit their physical capabilities. Teleoperation, leveraging a human in the loop, is a key step towards achieving more complex control strategies. Whilst teleoperation is widely used for rigid robots, for soft robots we require teleoperation methods where the configuration of the whole body is considered. We propose a method of using an identical 'physical twin', or demonstrator of the robot. This tendon robot can be back-driven, with the tendon lengths providing configuration perception, and enabling a direct mapping of tendon lengths for the execture. We demonstrate how this teleoperation across the entire configuration of the robot enables complex interactions with exploit the envrionment, such as squeezing into gaps. We also show how this method can generalize to robots which are a larger scale that the physical twin, and how, tuneability of the stiffness properties of the physical twin simplify its use.
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
Federated learning (FL) has garnered considerable interest for its capability to learn from decentralized data sources. Given the increasing application of FL in decision-making scenarios, addressing fairness issues across different sensitive groups (e.g., female, male) in FL is crucial. Current research often focuses on facilitating fairness at each client's data (local fairness) or within the entire dataset across all clients (global fairness). However, existing approaches that focus exclusively on either local or global fairness fail to address two key challenges: (\textbf{CH1}) Under statistical heterogeneity, global fairness does not imply local fairness, and vice versa. (\textbf{CH2}) Achieving fairness under model-agnostic setting. To tackle the aforementioned challenges, this paper proposes a novel post-processing framework for achieving both Local and Global Fairness in the FL context, namely LoGoFair. To address CH1, LoGoFair endeavors to seek the Bayes optimal classifier under local and global fairness constraints, which strikes the optimal accuracy-fairness balance in the probabilistic sense. To address CH2, LoGoFair employs a model-agnostic federated post-processing procedure that enables clients to collaboratively optimize global fairness while ensuring local fairness, thereby achieving the optimal fair classifier within FL. Experimental results on three real-world datasets further illustrate the effectiveness of the proposed LoGoFair framework.
This paper aims to develop an efficient adaptive finite element method for the second-order elliptic problem. Although the theory for adaptive finite element methods based on residual-type a posteriori error estimator and bisection refinement has been well established, in practical computations, the use of non-asymptotic exact of error estimator and the excessive number of adaptive iteration steps often lead to inefficiency of the adaptive algorithm. We propose an efficient adaptive finite element method based on high-accuracy techniques including the superconvergence recovery technique and high-quality mesh optimization. The centroidal Voronoi Delaunay triangulation mesh optimization is embedded in the mesh adaption to provide high-quality mesh, and then assure that the superconvergence property of the recovered gradient and the asymptotical exactness of the error estimator. A tailored adaptive strategy, which could generate high-quality meshes with a target number of vertices, is developed to ensure the adaptive computation process terminated within $7$ steps. The effectiveness and robustness of the adaptive algorithm is numerically demonstrated.
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the YOLOv5 with the DeepSORT pipeline, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the metrics from the 4th Anti-UAV Challenge and demonstrate competitive performance. Notably, we achieve strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for the multi-UAV tracking task. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
In this paper, we address the challenge of few-shot classification in histopathology whole slide images (WSIs) by utilizing foundational vision-language models (VLMs) and slide-level prompt learning. Given the gigapixel scale of WSIs, conventional multiple instance learning (MIL) methods rely on aggregation functions to derive slide-level (bag-level) predictions from patch representations, which require extensive bag-level labels for training. In contrast, VLM-based approaches excel at aligning visual embeddings of patches with candidate class text prompts but lack essential pathological prior knowledge. Our method distinguishes itself by utilizing pathological prior knowledge from language models to identify crucial local tissue types (patches) for WSI classification, integrating this within a VLM-based MIL framework. Our approach effectively aligns patch images with tissue types, and we fine-tune our model via prompt learning using only a few labeled WSIs per category. Experimentation on real-world pathological WSI datasets and ablation studies highlight our method's superior performance over existing MIL- and VLM-based methods in few-shot WSI classification tasks. Our code is publicly available at https://github.com/LTS5/SLIP.
Fine-tuning large language models (LLMs) on downstream tasks can inadvertently erode their safety alignment, even for benign fine-tuning datasets. We address this challenge by proposing SafeMERGE, a post-fine-tuning framework that preserves safety while maintaining task utility. It achieves this by selectively merging fine-tuned and safety-aligned model layers only when those deviate from safe behavior, measured by a cosine similarity criterion. We evaluate SafeMERGE against other fine-tuning- and post-fine-tuning-stage approaches for Llama-2-7B-Chat and Qwen-2-7B-Instruct models on GSM8K and PubMedQA tasks while exploring different merging strategies. We find that SafeMERGE consistently reduces harmful outputs compared to other baselines without significantly sacrificing performance, sometimes even enhancing it. The results suggest that our selective, subspace-guided, and per-layer merging method provides an effective safeguard against the inadvertent loss of safety in fine-tuned LLMs while outperforming simpler post-fine-tuning-stage defenses.
Decentralization is understood both by professionals in the blockchain industry and general users as a core design goal of permissionless ledgers. However, its meaning is far from universally agreed, and often it is easier to get opinions on what it is not, rather than what it is. In this paper, we solicit definitions of 'decentralization' and 'decentralization theatre' from blockchain node operators. Key to a definition is asking about effective decentralization strategies, as well as those that are ineffective, sometimes deliberately so. Malicious, deceptive or at the least incompetent strategies are commonly referred to by the term 'decentralization theatre.' Finally, we ask what is being decentralized. We find that most operators conceive decentralization as existing broadly on a technical and a governance axis. Isolating relevant variables, we collapse the categories to network topology and governance topology, or the structure of decision-making power. Our key finding is that `decentralization' alone does not affect ledger immutability or systemic robustness.
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
Indistinguishable objects often occur when modelling problems in constraint programming, as well as in other related paradigms. They occur when objects can be viewed as being drawn from a set of unlabelled objects, and the only operation allowed on them is equality testing. For example, the golfers in the social golfer problem are indistinguishable. If we do label the golfers, then any relabelling of the golfers in one solution gives another valid solution. Therefore, we can regard the symmetric group of size $n$ as acting on a set of $n$ indistinguishable objects. In this paper, we show how we can break the symmetries resulting from indistinguishable objects. We show how symmetries on indistinguishable objects can be defined properly in complex types, for example in a matrix indexed by indistinguishable objects. We then show how the resulting symmetries can be broken correctly. In Essence, a high-level modelling language, indistinguishable objects are encapsulated in "unnamed types". We provide an implementation of complete symmetry breaking for unnamed types in Essence.
We investigate differentially private estimators for individual parameters within larger parametric models. While generic private estimators exist, the estimators we provide repose on new local notions of estimand stability, and these notions allow procedures that provide private certificates of their own stability. By leveraging these private certificates, we provide computationally and statistical efficient mechanisms that release private statistics that are, at least asymptotically in the sample size, essentially unimprovable: they achieve instance optimal bounds. Additionally, we investigate the practicality of the algorithms both in simulated data and in real-world data from the American Community Survey and US Census, highlighting scenarios in which the new procedures are successful and identifying areas for future work.
The environmental comfort in offices is traditionally captured by surveying an entire workforce simultaneously, which yet fails to capture the situatedness of the different personal experiences. To address this limitation, we developed the EnviroMapper Toolkit, a data physicalisation toolkit that allows individual office workers to record their personal experiences of environmental comfort by mapping the actual moments and locations these occurred. By analysing two in-the-wild studies in existing open-plan office environments (N=14), we demonstrate how this toolkit acts like a situated input visualisation that can be interpreted by domain experts who were not present during its construction. This study therefore offers four key contributions: (1) the iterative design process of the physicalisation toolkit; (2) its preliminary deployment in two real-world office contexts; (3) the decoding of the resulting artefacts by domain experts; and (4) design considerations to support future input physicalisation and visualisation constructions that capture and synthesise data from multiple individuals.
Today, data guides the decision-making process of most companies. Effectively analyzing and manipulating data at scale to extract and exploit relevant knowledge is a challenging task, due to data characteristics such as its size, the rate at which it changes, and the heterogeneity of formats. To address this challenge, software architects resort to build complex data-intensive architectures that integrate highly heterogeneous software systems, each offering vertically specialized functionalities. Designing a suitable architecture for the application at hand is crucial to enable high quality of service and efficient exploitation of resources. However, the design process entails a series of decisions that demand technical expertise and in-depth knowledge of individual systems and their synergies. To assist software architects in this task, this paper introduces a development methodology for data-intensive architectures, which guides architects in (i) designing a suitable architecture for their specific application scenario, and (ii) selecting an appropriate set of concrete systems to implement the application. To do so, the methodology grounds on (1) a language to precisely define an application scenario in terms of characteristics of data and requirements of stakeholders; (2) an architecture description language for data-intensive architectures; (3) a classification of systems based on the functionalities they offer and their performance trade-offs. We show that the description languages we adopt can capture the key aspects of data-intensive architectures proposed by researchers and practitioners, and we validate our methodology by applying it to real-world case studies documented in literature.
Event cameras rely on motion to obtain information about scene appearance. In other words, for event cameras, motion and appearance are seen both or neither, which are encoded in the output event stream. Previous works consider recovering these two visual quantities as separate tasks, which does not fit with the nature of event cameras and neglects the inherent relations between both tasks. In this paper, we propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance), with a single network. Starting from the event generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity, which is further combined with the contrast maximization framework, yielding a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show that our model achieves state-of-the-art performance for both optical flow (achieves 20% and 25% improvement in EPE and AE respectively in the unsupervised learning category) and intensity estimation (produces competitive results with other baselines, particularly in high dynamic range scenarios). Last but not least, our model achieves shorter inference time than all the other optical flow models and many of the image reconstruction models, while they output only one quantity. Project page: https://github.com/tub-rip/e2fai
We consider the List Update problem where the cost of each swap is assumed to be 1. This is in contrast to the "standard" model, in which an algorithm is allowed to swap the requested item with previous items for free. We construct an online algorithm Full-Or-Partial-Move (FPM), whose competitive ratio is $R \approx 3.3904$, improving over the previous best known bound of 4.
