New articles on Computer Science


[1] 2410.14679

HyperCausalLP: Causal Link Prediction using Hyper-Relational Knowledge Graph

Causal networks are often incomplete with missing causal links. This is due to various issues, such as missing observation data. Recent approaches to the issue of incomplete causal networks have used knowledge graph link prediction methods to find the missing links. In the causal link A causes B causes C, the influence of A to C is influenced by B which is known as a mediator. Existing approaches using knowledge graph link prediction do not consider these mediated causal links. This paper presents HyperCausalLP, an approach designed to find missing causal links within a causal network with the help of mediator links. The problem of missing links is formulated as a hyper-relational knowledge graph completion. The approach uses a knowledge graph link prediction model trained on a hyper-relational knowledge graph with the mediators. The approach is evaluated on a causal benchmark dataset, CLEVRER-Humans. Results show that the inclusion of knowledge about mediators in causal link prediction using hyper-relational knowledge graph improves the performance on an average by 5.94% mean reciprocal rank.


[2] 2410.14680

Influence of Backdoor Paths on Causal Link Prediction

The current method for predicting causal links in knowledge graphs uses weighted causal relations. For a given link between cause-effect entities, the presence of a confounder affects the causal link prediction, which can lead to spurious and inaccurate results. We aim to block these confounders using backdoor path adjustment. Backdoor paths are non-causal association flows that connect the \textit{cause-entity} to the \textit{effect-entity} through other variables. Removing these paths ensures a more accurate prediction of causal links. This paper proposes CausalLPBack, a novel approach to causal link prediction that eliminates backdoor paths and uses knowledge graph link prediction methods. It extends the representation of causality in a neuro-symbolic framework, enabling the adoption and use of traditional causal AI concepts and methods. We demonstrate our approach using a causal reasoning benchmark dataset of simulated videos. The evaluation involves a unique dataset splitting method called the Markov-based split that's relevant for causal link prediction. The evaluation of the proposed approach demonstrates atleast 30\% in MRR and 16\% in Hits@K inflated performance for causal link prediction that is due to the bias introduced by backdoor paths for both baseline and weighted causal relations.


[3] 2410.14682

ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models

Recent advancements in Large Language Models (LLMs) have spurred numerous attempts to apply these technologies to embodied tasks, particularly focusing on high-level task planning and task decomposition. To further explore this area, we introduce a new embodied task planning benchmark, ET-Plan-Bench, which specifically targets embodied task planning using LLMs. It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities, and is designed to evaluate two critical dimensions of LLMs' application in embodied task understanding: spatial (relation constraint, occlusion for target objects) and temporal & causal understanding of the sequence of actions in the environment. By using multi-source simulators as the backend simulator, it can provide immediate environment feedback to LLMs, which enables LLMs to interact dynamically with the environment and re-plan as necessary. We evaluated the state-of-the-art open source and closed source foundation models, including GPT-4, LLAMA and Mistral on our proposed benchmark. While they perform adequately well on simple navigation tasks, their performance can significantly deteriorate when faced with tasks that require a deeper understanding of spatial, temporal, and causal relationships. Thus, our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework that presents a significant challenge to the latest foundation models. We hope it can spark and drive further research in embodied task planning using foundation models.


[4] 2410.14684

RepoGraph: Enhancing AI Software Engineering with Repository-level Code Graph

Large Language Models (LLMs) excel in code generation yet struggle with modern AI software engineering tasks. Unlike traditional function-level or file-level coding tasks, AI software engineering requires not only basic coding proficiency but also advanced skills in managing and interacting with code repositories. However, existing methods often overlook the need for repository-level code understanding, which is crucial for accurately grasping the broader context and developing effective solutions. On this basis, we present RepoGraph, a plug-in module that manages a repository-level structure for modern AI software engineering solutions. RepoGraph offers the desired guidance and serves as a repository-wide navigation for AI software engineers. We evaluate RepoGraph on the SWE-bench by plugging it into four different methods of two lines of approaches, where RepoGraph substantially boosts the performance of all systems, leading to a new state-of-the-art among open-source frameworks. Our analyses also demonstrate the extensibility and flexibility of RepoGraph by testing on another repo-level coding benchmark, CrossCodeEval. Our code is available at https://github.com/ozyyshr/RepoGraph.


[5] 2410.14685

Leveraging Event Streams with Deep Reinforcement Learning for End-to-End UAV Tracking

In this paper, we present our proposed approach for active tracking to increase the autonomy of Unmanned Aerial Vehicles (UAVs) using event cameras, low-energy imaging sensors that offer significant advantages in speed and dynamic range. The proposed tracking controller is designed to respond to visual feedback from the mounted event sensor, adjusting the drone movements to follow the target. To leverage the full motion capabilities of a quadrotor and the unique properties of event sensors, we propose an end-to-end deep-reinforcement learning (DRL) framework that maps raw sensor data from event streams directly to control actions for the UAV. To learn an optimal policy under highly variable and challenging conditions, we opt for a simulation environment with domain randomization for effective transfer to real-world environments. We demonstrate the effectiveness of our approach through experiments in challenging scenarios, including fast-moving targets and changing lighting conditions, which result in improved generalization capabilities.


[6] 2410.14687

BrainTransformers: SNN-LLM

This study introduces BrainTransformers, an innovative Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our key contributions include: (1) designing SNN-compatible Transformer components such as SNNMatmul, SNNSoftmax, and SNNSiLU; (2) implementing an SNN approximation of the SiLU activation function; and (3) developing a Synapsis module to simulate synaptic plasticity. Our 3-billion parameter model, BrainTransformers-3B-Chat, demonstrates competitive performance across various benchmarks, including MMLU (63.2), BBH (54.1), ARC-C (54.3), and GSM8K (76.3), while potentially offering improved energy efficiency and biological plausibility. The model employs a three-stage training approach, including SNN-specific neuronal synaptic plasticity training. This research opens new avenues for brain-like AI systems in natural language processing and neuromorphic computing. Future work will focus on hardware optimization, developing specialized SNN fine-tuning tools, and exploring practical applications in energy-efficient computing environments.


[7] 2410.14688

A positional $\mathbfΠ^0_3$-complete objective

We study zero-sum turn-based games on graphs. In this note, we show the existence of a game objective that is $\mathbf{\Pi}^0_3$-complete for the Borel hierarchy and that is positional, i.e., for which positional strategies suffice for the first player to win over arenas of arbitrary cardinality. To the best of our knowledge, this is the first known such objective; all previously known positional objectives are in $\mathbf{\Sigma}^0_3$. The objective in question is a qualitative variant of the well-studied total-payoff objective, where the goal is to maximise the sum of weights.


[8] 2410.14690

Rethinking VLMs and LLMs for Image Classification

Visual Language Models (VLMs) are now increasingly being merged with Large Language Models (LLMs) to enable new capabilities, particularly in terms of improved interactivity and open-ended responsiveness. While these are remarkable capabilities, the contribution of LLMs to enhancing the longstanding key problem of classifying an image among a set of choices remains unclear. Through extensive experiments involving seven models, ten visual understanding datasets, and multiple prompt variations per dataset, we find that, for object and scene recognition, VLMs that do not leverage LLMs can achieve better performance than VLMs that do. Yet at the same time, leveraging LLMs can improve performance on tasks requiring reasoning and outside knowledge. In response to these challenges, we propose a pragmatic solution: a lightweight fix involving a relatively small LLM that efficiently routes visual tasks to the most suitable model for the task. The LLM router undergoes training using a dataset constructed from more than 2.5 million examples of pairs of visual task and model accuracy. Our results reveal that this lightweight fix surpasses or matches the accuracy of state-of-the-art alternatives, including GPT-4V and HuggingGPT, while improving cost-effectiveness.


[9] 2410.14691

Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles

The abundance of materials and the development of the economy have led to the flourishing of the logistics industry, but have also caused certain pollution. The research on GVRP (Green vehicle routing problem) for planning vehicle routes during transportation to reduce pollution is also increasingly developing. Further exploration is needed on how to integrate these research findings with real vehicles. This paper establishes an energy consumption model using real electric vehicles, fully considering the physical characteristics of each component of the vehicle. To avoid the distortion of energy consumption models affecting the results of route planning. The energy consumption model also incorporates the effects of vehicle start/stop, speed, distance, and load on energy consumption. In addition, a load first speed optimization algorithm was proposed, which selects the most suitable speed between every two delivery points while planning the route. In order to further reduce energy consumption while meeting the time window. Finally, an improved Adaptive Genetic Algorithm is used to solve for the most energy-efficient route. The experiment shows that the results of using this speed optimization algorithm are generally more energy-efficient than those without using this algorithm. The average energy consumption of constant speed delivery at different speeds is 17.16% higher than that after speed optimization. Provided a method that is closer to reality and easier for logistics companies to use. It also enriches the GVRP model.


[10] 2410.14692

Attribute-Based Semantic Type Detection and Data Quality Assessment

The reliance on data-driven decision-making across sectors highlights the critical need for high-quality data; despite advancements, data quality issues persist, significantly impacting business strategies and scientific research. Current data quality methods fail to leverage the semantic richness embedded in words inside attribute labels (or column names/headers in tables) across diverse datasets and domains, leaving a crucial gap in comprehensive data quality evaluation. This research addresses this gap by introducing an innovative methodology centered around Attribute-Based Semantic Type Detection and Data Quality Assessment. By leveraging semantic information within attribute labels, combined with rule-based analysis and comprehensive Formats and Abbreviations dictionaries, our approach introduces a practical semantic type classification system comprising approximately 23 types, including numerical non-negative, categorical, ID, names, strings, geographical, temporal, and complex formats like URLs, IP addresses, email, and binary values plus several numerical bounded types, such as age and percentage. A comparative analysis with Sherlock, a state-of-the-art Semantic Type Detection system, shows the advantages of our approach in terms of classification robustness and applicability to data quality assessment tasks. Our research focuses on well-known data quality issues and their corresponding data quality dimension violations, grounding our methodology in a robust academic framework. Detailed analysis of fifty distinct datasets from the UCI Machine Learning Repository showcases our method's proficiency in identifying potential data quality issues. Compared to established tools like YData Profiling, our method exhibits superior accuracy, detecting 81 missing values across 922 attributes where YData identified only one.


[11] 2410.14693

Deep Domain Isolation and Sample Clustered Federated Learning for Semantic Segmentation

Empirical studies show that federated learning exhibits convergence issues in Non Independent and Identically Distributed (IID) setups. However, these studies only focus on label distribution shifts, or concept shifts (e.g. ambiguous tasks). In this paper, we explore for the first time the effect of covariate shifts between participants' data in 2D segmentation tasks, showing an impact way less serious than label shifts but still present on convergence. Moreover, current Personalized (PFL) and Clustered (CFL) Federated Learning methods intrinsically assume the homogeneity of the dataset of each participant and its consistency with future test samples by operating at the client level. We introduce a more general and realistic framework where each participant owns a mixture of multiple underlying feature domain distributions. To diagnose such pathological feature distributions affecting a model being trained in a federated fashion, we develop Deep Domain Isolation (DDI) to isolate image domains directly in the gradient space of the model. A federated Gaussian Mixture Model is fit to the sample gradients of each class, while the results are combined with spectral clustering on the server side to isolate decentralized sample-level domains. We leverage this clustering algorithm through a Sample Clustered Federated Learning (SCFL) framework, performing standard federated learning of several independent models, one for each decentralized image domain. Finally, we train a classifier enabling to associate a test sample to its corresponding domain cluster at inference time, offering a final set of models that are agnostic to any assumptions on the test distribution of each participant. We validate our approach on a toy segmentation dataset as well as different partitionings of a combination of Cityscapes and GTA5 datasets using an EfficientVIT-B0 model, showing a significant performance gain compared to other approaches. Our code is available at https://github.com/MatthisManthe/DDI_SCFL .


[12] 2410.14695

Ecosystem-wide influences on pull request decisions: insights from NPM

The pull-based development model facilitates global collaboration within open-source software projects. Most research on the pull request decision-making process explored factors within projects, not the broader software ecosystem they comprise. We uncover ecosystem-wide factors that influence pull request acceptance decisions. We collected a dataset of approximately 1.8 million pull requests and 2.1 million issues from 20,052 GitHub projects within the NPM ecosystem. Of these, 98% depend on another project in the dataset, enabling studying collaboration across dependent projects. We employed social network analysis to create a collaboration network in the ecosystem, and mixed effects logistic regression and random forest techniques to measure the impact and predictive strength of the tested features. We find that gaining experience within the software ecosystem through active participation in issue-tracking systems, submitting pull requests, and collaborating with pull request integrators and experienced developers benefits all open-source contributors, especially project newcomers. The results show that combining ecosystem-wide factors with features studied in previous work to predict the outcome of pull requests reached an overall F1 score of 0.92.


[13] 2410.14698

Deep Learning Enhanced Road Traffic Analysis: Scalable Vehicle Detection and Velocity Estimation Using PlanetScope Imagery

This paper presents a method for detecting and estimating vehicle speeds using PlanetScope SuperDove satellite imagery, offering a scalable solution for global vehicle traffic monitoring. Conventional methods such as stationary sensors and mobile systems like UAVs are limited in coverage and constrained by high costs and legal restrictions. Satellite-based approaches provide broad spatial coverage but face challenges, including high costs, low frame rates, and difficulty detecting small vehicles in high-resolution imagery. We propose a Keypoint R-CNN model to track vehicle trajectories across RGB bands, leveraging band timing differences to estimate speed. Validation is performed using drone footage and GPS data covering highways in Germany and Poland. Our model achieved a Mean Average Precision of 0.53 and velocity estimation errors of approximately 3.4 m/s compared to GPS data. Results from drone comparison reveal underestimations, with average speeds of 112.85 km/h for satellite data versus 131.83 km/h from drone footage. While challenges remain with high-speed accuracy, this approach demonstrates the potential for scalable, daily traffic monitoring across vast areas, providing valuable insights into global traffic dynamics.


[14] 2410.14699

Dependence and Independence for Reversible Process Calculi

To refine formal methods for concurrent systems, there are several ways of enriching classical operational semantics of process calculi. One can enable the auditing and undoing of past synchronisations thanks to communication keys, thus easing the study of true concurrency as a by-product. Alternatively, proof labels embed information about the origins of actions in transition labels, facilitating syntactic analysis. Enriching proof labels with keys enables a theory of the relations on transitions and on events based on their labels only. We offer for the first time separate definitions of dependence relation and independence relation, and prove their complementarity on connected transitions instead of postulating it. Leveraging the recent axiomatic approach to reversibility, we prove the canonicity of these relations and provide additional tools to study the relationships between e.g., concurrency and causality on transitions and events. Finally, we make precise the subtle relationship between bisimulations based on both forward and backward transitions, on key ordering, and on dependency preservation, providing a direct definition of History Preserving bisimulation for CCS.


[15] 2410.14700

Self-Supervised Keypoint Detection with Distilled Depth Keypoint Representation

Existing unsupervised keypoint detection methods apply artificial deformations to images such as masking a significant portion of images and using reconstruction of original image as a learning objective to detect keypoints. However, this approach lacks depth information in the image and often detects keypoints on the background. To address this, we propose Distill-DKP, a novel cross-modal knowledge distillation framework that leverages depth maps and RGB images for keypoint detection in a self-supervised setting. During training, Distill-DKP extracts embedding-level knowledge from a depth-based teacher model to guide an image-based student model with inference restricted to the student. Experiments show that Distill-DKP significantly outperforms previous unsupervised methods by reducing mean L2 error by 47.15% on Human3.6M, mean average error by 5.67% on Taichi, and improving keypoints accuracy by 1.3% on DeepFashion dataset. Detailed ablation studies demonstrate the sensitivity of knowledge distillation across different layers of the network. Project Page: https://23wm13.github.io/distill-dkp/


[16] 2410.14702

Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark

Multi-modal Large Language Models (MLLMs) exhibit impressive problem-solving abilities in various domains, but their visual comprehension and abstract reasoning skills remain under-evaluated. To this end, we present PolyMATH, a challenging benchmark aimed at evaluating the general cognitive reasoning abilities of MLLMs. PolyMATH comprises 5,000 manually collected high-quality images of cognitive textual and visual challenges across 10 distinct categories, including pattern recognition, spatial reasoning, and relative reasoning. We conducted a comprehensive, and quantitative evaluation of 15 MLLMs using four diverse prompting strategies, including Chain-of-Thought and Step-Back. The best scores achieved on PolyMATH are ~41%, ~36%, and ~27%, obtained by Claude-3.5 Sonnet, GPT-4o and Gemini-1.5 Pro respectively - highlighting the logical and visual complexity of these questions. A further fine-grained error analysis reveals that these models struggle to understand spatial relations and perform drawn-out, high-level reasoning. This is further strengthened by our ablation study estimating MLLM performance when given textual descriptions in place of diagrams. As evidenced by ~4% improvement over textual descriptions as opposed to actual images, we discover that models do not truly comprehend visual diagrams and the spatial information therein, and are thus prone to logical errors. Finally, we evaluate the OpenAI o1 models and find that their performance only matches the human baseline, highlighting the difficulty of the benchmark. The results on PolyMATH highlight the room for improvement in multi-modal reasoning and provide unique insights to guide the development of future MLLMs.


[17] 2410.14705

Optimizing Parking Space Classification: Distilling Ensembles into Lightweight Classifiers

When deploying large-scale machine learning models for smart city applications, such as image-based parking lot monitoring, data often must be sent to a central server to perform classification tasks. This is challenging for the city's infrastructure, where image-based applications require transmitting large volumes of data, necessitating complex network and hardware infrastructures to process the data. To address this issue in image-based parking space classification, we propose creating a robust ensemble of classifiers to serve as Teacher models. These Teacher models are distilled into lightweight and specialized Student models that can be deployed directly on edge devices. The knowledge is distilled to the Student models through pseudo-labeled samples generated by the Teacher model, which are utilized to fine-tune the Student models on the target scenario. Our results show that the Student models, with 26 times fewer parameters than the Teacher models, achieved an average accuracy of 96.6% on the target test datasets, surpassing the Teacher models, which attained an average accuracy of 95.3%.


[18] 2410.14706

Transformers are Efficient Compilers, Provably

Transformer-based large language models (LLMs) have demonstrated surprisingly robust performance across a wide range of language-related tasks, including programming language understanding and generation. In this paper, we take the first steps towards a formal investigation of using transformers as compilers from an expressive power perspective. To this end, we introduce a representative programming language, Mini-Husky, which encapsulates key features of modern C-like languages. We show that if the input code sequence has a bounded depth in both the Abstract Syntax Tree (AST) and type inference (reasonable assumptions based on the clean code principle), then the number of parameters required by transformers depends only on the logarithm of the input sequence length to handle compilation tasks, such as AST construction, symbol resolution, and type analysis. A significant technical challenge stems from the fact that transformers operate at a low level, where each layer processes the input sequence as raw vectors without explicitly associating them with predefined structure or meaning. In contrast, high-level compiler tasks necessitate managing intricate relationships and structured program information. Our primary technical contribution is the development of a domain-specific language, Cybertron, which generates formal proofs of the transformer's expressive power, scaling to address compiler tasks. We further establish that recurrent neural networks (RNNs) require at least a linear number of parameters relative to the input sequence, leading to an exponential separation between transformers and RNNs. Finally, we empirically validate our theoretical results by comparing transformers and RNNs on compiler tasks within Mini-Husky.


[19] 2410.14707

FACMIC: Federated Adaptative CLIP Model for Medical Image Classification

Federated learning (FL) has emerged as a promising approach to medical image analysis that allows deep model training using decentralized data while ensuring data privacy. However, in the field of FL, communication cost plays a critical role in evaluating the performance of the model. Thus, transferring vision foundation models can be particularly challenging due to the significant resource costs involved. In this paper, we introduce a federated adaptive Contrastive Language Image Pretraining CLIP model designed for classification tasks. We employ a light-weight and efficient feature attention module for CLIP that selects suitable features for each client's data. Additionally, we propose a domain adaptation technique to reduce differences in data distribution between clients. Experimental results on four publicly available datasets demonstrate the superior performance of FACMIC in dealing with real-world and multisource medical imaging data. Our codes are available at https://github.com/AIPMLab/FACMIC.