Humans can predict future human trajectories even from momentary observations by using human pose-related cues. However, previous Human Trajectory Prediction (HTP) methods leverage the pose cues implicitly, resulting in implausible predictions. To address this, we propose Locomotion Embodiment, a framework that explicitly evaluates the physical plausibility of the predicted trajectory by locomotion generation under the laws of physics. While the plausibility of locomotion is learned with an indifferentiable physics simulator, it is replaced by our differentiable Locomotion Value function to train an HTP network in a data-driven manner. In particular, our proposed Embodied Locomotion loss is beneficial for efficiently training a stochastic HTP network using multiple heads. Furthermore, the Locomotion Value filter is proposed to filter out implausible trajectories at inference. Experiments demonstrate that our method enhances even the state-of-the-art HTP methods across diverse datasets and problem settings. Our code is available at: https://github.com/ImIntheMiddle/EmLoco.
Camera-based monitoring of vital signs, also known as imaging photoplethysmography (iPPG), has seen applications in driver-monitoring, perfusion assessment in surgical settings, affective computing, and more. iPPG involves sensing the underlying cardiac pulse from video of the skin and estimating vital signs such as the heart rate or a full pulse waveform. Some previous iPPG methods impose model-based sparse priors on the pulse signals and use iterative optimization for pulse wave recovery, while others use end-to-end black-box deep learning methods. In contrast, we introduce methods that combine signal processing and deep learning methods in an inverse problem framework. Our methods estimate the underlying pulse signal and heart rate from facial video by learning deep-network-based denoising operators that leverage deep algorithm unfolding and deep equilibrium models. Experiments show that our methods can denoise an acquired signal from the face and infer the correct underlying pulse rate, achieving state-of-the-art heart rate estimation performance on well-known benchmarks, all with less than one-fifth the number of learnable parameters as the closest competing method.
Sparse autoencoders (SAEs) are widely used for interpreting language model activations. A key evaluation metric is the increase in cross-entropy loss when replacing model activations with SAE reconstructions. Typically, SAEs are trained solely on mean squared error (MSE) using precomputed, shuffled activations. Recent work introduced training SAEs directly with a combination of KL divergence and MSE ("end-to-end" SAEs), significantly improving reconstruction accuracy at the cost of substantially increased computation, which has limited their widespread adoption. We propose a brief KL+MSE fine-tuning step applied only to the final 25M training tokens (just a few percent of typical training budgets) that achieves comparable improvements, reducing the cross-entropy loss gap by 20-50%, while incurring minimal additional computational cost. We further find that multiple fine-tuning methods (KL fine-tuning, LoRA adapters, linear adapters) yield similar, non-additive cross-entropy improvements, suggesting a common, easily correctable error source in MSE-trained SAEs. We demonstrate a straightforward method for effectively transferring hyperparameters and sparsity penalties despite scale differences between KL and MSE losses. While both ReLU and TopK SAEs see significant cross-entropy loss improvements, evaluations on supervised SAEBench metrics yield mixed results, suggesting practical benefits depend on both SAE architecture and the specific downstream task. Nonetheless, our method offers meaningful improvements in interpretability applications such as circuit analysis with minor additional cost.
Decomposing a video into a layer-based representation is crucial for easy video editing for the creative industries, as it enables independent editing of specific layers. Existing video-layer decomposition models rely on implicit neural representations (INRs) trained independently for each video, making the process time-consuming when applied to new videos. Noticing this limitation, we propose a meta-learning strategy to learn a generic video decomposition model to speed up the training on new videos. Our model is based on a hypernetwork architecture which, given a video-encoder embedding, generates the parameters for a compact INR-based neural video decomposition model. Our strategy mitigates the problem of single-video overfitting and, importantly, shortens the convergence of video decomposition on new, unseen videos. Our code is available at: https://hypernvd.github.io/
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.
A flexible recommendation and retrieval system requires music similarity in terms of multiple partial elements of musical pieces to allow users to select the element they want to focus on. A method for music similarity learning using multiple networks with individual instrumental signals is effective but faces the problem that using each clean instrumental signal as a query is impractical for retrieval systems and using separated instrumental sounds reduces accuracy owing to artifacts. In this paper, we present instrumental-part-based music similarity learning with a single network that takes mixed sounds as input instead of individual instrumental sounds. Specifically, we designed a single similarity embedding space with disentangled dimensions for each instrument, extracted by Conditional Similarity Networks, which are trained using the triplet loss with masks. Experimental results showed that (1) the proposed method can obtain more accurate feature representation than using individual networks using separated sounds as input in the evaluation of an instrument that had low accuracy, (2) each sub-embedding space can hold the characteristics of the corresponding instrument, and (3) the selection of similar musical pieces focusing on each instrumental sound by the proposed method can obtain human acceptance, especially when focusing on timbre.
The growing energy demands of HPC systems have made energy efficiency a critical concern for system developers and operators. However, HPC users are generally less aware of how these energy concerns influence the design, deployment, and operation of supercomputers even though they experience the consequences. This paper examines the implications of HPC's energy consumption, providing an overview of current trends aimed at improving energy efficiency. We describe how hardware innovations such as energy-efficient processors, novel system architectures, power management techniques, and advanced scheduling policies do have a direct impact on how applications need to be programmed and executed on HPC systems. For application developers, understanding how these new systems work and how to analyse and report the performances of their own software is critical in the dialog with HPC system designers and administrators. The paper aims to raise awareness about energy efficiency among users, particularly in the high energy physics and astrophysics domains, offering practical advice on how to analyse and optimise applications to reduce their energy consumption without compromising on performance.
Recent advances in open-vocabulary object detection models will enable Automatic Target Recognition systems to be sustainable and repurposed by non-technical end-users for a variety of applications or missions. New, and potentially nuanced, classes can be defined with natural language text descriptions in the field, immediately before runtime, without needing to retrain the model. We present an approach for improving non-technical users' natural language text descriptions of their desired targets of interest, using a combination of analysis techniques on the text embeddings, and proper combinations of embeddings for contrastive examples. We quantify the improvement that our feedback mechanism provides by demonstrating performance with multiple publicly-available open-vocabulary object detection models.
Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
In this paper, we propose \textbf{\textsc{FastCuRL}}, a simple yet efficient \textbf{Cu}rriculum \textbf{R}einforcement \textbf{L}earning approach with context window extending strategy to accelerate the reinforcement learning training efficiency for R1-like reasoning models while enhancing their performance in tackling complex reasoning tasks with long chain-of-thought rationales, particularly with a 1.5B parameter language model. \textbf{\textsc{FastCuRL}} consists of two main procedures: length-aware training data segmentation and context window extension training. Specifically, the former first splits the original training data into three different levels by the input prompt length, and then the latter leverages segmented training datasets with a progressively increasing context window length to train the reasoning model. Experimental results demonstrate that \textbf{\textsc{FastCuRL}}-1.5B-Preview surpasses DeepScaleR-1.5B-Preview across all five datasets (including MATH 500, AIME 2024, AMC 2023, Minerva Math, and OlympiadBench) while only utilizing 50\% of training steps. Furthermore, all training stages for FastCuRL-1.5B-Preview are completed using just a single node with 8 GPUs.
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
Accurate modeling of fluid dynamics around complex geometries is critical for applications such as aerodynamic optimization and biomedical device design. While advancements in numerical methods and high-performance computing have improved simulation capabilities, the computational cost of high-fidelity 3D flow simulations remains a significant challenge. Scientific machine learning (SciML) offers an efficient alternative, enabling rapid and reliable flow predictions. In this study, we evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs), on steady-state 3D flow over complex objects. Our dataset consists of 1,000 high-fidelity simulations spanning Reynolds numbers from 10 to 1,000, enabling comprehensive training and evaluation across a range of flow regimes. To assess model generalization, we test our models on a random and extrapolatory train-test splitting. Additionally, we explore a derivative-informed training strategy that augments standard loss functions with velocity gradient penalties and incompressibility constraints, improving physics consistency in 3D flow prediction. Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet. Moreover, incorporating derivative constraints enhances gradient accuracy by 25% in interpolation tasks and up to 45% in extrapolatory test scenarios, suggesting significant improvement in generalization capabilities to unseen 3D Reynolds numbers.
We introduce the concept of a \emph{cycle pattern} for directed graphs as functions from the set of cycles to the set $\{-,0,+\}$. The key example for such a pattern is derived from a weight function, giving rise to the sign of the total weight of the edges for each cycle. Hence, cycle patterns describe a fundamental structure of a weighted digraph, and they arise naturally in games on graphs, in particular parity games, mean payoff games, and energy games. Our contribution is threefold: we analyze the structure and derive hardness results for the realization of cycle patterns by weight functions. Then we use them to show hardness of solving games given the limited information of a cycle pattern. Finally, we identify a novel geometric hardness measure for solving mean payoff games (MPG) using the framework of linear decision trees, and use cycle patterns to derive lower bounds with respect to this measure, for large classes of algorithms for MPGs.
Unmanned aerial vehicles (UAVs) depend on untrusted software components to automate dangerous or critical missions, making them a desirable target for attacks. Some work has been done to prevent an attacker who has either compromised a ground control station or parts of a UAV's software from sabotaging the vehicle, but not both. We present an architecture running a UAV software stack with runtime monitoring and seL4-based software isolation that prevents attackers from both exploiting software bugs and utilizing stealthy attacks. Our architecture retrofits legacy UAVs and secures the popular MAVLink protocol, making wide adoption possible.
Offline multi-objective optimization aims to identify Pareto-optimal solutions given a dataset of designs and their objective values. In this work, we propose a preference-guided diffusion model that generates Pareto-optimal designs by leveraging a classifier-based guidance mechanism. Our guidance classifier is a preference model trained to predict the probability that one design dominates another, directing the diffusion model toward optimal regions of the design space. Crucially, this preference model generalizes beyond the training distribution, enabling the discovery of Pareto-optimal solutions outside the observed dataset. We introduce a novel diversity-aware preference guidance, augmenting Pareto dominance preference with diversity criteria. This ensures that generated solutions are optimal and well-distributed across the objective space, a capability absent in prior generative methods for offline multi-objective optimization. We evaluate our approach on various continuous offline multi-objective optimization tasks and find that it consistently outperforms other inverse/generative approaches while remaining competitive with forward/surrogate-based optimization methods. Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions that approximate the Pareto front well.
As software systems grow increasingly complex, ensuring security during development poses significant challenges. Traditional manual code audits are often expensive, time-intensive, and ill-suited for fast-paced workflows, while automated tools frequently suffer from high false-positive rates, limiting their reliability. To address these issues, we introduce Bugdar, an AI-augmented code review system that integrates seamlessly into GitHub pull requests, providing near real-time, context-aware vulnerability analysis. Bugdar leverages fine-tunable Large Language Models (LLMs) and Retrieval Augmented Generation (RAGs) to deliver project-specific, actionable feedback that aligns with each codebase's unique requirements and developer practices. Supporting multiple programming languages, including Solidity, Move, Rust, and Python, Bugdar demonstrates exceptional efficiency, processing an average of 56.4 seconds per pull request or 30 lines of code per second. This is significantly faster than manual reviews, which could take hours per pull request. By facilitating a proactive approach to secure coding, Bugdar reduces the reliance on manual reviews, accelerates development cycles, and enhances the security posture of software systems without compromising productivity.
Facial mimicry - the automatic, unconscious imitation of others' expressions - is vital for emotional understanding. This study investigates how mimicry differs across emotions using Face Action Units from videos and participants' responses. Dynamic Time Warping quantified the temporal alignment between participants' and stimuli's facial expressions, revealing significant emotional variations. Post-hoc tests indicated greater mimicry for 'Fear' than 'Happy' and reduced mimicry for 'Anger' compared to 'Fear'. The mimicry correlations with personality traits like Extraversion and Agreeableness were significant, showcasing subtle yet meaningful connections. These findings suggest specific emotions evoke stronger mimicry, with personality traits playing a secondary role in emotional alignment. Notably, our results highlight how personality-linked mimicry mechanisms extend beyond interpersonal communication to affective computing applications, such as remote human-human interactions and human-virtual-agent scenarios. Insights from temporal facial mimicry - e.g., designing digital agents that adaptively mirror user expressions - enable developers to create empathetic, personalized systems, enhancing emotional resonance and user engagement.
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.
Urban Air Mobility (UAM) offers a solution to current traffic congestion by using electric Vertical Takeoff and Landing (eVTOL) vehicles to provide on-demand air mobility in urban areas. Effective traffic management is crucial for efficient operation of UAM systems, especially for high-demand scenarios. In this paper, we present a centralized framework for conflict-free takeoff scheduling of eVTOLs in on-demand UAM systems. Specifically, we provide a scheduling policy, called VertiSync, which jointly schedules UAM vehicles for servicing trip requests and rebalancing, subject to safety margins and energy requirements. We characterize the system-level throughput of VertiSync, which determines the demand threshold at which the average waiting time transitions from being stable to being increasing over time. We show that the proposed policy maximizes throughput for sufficiently large fleet size and if the UAM network has a certain symmetry property. We demonstrate the performance of VertiSync through a case study for the city of Los Angeles, and show that it significantly reduces average passenger waiting time compared to a first-come first-serve scheduling policy.
We present Pow3r, a novel large 3D vision regression model that is highly versatile in the input modalities it accepts. Unlike previous feed-forward models that lack any mechanism to exploit known camera or scene priors at test time, Pow3r incorporates any combination of auxiliary information such as intrinsics, relative pose, dense or sparse depth, alongside input images, within a single network. Building upon the recent DUSt3R paradigm, a transformer-based architecture that leverages powerful pre-training, our lightweight and versatile conditioning acts as additional guidance for the network to predict more accurate estimates when auxiliary information is available. During training we feed the model with random subsets of modalities at each iteration, which enables the model to operate under different levels of known priors at test time. This in turn opens up new capabilities, such as performing inference in native image resolution, or point-cloud completion. Our experiments on 3D reconstruction, depth completion, multi-view depth prediction, multi-view stereo, and multi-view pose estimation tasks yield state-of-the-art results and confirm the effectiveness of Pow3r at exploiting all available information. The project webpage is https://europe.naverlabs.com/pow3r.
Quantum computing platforms are susceptible to quantum-specific bugs (e.g., incorrect ordering of qubits or incorrect implementation of quantum abstractions), which are difficult to detect and require specialized expertise. The field faces challenges due to a fragmented landscape of platforms and rapid development cycles that often prioritize features over the development of robust platform testing frameworks, severely hindering the reliability of quantum software. To address these challenges, we present QITE, the first cross-platform testing framework for quantum computing platforms, which leverages QASM, an assembly-level representation, to ensure consistency across different platforms. QITE introduces the novel ITE process to generate equivalent quantum programs by iteratively (I)mporting assembly into platform representations, (T)ransforming via platform optimization and gate conversion, and (E)xporting back to assembly. It uses a crash oracle to detect failures during cross-platform transformations and an equivalence oracle to validate the semantic consistency of the final sets of assembly programs, which are expected to be equivalent by construction. We evaluate QITE on four widely-used quantum computing platforms: Qiskit, PennyLane, Pytket, and BQSKit, revealing 17 bugs, 14 of which are already confirmed or even fixed. Our results demonstrate QITE's effectiveness, its complementarity to existing quantum fuzzers in terms of code coverage, and its ability to expose bugs that have been out of reach for existing testing techniques.
Impulsive individuals exhibit abnormal reward processing (heightened preference for immediate rewards, i.e., impulsive choice, IC) and a penchant for maladaptive action (the inability to inhibit inappropriate actions, i.e., impulsive action, IA). Both impulsive choice and impulsive action are strongly influenced by emotions (emotional impulsivity); yet how emotions impact impulse behavior remains unclear. The traditional theory suggests that emotions primarily exacerbate impulsive action and prompts impulsive choice. The alternative theory states that emotions primarily disrupt attention (attentional impulsivity, AImp) and prompt impulsive choice. In two studies, we probed the interplay among emotions, impulsive action (IA), attentional impulsivity (AImp), and impulsive choice (IC). We elicited positive and negative emotions using emotional pictures and examined the extent to which elicited emotions altered behavioral indices of impulsivity.
Airbnb is an online marketplace that connects hosts and guests to unique stays and experiences. When guests stay at homes booked on Airbnb, there are a small fraction of stays that lead to support needed from Airbnb's Customer Support (CS), which may cause inconvenience to guests and hosts and require Airbnb resources to resolve. In this work, we show that instances where CS support is needed may be predicted based on hosts and guests behavior. We build a model to predict the likelihood of CS support needs for each match of guest and host. The model score is incorporated into Airbnb's search ranking algorithm as one of the many factors. The change promotes more reliable matches in search results and significantly reduces bookings that require CS support.
Large language model (LLM) agents are increasingly capable of autonomously conducting cyberattacks, posing significant threats to existing applications. This growing risk highlights the urgent need for a real-world benchmark to evaluate the ability of LLM agents to exploit web application vulnerabilities. However, existing benchmarks fall short as they are limited to abstracted Capture the Flag competitions or lack comprehensive coverage. Building a benchmark for real-world vulnerabilities involves both specialized expertise to reproduce exploits and a systematic approach to evaluating unpredictable threats. To address this challenge, we introduce CVE-Bench, a real-world cybersecurity benchmark based on critical-severity Common Vulnerabilities and Exposures. In CVE-Bench, we design a sandbox framework that enables LLM agents to exploit vulnerable web applications in scenarios that mimic real-world conditions, while also providing effective evaluation of their exploits. Our evaluation shows that the state-of-the-art agent framework can resolve up to 13% of vulnerabilities.
The deployment of Machine Learning (ML) applications at the edge on resource-constrained devices has accentuated the need for efficient ML processing on low-cost processors. While traditional CPUs provide programming flexibility, their general-purpose architecture often lacks the throughput required for complex ML models. The augmentation of a RISC-V processor with a vector unit can provide substantial data-level parallelism. However, increasing the data-level parallelism supported by vector processing would make the Vector Register File (VRF) a major area consumer in ultra low-cost processors, since 32 vector registers are required for RISC-V Vector ISA compliance. This work leverages the insight that many ML vectorized kernels require a small number of active vector registers, and proposes the use of a physically smaller VRF that dynamically caches only the vector registers currently accessed by the application. This approach, called Register Dispersion, maps the architectural vector registers to a smaller set of physical registers. The proposed ISA-compliant VRF is significantly smaller than a full-size VRF and operates like a conventional cache, i.e., it only stores the most recently accessed vector registers. Essential registers remain readily accessible within the compact VRF, while the others are offloaded to the cache/memory sub-system. The compact VRF design is demonstrated to yield substantial area and power savings, as compared to using a full VRF, with no or minimal impact on performance. This effective trade-off renders the inclusion of vector units in low-cost processors feasible and practical.
Large language models (LLMs) have showcased remarkable capabilities in conversational AI, enabling open-domain responses in chat-bots, as well as advanced processing of conversations like summarization, intent classification, and insights generation. However, these models are resource-intensive, demanding substantial memory and computational power. To address this, we propose a cost-effective solution that filters conversational snippets of interest for LLM processing, tailored to the target downstream application, rather than processing every snippet. In this work, we introduce an innovative approach that leverages knowledge distillation from LLMs to develop an intent-based filter for multi-party conversations, optimized for compute power constrained environments. Our method combines different strategies to create a diverse multi-party conversational dataset, that is annotated with the target intents and is then used to fine-tune the MobileBERT model for multi-label intent classification. This model achieves a balance between efficiency and performance, effectively filtering conversation snippets based on their intents. By passing only the relevant snippets to the LLM for further processing, our approach significantly reduces overall operational costs depending on the intents and the data distribution as demonstrated in our experiments.