[20] 2410.14709

A two-stage transliteration approach to improve performance of a multilingual ASR

End-to-end Automatic Speech Recognition (ASR) systems are rapidly claiming to become state-of-art over other modeling methods. Several techniques have been introduced to improve their ability to handle multiple languages. However, due to variation in writing scripts for different languages, while decoding acoustically similar units, they do not always map to an appropriate grapheme in the target language. This restricts the scalability and adaptability of the model while dealing with multiple languages in code-mixing scenarios. This paper presents an approach to build a language-agnostic end-to-end model trained on a grapheme set obtained by projecting the multilingual grapheme data to the script of a more generic target language. This approach saves the acoustic model from retraining to span over a larger space and can easily be extended to multiple languages. A two-stage transliteration process realizes this approach and proves to minimize speech-class confusion. We performed experiments with an end-to-end multilingual speech recognition system for two Indic Languages, namely Nepali and Telugu. The original grapheme space of these languages is projected to the Devanagari script. We achieved a relative reduction of 20% in the Word Error Rate (WER) and 24% in the Character Error Rate (CER) in the transliterated space, over other language-dependent modeling methods.


[21] 2410.14710

G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving

Recent literature has effectively utilized diffusion models trained on continuous variables as priors for solving inverse problems. Notably, discrete diffusion models with discrete latent codes have shown strong performance, particularly in modalities suited for discrete compressed representations, such as image and motion generation. However, their discrete and non-differentiable nature has limited their application to inverse problems formulated in continuous spaces. This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors. We overcome these limitations by approximating the true posterior distribution with a variational distribution constructed from categorical distributions and continuous relaxation techniques. Furthermore, we employ a star-shaped noise process to mitigate the drawbacks of traditional discrete diffusion models with absorbing states, demonstrating that our method performs comparably to continuous diffusion techniques. To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.


[22] 2410.14712

Abstracting Situation Calculus Action Theories

We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both represented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low-level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent's actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level. To facilitate verifying that one has a sound/complete abstraction relative to a mapping, we provide a set of necessary and sufficient conditions. Finally, we identify a set of basic action theory constraints that ensure that for any low-level action sequence, there is a unique high-level action sequence that it refines. This allows us to track/monitor what the low-level agent is doing and describe it in abstract terms (i.e., provide high-level explanations, for instance, to a client or manager).


[23] 2410.14713

QuAILoRA: Quantization-Aware Initialization for LoRA

QLoRA reduces the memory-cost of fine-tuning a large language model (LLM) with LoRA by quantizing the base LLM. However, quantization introduces quantization errors that negatively impact model performance after fine-tuning. In this paper we introduce QuAILoRA, a quantization-aware initialization for LoRA that mitigates this negative impact by decreasing quantization errors at initialization. Our method spends a small amount of computational overhead to compute this quantization-aware initialization, without increasing the memory-cost of fine-tuning. We evaluate our method on several causal language modeling and downstream evaluation tasks using several different model sizes and families. We observe that almost all LLMs fined-tuned with QuAILoRA achieve better validation perplexity. When evaluated on downstream tasks, we find that QuAILoRA yields improvements proportional to the negative effect of quantization error. On average, applying QuAILoRA to 4-bit QLoRA models yields 75% of the validation perplexity decrease and 86% of the downstream task accuracy increase as doubling the quantization precision to 8-bit, without increasing GPU memory utilization during fine-tuning.


[24] 2410.14715

Animating the Past: Reconstruct Trilobite via Video Generation

Paleontology, the study of past life, fundamentally relies on fossils to reconstruct ancient ecosystems and understand evolutionary dynamics. Trilobites, as an important group of extinct marine arthropods, offer valuable insights into Paleozoic environments through their well-preserved fossil records. Reconstructing trilobite behaviour from static fossils will set new standards for dynamic reconstructions in scientific research and education. Despite the potential, current computational methods for this purpose like text-to-video (T2V) face significant challenges, such as maintaining visual realism and consistency, which hinder their application in science contexts. To overcome these obstacles, we introduce an automatic T2V prompt learning method. Within this framework, prompts for a fine-tuned video generation model are generated by a large language model, which is trained using rewards that quantify the visual realism and smoothness of the generated video. The fine-tuning of the video generation model, along with the reward calculations make use of a collected dataset of 9,088 Eoredlichia intermedia fossil images, which provides a common representative of visual details of all class of trilobites. Qualitative and quantitative experiments show that our method can generate trilobite videos with significantly higher visual realism compared to powerful baselines, promising to boost both scientific understanding and public engagement.


[25] 2410.14716

A Systematic Survey on Large Language Models for Algorithm Design

Algorithm Design (AD) is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and superior solutions. Over the past three years, the integration of LLMs into AD (LLM4AD) has progressed significantly, finding applications in diverse areas such as optimization, machine learning, mathematical reasoning, and scientific exploration. Given the rapid development and broadening scope of this field, a systematic review is both timely and essential. This paper provides a systematic review of the works on LLM4AD. First, we present an overview and summary of existing studies. Then, we present a systematic categorization, and a review of existing works along four dimensions including the role of LLMs, search techniques, prompt strategies, and application fields. We also discuss the achievements and challenges in each area and the capabilities of LLM4AD in addressing them. Finally, we explore current limitations and propose several open questions and promising directions for future research.


[26] 2410.14718

Brownian Motion in Isabelle/HOL

In order to formally verify robotic controllers, we must tackle the inherent uncertainty of sensing and actuation in a physical environment. We can model uncertainty using stochastic hybrid systems, which combine discrete jumps with continuous, stochastic behaviour. The verification of these systems is intractable for state-exploration based approaches, so we instead propose a deductive verification approach. As a first step towards a deductive verification tool, we present a mechanisation of Brownian motion within Isabelle/HOL. For this, we mechanise stochastic kernels and Markov semigroups, which allow us to specify a range of processes with stationary, independent increments. Further, we prove the Kolmogorov-Chentsov theorem, which allows us to construct H\"older continuous modifications of processes that satisfy certain bounds on their expectation. This paves the way for modelling and verifying stochastic hybrid systems in Isabelle/HOL.


[27] 2410.14720

SGLP: A Similarity Guided Fast Layer Partition Pruning for Compressing Large Deep Models

The deployment of Deep Neural Network (DNN)-based networks on resource-constrained devices remains a significant challenge due to their high computational and parameter requirements. To solve this problem, layer pruning has emerged as a potent approach to reduce network size and improve computational efficiency. However, existing layer pruning methods mostly overlook the intrinsic connections and inter-dependencies between different layers within complicated deep neural networks. This oversight can result in pruned models that do not preserve the essential characteristics of the pre-trained network as effectively as desired. To address this limitations, we propose a Similarity Guided fast Layer Partition pruning for compressing large deep models (SGLP), which focuses on pruning layers from network segments partitioned via representation similarity. Specifically, our presented method first leverages Centered Kernel Alignment (CKA) to indicate the internal representations among the layers of the pre-trained network, which provides us with a potent basis for layer pruning. Based on similarity matrix derived from CKA, we employ Fisher Optimal Segmentation to partition the network into multiple segments, which provides a basis for removing the layers in a segment-wise manner. In addition, our method innovatively adopts GradNorm for segment-wise layer importance evaluation, eliminating the need for extensive fine-tuning, and finally prunes the unimportant layers to obtain a compact network. Experimental results in image classification and for large language models (LLMs) demonstrate that our proposed SGLP outperforms the state-of-the-art methods in both accuracy and computational efficiency, presenting a more effective solution for deploying DNNs on resource-limited platforms. Our codes are available at https://github.com/itsnotacie/information-fusion-SGLP.


[28] 2410.14721

The Representation of Meaningful Precision, and Accuracy

The concepts of precision, and accuracy are domain and problem dependent. The simplified numeric hard and soft measures used in the fields of statistical learning, many types of machine learning, and binary or multiclass classification problems are known to be of limited use for understanding the meaningfulness of models or their relevance. Arguably, they are neither of patterns nor proofs. Further, there are no good measures or representations for analogous concepts in the cognition domain. In this research, the key issues are reflected upon, and a compositional knowledge representation approach in a minimalist general rough framework is proposed for the problem contexts. The latter is general enough to cover most application contexts, and may be applicable in the light of improved computational tools available.


[29] 2410.14723

BeniFul: Backdoor Defense via Middle Feature Analysis for Deep Neural Networks

Backdoor defenses have recently become important in resisting backdoor attacks in deep neural networks (DNNs), where attackers implant backdoors into the DNN model by injecting backdoor samples into the training dataset. Although there are many defense methods to achieve backdoor detection for DNN inputs and backdoor elimination for DNN models, they still have not presented a clear explanation of the relationship between these two missions. In this paper, we use the features from the middle layer of the DNN model to analyze the difference between backdoor and benign samples and propose Backdoor Consistency, which indicates that at least one backdoor exists in the DNN model if the backdoor trigger is detected exactly on input. By analyzing the middle features, we design an effective and comprehensive backdoor defense method named BeniFul, which consists of two parts: a gray-box backdoor input detection and a white-box backdoor elimination. Specifically, we use the reconstruction distance from the Variational Auto-Encoder and model inference results to implement backdoor input detection and a feature distance loss to achieve backdoor elimination. Experimental results on CIFAR-10 and Tiny ImageNet against five state-of-the-art attacks demonstrate that our BeniFul exhibits a great defense capability in backdoor input detection and backdoor elimination.


[30] 2410.14724

A Phenomenological AI Foundation Model for Physical Signals

The objective of this work is to develop an AI foundation model for physical signals that can generalize across diverse phenomena, domains, applications, and sensing apparatuses. We propose a phenomenological approach and framework for creating and validating such AI foundation models. Based on this framework, we developed and trained a model on 0.59 billion samples of cross-modal sensor measurements, ranging from electrical current to fluid flow to optical sensors. Notably, no prior knowledge of physical laws or inductive biases were introduced into the model. Through several real-world experiments, we demonstrate that a single foundation model could effectively encode and predict physical behaviors, such as mechanical motion and thermodynamics, including phenomena not seen in training. The model also scales across physical processes of varying complexity, from tracking the trajectory of a simple spring-mass system to forecasting large electrical grid dynamics. This work highlights the potential of building a unified AI foundation model for diverse physical world processes.


[31] 2410.14725

Rethinking Token Reduction for State Space Models

Recent advancements in State Space Models (SSMs) have attracted significant interest, particularly in models optimized for parallel training and handling long-range dependencies. Architectures like Mamba have scaled to billions of parameters with selective SSM. To facilitate broader applications using Mamba, exploring its efficiency is crucial. While token reduction techniques offer a straightforward post-training strategy, we find that applying existing methods directly to SSMs leads to substantial performance drops. Through insightful analysis, we identify the reasons for this failure and the limitations of current techniques. In response, we propose a tailored, unified post-training token reduction method for SSMs. Our approach integrates token importance and similarity, thus taking advantage of both pruning and merging, to devise a fine-grained intra-layer token reduction strategy. Extensive experiments show that our method improves the average accuracy by 5.7% to 13.1% on six benchmarks with Mamba-2 compared to existing methods, while significantly reducing computational demands and memory requirements.


[32] 2410.14726

Incorporating Long-term Data in Training Short-term Traffic Prediction Model

Short-term traffic volume prediction is crucial for intelligent transportation system and there are many researches focusing on this field. However, most of these existing researches concentrated on refining model architecture and ignored amount of training data. Therefore, there remains a noticeable gap in thoroughly exploring the effect of augmented dataset, especially extensive historical data in training. In this research, two datasets containing taxi and bike usage spanning over eight years in New York were used to test such effects. Experiments were conducted to assess the precision of models trained with data in the most recent 12, 24, 48, and 96 months. It was found that the training set encompassing 96 months, at times, resulted in diminished accuracy, which might be owing to disparities between historical traffic patterns and present ones. An analysis was subsequently undertaken to discern potential sources of inconsistent patterns, which may include both covariate shift and concept shift. To address these shifts, we proposed an innovative approach that aligns covariate distributions using a weighting scheme to manage covariate shift, coupled with an environment aware learning method to tackle the concept shift. Experiments based on real word datasets demonstrate the effectiveness of our method which can significantly decrease testing errors and ensure an improvement in accuracy when training with large-scale historical data. As far as we know, this work is the first attempt to assess the impact of contiguously expanding training dataset on the accuracy of traffic prediction models. Besides, our training method is able to be incorporated into most existing short-term traffic prediction models and make them more suitable for long term historical training dataset.


[33] 2410.14727

Leveraging Intra-Period and Inter-Period Features for Enhanced Passenger Flow Prediction of Subway Stations

Accurate short-term passenger flow prediction of subway stations plays a vital role in enabling subway station personnel to proactively address changes in passenger volume. Despite existing literature in this field, there is a lack of research on effectively integrating features from different periods, particularly intra-period and inter-period features, for subway station passenger flow prediction. In this paper, we propose a novel model called \textbf{M}uti \textbf{P}eriod \textbf{S}patial \textbf{T}emporal \textbf{N}etwork \textbf{MPSTN}) that leverages features from different periods by transforming one-dimensional time series data into two-dimensional matrices based on periods. The folded matrices exhibit structural characteristics similar to images, enabling the utilization of image processing techniques, specifically convolutional neural networks (CNNs), to integrate features from different periods. Therefore, our MPSTN model incorporates a CNN module to extract temporal information from different periods and a graph neural network (GNN) module to integrate spatial information from different stations. We compared our approach with various state-of-the-art methods for spatiotemporal data prediction using a publicly available dataset and achieved minimal prediction errors. The code for our model is publicly available in the following repository: https://github.com/xiannanhuang/MPSTN


[34] 2410.14728

Security Threats in Agentic AI System

This research paper explores the privacy and security threats posed to an Agentic AI system with direct access to database systems. Such access introduces significant risks, including unauthorized retrieval of sensitive information, potential exploitation of system vulnerabilities, and misuse of personal or confidential data. The complexity of AI systems combined with their ability to process and analyze large volumes of data increases the chances of data leaks or breaches, which could occur unintentionally or through adversarial manipulation. Furthermore, as AI agents evolve with greater autonomy, their capacity to bypass or exploit security measures becomes a growing concern, heightening the need to address these critical vulnerabilities in agentic systems.


[35] 2410.14729

Tokens on Demand: Token Condensation as Training-free Test-time Adaptation

In this work, we introduce Token Condensation as Adaptation (TCA), a training-free approach designed to mitigate distribution shifts encountered by vision-language models (VLMs) during test-time inference. TCA bridges distribution gaps at the patch level by condensing image tokens that exhibit low attentiveness to the <cls> token. Recognizing the <cls> token may correspond to universal concepts, TCA identifies and tracks the most reliable <cls> tokens that align specifically with target classes from historical data streams. To achieve this, we propose a context token reservoir (CTR), which retains tokens with the lowest uncertainty as ``anchors" to guide the preservation of class-relevant tokens during inference. These anchors, in turn, act as token-level classifiers to correct VLM predictions and improve visual-text alignment. Utilizing anchors sampled from CTR, TCA condenses tokens through two operations: (1) pruning class-irrelevant tokens that consistently rank low across all attention heads to reach cross-head consensus on their irrelevance, and (2) merging the remaining class-ambiguous tokens into representative centers using coreset selection, maintaining linear computational complexity. As the first method to explore token efficiency in test-time adaptation, TCA consistently demonstrates superior performance across cross-dataset and out-of-distribution adaptation tasks, reducing GFLOPs by 12.2% to 48.9% while achieving accuracy improvements up to 21.4% against the strongest baseline without introducing additional parameters.


[36] 2410.14730

On the Relation Between Linear Diffusion and Power Iteration

Recently, diffusion models have gained popularity due to their impressive generative abilities. These models learn the implicit distribution given by the training dataset, and sample new data by transforming random noise through the reverse process, which can be thought of as gradual denoising. In this work, we examine the generation process as a ``correlation machine'', where random noise is repeatedly enhanced in correlation with the implicit given distribution. To this end, we explore the linear case, where the optimal denoiser in the MSE sense is known to be the PCA projection. This enables us to connect the theory of diffusion models to the spiked covariance model, where the dependence of the denoiser on the noise level and the amount of training data can be expressed analytically, in the rank-1 case. In a series of numerical experiments, we extend this result to general low rank data, and show that low frequencies emerge earlier in the generation process, where the denoising basis vectors are more aligned to the true data with a rate depending on their eigenvalues. This model allows us to show that the linear diffusion model converges in mean to the leading eigenvector of the underlying data, similarly to the prevalent power iteration method. Finally, we empirically demonstrate the applicability of our findings beyond the linear case, in the Jacobians of a deep, non-linear denoiser, used in general image generation tasks.


[37] 2410.14731

MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection

KV cache has become a de facto technique for the inference of large language models (LLMs), where tensors of shape (layer number, head number, sequence length, feature dimension) are introduced to cache historical information for self-attention. As the size of the model and data grows, the KV cache can quickly become a bottleneck within the system in both storage and memory transfer. To address this, prior studies usually focus on the first three axes of the cache tensors for compression. This paper supplements them, focusing on the feature dimension axis, by utilizing low-rank projection matrices to transform the cache features into spaces with reduced dimensions. We begin by investigating the canonical orthogonal projection method for data compression through principal component analysis (PCA). We observe the issue with PCA projection where significant performance degradation is observed at low compression rates. To bridge the gap, we propose to directly tune the orthogonal projection matrices with a distillation objective using an elaborate Matryoshka training strategy. After training, we adaptively search for the optimal compression rates for various layers and heads given varying compression budgets. Compared to previous works, our method can easily embrace pre-trained LLMs and hold a smooth tradeoff between performance and compression rate. We empirically witness the high data efficiency of our training procedure and find that our method can sustain over 90% performance with an average KV cache compression rate of 60% (and up to 75% in certain extreme scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.


[38] 2410.14732

SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting

Arctic sea ice performs a vital role in global climate and has paramount impacts on both polar ecosystems and coastal communities. In the last few years, multiple deep learning based pan-Arctic sea ice concentration (SIC) forecasting methods have emerged and showcased superior performance over physics-based dynamical models. However, previous methods forecast SIC at a fixed temporal granularity, e.g. sub-seasonal or seasonal, thus only leveraging inter-granularity information and overlooking the plentiful inter-granularity correlations. SIC at various temporal granularities exhibits cumulative effects and are naturally consistent, with short-term fluctuations potentially impacting long-term trends and long-term trends provides effective hints for facilitating short-term forecasts in Arctic sea ice. Therefore, in this study, we propose to cultivate temporal multi-granularity that naturally derived from Arctic sea ice reanalysis data and provide a unified perspective for modeling SIC via our Sea Ice Foundation Model. SIFM is delicately designed to leverage both intra-granularity and inter-granularity information for capturing granularity-consistent representations that promote forecasting skills. Our extensive experiments show that SIFM outperforms off-the-shelf deep learning models for their specific temporal granularity.


[39] 2410.14733

Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties

Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs (KGs) into numerical representations, thereby enhancing various deep learning models for knowledge-augmented applications. Unlike entities, relations in KGs are the carriers of semantic meaning, and their accurate modeling is crucial for the performance of KGE models. Firstly, we address the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings. We provide a comprehensive summary of relation-aware mapping-based models, models that utilize specific representation spaces, tensor decomposition-based models, and neural network-based models. Next, focusing on capturing various relation patterns like symmetry, asymmetry, inversion, and composition, we review models that employ modified tensor decomposition, those based on modified relation-aware mappings, and those that leverage rotation operations. Subsequently, considering the implicit hierarchical relations among entities, we introduce models that incorporate auxiliary information, models based on hyperbolic spaces, and those that utilize the polar coordinate system. Finally, in response to more complex scenarios such as sparse and dynamic KGs, this paper discusses potential future research directions. We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.


[40] 2410.14735

Agent Skill Acquisition for Large Language Models via CycleQD

Training large language models to acquire specific skills remains a challenging endeavor. Conventional training approaches often struggle with data distribution imbalances and inadequacies in objective functions that do not align well with task-specific performance. To address these challenges, we introduce CycleQD, a novel approach that leverages the Quality Diversity framework through a cyclic adaptation of the algorithm, along with a model merging based crossover and an SVD-based mutation. In CycleQD, each task's performance metric is alternated as the quality measure while the others serve as the behavioral characteristics. This cyclic focus on individual tasks allows for concentrated effort on one task at a time, eliminating the need for data ratio tuning and simplifying the design of the objective function. Empirical results from AgentBench indicate that applying CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to surpass traditional fine-tuning methods in coding, operating systems, and database tasks, but also achieves performance on par with GPT-3.5-TURBO, which potentially contains much more parameters, across these domains. Crucially, this enhanced performance is achieved while retaining robust language capabilities, as evidenced by its performance on widely adopted language benchmark tasks. We highlight the key design choices in CycleQD, detailing how these contribute to its effectiveness. Furthermore, our method is general and can be applied to image segmentation models, highlighting its applicability across different domains.