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
The legislative process is the backbone of a state built on solid institutions. Yet, due to the complexity of laws -- particularly tax law -- policies may lead to inequality and social tensions. In this study, we introduce a novel prototype system designed to address the issues of tax loopholes and tax avoidance. Our hybrid solution integrates a natural language interface with a domain-specific language tailored for planning. We demonstrate on a case study how tax loopholes and avoidance schemes can be exposed. We conclude that our prototype can help enhance social welfare by systematically identifying and addressing tax gaps stemming from loopholes.
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
Low Earth Orbit (LEO) satellite networks, characterized by their high data throughput and low latency, have gained significant interest from both industry and academia. Routing data efficiently within these networks is essential for maintaining a high quality of service. However, current routing strategies, such as bent-pipe and inter-satellite link (ISL) routing, have their unique challenges. The bent-pipe strategy requires a dense deployment of dedicated ground stations, while the ISL-based strategy can negatively impact satellite battery lifespan due to increased traffic load, leading to sustainability issues. In this paper, we propose sustainable collaborative offloading, a framework that orchestrates groups of existing commercial resources like ground stations and 5G base stations for data offloading. This orchestration enhances total capacity, overcoming the limitations of a single resource. We propose the collaborator group set construction algorithm to construct candidate groups and the collaborator selection and total payment algorithm to select offloading targets and determine payments no less than the costs. Extensive real-world-based simulations show that our solution significantly improves energy consumption, satellite service life, and end-to-end latency.
Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning such as accurately understanding the relative positions of objects. Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities. Our interpretability-driven analysis reveals a critical underlying cause: vision embeddings in VLMs are treated primarily as semantic ``bag-of-tokens," overshadowing subtle yet crucial positional cues due to their disproportionately large embedding norms. We validate this insight through extensive diagnostic experiments, demonstrating minimal performance impact when token orders or fine-grained spatial details are removed. Guided by these findings, we propose simple, interpretable interventions, including normalizing vision embedding norms and extracting mid-layer spatially rich features, to restore spatial awareness. Empirical results on both our synthetic data and standard benchmarks demonstrate improved spatial reasoning capabilities, highlighting the value of interpretability-informed design choices. Our study not only uncovers fundamental limitations in current VLM architectures but also provides actionable insights for enhancing structured perception of visual scenes.
The motion transfer task involves transferring motion from a source video to newly generated videos, requiring the model to decouple motion from appearance. Previous diffusion-based methods primarily rely on separate spatial and temporal attention mechanisms within 3D U-Net. In contrast, state-of-the-art video Diffusion Transformers (DiT) models use 3D full attention, which does not explicitly separate temporal and spatial information. Thus, the interaction between spatial and temporal dimensions makes decoupling motion and appearance more challenging for DiT models. In this paper, we propose DeT, a method that adapts DiT models to improve motion transfer ability. Our approach introduces a simple yet effective temporal kernel to smooth DiT features along the temporal dimension, facilitating the decoupling of foreground motion from background appearance. Meanwhile, the temporal kernel effectively captures temporal variations in DiT features, which are closely related to motion. Moreover, we introduce explicit supervision along dense trajectories in the latent feature space to further enhance motion consistency. Additionally, we present MTBench, a general and challenging benchmark for motion transfer. We also introduce a hybrid motion fidelity metric that considers both the global and local motion similarity. Therefore, our work provides a more comprehensive evaluation than previous works. Extensive experiments on MTBench demonstrate that DeT achieves the best trade-off between motion fidelity and edit fidelity.
Remote estimation of vital signs enables health monitoring for situations in which contact-based devices are either not available, too intrusive, or too expensive. In this paper, we present a modular, interpretable pipeline for pulse signal estimation from video of the face that achieves state-of-the-art results on publicly available datasets.Our imaging photoplethysmography (iPPG) system consists of three modules: face and landmark detection, time-series extraction, and pulse signal/pulse rate estimation. Unlike many deep learning methods that make use of a single black-box model that maps directly from input video to output signal or heart rate, our modular approach enables each of the three parts of the pipeline to be interpreted individually. The pulse signal estimation module, which we call TURNIP (Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography), allows the system to faithfully reconstruct the underlying pulse signal waveform and uses it to measure heart rate and pulse rate variability metrics, even in the presence of motion. When parts of the face are occluded due to extreme head poses, our system explicitly detects such "self-occluded" regions and maintains estimation robustness despite the missing information. Our algorithm provides reliable heart rate estimates without the need for specialized sensors or contact with the skin, outperforming previous iPPG methods on both color (RGB) and near-infrared (NIR) datasets.
Recent advancements demonstrated by DeepSeek-R1 have shown that complex reasoning abilities in large language models (LLMs), including sophisticated behaviors such as self-verification and self-correction, can be achieved by RL with verifiable rewards and significantly improves model performance on challenging tasks such as AIME. Motivated by these findings, our study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs) and assesses their impact on challenging multimodal reasoning tasks. We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization. Initially, reasoning capabilities were distilled from pure-text R1 models by generating reasoning steps using high-quality captions of the images sourced from diverse visual datasets. Subsequently, iterative RL training further enhance reasoning skills, with each iteration's RL-improved model generating refined SFT datasets for the next round. This iterative process yielded OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrating the potential of our strategy for robust vision-language reasoning. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.
Many high-impact machine learning tasks involve multi-dimensional data (e.g., images, volumetric medical scans, multivariate time-series). Yet, most neural architectures flatten inputs, discarding critical cross-dimension information. We introduce NdLinear, a novel linear transformation that preserves these structures without extra overhead. By operating separately along each dimension, NdLinear captures dependencies that standard fully connected layers overlook. Extensive experiments across convolutional, recurrent, and transformer-based networks show significant improvements in representational power and parameter efficiency. Crucially, NdLinear serves as a foundational building block for large-scale foundation models by operating on any unimodal or multimodal data in its native form. This removes the need for flattening or modality-specific preprocessing. Ndlinear rethinks core architectural priorities beyond attention, enabling more expressive, context-aware models at scale. We propose NdLinear as a drop-in replacement for standard linear layers -- marking an important step toward next-generation neural architectures.
To understand and predict the societal impacts of highly autonomous AI systems, we need benchmarks with grounding, i.e., metrics that directly connect AI performance to real-world effects we care about. We present HCAST (Human-Calibrated Autonomy Software Tasks), a benchmark of 189 machine learning engineering, cybersecurity, software engineering, and general reasoning tasks. We collect 563 human baselines (totaling over 1500 hours) from people skilled in these domains, working under identical conditions as AI agents, which lets us estimate that HCAST tasks take humans between one minute and 8+ hours. Measuring the time tasks take for humans provides an intuitive metric for evaluating AI capabilities, helping answer the question "can an agent be trusted to complete a task that would take a human X hours?" We evaluate the success rates of AI agents built on frontier foundation models, and we find that current agents succeed 70-80% of the time on tasks that take humans less than one hour, and less than 20% of the time on tasks that take humans more than 4 hours.
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
Flow matching in the continuous simplex has emerged as a promising strategy for DNA sequence design, but struggles to scale to higher simplex dimensions required for peptide and protein generation. We introduce Gumbel-Softmax Flow and Score Matching, a generative framework on the simplex based on a novel Gumbel-Softmax interpolant with a time-dependent temperature. Using this interpolant, we introduce Gumbel-Softmax Flow Matching by deriving a parameterized velocity field that transports from smooth categorical distributions to distributions concentrated at a single vertex of the simplex. We alternatively present Gumbel-Softmax Score Matching which learns to regress the gradient of the probability density. Our framework enables high-quality, diverse generation and scales efficiently to higher-dimensional simplices. To enable training-free guidance, we propose Straight-Through Guided Flows (STGFlow), a classifier-based guidance method that leverages straight-through estimators to steer the unconditional velocity field toward optimal vertices of the simplex. STGFlow enables efficient inference-time guidance using classifiers pre-trained on clean sequences, and can be used with any discrete flow method. Together, these components form a robust framework for controllable de novo sequence generation. We demonstrate state-of-the-art performance in conditional DNA promoter design, sequence-only protein generation, and target-binding peptide design for rare disease treatment.
Enhancing the reasoning capabilities of large language models (LLMs), particularly for complex tasks requiring multi-step logical deductions, remains a significant challenge. Traditional inference time scaling methods utilize scalar reward signals from process reward models to evaluate candidate reasoning steps, but these scalar rewards lack the nuanced qualitative information essential for understanding and justifying each step. In this paper, we propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL), which employs self-generated natural language critiques as feedback to guide the step-level search process. By generating rich, human-readable critiques for each candidate reasoning step, PANEL retains essential qualitative information, facilitating better-informed decision-making during inference. This approach bypasses the need for task-specific verifiers and the associated training overhead, making it broadly applicable across diverse tasks. Experimental results on challenging reasoning benchmarks, including AIME and GPQA, demonstrate that PANEL significantly enhances reasoning performance, outperforming traditional scalar reward-based methods. Our code is available at https://github.com/puddingyeah/PANEL to support and encourage future research in this promising field.