[41] 2410.14738

Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment

The primary aim of this paper is to comprehend, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data. While the importance of heart disease risk prediction cannot be overstated, the application of machine learning (ML) in identifying and evaluating the impact of various features on the classification of patients with and without heart disease, as well as in generating a reliable clinical dataset, is equally significant. This study relies primarily on cross-sectional clinical data. The ML approach is designed to enhance the consideration of various clinical features in the heart disease prognosis process. Some features emerge as strong predictors, adding significant value. The paper evaluates seven ML classifiers: Logistic Regression, Random Forest, Decision Tree, Naive Bayes, k-Nearest Neighbors, Neural Networks, and Support Vector Machine (SVM). The performance of each model is assessed based on accuracy metrics. Notably, the Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability. The overall findings of this research highlight the advantages of advanced computational methodologies in the evaluation, prediction, improvement, and management of cardiovascular risks. In other words, the strong performance of the SVM model illustrates its applicability and value in clinical settings, paving the way for further advancements in personalized medicine and healthcare.


[42] 2410.14739

Toward a Unified Graph-Based Representation of Medical Data for Precision Oncology Medicine

We present a new unified graph-based representation of medical data, combining genetic information and medical records of patients with medical knowledge via a unique knowledge graph. This approach allows us to infer meaningful information and explanations that would be unavailable by looking at each data set separately. The systematic use of different databases, managed throughout the built knowledge graph, gives new insights toward a better understanding of oncology medicine. Indeed, we reduce some useful medical tasks to well-known problems in theoretical computer science for which efficient algorithms exist.


[43] 2410.14740

Harnessing Your DRAM and SSD for Sustainable and Accessible LLM Inference with Mixed-Precision and Multi-level Caching

Although Large Language Models (LLMs) have demonstrated remarkable capabilities, their massive parameter counts and associated extensive computing make LLMs' deployment the main part of carbon emission from nowadays AI applications. Compared to modern GPUs like H$100$, it would be significantly carbon-sustainable if we could leverage old-fashioned GPUs such as M$40$ (as shown in Figure~\ref{fig:tisser}, M$40$ only has one third carbon emission of H$100$'s) for LLM servings. However, the limited High Bandwidth Memory (HBM) available on such GPU often cannot support the loading of LLMs due to the gigantic model size and intermediate activation data, making their serving challenging. For instance, a LLaMA2 model with $70$B parameters typically requires $128$GB for inference, which substantially surpasses $24$GB HBM in a $3090$ GPU and remains infeasible even considering the additional $64$GB DRAM. To address this challenge, this paper proposes a mixed-precision with a model modularization algorithm to enable LLM inference on outdated hardware with resource constraints. (The precision denotes the numerical precision like FP16, INT8, INT4) and multi-level caching (M2Cache).) Specifically, our M2Cache first modulizes neurons in LLM and creates their importance ranking. Then, it adopts a dynamic sparse mixed-precision quantization mechanism in weight space to reduce computational demands and communication overhead at each decoding step. It collectively lowers the operational carbon emissions associated with LLM inference. Moreover, M2Cache introduces a three-level cache management system with HBM, DRAM, and SSDs that complements the dynamic sparse mixed-precision inference. To enhance communication efficiency, M2Cache maintains a neuron-level mixed-precision LRU cache in HBM, a larger layer-aware cache in DRAM, and a full model in SSD.


[44] 2410.14741

CAKD: A Correlation-Aware Knowledge Distillation Framework Based on Decoupling Kullback-Leibler Divergence

In knowledge distillation, a primary focus has been on transforming and balancing multiple distillation components. In this work, we emphasize the importance of thoroughly examining each distillation component, as we observe that not all elements are equally crucial. From this perspective,we decouple the Kullback-Leibler (KL) divergence into three unique elements: Binary Classification Divergence (BCD), Strong Correlation Divergence (SCD), and Weak Correlation Divergence (WCD). Each of these elements presents varying degrees of influence. Leveraging these insights, we present the Correlation-Aware Knowledge Distillation (CAKD) framework. CAKD is designed to prioritize the facets of the distillation components that have the most substantial influence on predictions, thereby optimizing knowledge transfer from teacher to student models. Our experiments demonstrate that adjusting the effect of each element enhances the effectiveness of knowledge transformation. Furthermore, evidence shows that our novel CAKD framework consistently outperforms the baseline across diverse models and datasets. Our work further highlights the importance and effectiveness of closely examining the impact of different parts of distillation process.


[45] 2410.14742

ArrivalNet: Predicting City-wide Bus/Tram Arrival Time with Two-dimensional Temporal Variation Modeling

Accurate arrival time prediction (ATP) of buses and trams plays a crucial role in public transport operations. Current methods focused on modeling one-dimensional temporal information but overlooked the latent periodic information within time series. Moreover, most studies developed algorithms for ATP based on a single or a few routes of public transport, which reduces the transferability of the prediction models and their applicability in public transport management systems. To this end, this paper proposes \textit{ArrivalNet}, a two-dimensional temporal variation-based multi-step ATP for buses and trams. It decomposes the one-dimensional temporal sequence into intra-periodic and inter-periodic variations, which can be recast into two-dimensional tensors (2D blocks). Each row of a tensor contains the time points within a period, and each column involves the time points at the same intra-periodic index across various periods. The transformed 2D blocks in different frequencies have an image-like feature representation that enables effective learning with computer vision backbones (e.g., convolutional neural network). Drawing on the concept of residual neural network, the 2D block module is designed as a basic module for flexible aggregation. Meanwhile, contextual factors like workdays, peak hours, and intersections, are also utilized in the augmented feature representation to improve the performance of prediction. 125 days of public transport data from Dresden were collected for model training and validation. Experimental results show that the root mean square error, mean absolute error, and mean absolute percentage error of the proposed predictor decrease by at least 6.1\%, 14.7\%, and 34.2\% compared with state-of-the-art baseline methods.


[46] 2410.14743

Efficient Deep Learning Board: Training Feedback Is Not All You Need

Current automatic deep learning (i.e., AutoDL) frameworks rely on training feedback from actual runs, which often hinder their ability to provide quick and clear performance predictions for selecting suitable DL systems. To address this issue, we propose EfficientDL, an innovative deep learning board designed for automatic performance prediction and component recommendation. EfficientDL can quickly and precisely recommend twenty-seven system components and predict the performance of DL models without requiring any training feedback. The magic of no training feedback comes from our proposed comprehensive, multi-dimensional, fine-grained system component dataset, which enables us to develop a static performance prediction model and comprehensive optimized component recommendation algorithm (i.e., {\alpha}\b{eta}-BO search), removing the dependency on actually running parameterized models during the traditional optimization search process. The simplicity and power of EfficientDL stem from its compatibility with most DL models. For example, EfficientDL operates seamlessly with mainstream models such as ResNet50, MobileNetV3, EfficientNet-B0, MaxViT-T, Swin-B, and DaViT-T, bringing competitive performance improvements. Besides, experimental results on the CIFAR-10 dataset reveal that EfficientDL outperforms existing AutoML tools in both accuracy and efficiency (approximately 20 times faster along with 1.31% Top-1 accuracy improvement than the cutting-edge methods). Source code, pretrained models, and datasets are available at https://github.com/OpenSELab/EfficientDL.


[47] 2410.14744

Eliciting Uncertainty in Chain-of-Thought to Mitigate Bias against Forecasting Harmful User Behaviors

Conversation forecasting tasks a model with predicting the outcome of an unfolding conversation. For instance, it can be applied in social media moderation to predict harmful user behaviors before they occur, allowing for preventative interventions. While large language models (LLMs) have recently been proposed as an effective tool for conversation forecasting, it's unclear what biases they may have, especially against forecasting the (potentially harmful) outcomes we request them to predict during moderation. This paper explores to what extent model uncertainty can be used as a tool to mitigate potential biases. Specifically, we ask three primary research questions: 1) how does LLM forecasting accuracy change when we ask models to represent their uncertainty; 2) how does LLM bias change when we ask models to represent their uncertainty; 3) how can we use uncertainty representations to reduce or completely mitigate biases without many training data points. We address these questions for 5 open-source language models tested on 2 datasets designed to evaluate conversation forecasting for social media moderation.


[48] 2410.14745

SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation

Supervised fine-tuning (SFT) is crucial in adapting large language models (LLMs) to a specific domain or task. However, only a limited amount of labeled data is available in practical applications, which poses a severe challenge for SFT in yielding satisfactory results. Therefore, a data-efficient framework that can fully exploit labeled and unlabeled data for LLM fine-tuning is highly anticipated. Towards this end, we introduce a semi-supervised fine-tuning framework named SemiEvol for LLM adaptation from a propagate-and-select manner. For knowledge propagation, SemiEvol adopts a bi-level approach, propagating knowledge from labeled data to unlabeled data through both in-weight and in-context methods. For knowledge selection, SemiEvol incorporates a collaborative learning mechanism, selecting higher-quality pseudo-response samples. We conducted experiments using GPT-4o-mini and Llama-3.1 on seven general or domain-specific datasets, demonstrating significant improvements in model performance on target data. Furthermore, we compared SemiEvol with SFT and self-evolution methods, highlighting its practicality in hybrid data scenarios.


[49] 2410.14746

Accounting for Sycophancy in Language Model Uncertainty Estimation

Effective human-machine collaboration requires machine learning models to externalize uncertainty, so users can reflect and intervene when necessary. For language models, these representations of uncertainty may be impacted by sycophancy bias: proclivity to agree with users, even if they are wrong. For instance, models may be over-confident in (incorrect) problem solutions suggested by a user. We study the relationship between sycophancy and uncertainty estimation for the first time. We propose a generalization of the definition of sycophancy bias to measure downstream impacts on uncertainty estimation, and also propose a new algorithm (SyRoUP) to account for sycophancy in the uncertainty estimation process. Unlike previous works on sycophancy, we study a broad array of user behaviors, varying both correctness and confidence of user suggestions to see how model answers (and their certainty) change. Our experiments across conversation forecasting and question-answering tasks show that user confidence plays a critical role in modulating the effects of sycophancy, and that SyRoUP can better predict these effects. From these results, we argue that externalizing both model and user uncertainty can help to mitigate the impacts of sycophancy bias.


[50] 2410.14748

ETF: An Entity Tracing Framework for Hallucination Detection in Code Summaries

Recent advancements in large language models (LLMs) have significantly enhanced their ability to understand both natural language and code, driving their use in tasks like natural language-to-code (NL2Code) and code summarization. However, LLMs are prone to hallucination-outputs that stray from intended meanings. Detecting hallucinations in code summarization is especially difficult due to the complex interplay between programming and natural languages. We introduce a first-of-its-kind dataset with $\sim$10K samples, curated specifically for hallucination detection in code summarization. We further propose a novel Entity Tracing Framework (ETF) that a) utilizes static program analysis to identify code entities from the program and b) uses LLMs to map and verify these entities and their intents within generated code summaries. Our experimental analysis demonstrates the effectiveness of the framework, leading to a 0.73 F1 score. This approach provides an interpretable method for detecting hallucinations by grounding entities, allowing us to evaluate summary accuracy.


[51] 2410.14749

CFTS-GAN: Continual Few-Shot Teacher Student for Generative Adversarial Networks

Few-shot and continual learning face two well-known challenges in GANs: overfitting and catastrophic forgetting. Learning new tasks results in catastrophic forgetting in deep learning models. In the case of a few-shot setting, the model learns from a very limited number of samples (e.g. 10 samples), which can lead to overfitting and mode collapse. So, this paper proposes a Continual Few-shot Teacher-Student technique for the generative adversarial network (CFTS-GAN) that considers both challenges together. Our CFTS-GAN uses an adapter module as a student to learn a new task without affecting the previous knowledge. To make the student model efficient in learning new tasks, the knowledge from a teacher model is distilled to the student. In addition, the Cross-Domain Correspondence (CDC) loss is used by both teacher and student to promote diversity and to avoid mode collapse. Moreover, an effective strategy of freezing the discriminator is also utilized for enhancing performance. Qualitative and quantitative results demonstrate more diverse image synthesis and produce qualitative samples comparatively good to very stronger state-of-the-art models.


[52] 2410.14752

TimeSeriesExam: A time series understanding exam

Large Language Models (LLMs) have recently demonstrated a remarkable ability to model time series data. These capabilities can be partly explained if LLMs understand basic time series concepts. However, our knowledge of what these models understand about time series data remains relatively limited. To address this gap, we introduce TimeSeriesExam, a configurable and scalable multiple-choice question exam designed to assess LLMs across five core time series understanding categories: pattern recognition, noise understanding, similarity analysis, anomaly detection, and causality analysis. TimeSeriesExam comprises of over 700 questions, procedurally generated using 104 carefully curated templates and iteratively refined to balance difficulty and their ability to discriminate good from bad models. We test 7 state-of-the-art LLMs on the TimeSeriesExam and provide the first comprehensive evaluation of their time series understanding abilities. Our results suggest that closed-source models such as GPT-4 and Gemini understand simple time series concepts significantly better than their open-source counterparts, while all models struggle with complex concepts such as causality analysis. We believe that the ability to programatically generate questions is fundamental to assessing and improving LLM's ability to understand and reason about time series data.


[53] 2410.14753

Collaboratively adding new knowledge to an LLM

We address the question of how to successively add new knowledge to an LLM whilst retaining previously-added knowledge. We consider two settings, semi-cooperative and fully-cooperative. Overall, LoRA performs better in most cases than full-fine tuning of all parameters when both new knowledge acquisition and retention of old, including recent, knowledge are taken into account. In the semi-cooperative setting, where datasets are not available after training, MOE mixing, model merging, and LoRA-based orthogonal subspace sequential learning, using a small weight on the orthogonality term, perform well. In the fully-cooperative setting where datasets remain available, joint training and sequential training with replay are both effective approaches with LoRA training generally preferable to full fine-tuning. The codes needed to reproduce the results are provided in an open source repository.


[54] 2410.14755

Controllable Discovery of Intents: Incremental Deep Clustering Using Semi-Supervised Contrastive Learning

Deriving value from a conversational AI system depends on the capacity of a user to translate the prior knowledge into a configuration. In most cases, discovering the set of relevant turn-level speaker intents is often one of the key steps. Purely unsupervised algorithms provide a natural way to tackle discovery problems but make it difficult to incorporate constraints and only offer very limited control over the outcomes. Previous work has shown that semi-supervised (deep) clustering techniques can allow the system to incorporate prior knowledge and constraints in the intent discovery process. However they did not address how to allow for control through human feedback. In our Controllable Discovery of Intents (CDI) framework domain and prior knowledge are incorporated using a sequence of unsupervised contrastive learning on unlabeled data followed by fine-tuning on partially labeled data, and finally iterative refinement of clustering and representations through repeated clustering and pseudo-label fine-tuning. In addition, we draw from continual learning literature and use learning-without-forgetting to prevent catastrophic forgetting across those training stages. Finally, we show how this deep-clustering process can become part of an incremental discovery strategy with human-in-the-loop. We report results on both CLINC and BANKING datasets. CDI outperforms previous works by a significant margin: 10.26% and 11.72% respectively.


[55] 2410.14756

Packing-Inspired Algorithms for Periodic Scheduling Problems with Harmonic Periods

We tackle the problem of non-preemptive periodic scheduling with a harmonic set of periods. Problems of this kind arise within domains of periodic manufacturing and maintenance, and also during the design of industrial, automotive, and avionics communication protocols, where efficient scheduling of messages is crucial for the performance of a time-triggered network. We consider the decision variant of the periodic scheduling problem on a single highly-utilized machine. We first prove a bijection between periodic scheduling and a particular (so-called height-divisible) 2D packing of rectangles. We formulate the problem using Constraint Programming and compare it with equivalent state-of-the-art Integer Linear Programming formulation, showing the former's superiority on difficult instances. Furthermore, we develop a packing-inspired first fit heuristic, which we compare with methods described in the literature. We justify our proposed methods on synthetically generated problem instances inspired by the communication of messages on one channel.


[56] 2410.14758

Mitigating Embedding Collapse in Diffusion Models for Categorical Data

Latent diffusion models have enabled continuous-state diffusion models to handle a variety of datasets, including categorical data. However, most methods rely on fixed pretrained embeddings, limiting the benefits of joint training with the diffusion model. While jointly learning the embedding (via reconstruction loss) and the latent diffusion model (via score matching loss) could enhance performance, our analysis shows that end-to-end training risks embedding collapse, degrading generation quality. To address this issue, we introduce CATDM, a continuous diffusion framework within the embedding space that stabilizes training. We propose a novel objective combining the joint embedding-diffusion variational lower bound with a Consistency-Matching (CM) regularizer, alongside a shifted cosine noise schedule and random dropping strategy. The CM regularizer ensures the recovery of the true data distribution. Experiments on benchmarks show that CATDM mitigates embedding collapse, yielding superior results on FFHQ, LSUN Churches, and LSUN Bedrooms. In particular, CATDM achieves an FID of 6.81 on ImageNet $256\times256$ with 50 steps. It outperforms non-autoregressive models in machine translation and is on a par with previous methods in text generation.


[57] 2410.14761

Constrained Recurrent Bayesian Forecasting for Crack Propagation

Predictive maintenance of railway infrastructure, especially railroads, is essential to ensure safety. However, accurate prediction of crack evolution represents a major challenge due to the complex interactions between intrinsic and external factors, as well as measurement uncertainties. Effective modeling requires a multidimensional approach and a comprehensive understanding of these dynamics and uncertainties. Motivated by an industrial use case based on collected real data containing measured crack lengths, this paper introduces a robust Bayesian multi-horizon approach for predicting the temporal evolution of crack lengths on rails. This model captures the intricate interplay between various factors influencing crack growth. Additionally, the Bayesian approach quantifies both epistemic and aleatoric uncertainties, providing a confidence interval around predictions. To enhance the model's reliability for railroad maintenance, specific constraints are incorporated. These constraints limit non-physical crack propagation behavior and prioritize safety. The findings reveal a trade-off between prediction accuracy and constraint compliance, highlighting the nuanced decision-making process in model training. This study offers insights into advanced predictive modeling for dynamic temporal forecasting, particularly in railway maintenance, with potential applications in other domains.


[58] 2410.14763

Enabling Scalable Evaluation of Bias Patterns in Medical LLMs

Large language models (LLMs) have shown impressive potential in helping with numerous medical challenges. Deploying LLMs in high-stakes applications such as medicine, however, brings in many concerns. One major area of concern relates to biased behaviors of LLMs in medical applications, leading to unfair treatment of individuals. To pave the way for the responsible and impactful deployment of Med LLMs, rigorous evaluation is a key prerequisite. Due to the huge complexity and variability of different medical scenarios, existing work in this domain has primarily relied on using manually crafted datasets for bias evaluation. In this study, we present a new method to scale up such bias evaluations by automatically generating test cases based on rigorous medical evidence. We specifically target the challenges of a) domain-specificity of bias characterization, b) hallucinating while generating the test cases, and c) various dependencies between the health outcomes and sensitive attributes. To that end, we offer new methods to address these challenges integrated with our generative pipeline, using medical knowledge graphs, medical ontologies, and customized general LLM evaluation frameworks in our method. Through a series of extensive experiments, we show that the test cases generated by our proposed method can effectively reveal bias patterns in Med LLMs at larger and more flexible scales than human-crafted datasets. We publish a large bias evaluation dataset using our pipeline, which is dedicated to a few medical case studies. A live demo of our application for vignette generation is available at https://vignette.streamlit.app. Our code is also available at https://github.com/healthylaife/autofair.


[59] 2410.14764

Multifidelity Kolmogorov-Arnold Networks

We develop a method for multifidelity Kolmogorov-Arnold networks (KANs), which use a low-fidelity model along with a small amount of high-fidelity data to train a model for the high-fidelity data accurately. Multifidelity KANs (MFKANs) reduce the amount of expensive high-fidelity data needed to accurately train a KAN by exploiting the correlations between the low- and high-fidelity data to give accurate and robust predictions in the absence of a large high-fidelity dataset. In addition, we show that multifidelity KANs can be used to increase the accuracy of physics-informed KANs (PIKANs), without the use of training data.