Recent innovations in transformers have shown their superior performance in natural language processing (NLP) and computer vision (CV). The ability to capture long-range dependencies and interactions in sequential data has also triggered a great interest in time series modeling, leading to the widespread use of transformers in many time series applications. However, being the most common and crucial application, the adaptation of transformers to time series forecasting has remained limited, with both promising and inconsistent results. In contrast to the challenges in NLP and CV, time series problems not only add the complexity of order or temporal dependence among input sequences but also consider trend, level, and seasonality information that much of this data is valuable for decision making. The conventional training scheme has shown deficiencies regarding model overfitting, data scarcity, and privacy issues when working with transformers for a forecasting task. In this work, we propose attentive federated transformers for time series stock forecasting with better performance while preserving the privacy of participating enterprises. Empirical results on various stock data from the Yahoo! Finance website indicate the superiority of our proposed scheme in dealing with the above challenges and data heterogeneity in federated learning.
In this paper, we examine the wide-ranging impact of artificial intelligence on society, focusing on its potential to both help and harm global equity, cognitive abilities, and economic stability. We argue that while artificial intelligence offers significant opportunities for progress in areas like healthcare, education, and scientific research, its rapid growth -- mainly driven by private companies -- may worsen global inequalities, increase dependence on automated systems for cognitive tasks, and disrupt established economic paradigms. We emphasize the critical need for strong governance and ethical guidelines to tackle these issues, urging the academic community to actively participate in creating policies that ensure the benefits of artificial intelligence are shared fairly and its risks are managed effectively.
We present a digital-twin simulator for a pastillation process. The simulation framework produces realistic thermal image data of the process that is used to train computer vision-based soft sensors based on convolutional neural networks (CNNs); the soft sensors produce output signals for temperature and product flow rate that enable real-time monitoring and feedback control. Pastillation technologies are high-throughput devices that are used in a broad range of industries; these processes face operational challenges such as real-time identification of clog locations (faults) in the rotating shell and the automatic, real-time adjustment of conveyor belt speed and operating conditions to stabilize output. The proposed simulator is able to capture this behavior and generates realistic data that can be used to benchmark different algorithms for image processing and different control architectures. We present a case study to illustrate the capabilities; the study explores behavior over a range of equipment sizes, clog locations, and clog duration. A feedback controller (tuned using Bayesian optimization) is used to adjust the conveyor belt speed based on the CNN output signal to achieve the desired process outputs.
Medical Ultrasound (US) imaging has seen increasing demands over the past years, becoming one of the most preferred imaging modalities in clinical practice due to its affordability, portability, and real-time capabilities. However, it faces several challenges that limit its applicability, such as operator dependency, variability in interpretation, and limited resolution, which are amplified by the low availability of trained experts. This calls for the need of autonomous systems that are capable of reducing the dependency on humans for increased efficiency and throughput. Reinforcement Learning (RL) comes as a rapidly advancing field under Artificial Intelligence (AI) that allows the development of autonomous and intelligent agents that are capable of executing complex tasks through rewarded interactions with their environments. Existing surveys on advancements in the US scanning domain predominantly focus on partially autonomous solutions leveraging AI for scanning guidance, organ identification, plane recognition, and diagnosis. However, none of these surveys explore the intersection between the stages of the US process and the recent advancements in RL solutions. To bridge this gap, this review proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline. This taxonomy not only highlights recent RL advancements in the US domain but also identifies unresolved challenges crucial for achieving fully autonomous US systems. This work aims to offer a thorough review of current research efforts, highlighting the potential of RL in building autonomous US solutions while identifying limitations and opportunities for further advancements in this field.
In this paper we present a mathematically rigorous and constructive framework that unifies two canonical model constructions in classical first order logic. In particular, we define two functors F and G from the category of consistent first order theories to the category of models. The functor F is constructed via the Henkin method, which extends any given theory to a maximal consistent theory by means of a fixed enumeration and the systematic introduction of Henkin constants, and then constructs a term model by taking the quotient of the term algebra with respect to provable equality. The functor G is obtained through a canonical compactness based construction, using either a fixed ultraproduct or a saturation procedure, ensuring that the resulting model is unique up to isomorphism. We prove the existence of a natural transformation eta from F to G such that each component is an isomorphism. Moreover, by leveraging the uniqueness of saturated (or prime) models in countable languages, we show that eta is rigid, meaning any other natural transformation between F and G must equal eta. Furthermore, we establish a strong natural equivalence between F and G in the two categorical sense, with eta and its inverse satisfying the required coherence conditions. This unification not only deepens our understanding of the interplay between proof theory and model theory, but also opens new avenues for applications in automated theorem proving, formal verification, and the study of alternative logical systems.
Cancer cachexia is a common metabolic disorder characterized by severe muscle atrophy which is associated with poor prognosis and quality of life. Monitoring skeletal muscle area (SMA) longitudinally through computed tomography (CT) scans, an imaging modality routinely acquired in cancer care, is an effective way to identify and track this condition. However, existing tools often lack full automation and exhibit inconsistent accuracy, limiting their potential for integration into clinical workflows. To address these challenges, we developed SMAART-AI (Skeletal Muscle Assessment-Automated and Reliable Tool-based on AI), an end-to-end automated pipeline powered by deep learning models (nnU-Net 2D) trained on mid-third lumbar level CT images with 5-fold cross-validation, ensuring generalizability and robustness. SMAART-AI incorporates an uncertainty-based mechanism to flag high-error SMA predictions for expert review, enhancing reliability. We combined the SMA, skeletal muscle index, BMI, and clinical data to train a multi-layer perceptron (MLP) model designed to predict cachexia at the time of cancer diagnosis. Tested on the gastroesophageal cancer dataset, SMAART-AI achieved a Dice score of 97.80% +/- 0.93%, with SMA estimated across all four datasets in this study at a median absolute error of 2.48% compared to manual annotations with SliceOmatic. Uncertainty metrics-variance, entropy, and coefficient of variation-strongly correlated with SMA prediction errors (0.83, 0.76, and 0.73 respectively). The MLP model predicts cachexia with 79% precision, providing clinicians with a reliable tool for early diagnosis and intervention. By combining automation, accuracy, and uncertainty awareness, SMAART-AI bridges the gap between research and clinical application, offering a transformative approach to managing cancer cachexia.
Alzheimer's disease and related dementias (AD/ADRD) represent a growing healthcare crisis affecting over 6 million Americans. While genetic factors play a crucial role, emerging research reveals that social determinants of health (SDOH) significantly influence both the risk and progression of cognitive functioning, such as cognitive scores and cognitive decline. This report examines how these social, environmental, and structural factors impact cognitive health trajectories, with a particular focus on Hispanic populations, who face disproportionate risk for AD/ADRD. Using data from the Mexican Health and Aging Study (MHAS) and its cognitive assessment sub study (Mex-Cog), we employed ensemble of regression trees models to predict 4-year and 9-year cognitive scores and cognitive decline based on SDOH. This approach identified key predictive SDOH factors to inform potential multilevel interventions to address cognitive health disparities in this population.
We introduce a modified Benamou-Brenier type approach leading to a Wasserstein type distance that allows global invariance, specifically, isometries, and we show that the problem can be summarized to orthogonal transformations. This distance is defined by penalizing the action with a costless movement of the particle that does not change the direction and speed of its trajectory. We show that for Gaussian distribution resume to measuring the Euclidean distance between their ordered vector of eigenvalues and we show a direct application in recovering Latent Gaussian distributions.
Low-count positron emission tomography (LCPET) imaging can reduce patients' exposure to radiation but often suffers from increased image noise and reduced lesion detectability, necessitating effective denoising techniques. Diffusion models have shown promise in LCPET denoising for recovering degraded image quality. However, training such models requires large and diverse datasets, which are challenging to obtain in the medical domain. To address data scarcity and privacy concerns, we combine diffusion models with federated learning -- a decentralized training approach where models are trained individually at different sites, and their parameters are aggregated on a central server over multiple iterations. The variation in scanner types and image noise levels within and across institutions poses additional challenges for federated learning in LCPET denoising. In this study, we propose a novel noise-embedded federated learning diffusion model (Fed-NDIF) to address these challenges, leveraging a multicenter dataset and varying count levels. Our approach incorporates liver normalized standard deviation (NSTD) noise embedding into a 2.5D diffusion model and utilizes the Federated Averaging (FedAvg) algorithm to aggregate locally trained models into a global model, which is subsequently fine-tuned on local datasets to optimize performance and obtain personalized models. Extensive validation on datasets from the University of Bern, Ruijin Hospital in Shanghai, and Yale-New Haven Hospital demonstrates the superior performance of our method in enhancing image quality and improving lesion quantification. The Fed-NDIF model shows significant improvements in PSNR, SSIM, and NMSE of the entire 3D volume, as well as enhanced lesion detectability and quantification, compared to local diffusion models and federated UNet-based models.
This paper investigates a subgradient-based algorithm to solve the system identification problem for linear time-invariant systems with non-smooth objectives. This is essential for robust system identification in safety-critical applications. While existing work provides theoretical exact recovery guarantees using optimization solvers, the design of fast learning algorithms with convergence guarantees for practical use remains unexplored. We analyze the subgradient method in this setting where the optimization problems to be solved change over time as new measurements are taken, and we establish linear convergence results for both the best and Polyak step sizes after a burn-in period. Additionally, we characterize the asymptotic convergence of the best average sub-optimality gap under diminishing and constant step sizes. Finally, we compare the time complexity of standard solvers with the subgradient algorithm and support our findings with experimental results. This is the first work to analyze subgradient algorithms for system identification with non-smooth objectives.