[60] 2410.14765

What's New in My Data? Novelty Exploration via Contrastive Generation

Fine-tuning is widely used to adapt language models for specific goals, often leveraging real-world data such as patient records, customer-service interactions, or web content in languages not covered in pre-training. These datasets are typically massive, noisy, and often confidential, making their direct inspection challenging. However, understanding them is essential for guiding model deployment and informing decisions about data cleaning or suppressing any harmful behaviors learned during fine-tuning. In this study, we introduce the task of novelty discovery through generation, which aims to identify novel properties of a fine-tuning dataset by generating examples that illustrate these properties. Our approach, Contrastive Generative Exploration (CGE), assumes no direct access to the data but instead relies on a pre-trained model and the same model after fine-tuning. By contrasting the predictions of these two models, CGE can generate examples that highlight novel characteristics of the fine-tuning data. However, this simple approach may produce examples that are too similar to one another, failing to capture the full range of novel phenomena present in the dataset. We address this by introducing an iterative version of CGE, where the previously generated examples are used to update the pre-trained model, and this updated model is then contrasted with the fully fine-tuned model to generate the next example, promoting diversity in the generated outputs. Our experiments demonstrate the effectiveness of CGE in detecting novel content, such as toxic language, as well as new natural and programming languages. Furthermore, we show that CGE remains effective even when models are fine-tuned using differential privacy techniques.


[61] 2410.14766

Evaluating Quantized Large Language Models for Code Generation on Low-Resource Language Benchmarks

Democratization of AI is an important topic within the broader topic of the digital divide. This issue is relevant to LLMs, which are becoming popular as AI co-pilots but suffer from a lack of accessibility due to high computational demand. In this study, we evaluate whether quantization is a viable approach toward enabling LLMs on generic consumer devices. The study assesses the performance of five quantized code LLMs in Lua code generation tasks. To evaluate the impact of quantization, the models with 7B parameters were tested on a consumer laptop at 2-, 4-, and 8-bit integer precisions and compared to non-quantized code LLMs with 1.3, 2, and 3 billion parameters. Lua is chosen as a low-level resource language to avoid models' biases related to high-resource languages. The results suggest that the models quantized at the 4-bit integer precision offer the best trade-off between performance and model size. These models can be comfortably deployed on an average laptop without a dedicated GPU. The performance significantly drops at the 2-bit integer precision. The models at 8-bit integer precision require more inference time that does not effectively translate to better performance. The 4-bit models with 7 billion parameters also considerably outperform non-quantized models with lower parameter numbers despite having comparable model sizes with respect to storage and memory demand. While quantization indeed increases the accessibility of smaller LLMs with 7 billion parameters, these LLMs demonstrate overall low performance (less than 50\%) on high-precision and low-resource tasks such as Lua code generation. While accessibility is improved, usability is still not at the practical level comparable to foundational LLMs such as GPT-4o or Llama 3.1 405B.


[62] 2410.14770

A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts

Reconstructing a complete object from its parts is a fundamental problem in many scientific domains. The purpose of this article is to provide a systematic survey on this topic. The reassembly problem requires understanding the attributes of individual pieces and establishing matches between different pieces. Many approaches also model priors of the underlying complete object. Existing approaches are tightly connected problems of shape segmentation, shape matching, and learning shape priors. We provide existing algorithms in this context and emphasize their similarities and differences to general-purpose approaches. We also survey the trends from early non-deep learning approaches to more recent deep learning approaches. In addition to algorithms, this survey will also describe existing datasets, open-source software packages, and applications. To the best of our knowledge, this is the first comprehensive survey on this topic in computer graphics.


[63] 2410.14786

BDDC Preconditioning on GPUs for Cardiac Simulations

In order to understand cardiac arrhythmia, computer models for electrophysiology are essential. In the EuroHPC MicroCARD project, we adapt the current models and leverage modern computing resources to model diseased hearts and their microstructure accurately. Towards this objective, we develop a portable, highly efficient, and performing BDDC preconditioner and solver implementation, demonstrating scalability with over 90% efficiency on up to 100 GPUs.


[64] 2410.14790

SSL-NBV: A Self-Supervised-Learning-Based Next-Best-View algorithm for Efficient 3D Plant Reconstruction by a Robot

The 3D reconstruction of plants is challenging due to their complex shape causing many occlusions. Next-Best-View (NBV) methods address this by iteratively selecting new viewpoints to maximize information gain (IG). Deep-learning-based NBV (DL-NBV) methods demonstrate higher computational efficiency over classic voxel-based NBV approaches but current methods require extensive training using ground-truth plant models, making them impractical for real-world plants. These methods, moreover, rely on offline training with pre-collected data, limiting adaptability in changing agricultural environments. This paper proposes a self-supervised learning-based NBV method (SSL-NBV) that uses a deep neural network to predict the IG for candidate viewpoints. The method allows the robot to gather its own training data during task execution by comparing new 3D sensor data to the earlier gathered data and by employing weakly-supervised learning and experience replay for efficient online learning. Comprehensive evaluations were conducted in simulation and real-world environments using cross-validation. The results showed that SSL-NBV required fewer views for plant reconstruction than non-NBV methods and was over 800 times faster than a voxel-based method. SSL-NBV reduced training annotations by over 90% compared to a baseline DL-NBV. Furthermore, SSL-NBV could adapt to novel scenarios through online fine-tuning. Also using real plants, the results showed that the proposed method can learn to effectively plan new viewpoints for 3D plant reconstruction. Most importantly, SSL-NBV automated the entire network training and uses continuous online learning, allowing it to operate in changing agricultural environments.


[65] 2410.14795

Cross-Document Event-Keyed Summarization

Event-keyed summarization (EKS) requires generating a summary about a specific event described in a document, given the document and an event representation extracted from it. In this work, we extend EKS to the cross-document setting (CDEKS), in which summaries must synthesize information from accounts of the same event given by multiple sources. We introduce SEAMUS (Summaries of Events Across Multiple Sources), a high-quality dataset for CDEKS based on an expert reannotation of the FAMUS dataset for cross-document argument extraction. We present a suite of baselines on SEAMUS, covering both smaller, fine-tuned models, as well as zero- and few-shot prompted LLMs, along with detailed ablations, and a human evaluation study, showing SEAMUS to be a valuable benchmark for this new task.


[66] 2410.14799

Deep Generic Dynamic Object Detection Based on Dynamic Grid Maps

This paper describes a method to detect generic dynamic objects for automated driving. First, a LiDAR-based dynamic grid is generated online. Second, a deep learning-based detector is trained on the dynamic grid to infer the presence of dynamic objects of any type, which is a prerequisite for safe automated vehicles in arbitrary, edge-case scenarios. The Rotation-equivariant Detector (ReDet) - originally designed for oriented object detection on aerial images - was chosen due to its high detection performance. Experiments are conducted based on real sensor data and the benefits in comparison to classic dynamic cell clustering strategies are highlighted. The false positive object detection rate is strongly reduced by the proposed approach.


[67] 2410.14802

Implicit Regularization of Sharpness-Aware Minimization for Scale-Invariant Problems

Sharpness-aware minimization (SAM) improves generalization of various deep learning tasks. Motivated by popular architectures such as LoRA, we explore the implicit regularization of SAM for scale-invariant problems involving two groups of variables. Instead of focusing on commonly used sharpness, this work introduces a concept termed balancedness, defined as the difference between the squared norm of two variables. This allows us to depict richer global behaviors of SAM. In particular, our theoretical and empirical findings reveal that i) SAM promotes balancedness; and ii) the regularization on balancedness is data-responsive -- outliers have stronger impact. The latter coincides with empirical observations that SAM outperforms SGD in the presence of outliers. Leveraging the implicit regularization, we develop a resource-efficient SAM variant, balancedness-aware regularization (BAR), tailored for scale-invariant problems such as finetuning language models with LoRA. BAR saves 95% computational overhead of SAM, with enhanced test performance across various tasks on RoBERTa, GPT2, and OPT-1.3B.


[68] 2410.14803

DistRL: An Asynchronous Distributed Reinforcement Learning Framework for On-Device Control Agents

On-device control agents, especially on mobile devices, are responsible for operating mobile devices to fulfill users' requests, enabling seamless and intuitive interactions. Integrating Multimodal Large Language Models (MLLMs) into these agents enhances their ability to understand and execute complex commands, thereby improving user experience. However, fine-tuning MLLMs for on-device control presents significant challenges due to limited data availability and inefficient online training processes. This paper introduces DistRL, a novel framework designed to enhance the efficiency of online RL fine-tuning for mobile device control agents. DistRL employs centralized training and decentralized data acquisition to ensure efficient fine-tuning in the context of dynamic online interactions. Additionally, the framework is backed by our tailor-made RL algorithm, which effectively balances exploration with the prioritized utilization of collected data to ensure stable and robust training. Our experiments show that, on average, DistRL delivers a 3X improvement in training efficiency and enables training data collection 2.4X faster than the leading synchronous multi-machine methods. Notably, after training, DistRL achieves a 20% relative improvement in success rate compared to state-of-the-art methods on general Android tasks from an open benchmark, significantly outperforming existing approaches while maintaining the same training time. These results validate DistRL as a scalable and efficient solution, offering substantial improvements in both training efficiency and agent performance for real-world, in-the-wild device control tasks.


[69] 2410.14805

GESH-Net: Graph-Enhanced Spherical Harmonic Convolutional Networks for Cortical Surface Registration

Currently, cortical surface registration techniques based on classical methods have been well developed. However, a key issue with classical methods is that for each pair of images to be registered, it is necessary to search for the optimal transformation in the deformation space according to a specific optimization algorithm until the similarity measure function converges, which cannot meet the requirements of real-time and high-precision in medical image registration. Researching cortical surface registration based on deep learning models has become a new direction. But so far, there are still only a few studies on cortical surface image registration based on deep learning. Moreover, although deep learning methods theoretically have stronger representation capabilities, surpassing the most advanced classical methods in registration accuracy and distortion control remains a challenge. Therefore, to address this challenge, this paper constructs a deep learning model to study the technology of cortical surface image registration. The specific work is as follows: (1) An unsupervised cortical surface registration network based on a multi-scale cascaded structure is designed, and a convolution method based on spherical harmonic transformation is introduced to register cortical surface data. This solves the problem of scale-inflexibility of spherical feature transformation and optimizes the multi-scale registration process. (2)By integrating the attention mechanism, a graph-enhenced module is introduced into the registration network, using the graph attention module to help the network learn global features of cortical surface data, enhancing the learning ability of the network. The results show that the graph attention module effectively enhances the network's ability to extract global features, and its registration results have significant advantages over other methods.


[70] 2410.14807

Aligning AI Agents via Information-Directed Sampling

The staggering feats of AI systems have brought to attention the topic of AI Alignment: aligning a "superintelligent" AI agent's actions with humanity's interests. Many existing frameworks/algorithms in alignment study the problem on a myopic horizon or study learning from human feedback in isolation, relying on the contrived assumption that the agent has already perfectly identified the environment. As a starting point to address these limitations, we define a class of bandit alignment problems as an extension of classic multi-armed bandit problems. A bandit alignment problem involves an agent tasked with maximizing long-run expected reward by interacting with an environment and a human, both involving details/preferences initially unknown to the agent. The reward of actions in the environment depends on both observed outcomes and human preferences. Furthermore, costs are associated with querying the human to learn preferences. Therefore, an effective agent ought to intelligently trade-off exploration (of the environment and human) and exploitation. We study these trade-offs theoretically and empirically in a toy bandit alignment problem which resembles the beta-Bernoulli bandit. We demonstrate while naive exploration algorithms which reflect current practices and even touted algorithms such as Thompson sampling both fail to provide acceptable solutions to this problem, information-directed sampling achieves favorable regret.


[71] 2410.14808

The S2 Hierarchical Discrete Global Grid as a Nexus for Data Representation, Integration, and Querying Across Geospatial Knowledge Graphs

Geospatial Knowledge Graphs (GeoKGs) have become integral to the growing field of Geospatial Artificial Intelligence. Initiatives like the U.S. National Science Foundation's Open Knowledge Network program aim to create an ecosystem of nation-scale, cross-disciplinary GeoKGs that provide AI-ready geospatial data aligned with FAIR principles. However, building this infrastructure presents key challenges, including 1) managing large volumes of data, 2) the computational complexity of discovering topological relations via SPARQL, and 3) conflating multi-scale raster and vector data. Discrete Global Grid Systems (DGGS) help tackle these issues by offering efficient data integration and representation strategies. The KnowWhereGraph utilizes Google's S2 Geometry -- a DGGS framework -- to enable efficient multi-source data processing, qualitative spatial querying, and cross-graph integration. This paper outlines the implementation of S2 within KnowWhereGraph, emphasizing its role in topologically enriching and semantically compressing data. Ultimately, this work demonstrates the potential of DGGS frameworks, particularly S2, for building scalable GeoKGs.


[72] 2410.14812

Isolated Causal Effects of Natural Language

As language technologies become widespread, it is important to understand how variations in language affect reader perceptions -- formalized as the isolated causal effect of some focal language-encoded intervention on an external outcome. A core challenge of estimating isolated effects is the need to approximate all non-focal language outside of the intervention. In this paper, we introduce a formal estimation framework for isolated causal effects and explore how different approximations of non-focal language impact effect estimates. Drawing on the principle of omitted variable bias, we present metrics for evaluating the quality of isolated effect estimation and non-focal language approximation along the axes of fidelity and overlap. In experiments on semi-synthetic and real-world data, we validate the ability of our framework to recover ground truth isolated effects, and we demonstrate the utility of our proposed metrics as measures of quality for both isolated effect estimates and non-focal language approximations.


[73] 2410.14814

Effects of Soft-Domain Transfer and Named Entity Information on Deception Detection

In the modern age an enormous amount of communication occurs online, and it is difficult to know when something written is genuine or deceitful. There are many reasons for someone to deceive online (e.g., monetary gain, political gain) and detecting this behavior without any physical interaction is a difficult task. Additionally, deception occurs in several text-only domains and it is unclear if these various sources can be leveraged to improve detection. To address this, eight datasets were utilized from various domains to evaluate their effect on classifier performance when combined with transfer learning via intermediate layer concatenation of fine-tuned BERT models. We find improvements in accuracy over the baseline. Furthermore, we evaluate multiple distance measurements between datasets and find that Jensen-Shannon distance correlates moderately with transfer learning performance. Finally, the impact was evaluated of multiple methods, which produce additional information in a dataset's text via named entities, on BERT performance and we find notable improvement in accuracy of up to 11.2%.


[74] 2410.14815

Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus

Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy.


[75] 2410.14816

Revisiting the Unicity Distance through a Channel Transmission Perspective

This paper revisits the classical notion of unicity distance from an enlightening perspective grounded in information theory, specifically by framing the encryption process as a noisy transmission channel. Using results from reliable communication theory, we derive a simple information-theoretic proof of the same unicity distance formula as in Shannon's classical result and a channel transmission interpretation of the unicity distance.


[76] 2410.14817

A Complexity-Based Theory of Compositionality

Compositionality is believed to be fundamental to intelligence. In humans, it underlies the structure of thought, language, and higher-level reasoning. In AI, compositional representations can enable a powerful form of out-of-distribution generalization, in which a model systematically adapts to novel combinations of known concepts. However, while we have strong intuitions about what compositionality is, there currently exists no formal definition for it that is measurable and mathematical. Here, we propose such a definition, which we call representational compositionality, that accounts for and extends our intuitions about compositionality. The definition is conceptually simple, quantitative, grounded in algorithmic information theory, and applicable to any representation. Intuitively, representational compositionality states that a compositional representation satisfies three properties. First, it must be expressive. Second, it must be possible to re-describe the representation as a function of discrete symbolic sequences with re-combinable parts, analogous to sentences in natural language. Third, the function that relates these symbolic sequences to the representation, analogous to semantics in natural language, must be simple. Through experiments on both synthetic and real world data, we validate our definition of compositionality and show how it unifies disparate intuitions from across the literature in both AI and cognitive science. We also show that representational compositionality, while theoretically intractable, can be readily estimated using standard deep learning tools. Our definition has the potential to inspire the design of novel, theoretically-driven models that better capture the mechanisms of compositional thought.


[77] 2410.14818

Enabling Unit Proofing for Software Implementation Verification

Formal verification provides mathematical guarantees that a software is correct. Design-level verification tools ensure software specifications are correct, but they do not expose defects in actual implementations. For this purpose, engineers use code-level tools. However, such tools struggle to scale to large software. The process of "Unit Proofing" mitigates this by decomposing the software and verifying each unit independently. We examined AWS's use of unit proofing and observed that current approaches are manual and prone to faults that mask severe defects. We propose a research agenda for a unit proofing framework, both methods and tools, to support software engineers in applying unit proofing effectively and efficiently. This will enable engineers to discover code-level defects early.


[78] 2410.14821

Tackling domain generalization for out-of-distribution endoscopic imaging

While recent advances in deep learning (DL) for surgical scene segmentation have yielded promising results on single-center and single-imaging modality data, these methods usually do not generalize well to unseen distributions or modalities. Even though human experts can identify visual appearances, DL methods often fail to do so when data samples do not follow a similar distribution. Current literature addressing domain gaps in modality changes has focused primarily on natural scene data. However, these methods cannot be directly applied to endoscopic data, as visual cues in such data are more limited compared to natural scenes. In this work, we exploit both style and content information in images by performing instance normalization and feature covariance mapping techniques to preserve robust and generalizable feature representations. Additionally, to avoid the risk of removing salient feature representations associated with objects of interest, we introduce a restitution module within the feature-learning ResNet backbone that retains useful task-relevant features. Our proposed method shows a 13.7% improvement over the baseline DeepLabv3+ and nearly an 8% improvement over recent state-of-the-art (SOTA) methods for the target (different modality) set of the EndoUDA polyp dataset. Similarly, our method achieved a 19% improvement over the baseline and 6% over the best-performing SOTA method on the EndoUDA Barrett's esophagus (BE) dataset.


[79] 2410.14825

Redesigning Service Level Agreements: Equity and Efficiency in City Government Operations

We consider government service allocation -- how the government allocates resources (e.g., maintenance of public infrastructure) over time. It is important to make these decisions efficiently and equitably -- though these desiderata may conflict. In particular, we consider the design of Service Level Agreements (SLA) in city government operations: promises that incidents such as potholes and fallen trees will be responded to within a certain time. We model the problem of designing a set of SLAs as an optimization problem with equity and efficiency objectives under a queuing network framework; the city has two decision levers: how to allocate response budgets to different neighborhoods, and how to schedule responses to individual incidents. We: (1) Theoretically analyze a stylized model and find that the "price of equity" is small in realistic settings; (2) Develop a simulation-optimization framework to optimize policies in practice; (3) Apply our framework empirically using data from NYC, finding that: (a) status quo inspections are highly inefficient and inequitable compared to optimal ones, and (b) in practice, the equity-efficiency trade-off is not substantial: generally, inefficient policies are inequitable, and vice versa.


[80] 2410.14826

SPRIG: Improving Large Language Model Performance by System Prompt Optimization

Large Language Models (LLMs) have shown impressive capabilities in many scenarios, but their performance depends, in part, on the choice of prompt. Past research has focused on optimizing prompts specific to a task. However, much less attention has been given to optimizing the general instructions included in a prompt, known as a system prompt. To address this gap, we propose SPRIG, an edit-based genetic algorithm that iteratively constructs prompts from prespecified components to maximize the model's performance in general scenarios. We evaluate the performance of system prompts on a collection of 47 different types of tasks to ensure generalizability. Our study finds that a single optimized system prompt performs on par with task prompts optimized for each individual task. Moreover, combining system and task-level optimizations leads to further improvement, which showcases their complementary nature. Experiments also reveal that the optimized system prompts generalize effectively across model families, parameter sizes, and languages. This study provides insights into the role of system-level instructions in maximizing LLM potential.


[81] 2410.14827

Making LLMs Vulnerable to Prompt Injection via Poisoning Alignment

In a prompt injection attack, an attacker injects a prompt into the original one, aiming to make the LLM follow the injected prompt and perform a task chosen by the attacker. Existing prompt injection attacks primarily focus on how to blend the injected prompt into the original prompt without altering the LLM itself. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we show that an attacker can boost the success of prompt injection attacks by poisoning the LLM's alignment process. Specifically, we propose PoisonedAlign, a method to strategically create poisoned alignment samples. When even a small fraction of the alignment data is poisoned using our method, the aligned LLM becomes more vulnerable to prompt injection while maintaining its foundational capabilities. The code is available at https://github.com/Sadcardation/PoisonedAlign


[82] 2410.14831

Mind the Gap: Foundation Models and the Covert Proliferation of Military Intelligence, Surveillance, and Targeting

Discussions regarding the dual use of foundation models and the risks they pose have overwhelmingly focused on a narrow set of use cases and national security directives-in particular, how AI may enable the efficient construction of a class of systems referred to as CBRN: chemical, biological, radiological and nuclear weapons. The overwhelming focus on these hypothetical and narrow themes has occluded a much-needed conversation regarding present uses of AI for military systems, specifically ISTAR: intelligence, surveillance, target acquisition, and reconnaissance. These are the uses most grounded in actual deployments of AI that pose life-or-death stakes for civilians, where misuses and failures pose geopolitical consequences and military escalations. This is particularly underscored by novel proliferation risks specific to the widespread availability of commercial models and the lack of effective approaches that reliably prevent them from contributing to ISTAR capabilities. In this paper, we outline the significant national security concerns emanating from current and envisioned uses of commercial foundation models outside of CBRN contexts, and critique the narrowing of the policy debate that has resulted from a CBRN focus (e.g. compute thresholds, model weight release). We demonstrate that the inability to prevent personally identifiable information from contributing to ISTAR capabilities within commercial foundation models may lead to the use and proliferation of military AI technologies by adversaries. We also show how the usage of foundation models within military settings inherently expands the attack vectors of military systems and the defense infrastructures they interface with. We conclude that in order to secure military systems and limit the proliferation of AI armaments, it may be necessary to insulate military AI systems and personal data from commercial foundation models.


[83] 2410.14835

Towards Automated Verification of LLM-Synthesized C Programs

We present \synver{}, a novel synthesis and verification framework for C programs, that deploys a Large Language Model (LLM) to search for a candidate program that satisfies the given specification. Our key idea is to impose syntactic and semantic biases on programs generated by LLMs, such that the synthesized program is more amenable to automated verification. Based on this idea, we propose a novel specification-verification tool, built on top of Verified Software Toolchain, that help automate the process. Our experiments on a diverse set of benchmarks drawn from the deductive program synthesis community, shows that this approach is scalable and extensible. The benchmarks constitute of specifications comprising of basic coding examples, Separation Logic based assertions, and API specifications.


[84] 2410.14836

Automated Road Extraction from Satellite Imagery Integrating Dense Depthwise Dilated Separable Spatial Pyramid Pooling with DeepLabV3+

Road Extraction is a sub-domain of Remote Sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. The DeepLab series, known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects' features, addresses some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP, combined with an appropriately selected backbone network and a Squeeze-and-Excitation block, will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from Remote Sensing images. The results section presents a comparison of our model's performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach.


[85] 2410.14837

Topological obstruction to the training of shallow ReLU neural networks

Studying the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks is a fundamental step for understanding their behavior in more complex settings. This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow. We discuss how the homogeneous nature of the ReLU activation function constrains the training trajectories to lie on a product of quadric hypersurfaces whose shape depends on the particular initialization of the network's parameters. When the neural network's output is a single scalar, we prove that these quadrics can have multiple connected components, limiting the set of reachable parameters during training. We analytically compute the number of these components and discuss the possibility of mapping one to the other through neuron rescaling and permutation. In this simple setting, we find that the non-connectedness results in a topological obstruction, which, depending on the initialization, can make the global optimum unreachable. We validate this result with numerical experiments.


[86] 2410.14838

Rank Suggestion in Non-negative Matrix Factorization: Residual Sensitivity to Initial Conditions (RSIC)

Determining the appropriate rank in Non-negative Matrix Factorization (NMF) is a critical challenge that often requires extensive parameter tuning and domain-specific knowledge. Traditional methods for rank determination focus on identifying a single optimal rank, which may not capture the complex structure inherent in real-world datasets. In this study, we introduce a novel approach called Residual Sensitivity to Intial Conditions (RSIC) that suggests potentially multiple ranks of interest by analyzing the sensitivity of the relative residuals (e.g. relative reconstruction error) to different initializations. By computing the Mean Coordinatewise Interquartile Range (MCI) of the residuals across multiple random initializations, our method identifies regions where the NMF solutions are less sensitive to initial conditions and potentially more meaningful. We evaluate RSIC on a diverse set of datasets, including single-cell gene expression data, image data, and text data, and compare it against current state-of-the-art existing rank determination methods. Our experiments demonstrate that RSIC effectively identifies relevant ranks consistent with the underlying structure of the data, outperforming traditional methods in scenarios where they are computationally infeasible or less accurate. This approach provides a more scalable and generalizable solution for rank determination in NMF that does not rely on domain-specific knowledge or assumptions.


[87] 2410.14842

Efficient Parameter Tuning for a Structure-Based Virtual Screening HPC Application

Virtual screening applications are highly parameterized to optimize the balance between quality and execution performance. While output quality is critical, the entire screening process must be completed within a reasonable time. In fact, a slight reduction in output accuracy may be acceptable when dealing with large datasets. Finding the optimal quality-throughput trade-off depends on the specific HPC system used and should be re-evaluated with each new deployment or significant code update. This paper presents two parallel autotuning techniques for constrained optimization in distributed High-Performance Computing (HPC) environments. These techniques extend sequential Bayesian Optimization (BO) with two parallel asynchronous approaches, and they integrate predictions from Machine Learning (ML) models to help comply with constraints. Our target application is LiGen, a real-world virtual screening software for drug discovery. The proposed methods address two relevant challenges: efficient exploration of the parameter space and performance measurement using domain-specific metrics and procedures. We conduct an experimental campaign comparing the two methods with a popular state-of-the-art autotuner. Results show that our methods find configurations that are, on average, up to 35-42% better than the ones found by the autotuner and the default expert-picked LiGen configuration.


[88] 2410.14844

SYNOSIS: Image synthesis pipeline for machine vision in metal surface inspection

The use of machine learning (ML) methods for development of robust and flexible visual inspection system has shown promising. However their performance is highly dependent on the amount and diversity of training data. This is often restricted not only due to costs but also due to a wide variety of defects and product surfaces which occur with varying frequency. As such, one can not guarantee that the acquired dataset contains enough defect and product surface occurrences which are needed to develop a robust model. Using parametric synthetic dataset generation, it is possible to avoid these issues. In this work, we introduce a complete pipeline which describes in detail how to approach image synthesis for surface inspection - from first acquisition, to texture and defect modeling, data generation, comparison to real data and finally use of the synthetic data to train a defect segmentation model. The pipeline is in detail evaluated for milled and sandblasted aluminum surfaces. In addition to providing an in-depth view into each step, discussion of chosen methods, and presentation of ML results, we provide a comprehensive dual dataset containing both real and synthetic images.


[89] 2410.14851

IntelliMove: Enhancing Robotic Planning with Semantic Mapping

Semantic navigation enables robots to understand their environments beyond basic geometry, allowing them to reason about objects, their functions, and their interrelationships. In semantic robotic navigation, creating accurate and semantically enriched maps is fundamental. Planning based on semantic maps not only enhances the robot's planning efficiency and computational speed but also makes the planning more meaningful, supporting a broader range of semantic tasks. In this paper, we introduce two core modules of IntelliMove: IntelliMap, a generic hierarchical semantic topometric map framework developed through an analysis of current technologies strengths and weaknesses, and Semantic Planning, which utilizes the semantic maps from IntelliMap. We showcase use cases that highlight IntelliMove's adaptability and effectiveness. Through experiments in simulated environments, we further demonstrate IntelliMove's capability in semantic navigation.


[90] 2410.14852

FedSpaLLM: Federated Pruning of Large Language Models

Large Language Models (LLMs) achieve state-of-the-art performance but are challenging to deploy due to their high computational and storage demands. Pruning can reduce model size, yet existing methods assume public access to calibration data, which is impractical for privacy-sensitive applications. To address the challenge of pruning LLMs in privacy-preserving settings, we propose FedSpaLLM, the first federated learning framework designed specifically for pruning LLMs. FedSpaLLM enables clients to prune their models locally based on private data while accounting for system heterogeneity and maintaining communication efficiency. Our framework introduces several key innovations: (1) a novel $\ell_0$-norm aggregation function that ensures only non-zero weights are averaged across clients, preserving important model parameters; (2) an adaptive mask expansion technique that meets global sparsity targets while accommodating client-specific pruning decisions; and (3) a layer sampling strategy that reduces communication overhead and personalizes the pruning process based on client resources. Extensive experiments show that FedSpaLLM improves pruning performance in diverse federated settings. The source code will be released upon publication.


[91] 2410.14853

DFlow: Diverse Dialogue Flow Simulation with Large Language Models

Developing language model-based dialogue agents requires effective data to train models that can follow specific task logic. However, most existing data augmentation methods focus on increasing diversity in language, topics, or dialogue acts at the utterance level, largely neglecting a critical aspect of task logic diversity at the dialogue level. This paper proposes a novel data augmentation method designed to enhance the diversity of synthetic dialogues by focusing on task execution logic. Our method uses LLMs to generate decision tree-structured task plans, which enables the derivation of diverse dialogue trajectories for a given task. Each trajectory, referred to as a "dialog flow", guides the generation of a multi-turn dialogue that follows a unique trajectory. We apply this method to generate a task-oriented dialogue dataset comprising 3,886 dialogue flows across 15 different domains. We validate the effectiveness of this dataset using the next action prediction task, where models fine-tuned on our dataset outperform strong baselines, including GPT-4. Upon acceptance of this paper, we plan to release the code and data publicly.


[92] 2410.14858

Misleading Ourselves: How Disinformation Manipulates Sensemaking

Informal sensemaking surrounding U.S. election processes has been fraught in recent years, due to the inherent uncertainty of elections, the complexity of election processes in the U.S., and to disinformation. Based on insights from qualitative analysis of election rumors spreading online in 2020 and 2022, we introduce the concept of manipulated sensemaking to describe how disinformation functions by disrupting online audiences ability to make sense of novel, uncertain, or ambiguous information. We describe how at the core of this disruption is the ability for disinformation to shape broad, underlying stories called deep stories which determine the frames we use to make sense of this novel information. Additionally, we explain how sensemakings orientation around plausible explanations over accurate explanations makes it vulnerable to manipulation. Lastly, we demonstrate how disinformed deep stories shape sensemaking not just for a single event, but for many events in the future.


[93] 2410.14864

Double Distributionally Robust Bid Shading for First Price Auctions

Bid shading has become a standard practice in the digital advertising industry, in which most auctions for advertising (ad) opportunities are now of first price type. Given an ad opportunity, performing bid shading requires estimating not only the value of the opportunity but also the distribution of the highest bid from competitors (i.e. the competitive landscape). Since these two estimates tend to be very noisy in practice, first-price auction participants need a bid shading policy that is robust against relatively significant estimation errors. In this work, we provide a max-min formulation in which we maximize the surplus against an adversary that chooses a distribution both for the value and the competitive landscape, each from a Kullback-Leibler-based ambiguity set. As we demonstrate, the two ambiguity sets are essential to adjusting the shape of the bid-shading policy in a principled way so as to effectively cope with uncertainty. Our distributionally robust bid shading policy is efficient to compute and systematically outperforms its non-robust counterpart on real datasets provided by Yahoo DSP.


[94] 2410.14865

Joint Verification and Refinement of Language Models for Safety-Constrained Planning

Although pre-trained language models can generate executable plans (e.g., programmatic policies) for solving robot tasks, the generated plans may violate task-relevant logical specifications due to the models' black-box nature. A significant gap remains between the language models' outputs and verifiable executions of plans. We develop a method to generate executable plans and formally verify them against task-relevant safety specifications. Given a high-level task description in natural language, the proposed method queries a language model to generate plans in the form of executable robot programs. It then converts the generated plan into an automaton-based representation, allowing formal verification of the automaton against the specifications. We prove that given a set of verified plans, the composition of these plans also satisfies the safety specifications. This proof ensures the safety of complex, multi-component plans, obviating the computation complexity of verifying the composed plan. We then propose an automated fine-tuning process that refines the language model to generate specification-compliant plans without the need for human labeling. The empirical results show a 30 percent improvement in the probability of generating plans that meet task specifications after fine-tuning.


[95] 2410.14868

Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation

Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 37%, the task completion rate by 14%, and reduces the wall-clock time by up to 540%. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings.


[96] 2410.14872

How to Evaluate Reward Models for RLHF

We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback). The gold-standard approach is to run a full RLHF training pipeline and directly probe downstream LLM performance. However, this process is prohibitively expensive. To address this, we build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks. These proxy tasks consist of a large-scale human preference and a verifiable correctness preference dataset, in which we measure 12 metrics across 12 domains. To investigate which reward model metrics are most correlated to gold-standard RLHF outcomes, we launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth. Ultimately, we compile our data and findings into Preference Proxy Evaluations (PPE), the first reward model benchmark explicitly linked to post-RLHF real-world human preference performance, which we open-source for public use and further development. Our code and evaluations can be found at https://github.com/lmarena/PPE .


[97] 2410.14874

Improving Vision Transformers by Overlapping Heads in Multi-Head Self-Attention

Vision Transformers have made remarkable progress in recent years, achieving state-of-the-art performance in most vision tasks. A key component of this success is due to the introduction of the Multi-Head Self-Attention (MHSA) module, which enables each head to learn different representations by applying the attention mechanism independently. In this paper, we empirically demonstrate that Vision Transformers can be further enhanced by overlapping the heads in MHSA. We introduce Multi-Overlapped-Head Self-Attention (MOHSA), where heads are overlapped with their two adjacent heads for queries, keys, and values, while zero-padding is employed for the first and last heads, which have only one neighboring head. Various paradigms for overlapping ratios are proposed to fully investigate the optimal performance of our approach. The proposed approach is evaluated using five Transformer models on four benchmark datasets and yields a significant performance boost. The source code will be made publicly available upon publication.


[98] 2410.14875

Which LLMs are Difficult to Detect? A Detailed Analysis of Potential Factors Contributing to Difficulties in LLM Text Detection

As LLMs increase in accessibility, LLM-generated texts have proliferated across several fields, such as scientific, academic, and creative writing. However, LLMs are not created equally; they may have different architectures and training datasets. Thus, some LLMs may be more challenging to detect than others. Using two datasets spanning four total writing domains, we train AI-generated (AIG) text classifiers using the LibAUC library - a deep learning library for training classifiers with imbalanced datasets. Our results in the Deepfake Text dataset show that AIG-text detection varies across domains, with scientific writing being relatively challenging. In the Rewritten Ivy Panda (RIP) dataset focusing on student essays, we find that the OpenAI family of LLMs was substantially difficult for our classifiers to distinguish from human texts. Additionally, we explore possible factors that could explain the difficulties in detecting OpenAI-generated texts.


[99] 2410.14876

Slipstream: Ebb-and-Flow Consensus on a DAG with Fast Confirmation for UTXO Transactions

This paper introduces Slipstream, a Byzantine Fault Tolerance (BFT) protocol where nodes concurrently propose blocks to be added to a Directed Acyclic Graph (DAG) and aim to agree on block ordering. Slipstream offers two types of block orderings: an optimistic ordering, which is live and secure in a sleepy model under up to 50% Byzantine nodes, and a final ordering, which is a prefix of the optimistic ordering and ensures safety and liveness in an eventual lock-step synchronous model under up to 33% Byzantine nodes. Additionally, Slipstream integrates a payment system that allows for fast UTXO transaction confirmation independently of block ordering. Transactions are confirmed in three rounds during synchrony, and unconfirmed double spends are resolved in a novel way using the DAG structure.


[100] 2410.14877

Coordinated Frequency Regulation in Grid-Forming Storage Network via Safety-Consensus

Inverter-based storages are poised to play a prominent role in future power grids with massive renewable generation. Grid-forming inverters (GFMs) are emerging as a dominant technology with synchronous generators (SG)-like characteristics through primary control loops. Advanced secondary control schemes, e.g., consensus algorithms, allow GFM-interfaced storage units to participate in frequency regulations and restore nominal frequency following grid disturbances. However, it is imperative to ensure transient frequency excursions do not violate critical safety limits while the grid transitions from pre- to post-disturbance operating point. This paper presents a hierarchical safety-enforced consensus method -- combining a device-layer (decentralized) transient safety filter with a secondary-layer (distributed) consensus coordination -- to achieve three distinct objectives: limiting transient frequency excursions to safe limits, minimizing frequency deviations from nominal, and ensuring coordinated power sharing among GFM-storage units. The proposed hierarchical (two-layered) safety-consensus technique is illustrated using a GFM-interfaced storage network on an IEEE 68-bus system under multiple grid transient scenarios.


[101] 2410.14878

On the Influence of Shape, Texture and Color for Learning Semantic Segmentation

In recent years, a body of works has emerged, studying shape and texture biases of off-the-shelf pre-trained deep neural networks (DNN) for image classification. These works study how much a trained DNN relies on image cues, predominantly shape and texture. In this work, we switch the perspective, posing the following questions: What can a DNN learn from each of the image cues, i.e., shape, texture and color, respectively? How much does each cue influence the learning success? And what are the synergy effects between different cues? Studying these questions sheds light upon cue influences on learning and thus the learning capabilities of DNNs. We study these questions on semantic segmentation which allows us to address our questions on pixel level. To conduct this study, we develop a generic procedure to decompose a given dataset into multiple ones, each of them only containing either a single cue or a chosen mixture. This framework is then applied to two real-world datasets, Cityscapes and PASCAL Context, and a synthetic data set based on the CARLA simulator. We learn the given semantic segmentation task from these cue datasets, creating cue experts. Early fusion of cues is performed by constructing appropriate datasets. This is complemented by a late fusion of experts which allows us to study cue influence location-dependent on pixel level. Our study on three datasets reveals that neither texture nor shape clearly dominate the learning success, however a combination of shape and color but without texture achieves surprisingly strong results. Our findings hold for convolutional and transformer backbones. In particular, qualitatively there is almost no difference in how both of the architecture types extract information from the different cues.


[102] 2410.14879

Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM

Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.


[103] 2410.14881

Class-RAG: Content Moderation with Retrieval Augmented Generation

Robust content moderation classifiers are essential for the safety of Generative AI systems. Content moderation, or safety classification, is notoriously ambiguous: differences between safe and unsafe inputs are often extremely subtle, making it difficult for classifiers (and indeed, even humans) to properly distinguish violating vs. benign samples without further context or explanation. Furthermore, as these technologies are deployed across various applications and audiences, scaling risk discovery and mitigation through continuous model fine-tuning becomes increasingly challenging and costly. To address these challenges, we propose a Classification approach employing Retrieval-Augmented Generation (Class-RAG). Class-RAG extends the capability of its base LLM through access to a retrieval library which can be dynamically updated to enable semantic hotfixing for immediate, flexible risk mitigation. Compared to traditional fine-tuned models, Class-RAG demonstrates flexibility and transparency in decision-making. As evidenced by empirical studies, Class-RAG outperforms on classification and is more robust against adversarial attack. Besides, our findings suggest that Class-RAG performance scales with retrieval library size, indicating that increasing the library size is a viable and low-cost approach to improve content moderation.


[104] 2410.14882

Multi-diseases detection with memristive system on chip

This study presents the first implementation of multilayer neural networks on a memristor/CMOS integrated system on chip (SoC) to simultaneously detect multiple diseases. To overcome limitations in medical data, generative AI techniques are used to enhance the dataset, improving the classifier's robustness and diversity. The system achieves notable performance with low latency, high accuracy (91.82%), and energy efficiency, facilitated by end-to-end execution on a memristor-based SoC with ten 256x256 crossbar arrays and an integrated on-chip processor. This research showcases the transformative potential of memristive in-memory computing hardware in accelerating machine learning applications for medical diagnostics.


[105] 2410.14886

Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts

Graph anomaly detection (GAD), which aims to identify nodes in a graph that significantly deviate from normal patterns, plays a crucial role in broad application domains. Existing GAD methods, whether supervised or unsupervised, are one-model-for-one-dataset approaches, i.e., training a separate model for each graph dataset. This limits their applicability in real-world scenarios where training on the target graph data is not possible due to issues like data privacy. To overcome this limitation, we propose a novel zero-shot generalist GAD approach UNPrompt that trains a one-for-all detection model, requiring the training of one GAD model on a single graph dataset and then effectively generalizing to detect anomalies in other graph datasets without any retraining or fine-tuning. The key insight in UNPrompt is that i) the predictability of latent node attributes can serve as a generalized anomaly measure and ii) highly generalized normal and abnormal graph patterns can be learned via latent node attribute prediction in a properly normalized node attribute space. UNPrompt achieves generalist GAD through two main modules: one module aligns the dimensionality and semantics of node attributes across different graphs via coordinate-wise normalization in a projected space, while another module learns generalized neighborhood prompts that support the use of latent node attribute predictability as an anomaly score across different datasets. Extensive experiments on real-world GAD datasets show that UNPrompt significantly outperforms diverse competing methods under the generalist GAD setting, and it also has strong superiority under the one-model-for-one-dataset setting.