Hybrid quantum-classical neural network methods represent an emerging approach to solving computational challenges by leveraging advantages from both paradigms. As physics-informed neural networks (PINNs) have successfully applied to solve partial differential equations (PDEs) by incorporating physical constraints into neural architectures, this work investigates whether quantum-classical physics-informed neural networks (QCPINNs) can efficiently solve PDEs with reduced parameter counts compared to classical approaches. We evaluate two quantum circuit paradigms: continuous-variable (CV) and qubit-based discrete-variable (DV) across multiple circuit ansatze (Alternate, Cascade, Cross mesh, and Layered). Benchmarking across five challenging PDEs (Helmholtz, Cavity, Wave, Klein-Gordon, and Convection-Diffusion equations) demonstrates that our hybrid approaches achieve comparable accuracy to classical PINNs while requiring up to 89% fewer trainable parameters. DV-based implementations, particularly those with angle encoding and cascade circuit configurations, exhibit better stability and convergence properties across all problem types. For the Convection-Diffusion equation, our angle-cascade QCPINN achieves parameter efficiency and a 37% reduction in relative L2 error compared to classical counterparts. Our findings highlight the potential of quantum-enhanced architectures for physics-informed learning, establishing parameter efficiency as a quantifiable quantum advantage while providing a foundation for future quantum-classical hybrid systems solving complex physical models.
Recent workshops brought together several developers, educators and users of software packages extending popular languages for spatial data handling, with a primary focus on R, Python and Julia. Common challenges discussed included handling of spatial or spatio-temporal support, geodetic coordinates, in-memory vector data formats, data cubes, inter-package dependencies, packaging upstream libraries, differences in habits or conventions between the GIS and physical modelling communities, and statistical models. The following set of insights have been formulated: (i) considering software problems across data science language silos helps to understand and standardise analysis approaches, also outside the domain of formal standardisation bodies; (ii) whether attribute variables have block or point support, and whether they are spatially intensive or extensive has consequences for permitted operations, and hence for software implementing those; (iii) handling geometries on the sphere rather than on the flat plane requires modifications to the logic of {\em simple features}, (iv) managing communities and fostering diversity is a necessary, on-going effort, and (v) tools for cross-language development need more attention and support.
Pyramid wavefront sensors (PWFSs) are the preferred choice for current and future extreme adaptive optics (XAO) systems. Almost all instruments use the PWFS in its modulated form to mitigate its limited linearity range. However, this modulation comes at the cost of a reduction in sensitivity, a blindness to petal-piston modes, and a limit to the sensor's ability to operate at high speeds. Therefore, there is strong interest to use the PWFS without modulation, which can be enabled with nonlinear reconstructors. Here, we present the first on-sky demonstration of XAO with an unmodulated PWFS using a nonlinear reconstructor based on convolutional neural networks. We discuss the real-time implementation on the Magellan Adaptive Optics eXtreme (MagAO-X) instrument using the optimized TensorRT framework and show that inference is fast enough to run the control loop at >2 kHz frequencies. Our on-sky results demonstrate a successful closed-loop operation using a model calibrated with internal source data that delivers stable and robust correction under varying conditions. Performance analysis reveals that our smart PWFS achieves nearly the same Strehl ratio as the highly optimized modulated PWFS under favorable conditions on bright stars. Notably, we observe an improvement in performance on a fainter star under the influence of strong winds. These findings confirm the feasibility of using the PWFS in its unmodulated form and highlight its potential for next-generation instruments. Future efforts will focus on achieving even higher control loop frequencies (>3 kHz), optimizing the calibration procedures, and testing its performance on fainter stars, where more gain is expected for the unmodulated PWFS compared to its modulated counterpart.
We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of It\^o diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.
We consider price competition among multiple sellers over a selling horizon of $T$ periods. In each period, sellers simultaneously offer their prices and subsequently observe their respective demand that is unobservable to competitors. The demand function for each seller depends on all sellers' prices through a private, unknown, and nonlinear relationship. To address this challenge, we propose a semi-parametric least-squares estimation of the nonlinear mean function, which does not require sellers to communicate demand information. We show that when all sellers employ our policy, their prices converge at a rate of $O(T^{-1/7})$ to the Nash equilibrium prices that sellers would reach if they were fully informed. Each seller incurs a regret of $O(T^{5/7})$ relative to a dynamic benchmark policy. A theoretical contribution of our work is proving the existence of equilibrium under shape-constrained demand functions via the concept of $s$-concavity and establishing regret bounds of our proposed policy. Technically, we also establish new concentration results for the least squares estimator under shape constraints. Our findings offer significant insights into dynamic competition-aware pricing and contribute to the broader study of non-parametric learning in strategic decision-making.
Iterative learning procedures are ubiquitous in machine learning and modern statistics. Regularision is typically required to prevent inflating the expected loss of a procedure in later iterations via the propagation of noise inherent in the data. Significant emphasis has been placed on achieving this regularisation implicitly by stopping procedures early. The EarlyStopping-package provides a toolbox of (in-sample) sequential early stopping rules for several well-known iterative estimation procedures, such as truncated SVD, Landweber (gradient descent), conjugate gradient descent, L2-boosting and regression trees. One of the central features of the package is that the algorithms allow the specification of the true data-generating process and keep track of relevant theoretical quantities. In this paper, we detail the principles governing the implementation of the EarlyStopping-package and provide a survey of recent foundational advances in the theoretical literature. We demonstrate how to use the EarlyStopping-package to explore core features of implicit regularisation and replicate results from the literature.
In online selective conformal inference, data arrives sequentially, and prediction intervals are constructed only when an online selection rule is met. Since online selections may break the exchangeability between the selected test datum and the rest of the data, one must correct for this by suitably selecting the calibration data. In this paper, we evaluate existing calibration selection strategies and pinpoint some fundamental errors in the associated claims that guarantee selection-conditional coverage and control of the false coverage rate (FCR). To address these shortcomings, we propose novel calibration selection strategies that provably preserve the exchangeability of the calibration data and the selected test datum. Consequently, we demonstrate that online selective conformal inference with these strategies guarantees both selection-conditional coverage and FCR control. Our theoretical findings are supported by experimental evidence examining tradeoffs between valid methods.
In this paper, we propose a depth-aided color image inpainting method in the quaternion domain, called depth-aided low-rank quaternion matrix completion (D-LRQMC). In conventional quaternion-based inpainting techniques, the color image is expressed as a quaternion matrix by using the three imaginary parts as the color channels, whereas the real part is set to zero and has no information. Our approach incorporates depth information as the real part of the quaternion representations, leveraging the correlation between color and depth to improve the result of inpainting. In the proposed method, we first restore the observed image with the conventional LRQMC and estimate the depth of the restored result. We then incorporate the estimated depth into the real part of the observed image and perform LRQMC again. Simulation results demonstrate that the proposed D-LRQMC can improve restoration accuracy and visual quality for various images compared to the conventional LRQMC. These results suggest the effectiveness of the depth information for color image processing in quaternion domain.
Medical vision foundational models are used for a wide variety of tasks, including medical image segmentation and registration. This work evaluates the ability of these models to predict disease progression using a simple linear probe. We hypothesize that intermediate layer features of segmentation models capture structural information, while those of registration models encode knowledge of change over time. Beyond demonstrating that these features are useful for disease progression prediction, we also show that registration model features do not require spatially aligned input images. However, for segmentation models, spatial alignment is essential for optimal performance. Our findings highlight the importance of spatial alignment and the utility of foundation model features for image registration.
This paper mainly addresses the distributed online optimization problem where the local objective functions are assumed to be convex or non-convex. First, the distributed algorithms are proposed for the convex and non-convex situations, where the one-point residual feedback technology is introduced to estimate gradient of local objective functions. Then the regret bounds of the proposed algorithms are derived respectively under the assumption that the local objective functions are Lipschitz or smooth, which implies that the regrets are sublinear. Finally, we give two numerical examples of distributed convex optimization and distributed resources allocation problem to illustrate the effectiveness of the proposed algorithm.
Personalized services are central to today's digital landscape, where online decision-making is commonly formulated as contextual bandit problems. Two key challenges emerge in modern applications: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We address these challenges by developing a contextual bandit algorithm based on sparse additive reward models in reproducing kernel Hilbert spaces. We establish statistical properties of the doubly penalized method applied to random regions, introducing novel analyses under bandit feedback. Our algorithm achieves sublinear cumulative regret over the time horizon $T$ while scaling logarithmically with covariate dimensionality $d$. Notably, we provide the first regret upper bound with logarithmic growth in $d$ for nonparametric contextual bandits with high-dimensional covariates. We also establish a lower bound, with the gap to the upper bound vanishing as smoothness increases. Extensive numerical experiments demonstrate our algorithm's superior performance in high-dimensional settings compared to existing approaches.
The objective of this study is to generate high-quality speech from silent talking face videos, a task also known as video-to-speech synthesis. A significant challenge in video-to-speech synthesis lies in the substantial modality gap between silent video and multi-faceted speech. In this paper, we propose a novel video-to-speech system that effectively bridges this modality gap, significantly enhancing the quality of synthesized speech. This is achieved by learning of hierarchical representations from video to speech. Specifically, we gradually transform silent video into acoustic feature spaces through three sequential stages -- content, timbre, and prosody modeling. In each stage, we align visual factors -- lip movements, face identity, and facial expressions -- with corresponding acoustic counterparts to ensure the seamless transformation. Additionally, to generate realistic and coherent speech from the visual representations, we employ a flow matching model that estimates direct trajectories from a simple prior distribution to the target speech distribution. Extensive experiments demonstrate that our method achieves exceptional generation quality comparable to real utterances, outperforming existing methods by a significant margin.
Predicting microporosity and permeability in clastic reservoirs is a challenge in reservoir quality assessment, especially in formations where direct measurements are difficult or expensive. These reservoir properties are fundamental in determining a reservoir's capacity for fluid storage and transmission, yet conventional methods for evaluating them, such as Mercury Injection Capillary Pressure (MICP) and Scanning Electron Microscopy (SEM), are resource-intensive. The aim of this study is to develop a cost-effective machine learning model to predict complex reservoir properties using readily available field data and basic laboratory analyses. A Random Forest classifier was employed, utilizing key geological parameters such as porosity, grain size distribution, and spectral gamma-ray (SGR) measurements. An uncertainty analysis was applied to account for natural variability, expanding the dataset, and enhancing the model's robustness. The model achieved a high level of accuracy in predicting microporosity (93%) and permeability levels (88%). By using easily obtainable data, this model reduces the reliance on expensive laboratory methods, making it a valuable tool for early-stage exploration, especially in remote or offshore environments. The integration of machine learning with uncertainty analysis provides a reliable and cost-effective approach for evaluating key reservoir properties in siliciclastic formations. This model offers a practical solution to improve reservoir quality assessments, enabling more informed decision-making and optimizing exploration efforts.