[106] 2410.14888

Self-Satisfied: An end-to-end framework for SAT generation and prediction

The boolean satisfiability (SAT) problem asks whether there exists an assignment of boolean values to the variables of an arbitrary boolean formula making the formula evaluate to True. It is well-known that all NP-problems can be coded as SAT problems and therefore SAT is important both practically and theoretically. From both of these perspectives, better understanding the patterns and structure implicit in SAT data is of significant value. In this paper, we describe several advances that we believe will help open the door to such understanding: we introduce hardware accelerated algorithms for fast SAT problem generation, a geometric SAT encoding that enables the use of transformer architectures typically applied to vision tasks, and a simple yet effective technique we term head slicing for reducing sequence length representation inside transformer architectures. These advances allow us to scale our approach to SAT problems with thousands of variables and tens of thousands of clauses. We validate our architecture, termed Satisfiability Transformer (SaT), on the SAT prediction task with data from the SAT Competition (SATComp) 2022 problem sets. Prior related work either leveraged a pure machine learning approach, but could not handle SATComp-sized problems, or was hybrid in the sense of integrating a machine learning component in a standard SAT solving tool. Our pure machine learning approach achieves prediction accuracies comparable to recent work, but on problems that are an order of magnitude larger than previously demonstrated. A fundamental aspect of our work concerns the very nature of SAT data and its suitability for training machine learning models. We both describe experimental results that probe the landscape of where SAT data can be successfully used for learning and position these results within the broader context of complexity and learning.


[107] 2410.14890

Reasoning, Memorization, and Fine-Tuning Language Models for Non-Cooperative Games

We develop a method that integrates the tree of thoughts and multi-agent framework to enhance the capability of pre-trained language models in solving complex, unfamiliar games. The method decomposes game-solving into four incremental tasks -- game summarization, area selection, action extraction, and action validation -- each assigned to a specific language-model agent. By constructing a tree of thoughts, the method simulates reasoning paths and allows agents to collaboratively distill game representations and tactics, mitigating the limitations of language models in reasoning and long-term memorization. Additionally, an automated fine-tuning process further optimizes the agents' performance by ranking query-response pairs based on game outcomes, e.g., winning or losing. We apply the method to a non-cooperative game and demonstrate a 65 percent winning rate against benchmark algorithms, with an additional 10 percent improvement after fine-tuning. In contrast to existing deep learning algorithms for game solving that require millions of training samples, the proposed method consumes approximately 1000 training samples, highlighting its efficiency and scalability.


[108] 2410.14892

Frequency Control and Disturbance Containment Using Grid-Forming Embedded Storage Networks

The paper discusses fast frequency control in bulk power systems using embedded networks of grid-forming energy storage resources. Differing from their traditional roles of regulating reserves, the storage resources in this work operate as fast-acting grid assets shaping transient dynamics. The storage resources in the network are autonomously controlled using local measurements for distributed frequency support during disturbance events. Further, the grid-forming inverter systems interfacing with the storage resources, are augmented with fast-acting safety controls designed to contain frequency transients within a prescribed tolerance band. The control action, derived from the storage network, improves the frequency nadirs in the system and prevents the severity of a disturbance from propagating far from the source. The paper also presents sensitivity studies to evaluate the impacts of storage capacity and inverter controller parameters on the dynamic performance of frequency control and disturbance localization. The performance of the safety-constrained grid-forming control is also compared with the more common grid-following control. The results are illustrated through case studies on an IEEE test system.


[109] 2410.14894

Soft-Label Integration for Robust Toxicity Classification

Toxicity classification in textual content remains a significant problem. Data with labels from a single annotator fall short of capturing the diversity of human perspectives. Therefore, there is a growing need to incorporate crowdsourced annotations for training an effective toxicity classifier. Additionally, the standard approach to training a classifier using empirical risk minimization (ERM) may fail to address the potential shifts between the training set and testing set due to exploiting spurious correlations. This work introduces a novel bi-level optimization framework that integrates crowdsourced annotations with the soft-labeling technique and optimizes the soft-label weights by Group Distributionally Robust Optimization (GroupDRO) to enhance the robustness against out-of-distribution (OOD) risk. We theoretically prove the convergence of our bi-level optimization algorithm. Experimental results demonstrate that our approach outperforms existing baseline methods in terms of both average and worst-group accuracy, confirming its effectiveness in leveraging crowdsourced annotations to achieve more effective and robust toxicity classification.


[110] 2410.14895

Truncated Consistency Models

Consistency models have recently been introduced to accelerate sampling from diffusion models by directly predicting the solution (i.e., data) of the probability flow ODE (PF ODE) from initial noise. However, the training of consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints. This task is much more challenging than the ultimate objective of one-step generation, which only concerns the PF ODE's noise-to-data mapping. We empirically find that this training paradigm limits the one-step generation performance of consistency models. To address this issue, we generalize consistency training to the truncated time range, which allows the model to ignore denoising tasks at earlier time steps and focus its capacity on generation. We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution. Experiments on CIFAR-10 and ImageNet $64\times64$ datasets show that our method achieves better one-step and two-step FIDs than the state-of-the-art consistency models such as iCT-deep, using more than 2$\times$ smaller networks. Project page: https://truncated-cm.github.io/


[111] 2410.14897

From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items

LLMs can now perform a variety of complex writing tasks. They also excel in answering questions pertaining to natural language inference and commonsense reasoning. Composing these questions is itself a skilled writing task, so in this paper we consider LLMs as authors of commonsense assessment items. We prompt LLMs to generate items in the style of a prominent benchmark for commonsense reasoning, the Choice of Plausible Alternatives (COPA). We examine the outcome according to analyses facilitated by the LLMs and human annotation. We find that LLMs that succeed in answering the original COPA benchmark are also more successful in authoring their own items.


[112] 2410.14900

DRACO: Differentiable Reconstruction for Arbitrary CBCT Orbits

This paper introduces a novel method for reconstructing cone beam computed tomography (CBCT) images for arbitrary orbits using a differentiable shift-variant filtered backprojection (FBP) neural network. Traditional CBCT reconstruction methods for arbitrary orbits, like iterative reconstruction algorithms, are computationally expensive and memory-intensive. The proposed method addresses these challenges by employing a shift-variant FBP algorithm optimized for arbitrary trajectories through a deep learning approach that adapts to a specific orbit geometry. This approach overcomes the limitations of existing techniques by integrating known operators into the learning model, minimizing the number of parameters, and improving the interpretability of the model. The proposed method is a significant advancement in interventional medical imaging, particularly for robotic C-arm CT systems, enabling faster and more accurate CBCT reconstructions with customized orbits. Especially this method can also be used for the analytical reconstruction of non-continuous orbits like circular plus arc. The experimental results demonstrate that the proposed method significantly accelerates the reconstruction process compared to conventional iterative algorithms. It achieves comparable or superior image quality, as evidenced by metrics such as the mean squared error (MSE), the peak signal-to-noise ratio (PSNR), and the structural similarity index measure (SSIM). The validation experiments show that the method can handle data from different trajectories, demonstrating its flexibility and robustness across different scan geometries. Our method demonstrates a significant improvement, particularly for the sinusoidal trajectory, achieving a 38.6% reduction in MSE, a 7.7% increase in PSNR, and a 5.0% improvement in SSIM. Furthermore, the computation time for reconstruction was reduced by more than 97%.


[113] 2410.14901

Efficient Matroid Intersection via a Batch-Update Auction Algorithm

Given two matroids $\mathcal{M}_1$ and $\mathcal{M}_2$ over the same $n$-element ground set, the matroid intersection problem is to find a largest common independent set, whose size we denote by $r$. We present a simple and generic auction algorithm that reduces $(1-\varepsilon)$-approximate matroid intersection to roughly $1/\varepsilon^2$ rounds of the easier problem of finding a maximum-weight basis of a single matroid. Plugging in known primitives for this subproblem, we obtain both simpler and improved algorithms in two models of computation, including: * The first near-linear time/independence-query $(1-\varepsilon)$-approximation algorithm for matroid intersection. Our randomized algorithm uses $\tilde{O}(n/\varepsilon + r/\varepsilon^5)$ independence queries, improving upon the previous $\tilde{O}(n/\varepsilon + r\sqrt{r}/{\varepsilon^3})$ bound of Quanrud (2024). * The first sublinear exact parallel algorithms for weighted matroid intersection, using $O(n^{2/3})$ rounds of rank queries or $O(n^{5/6})$ rounds of independence queries. For the unweighted case, our results improve upon the previous $O(n^{3/4})$-round rank-query and $O(n^{7/8})$-round independence-query algorithms of Blikstad (2022).


[114] 2410.14902

Modeling and Analysis of Hybrid GEO-LEO Satellite Networks

As the number of low Earth orbit (LEO) satellites rapidly increases, the consideration of frequency sharing or cooperation between geosynchronous Earth orbit (GEO) and LEO satellites is gaining attention. In this paper, we consider a hybrid GEO-LEO satellite network where GEO and LEO satellites are distributed according to independent Poisson point processes (PPPs) and share the same frequency resources. Based on the properties of PPPs, we first analyze satellite-visible probabilities, distance distributions, and association probabilities. Then, we derive an analytical expression for the network's coverage probability. Through Monte Carlo simulations, we verify the analytical results and demonstrate the impact of system parameters on coverage performance. The analytical results effectively estimate the coverage performance in scenarios where GEO and LEO satellites cooperate or share the same resource.


[115] 2410.14904

Switchback Price Experiments with Forward-Looking Demand

We consider a retailer running a switchback experiment for the price of a single product, with infinite supply. In each period, the seller chooses a price $p$ from a set of predefined prices that consist of a reference price and a few discounted price levels. The goal is to estimate the demand gradient at the reference price point, with the goal of adjusting the reference price to improve revenue after the experiment. In our model, in each period, a unit mass of buyers arrives on the market, with values distributed based on a time-varying process. Crucially, buyers are forward looking with a discounted utility and will choose to not purchase now if they expect to face a discounted price in the near future. We show that forward-looking demand introduces bias in naive estimators of the demand gradient, due to intertemporal interference. Furthermore, we prove that there is no estimator that uses data from price experiments with only two price points that can recover the correct demand gradient, even in the limit of an infinitely long experiment with an infinitesimal price discount. Moreover, we characterize the form of the bias of naive estimators. Finally, we show that with a simple three price level experiment, the seller can remove the bias due to strategic forward-looking behavior and construct an estimator for the demand gradient that asymptotically recovers the truth.


[116] 2410.14906

Structural temporal logic for mechanized program verification

Mechanized verification of liveness properties for programs with effects, nondeterminism, and nontermination is difficult. Existing temporal reasoning frameworks operate on the level of models (traces, automata) not executable code, creating a verification gap and losing the benefits of modularity and composition enjoyed by structural program logics. Reasoning about infinite traces and automata requires complex (co-)inductive proof techniques and familiarity with proof assistant mechanics (e.g., guardedness checker). We propose a structural approach to the verification of temporal properties with a new temporal logic that we call ictl. Using ictl, we internalize complex (co-)inductive proof techniques to structural lemmas and reasoning about variants and invariants. We show that it is possible to perform mechanized proofs of general temporal properties, while working in a high-level of abstraction. We demonstrate the benefits of ictl by giving mechanized proofs of safety and liveness properties for programs with queues, secure memory, and distributed consensus.


[117] 2410.14907

Differential Predictive Control of Residential Building HVACs for Maximizing Renewable Local Consumption and Supporting Fast Voltage Control

High penetration of distributed energy resources in distribution systems, such as rooftop solar PVs, has caused voltage fluctuations which are much faster than typical voltage control devices can react to, leading to increased operation cost and reduced equipment life. Residential buildings consume about 35% of the electricity in U.S. and are co-located with rooftop solar PV. Thus, they present an opportunity to mitigate these fluctuations locally, while benefiting both the grid and building owners. Previous works on DER-aware localized building energy management mostly focus on commercial buildings and analyzing impacts either on buildings or the grid. To fill the gaps, this paper proposes a distributed, differential predictive control scheme for residential HVAC systems for maximizing renewable local consumption. In addition, a detailed controller-building-grid co-simulation platform is developed and utilized for analyzing the potential impacts of the proposed control scheme on both the buildings and distribution system. Our studies show that the proposed method can provide benefits to both the buildings' owners and the distribution system by reducing energy draw from the grid by 12%, voltage violations and fast fluctuations by 20%, and the number of tap changes in voltage regulators by 14%.


[118] 2410.14911

A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models

The robustness of Vision-Language Models (VLMs) such as CLIP is critical for their deployment in safety-critical applications like autonomous driving, healthcare diagnostics, and security systems, where accurate interpretation of visual and textual data is essential. However, these models are highly susceptible to adversarial attacks, which can severely compromise their performance and reliability in real-world scenarios. Previous methods have primarily focused on improving robustness through adversarial training and generating adversarial examples using models like FGSM, AutoAttack, and DeepFool. However, these approaches often rely on strong assumptions, such as fixed perturbation norms or predefined attack patterns, and involve high computational complexity, making them challenging to implement in practical settings. In this paper, we propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques to significantly enhance the robustness of VLMs against a broad range of adversarial attacks. Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness. The fine-tuned CLIP model achieved an accuracy of 43.5% on adversarially perturbed images, compared to only 4% for the baseline model. The neural network model achieved a high accuracy of 98% in these challenging classification tasks, while the XGBoost model reached a success rate of 85.26% in prediction tasks.


[119] 2410.14912

Grid-Forming Control of Modular Dynamic Virtual Power Plants

This article explores a flexible and coordinated control design for an aggregation of heterogeneous distributed energy resources (DERs) in a dynamic virtual power plant (DVPP). The control design aims to provide a desired aggregate grid-forming (GFM) response based on the coordination of power contributions between different DERs. Compared to existing DVPP designs with an AC-coupled AC-output configuration, a more generic modular DVPP design is proposed in this article, which comprises four types of basic DVPP modules, involving AC- or DC-coupling and AC- or DC-output, adequately accommodating diverse DER integration setups, such as AC, DC, AC/DC hybrid microgrids and renewable power plants. The control design is first developed for the four basic modules by the aggregation of DERs and the disaggregation of the control objectives, and then extended to modular DVPPs through a systematic top-down approach. The control performance is comprehensively validated through simulation. The modular DVPP design offers scalable and standardizable advanced grid interfaces (AGIs) for building and operating AC/DC hybrid power grids.


[120] 2410.14913

ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life

In this paper, we present ReeFRAME, a scalable Reeb graph-based framework designed to analyze vast volumes of GPS-enabled human trajectory data generated at 1Hz frequency. ReeFRAME models Patterns-of-life (PoL) at both the population and individual levels, utilizing Multi-Agent Reeb Graphs (MARGs) for population-level patterns and Temporal Reeb Graphs (TERGs) for individual trajectories. The framework's linear algorithmic complexity relative to the number of time points ensures scalability for anomaly detection. We validate ReeFRAME on six large-scale anomaly detection datasets, simulating real-time patterns with up to 500,000 agents over two months.


[121] 2410.14916

Cooperation and Fairness in Multi-Agent Reinforcement Learning

Multi-agent systems are trained to maximize shared cost objectives, which typically reflect system-level efficiency. However, in the resource-constrained environments of mobility and transportation systems, efficiency may be achieved at the expense of fairness -- certain agents may incur significantly greater costs or lower rewards compared to others. Tasks could be distributed inequitably, leading to some agents receiving an unfair advantage while others incur disproportionately high costs. It is important to consider the tradeoffs between efficiency and fairness. We consider the problem of fair multi-agent navigation for a group of decentralized agents using multi-agent reinforcement learning (MARL). We consider the reciprocal of the coefficient of variation of the distances traveled by different agents as a measure of fairness and investigate whether agents can learn to be fair without significantly sacrificing efficiency (i.e., increasing the total distance traveled). We find that by training agents using min-max fair distance goal assignments along with a reward term that incentivizes fairness as they move towards their goals, the agents (1) learn a fair assignment of goals and (2) achieve almost perfect goal coverage in navigation scenarios using only local observations. For goal coverage scenarios, we find that, on average, our model yields a 14% improvement in efficiency and a 5% improvement in fairness over a baseline trained using random assignments. Furthermore, an average of 21% improvement in fairness can be achieved compared to a model trained on optimally efficient assignments; this increase in fairness comes at the expense of only a 7% decrease in efficiency. Finally, we extend our method to environments in which agents must complete coverage tasks in prescribed formations and show that it is possible to do so without tailoring the models to specific formation shapes.


[122] 2410.14917

Low-synchronization Arnoldi Methods for the Matrix Exponential with Application to Exponential Integrators

High order exponential integrators require computing linear combination of exponential like $\varphi$-functions of large matrices $A$ times a vector $v$. Krylov projection methods are the most general and remain an efficient choice for computing the matrix-function-vector-product evaluation when the matrix is $A$ is large and unable to be explicitly stored, or when obtaining information about the spectrum is expensive. The Krylov approximation relies on the Gram-Schmidt (GS) orthogonalization procedure to produce the orthonormal basis $V_m$. In parallel, GS orthogonalization requires \textit{global synchronizations} for inner products and vector normalization in the orthogonalization process. Reducing the amount of global synchronizations is of paramount importance for the efficiency of a numerical algorithm in a massively parallel setting. We improve the parallel strong scaling properties of exponential integrators by addressing the underlying bottleneck in the linear algebra using low-synchronization GS methods. The resulting orthogonalization algorithms have an accuracy comparable to modified Gram-Schmidt yet are better suited for distributed architecture, as only one global communication is required per orthogonalization-step. We present geophysics-based numerical experiments and standard examples routinely used to test stiff time integrators, which validate that reducing global communication leads to better parallel scalability and reduced time-to-solution for exponential integrators.


[123] 2410.14919

Adversarial Score identity Distillation: Rapidly Surpassing the Teacher in One Step

Score identity Distillation (SiD) is a data-free method that has achieved state-of-the-art performance in image generation by leveraging only a pretrained diffusion model, without requiring any training data. However, the ultimate performance of SiD is constrained by the accuracy with which the pretrained model captures the true data scores at different stages of the diffusion process. In this paper, we introduce SiDA (SiD with Adversarial Loss), which not only enhances generation quality but also improves distillation efficiency by incorporating real images and adversarial loss. SiDA utilizes the encoder from the generator's score network as a discriminator, boosting its ability to distinguish between real images and those generated by SiD. The adversarial loss is batch-normalized within each GPU and then combined with the original SiD loss. This integration effectively incorporates the average "fakeness" per GPU batch into the pixel-based SiD loss, enabling SiDA to distill a single-step generator either from scratch or by fine-tuning an existing one. SiDA converges significantly faster than its predecessor when trained from scratch, and swiftly improves upon the original model's performance after an initial warmup period during fine-tuning from a pre-distilled SiD generator. This one-step adversarial distillation method has set new benchmarks for generation performance when distilling EDM diffusion models pretrained on CIFAR-10 (32x32) and ImageNet (64x64), achieving FID scores of $\mathbf{1.499}$ on CIFAR-10 unconditional, $\mathbf{1.396}$ on CIFAR-10 conditional, and $\mathbf{1.110}$ on ImageNet 64x64. Our open-source code will be integrated into the SiD codebase on GitHub.


[124] 2410.14922

Testing and validation of innovative eXtended Reality technologies for astronaut training in a partial-gravity parabolic flight campaign

The use of eXtended Reality (XR) technologies in the space domain has increased significantly over the past few years as it can offer many advantages when simulating complex and challenging environments. Space agencies are currently using these disruptive tools to train astronauts for Extravehicular Activities (EVAs), to test equipment and procedures, and to assess spacecraft and hardware designs. With the Moon being the current focus of the next generation of space exploration missions, simulating its harsh environment is one of the key areas where XR can be applied, particularly for astronaut training. Peculiar lunar lighting conditions in combination with reduced gravity levels will highly impact human locomotion especially for movements such as walking, jumping, and running. In order to execute operations on the lunar surface and to safely live on the Moon for an extended period of time, innovative training methodologies and tools such as XR are becoming paramount to perform pre-mission validation and certification. This research work presents the findings of the experiments aimed at exploring the integration of XR technology and parabolic flight activities for astronaut training. In addition, the study aims to consolidate these findings into a set of guidelines that can assist future researchers who wish to incorporate XR technology into lunar training and preparation activities, including the use of such XR tools during long duration missions.


[125] 2410.14923

Imprompter: Tricking LLM Agents into Improper Tool Use

Large Language Model (LLM) Agents are an emerging computing paradigm that blends generative machine learning with tools such as code interpreters, web browsing, email, and more generally, external resources. These agent-based systems represent an emerging shift in personal computing. We contribute to the security foundations of agent-based systems and surface a new class of automatically computed obfuscated adversarial prompt attacks that violate the confidentiality and integrity of user resources connected to an LLM agent. We show how prompt optimization techniques can find such prompts automatically given the weights of a model. We demonstrate that such attacks transfer to production-level agents. For example, we show an information exfiltration attack on Mistral's LeChat agent that analyzes a user's conversation, picks out personally identifiable information, and formats it into a valid markdown command that results in leaking that data to the attacker's server. This attack shows a nearly 80% success rate in an end-to-end evaluation. We conduct a range of experiments to characterize the efficacy of these attacks and find that they reliably work on emerging agent-based systems like Mistral's LeChat, ChatGLM, and Meta's Llama. These attacks are multimodal, and we show variants in the text-only and image domains.


[126] 2410.14924

Securing the Web: Analysis of HTTP Security Headers in Popular Global Websites

The surge in website attacks, including Denial of Service (DoS), Cross-Site Scripting (XSS), and Clickjacking, underscores the critical need for robust HTTPS implementation-a practice that, alarmingly, remains inadequately adopted. Regarding this, we analyzed HTTP security headers across N=3,195 globally popular websites. Initially, we employed automated categorization using Google NLP to organize these websites into functional categories and validated this categorization through manual verification using Symantec Sitereview. Subsequently, we assessed HTTPS implementation across these websites by analyzing security factors, including compliance with HTTP Strict Transport Security (HSTS) policies, Certificate Pinning practices, and other security postures using the Mozilla Observatory. Our analysis revealed over half of the websites examined (55.66%) received a dismal security grade of 'F' and most websites scored low for various metrics, which is indicative of weak HTTP header implementation. These low scores expose multiple issues such as weak implementation of Content Security Policies (CSP), neglect of HSTS guidelines, and insufficient application of Subresource Integrity (SRI). Alarmingly, healthcare websites (n=59) are particularly concerning; despite being entrusted with sensitive patient data and obligations to comply with data regulations, these sites recorded the lowest average score (18.14). We conclude by recommending that developers should prioritize secure redirection strategies and use implementation ease as a guide when deciding where to focus their development efforts.


[127] 2410.14925

"Confrontation or Acceptance": Understanding Novice Visual Artists' Perception towards AI-assisted Art Creation

The rise of Generative Artificial Intelligence (G-AI) has transformed the creative arts landscape by producing novel artwork, whereas in the same time raising ethical concerns. While previous studies have addressed these concerns from technical and societal viewpoints, there is a lack of discussion from an HCI perspective, especially considering the community's perception and the visual artists as human factors. Our study investigates G-AI's impact on visual artists and their relationship with GAI to inform HCI research. We conducted semi-structured interviews with 20 novice visual artists from an art college in the university with G-AI courses and practices. Our findings reveal (1) the mis-conception and the evolving adoption of visual artists, (2) the miscellaneous opinions of the society on visual artists' creative work, and (3) the co-existence of confrontation and collaboration between visual artists and G-AI. We explore future HCI research opportunities to address these issues.


[128] 2410.14926

Aligning LLMs with Human Instructions and Stock Market Feedback in Financial Sentiment Analysis

Financial sentiment analysis is crucial for trading and investment decision-making. This study introduces an adaptive retrieval augmented framework for Large Language Models (LLMs) that aligns with human instructions through Instruction Tuning and incorporates market feedback to dynamically adjust weights across various knowledge sources within the Retrieval-Augmented Generation (RAG) module. Building upon foundational models like LLaMA 2, we fine-tune a series of LLMs ranging from 7B to 70B in size, enriched with Instruction Tuning and RAG, and further optimized through direct feedback and Reinforcement Learning (RL)-based refinement methods applied to the source weights of RAG.Through extensive evaluation, we demonstrate that the sentiment outputs from our LLMs more accurately mirror the intrinsic sentiment of textual data, showcasing a 1% to 6% boost in accuracy and F1 score over existing state-of-the-art models and leading conversational AI systems. Moreover, the sentiments extracted are more indicative of the directions in stock price movements. On top of that, we successfully construct portfolios that yield a 3.61% higher Sharpe ratio compared to the S&P 500 baseline in bullish markets. These portfolios also demonstrate resilience in bearish markets, with a 5x reduction in return losses compared to those typically experienced by the S&P 500.


[129] 2410.14928

A Novel Approach to Grasping Control of Soft Robotic Grippers based on Digital Twin

This paper has proposed a Digital Twin (DT) framework for real-time motion and pose control of soft robotic grippers. The developed DT is based on an industrial robot workstation, integrated with our newly proposed approach for soft gripper control, primarily based on computer vision, for setting the driving pressure for desired gripper status in real-time. Knowing the gripper motion, the gripper parameters (e.g. curvatures and bending angles, etc.) are simulated by kinematics modelling in Unity 3D, which is based on four-piecewise constant curvature kinematics. The mapping in between the driving pressure and gripper parameters is achieved by implementing OpenCV based image processing algorithms and data fitting. Results show that our DT-based approach can achieve satisfactory performance in real-time control of soft gripper manipulation, which can satisfy a wide range of industrial applications.


[130] 2410.14929

Water quality polluted by total suspended solids classified within an Artificial Neural Network approach

This study investigates the application of an artificial neural network framework for analysing water pollution caused by solids. Water pollution by suspended solids poses significant environmental and health risks. Traditional methods for assessing and predicting pollution levels are often time-consuming and resource-intensive. To address these challenges, we developed a model that leverages a comprehensive dataset of water quality from total suspended solids. A convolutional neural network was trained under a transfer learning approach using data corresponding to different total suspended solids concentrations, with the goal of accurately predicting low, medium and high pollution levels based on various input variables. Our model demonstrated high predictive accuracy, outperforming conventional statistical methods in terms of both speed and reliability. The results suggest that the artificial neural network framework can serve as an effective tool for real-time monitoring and management of water pollution, facilitating proactive decision-making and policy formulation. This approach not only enhances our understanding of pollution dynamics but also underscores the potential of machine learning techniques in environmental science.


[131] 2410.14931

"Ghost of the past": identifying and resolving privacy leakage from LLM's memory through proactive user interaction

Memories, encompassing past inputs in context window and retrieval-augmented generation (RAG), frequently surface during human-LLM interactions, yet users are often unaware of their presence and the associated privacy risks. To address this, we propose MemoAnalyzer, a system for identifying, visualizing, and managing private information within memories. A semi-structured interview (N=40) revealed that low privacy awareness was the primary challenge, while proactive privacy control emerged as the most common user need. MemoAnalyzer uses a prompt-based method to infer and identify sensitive information from aggregated past inputs, allowing users to easily modify sensitive content. Background color temperature and transparency are mapped to inference confidence and sensitivity, streamlining privacy adjustments. A 5-day evaluation (N=36) comparing MemoAnalyzer with the default GPT setting and a manual modification baseline showed MemoAnalyzer significantly improved privacy awareness and protection without compromising interaction speed. Our study contributes to privacy-conscious LLM design, offering insights into privacy protection for Human-AI interactions.


[132] 2410.14934

Development of a Simple and Novel Digital Twin Framework for Industrial Robots in Intelligent robotics manufacturing

This paper has proposed an easily replicable and novel approach for developing a Digital Twin (DT) system for industrial robots in intelligent manufacturing applications. Our framework enables effective communication via Robot Web Service (RWS), while a real-time simulation is implemented in Unity 3D and Web-based Platform without any other 3rd party tools. The framework can do real-time visualization and control of the entire work process, as well as implement real-time path planning based on algorithms executed in MATLAB. Results verify the high communication efficiency with a refresh rate of only $17 ms$. Furthermore, our developed web-based platform and Graphical User Interface (GUI) enable easy accessibility and user-friendliness in real-time control.


[133] 2410.14936

Optimizing Individualized Incentives from Grid Measurements and Limited Knowledge of Agent Behavior

As electrical generation becomes more distributed and volatile, and loads become more uncertain, controllability of distributed energy resources (DERs), regardless of their ownership status, will be necessary for grid reliability. Grid operators lack direct control over end-users' grid interactions, such as energy usage, but incentives can influence behavior -- for example, an end-user that receives a grid-driven incentive may adjust their consumption or expose relevant control variables in response. A key challenge in studying such incentives is the lack of data about human behavior, which usually motivates strong assumptions, such as distributional assumptions on compliance or rational utility-maximization. In this paper, we propose a general incentive mechanism in the form of a constrained optimization problem -- our approach is distinguished from prior work by modeling human behavior (e.g., reactions to an incentive) as an arbitrary unknown function. We propose feedback-based optimization algorithms to solve this problem that each leverage different amounts of information and/or measurements. We show that each converges to an asymptotically stable incentive with (near)-optimality guarantees given mild assumptions on the problem. Finally, we evaluate our proposed techniques in voltage regulation simulations on standard test beds. We test a variety of settings, including those that break assumptions required for theoretical convergence (e.g., convexity, smoothness) to capture realistic settings. In this evaluation, our proposed algorithms are able to find near-optimal incentives even when the reaction to an incentive is modeled by a theoretically difficult (yet realistic) function.


[134] 2410.14939

HiPPO-KAN: Efficient KAN Model for Time Series Analysis

In this study, we introduces a parameter-efficient model that outperforms traditional models in time series forecasting, by integrating High-order Polynomial Projection (HiPPO) theory into the Kolmogorov-Arnold network (KAN) framework. This HiPPO-KAN model achieves superior performance on long sequence data without increasing parameter count. Experimental results demonstrate that HiPPO-KAN maintains a constant parameter count while varying window sizes and prediction horizons, in contrast to KAN, whose parameter count increases linearly with window size. Surprisingly, although the HiPPO-KAN model keeps a constant parameter count as increasing window size, it significantly outperforms KAN model at larger window sizes. These results indicate that HiPPO-KAN offers significant parameter efficiency and scalability advantages for time series forecasting. Additionally, we address the lagging problem commonly encountered in time series forecasting models, where predictions fail to promptly capture sudden changes in the data. We achieve this by modifying the loss function to compute the MSE directly on the coefficient vectors in the HiPPO domain. This adjustment effectively resolves the lagging problem, resulting in predictions that closely follow the actual time series data. By incorporating HiPPO theory into KAN, this study showcases an efficient approach for handling long sequences with improved predictive accuracy, offering practical contributions for applications in large-scale time series data.


[135] 2410.14940

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.


[136] 2410.14943

Workflows Community Summit 2024: Future Trends and Challenges in Scientific Workflows

The Workflows Community Summit gathered 111 participants from 18 countries to discuss emerging trends and challenges in scientific workflows, focusing on six key areas: time-sensitive workflows, AI-HPC convergence, multi-facility workflows, heterogeneous HPC environments, user experience, and FAIR computational workflows. The integration of AI and exascale computing has revolutionized scientific workflows, enabling higher-fidelity models and complex, time-sensitive processes, while introducing challenges in managing heterogeneous environments and multi-facility data dependencies. The rise of large language models is driving computational demands to zettaflop scales, necessitating modular, adaptable systems and cloud-service models to optimize resource utilization and ensure reproducibility. Multi-facility workflows present challenges in data movement, curation, and overcoming institutional silos, while diverse hardware architectures require integrating workflow considerations into early system design and developing standardized resource management tools. The summit emphasized improving user experience in workflow systems and ensuring FAIR workflows to enhance collaboration and accelerate scientific discovery. Key recommendations include developing standardized metrics for time-sensitive workflows, creating frameworks for cloud-HPC integration, implementing distributed-by-design workflow modeling, establishing multi-facility authentication protocols, and accelerating AI integration in HPC workflow management. The summit also called for comprehensive workflow benchmarks, workflow-specific UX principles, and a FAIR workflow maturity model, highlighting the need for continued collaboration in addressing the complex challenges posed by the convergence of AI, HPC, and multi-facility research environments.


[137] 2410.14944

Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding

Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, \emph{e.g.}, simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.


[138] 2410.14945

ImmerseDiffusion: A Generative Spatial Audio Latent Diffusion Model

We introduce ImmerseDiffusion, an end-to-end generative audio model that produces 3D immersive soundscapes conditioned on the spatial, temporal, and environmental conditions of sound objects. ImmerseDiffusion is trained to generate first-order ambisonics (FOA) audio, which is a conventional spatial audio format comprising four channels that can be rendered to multichannel spatial output. The proposed generative system is composed of a spatial audio codec that maps FOA audio to latent components, a latent diffusion model trained based on various user input types, namely, text prompts, spatial, temporal and environmental acoustic parameters, and optionally a spatial audio and text encoder trained in a Contrastive Language and Audio Pretraining (CLAP) style. We propose metrics to evaluate the quality and spatial adherence of the generated spatial audio. Finally, we assess the model performance in terms of generation quality and spatial conformance, comparing the two proposed modes: ``descriptive", which uses spatial text prompts) and ``parametric", which uses non-spatial text prompts and spatial parameters. Our evaluations demonstrate promising results that are consistent with the user conditions and reflect reliable spatial fidelity.


[139] 2410.14946

DEL-Ranking: Ranking-Correction Denoising Framework for Elucidating Molecular Affinities in DNA-Encoded Libraries

DNA-encoded library (DEL) screening has revolutionized the detection of protein-ligand interactions through read counts, enabling rapid exploration of vast chemical spaces. However, noise in read counts, stemming from nonspecific interactions, can mislead this exploration process. We present DEL-Ranking, a novel distribution-correction denoising framework that addresses these challenges. Our approach introduces two key innovations: (1) a novel ranking loss that rectifies relative magnitude relationships between read counts, enabling the learning of causal features determining activity levels, and (2) an iterative algorithm employing self-training and consistency loss to establish model coherence between activity label and read count predictions. Furthermore, we contribute three new DEL screening datasets, the first to comprehensively include multi-dimensional molecular representations, protein-ligand enrichment values, and their activity labels. These datasets mitigate data scarcity issues in AI-driven DEL screening research. Rigorous evaluation on diverse DEL datasets demonstrates DEL-Ranking's superior performance across multiple correlation metrics, with significant improvements in binding affinity prediction accuracy. Our model exhibits zero-shot generalization ability across different protein targets and successfully identifies potential motifs determining compound binding affinity. This work advances DEL screening analysis and provides valuable resources for future research in this area.


[140] 2410.14947

Optimally Solving Colored Generalized Sliding-Tile Puzzles: Complexity and Bounds

The Generalized Sliding-Tile Puzzle (GSTP), allowing many square tiles on a board to move in parallel while enforcing natural geometric collision constraints on the movement of neighboring tiles, provide a high-fidelity mathematical model for many high-utility existing and future multi-robot applications, e.g., at mobile robot-based warehouses or autonomous garages. Motivated by practical relevance, this work examines a further generalization of GSTP called the Colored Generalized Sliding-Tile Puzzle (CGSP), where tiles can now assume varying degrees of distinguishability, a common occurrence in the aforementioned applications. Our study establishes the computational complexity of CGSP and its key sub-problems under a broad spectrum of possible conditions and characterizes solution makespan lower and upper bounds that differ by at most a logarithmic factor. These results are further extended to higher-dimensional versions of the puzzle game.


[141] 2410.14948

SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation

Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge. While recent medical MLLMs demonstrate strong performance in lab settings, they often struggle in real-world applications, highlighting a substantial gap between research and practice. In this paper, we seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation. At the data collection stage, we introduce SemiHVision, a dataset that combines human annotations with automated augmentation techniques to improve both medical knowledge representation and diagnostic reasoning. For model fine-tuning, we trained PMC-Cambrian-8B-AN over 2400 H100 GPU hours, resulting in performance that surpasses public medical models like HuatuoGPT-Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus (55.7%) on traditional benchmarks such as SLAKE and VQA-RAD. In the evaluation phase, we observed that traditional benchmarks cannot accurately reflect realistic clinical task capabilities. To overcome this limitation and provide more targeted guidance for model evaluation, we introduce the JAMA Clinical Challenge, a novel benchmark specifically designed to evaluate diagnostic reasoning. On this benchmark, PMC-Cambrian-AN achieves state-of-the-art performance with a GPT-4 score of 1.29, significantly outperforming HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17), demonstrating its superior diagnostic reasoning abilities.


[142] 2410.14949

Straightness of Rectified Flow: A Theoretical Insight into Wasserstein Convergence

Diffusion models have emerged as a powerful tool for image generation and denoising. Typically, generative models learn a trajectory between the starting noise distribution and the target data distribution. Recently Liu et al. (2023b) designed a novel alternative generative model Rectified Flow (RF), which aims to learn straight flow trajectories from noise to data using a sequence of convex optimization problems with close ties to optimal transport. If the trajectory is curved, one must use many Euler discretization steps or novel strategies, such as exponential integrators, to achieve a satisfactory generation quality. In contrast, RF has been shown to theoretically straighten the trajectory through successive rectifications, reducing the number of function evaluations (NFEs) while sampling. It has also been shown empirically that RF may improve the straightness in two rectifications if one can solve the underlying optimization problem within a sufficiently small error. In this paper, we make two key theoretical contributions: 1) we provide the first theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution. Our error rate is characterized by the number of discretization steps and a new formulation of straightness stronger than that in the original work. 2) In line with the previous empirical findings, we show that, for a rectified flow from a Gaussian to a mixture of two Gaussians, two rectifications are sufficient to achieve a straight flow. Additionally, we also present empirical results on both simulated and real datasets to validate our theoretical findings.


[143] 2410.14950

A Civics-oriented Approach to Understanding Intersectionally Marginalized Users' Experience with Hate Speech Online

While content moderation in online platforms marginalizes users in the Global South at large, users of certain identities are further marginalized. Such users often come from Indigenous ethnic minority groups or identify as women. Through a qualitative study based on 18 semi-structured interviews, this paper explores how such users' experiences with hate speech online in Bangladesh are shaped by their intersectional identities. Through a civics-oriented approach, we examined the spectrum of their legal status, membership, rights, and participation as users of online platforms. Drawing analogies with the concept of citizenship, we develop the concept of usership that offers a user-centered metaphor in studying moderation and platform governance.


[144] 2410.14951

LSS-SKAN: Efficient Kolmogorov-Arnold Networks based on Single-Parameterized Function

The recently proposed Kolmogorov-Arnold Networks (KAN) networks have attracted increasing attention due to their advantage of high visualizability compared to MLP. In this paper, based on a series of small-scale experiments, we proposed the Efficient KAN Expansion Principle (EKE Principle): allocating parameters to expand network scale, rather than employing more complex basis functions, leads to more efficient performance improvements in KANs. Based on this principle, we proposed a superior KAN termed SKAN, where the basis function utilizes only a single learnable parameter. We then evaluated various single-parameterized functions for constructing SKANs, with LShifted Softplus-based SKANs (LSS-SKANs) demonstrating superior accuracy. Subsequently, extensive experiments were performed, comparing LSS-SKAN with other KAN variants on the MNIST dataset. In the final accuracy tests, LSS-SKAN exhibited superior performance on the MNIST dataset compared to all tested pure KAN variants. Regarding execution speed, LSS-SKAN outperformed all compared popular KAN variants. Our experimental codes are available at https://github.com/chikkkit/LSS-SKAN and SKAN's Python library (for quick construction of SKAN in python) codes are available at https://github.com/chikkkit/SKAN .