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
Accurate segmentation of pulmonary vessels plays a very critical role in diagnosing and assessing various lung diseases. In clinical practice, diagnosis is typically carried out using CTPA images. However, there is a lack of high-precision pulmonary vessel segmentation algorithms for CTPA, and pulmonary vessel segmentation for NCCT poses an even greater challenge. In this study, we propose a 3D image segmentation algorithm for automated pulmonary vessel segmentation from both contrast and non-contrast CT images. In the network, we designed a Vessel Lumen Structure Optimization Module (VLSOM), which extracts the centerline of vessels and adjusts the weights based on the positional information and adds a Cl-Dice-Loss to supervise the stability of the vessels structure. In addition, we designed a method for generating vessel GT from CTPA to NCCT for training models that support both CTPA and NCCT. In this work, we used 427 sets of high-precision annotated CT data from multiple vendors and countries. Finally, our experimental model achieved Cl-Recall, Cl-DICE and Recall values of 0.879, 0.909, 0.934 (CTPA) and 0.928, 0.936, 0.955 (NCCT) respectively. This shows that our model has achieved good performance in both accuracy and completeness of pulmonary vessel segmentation. In clinical visual evaluation, our model also had good segmentation performance on various disease types and can assist doctors in medical diagnosis, verifying the great potential of this method in clinical application.
Quantum kernels quantify similarity between data points by measuring the inner product between quantum states, computed through quantum circuit measurements. By embedding data into quantum systems, quantum kernel feature maps, that may be classically intractable to compute, could efficiently exploit high-dimensional Hilbert spaces to capture complex patterns. However, designing effective quantum feature maps remains a major challenge. Many quantum kernels, such as the fidelity kernel, suffer from exponential concentration, leading to near-identity kernel matrices that fail to capture meaningful data correlations and lead to overfitting and poor generalization. In this paper, we propose a novel strategy for constructing quantum kernels that achieve good generalization performance, drawing inspiration from benign overfitting in classical machine learning. Our approach introduces the concept of local-global quantum kernels, which combine two complementary components: a local quantum kernel based on measurements of small subsystems and a global quantum kernel derived from full-system measurements. Through numerical experiments, we demonstrate that local-global quantum kernels exhibit benign overfitting, supporting the effectiveness of our approach in enhancing quantum kernel methods.
Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.
Frequency response function (FRF) measurements are widely used in Gravitational Wave (GW) detectors, e.g., for the design of controllers, calibrating signals and diagnostic problems with system dynamics. The aim of this paper is to present GraFIT: a toolbox that enables fast, inexpensive, and accurate identification of FRF measurements for GW detectors compared to the commonly used approaches, including common spectral analysis techniques. The toolbox consists of a single function to estimate the frequency response function for both open-loop and closed-loop systems and for arbitrary input and output dimensions. The toolbox is validated on two experimental case studies of the Virgo detector, illustrating more than a factor 3 reduction in standard deviation of the estimate for the same measurement times, and comparable standard deviations with up to 10 times less data for the new method with respect to the currently implemented Spectral Analysis method.
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in the resulting models, particularly when they were trained using imbalanced training datasets. One such example has been the strong race bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the race bias. Furthermore, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Group DRO also improves performance for Black subjects but not significantly, while reweighing decreases performance for Black subjects. Using a combination of oversampling and Group DRO also improves performance for Black subjects but not significantly. Using cropped images increases performance for both races and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further.
Renewable power-to-hydrogen (ReP2H) systems require rectifiers to supply power to electrolyzers (ELZs). Two main types of rectifiers, insulated-gate bipolar transistor rectifiers (IGBT-Rs) and thyristor rectifiers (TRs), offer distinct tradeoffs. IGBT-Rs provide flexible reactive power control but are costly, whereas TRs are more affordable with lower power loss but consume a large amount of uncontrollable reactive power. A mixed configuration of rectifiers in utility-scale ReP2H systems could achieve an decent tradeoff and increase overall profitability. To explore this potential, this paper proposes an optimal investment portfolio model. First, we model and compare the active and reactive power characteristics of ELZs powered by TRs and IGBT-Rs. Second, we consider the investment of ELZs, rectifiers, and var resources and coordinate the operation of renewables, energy storage, var resources, and the on-off switching and load allocation of multiple ELZs. Subsequently, a two-stage stochastic programming (SP) model based on weighted information gap decision theory (W-IGDT) is developed to address the uncertainties of the renewable power and hydrogen price, and we apply the progressive hedging (PH) algorithm to accelerate its solution. Case studies demonstrate that optimal rectifier configurations increase revenue by at most 2.56% compared with using only TRs or IGBT-Rs, as well as those in existing projects. Under the optimal portfolio, reactive power compensation investment is nearly eliminated, with a preferred TR-to-IGBT-R ratio of 3:1.
Gastric cancer ranks as the fifth most common and fourth most lethal cancer globally, with a dismal 5-year survival rate of approximately 20%. Despite extensive research on its pathobiology, the prognostic predictability remains inadequate, compounded by pathologists' high workload and potential diagnostic errors. Thus, automated, accurate histopathological diagnosis tools are crucial. This study employs Machine Learning and Deep Learning techniques to classify histopathological images into healthy and cancerous categories. Using handcrafted and deep features with shallow learning classifiers on the GasHisSDB dataset, we offer a comparative analysis and insights into the most robust and high-performing combinations of features and classifiers for distinguishing between normal and abnormal histopathological images without fine-tuning strategies. With the RF classifier, our approach can reach F1 of 93.4%, demonstrating its validity.
The detection of blood disorders often hinges upon the quantification of specific blood cell types. Variations in cell counts may indicate the presence of pathological conditions. Thus, the significance of developing precise automatic systems for blood cell enumeration is underscored. The investigation focuses on a novel approach termed DE-ViT. This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images. Two distinct datasets are utilised for experimental purposes: the Raabin-WBC dataset for Leukocyte detection and a local dataset for Schistocyte identification. In addition to the DE-ViT model, two baseline models, Faster R-CNN 50 and Faster R-CNN X 101, are employed, with their outcomes being compared against those of the proposed model. While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset. Moreover, only Faster R-CNN X 101 yielded satisfactory results on the SC-IDB. The observed disparities in performance may possibly be attributed to domain shift phenomena.
We give a constructive proof of the fact that the treewidth of a graph $G$ is bounded by a linear function of the separation number of $G$.
We present an improved version of a quantum amplitude encoding scheme that encodes the $N$ entries of a unit classical vector $\vec{v}=(v_1,..,v_N)$ into the amplitudes of a quantum state. Our approach has a quadratic speed-up with respect to the original one. We also describe several generalizations, including to complex entries of the input vector and a parameter $M$ that determines the parallelization. The number of qubits required for the state preparation scales as $\mathcal{O}(M\log N)$. The runtime, which depends on the data density $\rho$ and on the parallelization paramater $M$, scales as $\mathcal{O}(\frac{1}{\sqrt{\rho}}\frac{N}{M}\log (M+1))$, which in the most parallel version ($M=N$) is always less than $\mathcal{O}(\sqrt{N}\log N)$. By analysing the data density, we prove that the average runtime is $\mathcal{O}(\log^{1.5} N)$ for uniformly random inputs. We present numerical evidence that this favourable runtime behaviour also holds for real-world data, such as radar satellite images. This is promising as it allows for an input-to-output advantage of the quantum Fourier transform.
The search for exoplanets is an active field in astronomy, with direct imaging as one of the most challenging methods due to faint exoplanet signals buried within stronger residual starlight. Successful detection requires advanced image processing to separate the exoplanet signal from this nuisance component. This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach, leveraging problem symmetries and a joint spectral channel representation grounded in physical principles. Our model integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation. The proposed algorithm is evaluated against the state of the art using datasets from the SPHERE instrument operating at the Very Large Telescope (VLT). It significantly improves the precision-recall trade-off, notably on challenging datasets that are otherwise unusable by astronomers. The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
Neural quantum states (NQS) have emerged as a powerful tool for approximating quantum wavefunctions using deep learning. While these models achieve remarkable accuracy, understanding how they encode physical information remains an open challenge. In this work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase diagram, leading to strongly correlated weight representations across different models. This correlation in weight space enables the detection of phase transitions in quantum systems by analyzing the trained network weights alone. We validate our approach on the transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase transitions manifest as distinct structures in weight space. Our results establish a connection between physical phase transitions and the geometry of neural network parameters, opening new directions for the interpretability of machine learning models in physics.
This paper presents a computational method for generating virtual 3D morphologies of functional materials using low-parametric stochastic geometry models, i.e., digital twins, calibrated with 2D microscopy images. These digital twins allow systematic parameter variations to simulate various morphologies, that can be deployed for virtual materials testing by means of spatially resolved numerical simulations of macroscopic properties. Generative adversarial networks (GANs) have gained popularity for calibrating models to generate realistic 3D morphologies. However, GANs often comprise of numerous uninterpretable parameters make systematic variation of morphologies for virtual materials testing challenging. In contrast, low-parametric stochastic geometry models (e.g., based on Gaussian random fields) enable targeted variation but may struggle to mimic complex morphologies. Combining GANs with advanced stochastic geometry models (e.g., excursion sets of more general random fields) addresses these limitations, allowing model calibration solely from 2D image data. This approach is demonstrated by generating a digital twin of all-solid-state battery (ASSB) cathodes. Since the digital twins are parametric, they support systematic exploration of structural scenarios and their macroscopic properties. The proposed method facilitates simulation studies for optimizing 3D morphologies, benefiting not only ASSB cathodes but also other materials with similar structures.
We study the hypothesis testing problem of detecting the presence of a thermal source emitting coherent quantum states towards an arbitrary but fixed number $K$ of detectors versus the situation where the detectors are presented uncorrelated thermal noise of the same average energy in the setting of asymmetric hypothesis testing. We compare two variations of this theme: In the first one the detectors perform heterodyne or homodyne detection and then transmit their measured results to a central processing unit with unlimited computational resources. In the second one the detectors are able to teleport the quantum states to the central unit, which acts on the received quantum states with unlimited quantum computational resources. We find that when the average received energy per detector goes to zero, the ratio of the error exponents goes to infinity, indicating an infinite-fold quantum advantage.
Quantum error mitigation (EM) is a family of hybrid quantum-classical methods for eliminating or reducing the effect of noise and decoherence on quantum algorithms run on quantum hardware, without applying quantum error correction (EC). While EM has many benefits compared to EC, specifically that it requires no (or little) qubit overhead, this benefit comes with a painful price: EM seems to necessitate an overhead in quantum run time which grows as a (mild) exponent. Accordingly, recent results show that EM alone cannot enable exponential quantum advantages (QAs), for an average variant of the expectation value estimation problem. These works raised concerns regarding the role of EM in the road map towards QAs. We aim to demystify the discussion and provide a clear picture of the role of EM in achieving QAs, both in the near and long term. We first propose a clear distinction between finite QA and asymptotic QA, which is crucial to the understanding of the question, and present the notion of circuit volume boost, which we claim is an adequate way to quantify the benefits of EM. Using these notions, we can argue straightforwardly that EM is expected to have a significant role in achieving QAs. Specifically, that EM is likely to be the first error reduction method for useful finite QAs, before EC; that the first such QAs are expected to be achieved using EM in the very near future; and that EM is expected to maintain its important role in quantum computation even when EC will be routinely used - for as long as high-quality qubits remain a scarce resource.
Current end-to-end (E2E) and plug-and-play (PnP) image reconstruction algorithms approximate the maximum a posteriori (MAP) estimate but cannot offer sampling from the posterior distribution, like diffusion models. By contrast, it is challenging for diffusion models to be trained in an E2E fashion. This paper introduces a Deep End-to-End Posterior ENergy (DEEPEN) framework, which enables MAP estimation as well as sampling. We learn the parameters of the posterior, which is the sum of the data consistency error and the negative log-prior distribution, using maximum likelihood optimization in an E2E fashion. The proposed approach does not require algorithm unrolling, and hence has a smaller computational and memory footprint than current E2E methods, while it does not require contraction constraints typically needed by current PnP methods. Our results demonstrate that DEEPEN offers improved performance than current E2E and PnP models in the MAP setting, while it also offers faster sampling compared to diffusion models. In addition, the learned energy-based model is observed to be more robust to changes in image acquisition settings.
Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
Solving multiple parametrised related systems is an essential component of many numerical tasks. Borrowing strength from the solved systems and learning will make this process faster. In this work, we propose a novel probabilistic linear solver over the parameter space. This leverages information from the solved linear systems in a regression setting to provide an efficient posterior mean and covariance. We advocate using this as companion regression model for the preconditioned conjugate gradient method, and discuss the favourable properties of the posterior mean and covariance as the initial guess and preconditioner. We also provide several design choices for this companion solver. Numerical experiments showcase the benefits of using our novel solver in a hyperparameter optimisation problem.
Applied category theory often studies symmetric monoidal categories (SMCs) whose morphisms represent open systems. These structures naturally accommodate complex wiring patterns, leveraging (co)monoidal structures for splitting and merging wires, or compact closed structures for feedback. A key example is the compact closed SMC of design problems (DP), which enables a compositional approach to co-design in engineering. However, in practice, the systems of interest may not be fully known. Recently, Markov categories have emerged as a powerful framework for modeling uncertain processes. In this work, we demonstrate how to integrate this perspective into the study of open systems while preserving consistency with the underlying SMC structure. To this end, we employ the change-of-base construction for enriched categories, replacing the morphisms of a symmetric monoidal $\mathcal{V}$-category $\mathcal{C}$ with parametric maps $A \to \mathcal{C}(X,Y)$ in a Markov category induced by a symmetric monoidal monad. This results in a symmetric monoidal 2-category $N_*\mathcal{C}$ with the same objects as $\mathcal{C}$ and reparametrization 2-cells. By choosing different monads, we capture various types of uncertainty. The category underlying $\mathcal{C}$ embeds into $N_*\mathcal{C}$ via a strict symmetric monoidal functor, allowing (co)monoidal and compact closed structures to be transferred. Applied to DP, this construction leads to categories of practical relevance, such as parametrized design problems for optimization, and parametrized distributions of design problems for decision theory and Bayesian learning.
In the evolving landscape of 6G networks, semantic communications are poised to revolutionize data transmission by prioritizing the transmission of semantic meaning over raw data accuracy. This paper presents a Vision Transformer (ViT)-based semantic communication framework that has been deliberately designed to achieve high semantic similarity during image transmission while simultaneously minimizing the demand for bandwidth. By equipping ViT as the encoder-decoder framework, the proposed architecture can proficiently encode images into a high semantic content at the transmitter and precisely reconstruct the images, considering real-world fading and noise consideration at the receiver. Building on the attention mechanisms inherent to ViTs, our model outperforms Convolution Neural Network (CNNs) and Generative Adversarial Networks (GANs) tailored for generating such images. The architecture based on the proposed ViT network achieves the Peak Signal-to-noise Ratio (PSNR) of 38 dB, which is higher than other Deep Learning (DL) approaches in maintaining semantic similarity across different communication environments. These findings establish our ViT-based approach as a significant breakthrough in semantic communications.
The partitioning of data for estimation and calibration critically impacts the performance of propensity score based estimators like inverse probability weighting (IPW) and double/debiased machine learning (DML) frameworks. We extend recent advances in calibration techniques for propensity score estimation, improving the robustness of propensity scores in challenging settings such as limited overlap, small sample sizes, or unbalanced data. Our contributions are twofold: First, we provide a theoretical analysis of the properties of calibrated estimators in the context of DML. To this end, we refine existing calibration frameworks for propensity score models, with a particular emphasis on the role of sample-splitting schemes in ensuring valid causal inference. Second, through extensive simulations, we show that calibration reduces variance of inverse-based propensity score estimators while also mitigating bias in IPW, even in small-sample regimes. Notably, calibration improves stability for flexible learners (e.g., gradient boosting) while preserving the doubly robust properties of DML. A key insight is that, even when methods perform well without calibration, incorporating a calibration step does not degrade performance, provided that an appropriate sample-splitting approach is chosen.
With the growing interest in quantum machine learning, the perceptron -- a fundamental building block in traditional machine learning -- has emerged as a valuable model for exploring quantum advantages. Two quantum perceptron algorithms based on Grover's search, were developed in arXiv:1602.04799 to accelerate training and improve statistical efficiency in perceptron learning. This paper points out and corrects a mistake in the proof of Theorem 2 in arXiv:1602.04799. Specifically, we show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane that perfectly classifies the data scales as $\Omega(\gamma^{D})$ instead of $\Theta({\gamma})$, where $\gamma$ is the margin. We then revisit two well-established linear programming algorithms -- the ellipsoid method and the cutting plane random walk algorithm -- in the context of perceptron learning, and show how quantum search algorithms can be leveraged to enhance the overall complexity. Specifically, both algorithms gain a sub-linear speed-up $O(\sqrt{N})$ in the number of data points $N$ as a result of Grover's algorithm and an additional $O(D^{1.5})$ speed-up is possible for cutting plane random walk algorithm employing quantum walk search.
In this paper, we introduce a shape descriptor that we call "interior function". This is a Topological Data Analysis (TDA) based descriptor that refines previous descriptors for image analysis. Using this concept, we define subcomplex lacunarity, a new index that quantifies geometric characteristics of necrosis in tumors such as conglomeration. Building on this framework, we propose a set of indices to analyze necrotic morphology and construct a diagram that captures the distinct structural and geometric properties of necrotic regions in tumors. We present an application of this framework in the study of MRIs of Glioblastomas (GB). Using cluster analysis, we identify four distinct subtypes of Glioblastomas that reflect geometric properties of necrotic regions.
We extend the celebrated Glivenko-Cantelli theorem, sometimes called the fundamental theorem of statistics, from its standard setting of total variation distance to all $f$-divergences. A key obstacle in this endeavor is to define $f$-divergence on a subcollection of a $\sigma$-algebra that forms a $\pi$-system but not a $\sigma$-subalgebra. This is a side contribution of our work. We will show that this notion of $f$-divergence on the $\pi$-system of rays preserves nearly all known properties of standard $f$-divergence, yields a novel integral representation of the Kolmogorov-Smirnov distance, and has a Glivenko-Cantelli theorem.
Recent work has shown that the (block) Lanczos algorithm can be used to extract approximate energy spectra and matrix elements from (matrices of) correlation functions in quantum field theory, and identified exact coincidences between Lanczos analysis methods and others. In this work, we note another coincidence: the Lanczos algorithm is equivalent to the well-known Rayleigh-Ritz method applied to Krylov subspaces. Rayleigh-Ritz provides optimal eigenvalue approximations within subspaces; we find that spurious-state filtering allows these optimality guarantees to be retained in the presence of statistical noise. We explore the relation between Lanczos and Prony's method, their block generalizations, generalized pencil of functions (GPOF), and methods based on the generalized eigenvalue problem (GEVP), and find they all fall into a larger "Prony-Ritz equivalence class", identified as all methods which solve a finite-dimensional spectrum exactly given sufficient correlation function (matrix) data. This equivalence allows simpler and more numerically stable implementations of (block) Lanczos analyses.