[145] 2410.14952

A Fast AI Surrogate for Coastal Ocean Circulation Models

Nearly 900 million people live in low-lying coastal zones around the world and bear the brunt of impacts from more frequent and severe hurricanes and storm surges. Oceanographers simulate ocean current circulation along the coasts to develop early warning systems that save lives and prevent loss and damage to property from coastal hazards. Traditionally, such simulations are conducted using coastal ocean circulation models such as the Regional Ocean Modeling System (ROMS), which usually runs on an HPC cluster with multiple CPU cores. However, the process is time-consuming and energy expensive. While coarse-grained ROMS simulations offer faster alternatives, they sacrifice detail and accuracy, particularly in complex coastal environments. Recent advances in deep learning and GPU architecture have enabled the development of faster AI (neural network) surrogates. This paper introduces an AI surrogate based on a 4D Swin Transformer to simulate coastal tidal wave propagation in an estuary for both hindcast and forecast (up to 12 days). Our approach not only accelerates simulations but also incorporates a physics-based constraint to detect and correct inaccurate results, ensuring reliability while minimizing manual intervention. We develop a fully GPU-accelerated workflow, optimizing the model training and inference pipeline on NVIDIA DGX-2 A100 GPUs. Our experiments demonstrate that our AI surrogate reduces the time cost of 12-day forecasting of traditional ROMS simulations from 9,908 seconds (on 512 CPU cores) to 22 seconds (on one A100 GPU), achieving over 450$\times$ speedup while maintaining high-quality simulation results. This work contributes to oceanographic modeling by offering a fast, accurate, and physically consistent alternative to traditional simulation models, particularly for real-time forecasting in rapid disaster response.


[146] 2410.14957

Offline-to-online Reinforcement Learning for Image-based Grasping with Scarce Demonstrations

Offline-to-online reinforcement learning (O2O RL) aims to obtain a continually improving policy as it interacts with the environment, while ensuring the initial behaviour is satisficing. This satisficing behaviour is necessary for robotic manipulation where random exploration can be costly due to catastrophic failures and time. O2O RL is especially compelling when we can only obtain a scarce amount of (potentially suboptimal) demonstrations$\unicode{x2014}$a scenario where behavioural cloning (BC) is known to suffer from distribution shift. Previous works have outlined the challenges in applying O2O RL algorithms under the image-based environments. In this work, we propose a novel O2O RL algorithm that can learn in a real-life image-based robotic vacuum grasping task with a small number of demonstrations where BC fails majority of the time. The proposed algorithm replaces the target network in off-policy actor-critic algorithms with a regularization technique inspired by neural tangent kernel. We demonstrate that the proposed algorithm can reach above 90% success rate in under two hours of interaction time, with only 50 human demonstrations, while BC and two commonly-used RL algorithms fail to achieve similar performance.


[147] 2410.14958

Neural Radiance Field Image Refinement through End-to-End Sampling Point Optimization

Neural Radiance Field (NeRF), capable of synthesizing high-quality novel viewpoint images, suffers from issues like artifact occurrence due to its fixed sampling points during rendering. This study proposes a method that optimizes sampling points to reduce artifacts and produce more detailed images.


[148] 2410.14960

Dual-Technique Privacy & Security Analysis for E-Commerce Websites Through Automated and Manual Implementation

As e-commerce continues to expand, the urgency for stronger privacy and security measures becomes increasingly critical, particularly on platforms frequented by younger users who are often less aware of potential risks. In our analysis of 90 US-based e-commerce websites, we employed a dual-technique approach, combining automated tools with manual evaluations. Tools like CookieServe and PrivacyCheck revealed that 38.5% of the websites deployed over 50 cookies per session, many of which were categorized as unnecessary or unclear in function, posing significant risks to users' Personally Identifiable Information (PII). Our manual assessment further uncovered critical gaps in standard security practices, including the absence of mandatory multi-factor authentication (MFA) and breach notification protocols. Additionally, we observed inadequate input validation, which compromises the integrity of user data and transactions. Based on these findings, we recommend targeted improvements to privacy policies, enhanced transparency in cookie usage, and the implementation of stronger authentication protocols. These measures are essential for ensuring compliance with CCPA and COPPA, thereby fostering more secure online environments, particularly for younger users.


[149] 2410.14961

LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model

Graph foundation models (GFMs) have recently gained significant attention. However, the unique data processing and evaluation setups employed by different studies hinder a deeper understanding of their progress. Additionally, current research tends to focus on specific subsets of graph learning tasks, such as structural tasks, node-level tasks, or classification tasks. As a result, they often incorporate specialized modules tailored to particular task types, losing their applicability to other graph learning tasks and contradicting the original intent of foundation models to be universal. Therefore, to enhance consistency, coverage, and diversity across domains, tasks, and research interests within the graph learning community in the evaluation of GFMs, we propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets. Moreover, we introduce LangGFM, a novel GFM that relies entirely on large language models. By revisiting and exploring the effective graph textualization principles, as well as repurposing successful techniques from graph augmentation and graph self-supervised learning within the language space, LangGFM achieves performance on par with or exceeding the state of the art across GFMBench, which can offer us new perspectives, experiences, and baselines to drive forward the evolution of GFMs.


[150] 2410.14963

Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data

As global climate change intensifies, accurate weather forecasting has become increasingly important, affecting agriculture, energy management, environmental protection, and daily life. This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data. CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability. By using Mean Absolute Error (MAE) as the loss function, the model demonstrates excellent performance in processing complex meteorological data, addressing challenges such as missing data and high-dimensionality. The results show a strong alignment between the prediction curve and test data, validating the model's potential in climate prediction. This study offers valuable insights for fields such as agriculture, energy management, and urban planning, and lays the groundwork for future applications in weather forecasting under the context of global climate change.


[151] 2410.14964

ChronoFact: Timeline-based Temporal Fact Verification

Automated fact verification plays an essential role in fostering trust in the digital space. Despite the growing interest, the verification of temporal facts has not received much attention in the community. Temporal fact verification brings new challenges where cues of the temporal information need to be extracted and temporal reasoning involving various temporal aspects of the text must be applied. In this work, we propose an end-to-end solution for temporal fact verification that considers the temporal information in claims to obtain relevant evidence sentences and harness the power of large language model for temporal reasoning. Recognizing that temporal facts often involve events, we model these events in the claim and evidence sentences. We curate two temporal fact datasets to learn time-sensitive representations that encapsulate not only the semantic relationships among the events, but also their chronological proximity. This allows us to retrieve the top-k relevant evidence sentences and provide the context for a large language model to perform temporal reasoning and outputs whether a claim is supported or refuted by the retrieved evidence sentences. Experiment results demonstrate that the proposed approach significantly enhances the accuracy of temporal claim verification, thereby advancing current state-of-the-art in automated fact verification.


[152] 2410.14966

Attack as Defense: Run-time Backdoor Implantation for Image Content Protection

As generative models achieve great success, tampering and modifying the sensitive image contents (i.e., human faces, artist signatures, commercial logos, etc.) have induced a significant threat with social impact. The backdoor attack is a method that implants vulnerabilities in a target model, which can be activated through a trigger. In this work, we innovatively prevent the abuse of image content modification by implanting the backdoor into image-editing models. Once the protected sensitive content on an image is modified by an editing model, the backdoor will be triggered, making the editing fail. Unlike traditional backdoor attacks that use data poisoning, to enable protection on individual images and eliminate the need for model training, we developed the first framework for run-time backdoor implantation, which is both time- and resource- efficient. We generate imperceptible perturbations on the images to inject the backdoor and define the protected area as the only backdoor trigger. Editing other unprotected insensitive areas will not trigger the backdoor, which minimizes the negative impact on legal image modifications. Evaluations with state-of-the-art image editing models show that our protective method can increase the CLIP-FID of generated images from 12.72 to 39.91, or reduce the SSIM from 0.503 to 0.167 when subjected to malicious editing. At the same time, our method exhibits minimal impact on benign editing, which demonstrates the efficacy of our proposed framework. The proposed run-time backdoor can also achieve effective protection on the latest diffusion models. Code are available.


[153] 2410.14968

AugInsert: Learning Robust Visual-Force Policies via Data Augmentation for Object Assembly Tasks

This paper primarily focuses on learning robust visual-force policies in the context of high-precision object assembly tasks. Specifically, we focus on the contact phase of the assembly task where both objects (peg and hole) have made contact and the objective lies in maneuvering the objects to complete the assembly. Moreover, we aim to learn contact-rich manipulation policies with multisensory inputs on limited expert data by expanding human demonstrations via online data augmentation. We develop a simulation environment with a dual-arm robot manipulator to evaluate the effect of augmented expert demonstration data. Our focus is on evaluating the robustness of our model with respect to certain task variations: grasp pose, peg/hole shape, object body shape, scene appearance, camera pose, and force-torque/proprioception noise. We show that our proposed data augmentation method helps in learning a multisensory manipulation policy that is robust to unseen instances of these variations, particularly physical variations such as grasp pose. Additionally, our ablative studies show the significant contribution of force-torque data to the robustness of our model. For additional experiments and qualitative results, we refer to the project webpage at https://bit.ly/47skWXH .


[154] 2410.14969

Visual Navigation of Digital Libraries: Retrieval and Classification of Images in the National Library of Norway's Digitised Book Collection

Digital tools for text analysis have long been essential for the searchability and accessibility of digitised library collections. Recent computer vision advances have introduced similar capabilities for visual materials, with deep learning-based embeddings showing promise for analysing visual heritage. Given that many books feature visuals in addition to text, taking advantage of these breakthroughs is critical to making library collections open and accessible. In this work, we present a proof-of-concept image search application for exploring images in the National Library of Norway's pre-1900 books, comparing Vision Transformer (ViT), Contrastive Language-Image Pre-training (CLIP), and Sigmoid loss for Language-Image Pre-training (SigLIP) embeddings for image retrieval and classification. Our results show that the application performs well for exact image retrieval, with SigLIP embeddings slightly outperforming CLIP and ViT in both retrieval and classification tasks. Additionally, SigLIP-based image classification can aid in cleaning image datasets from a digitisation pipeline.


[155] 2410.14970

Taming the Long Tail in Human Mobility Prediction

With the popularity of location-based services, human mobility prediction plays a key role in enhancing personalized navigation, optimizing recommendation systems, and facilitating urban mobility and planning. This involves predicting a user's next POI (point-of-interest) visit using their past visit history. However, the uneven distribution of visitations over time and space, namely the long-tail problem in spatial distribution, makes it difficult for AI models to predict those POIs that are less visited by humans. In light of this issue, we propose the Long-Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction, combining a Long-Tailed Graph Adjustment module to reduce the impact of the long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss Adjustment module to adjust loss by logit score and sample weight adjustment strategy. Also, we employ the auxiliary prediction task to enhance generalization and accuracy. Our experiments with two real-world trajectory datasets demonstrate that LoTNext significantly surpasses existing state-of-the-art works. Our code is available at https://github.com/Yukayo/LoTNext.


[156] 2410.14971

BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation

Recent advances in decoding language from brain signals (EEG and MEG) have been significantly driven by pre-trained language models, leading to remarkable progress on publicly available non-invasive EEG/MEG datasets. However, previous works predominantly utilize teacher forcing during text generation, leading to significant performance drops without its use. A fundamental issue is the inability to establish a unified feature space correlating textual data with the corresponding evoked brain signals. Although some recent studies attempt to mitigate this gap using an audio-text pre-trained model, Whisper, which is favored for its signal input modality, they still largely overlook the inherent differences between audio signals and brain signals in directly applying Whisper to decode brain signals. To address these limitations, we propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction for WHisper-enhanced text generatiOn, termed BrainECHO. Specifically, BrainECHO successively conducts: 1) Discrete autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning. Through this autoencoding--alignment--finetuning process, BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources: the EEG dataset (Brennan) and the MEG dataset (GWilliams). The innovation of BrainECHO, coupled with its robustness and superiority at the sentence, session, and subject-independent levels across public datasets, underscores its significance for language-based brain-computer interfaces.


[157] 2410.14972

MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone, enhancing the agent's ability to handle complex tasks by leveraging modular expert learning to avoid gradient conflicts. Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which heuristically samples perturbation candidates containing task-relevant information, leading to more targeted and effective optimization. MENTOR outperforms state-of-the-art methods across three simulation domains -- DeepMind Control Suite, Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks including peg insertion, cable routing, and tabletop golf, which significantly surpasses the success rate of 32% from the current strongest model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at https://suninghuang19.github.io/mentor_page.


[158] 2410.14974

CAGE: Causal Attention Enables Data-Efficient Generalizable Robotic Manipulation

Generalization in robotic manipulation remains a critical challenge, particularly when scaling to new environments with limited demonstrations. This paper introduces CAGE, a novel robotic manipulation policy designed to overcome these generalization barriers by integrating a causal attention mechanism. CAGE utilizes the powerful feature extraction capabilities of the vision foundation model DINOv2, combined with LoRA fine-tuning for robust environment understanding. The policy further employs a causal Perceiver for effective token compression and a diffusion-based action prediction head with attention mechanisms to enhance task-specific fine-grained conditioning. With as few as 50 demonstrations from a single training environment, CAGE achieves robust generalization across diverse visual changes in objects, backgrounds, and viewpoints. Extensive experiments validate that CAGE significantly outperforms existing state-of-the-art RGB/RGB-D approaches in various manipulation tasks, especially under large distribution shifts. In similar environments, CAGE offers an average of 42% increase in task completion rate. While all baselines fail to execute the task in unseen environments, CAGE manages to obtain a 43% completion rate and a 51% success rate in average, making a huge step towards practical deployment of robots in real-world settings. Project website: cage-policy.github.io.


[159] 2410.14975

Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation

With the recent emergence of foundation models trained on internet-scale data and demonstrating remarkable generalization capabilities, such foundation models have become more widely adopted, leading to an expanding range of application domains. Despite this rapid proliferation, the trustworthiness of foundation models remains underexplored. Specifically, the out-of-distribution detection (OoDD) capabilities of large vision-language models (LVLMs), such as GPT-4o, which are trained on massive multi-modal data, have not been sufficiently addressed. The disparity between their demonstrated potential and practical reliability raises concerns regarding the safe and trustworthy deployment of foundation models. To address this gap, we evaluate and analyze the OoDD capabilities of various proprietary and open-source LVLMs. Our investigation contributes to a better understanding of how these foundation models represent confidence scores through their generated natural language responses. Based on our observations, we propose a self-guided prompting approach, termed \emph{Reflexive Guidance (ReGuide)}, aimed at enhancing the OoDD capability of LVLMs by leveraging self-generated image-adaptive concept suggestions. Experimental results demonstrate that our ReGuide enhances the performance of current LVLMs in both image classification and OoDD tasks.


[160] 2410.14977

3D Multi-Object Tracking Employing MS-GLMB Filter for Autonomous Driving

The MS-GLMB filter offers a robust framework for tracking multiple objects through the use of multi-sensor data. Building on this, the MV-GLMB and MV-GLMB-AB filters enhance the MS-GLMB capabilities by employing cameras for 3D multi-sensor multi-object tracking, effectively addressing occlusions. However, both filters depend on overlapping fields of view from the cameras to combine complementary information. In this paper, we introduce an improved approach that integrates an additional sensor, such as LiDAR, into the MS-GLMB framework for 3D multi-object tracking. Specifically, we present a new LiDAR measurement model, along with a multi-camera and LiDAR multi-object measurement model. Our experimental results demonstrate a significant improvement in tracking performance compared to existing MS-GLMB-based methods. Importantly, our method eliminates the need for overlapping fields of view, broadening the applicability of the MS-GLMB filter. Our source code for nuScenes dataset is available at https://github.com/linh-gist/ms-glmb-nuScenes.


[161] 2410.14978

Subversive Characters and Stereotyping Readers: Characterizing Queer Relationalities with Dialogue-Based Relation Extraction

Television is often seen as a site for subcultural identification and subversive fantasy, including in queer cultures. How might we measure subversion, or the degree to which the depiction of social relationship between a dyad (e.g. two characters who are colleagues) deviates from its typical representation on TV? To explore this question, we introduce the task of stereotypic relationship extraction. Built on cognitive stylistics, linguistic anthropology, and dialogue relation extraction, in this paper, we attempt to model the cognitive process of stereotyping TV characters in dialogic interactions. Given a dyad, we want to predict: what social relationship do the speakers exhibit through their words? Subversion is then characterized by the discrepancy between the distribution of the model's predictions and the ground truth labels. To demonstrate the usefulness of this task and gesture at a methodological intervention, we enclose four case studies to characterize the representation of queer relationalities in the Big Bang Theory, Frasier, and Gilmore Girls, as we explore the suspicious and reparative modes of reading with our computational methods.


[162] 2410.14979

Do Large Language Models Truly Grasp Mathematics? An Empirical Exploration

Despite their proficiency in math tasks, the mechanisms underlying LLMs' mathematical reasoning abilities remain a subject of debate. Recent studies suggest that chain-of-thought (CoT) prompts can bolster mathematical reasoning by encouraging LLMs to employ human-like logical reasoning (System 2), enabling them to excel on the Cognitive Reflection Test (CRT). To assess whether LLMs genuinely possess System 2-like logical reasoning, we introduced targeted modifications to CRT problems. Our findings reveal that, despite the use of CoT prompts, mainstream LLMs, including the latest o1-preview model, continue to exhibit a significant error rate. Further analysis indicates that they predominantly rely on System 1-like intuitive reasoning and pattern matching derived from training data, rather than demonstrating mastery of mathematical thinking. This discovery challenges the prevailing notion that LLMs possess genuine logical reasoning abilities and that CoT can enhance them. Consequently, this work may temper overly optimistic projections regarding LLMs' advancement toward artificial general intelligence.


[163] 2410.14980

DCDepth: Progressive Monocular Depth Estimation in Discrete Cosine Domain

In this paper, we introduce DCDepth, a novel framework for the long-standing monocular depth estimation task. Moving beyond conventional pixel-wise depth estimation in the spatial domain, our approach estimates the frequency coefficients of depth patches after transforming them into the discrete cosine domain. This unique formulation allows for the modeling of local depth correlations within each patch. Crucially, the frequency transformation segregates the depth information into various frequency components, with low-frequency components encapsulating the core scene structure and high-frequency components detailing the finer aspects. This decomposition forms the basis of our progressive strategy, which begins with the prediction of low-frequency components to establish a global scene context, followed by successive refinement of local details through the prediction of higher-frequency components. We conduct comprehensive experiments on NYU-Depth-V2, TOFDC, and KITTI datasets, and demonstrate the state-of-the-art performance of DCDepth. Code is available at https://github.com/w2kun/DCDepth.


[164] 2410.14983

D-SarcNet: A Dual-stream Deep Learning Framework for Automatic Analysis of Sarcomere Structures in Fluorescently Labeled hiPSC-CMs

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful tool in advancing cardiovascular research and clinical applications. The maturation of sarcomere organization in hiPSC-CMs is crucial, as it supports the contractile function and structural integrity of these cells. Traditional methods for assessing this maturation like manual annotation and feature extraction are labor-intensive, time-consuming, and unsuitable for high-throughput analysis. To address this, we propose D-SarcNet, a dual-stream deep learning framework that takes fluorescent hiPSC-CM single-cell images as input and outputs the stage of the sarcomere structural organization on a scale from 1.0 to 5.0. The framework also integrates Fast Fourier Transform (FFT), deep learning-generated local patterns, and gradient magnitude to capture detailed structural information at both global and local levels. Experiments on a publicly available dataset from the Allen Institute for Cell Science show that the proposed approach not only achieves a Spearman correlation of 0.868 marking a 3.7% improvement over the previous state-of-the-art but also significantly enhances other key performance metrics, including MSE, MAE, and R2 score. Beyond establishing a new state-of-the-art in sarcomere structure assessment from hiPSC-CM images, our ablation studies highlight the significance of integrating global and local information to enhance deep learning networks ability to discern and learn vital visual features of sarcomere structure.


[165] 2410.14986

NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep Neural Nets

Micromagnetics has made significant strides, particularly due to its wide-ranging applications in magnetic storage design. Numerical simulation is a cornerstone of micromagnetics research, relying on first-principle rules to compute the dynamic evolution of micromagnetic systems based on the renowned LLG equation, named after Landau, Lifshitz, and Gilbert. However, simulations are often hindered by their slow speed. Although Fast-Fourier transformation (FFT) calculations reduce the computational complexity to O(NlogN), it remains impractical for large-scale simulations. In this paper, we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the LLG iterative framework but accelerates demagnetizing field computation through the employment of a U-shaped neural network (Unet). The Unet architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(N), significantly enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation rather than an end-to-end approximation for a specific task, making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes, and material settings.


[166] 2410.14987

SeaS: Few-shot Industrial Anomaly Image Generation with Separation and Sharing Fine-tuning

Current segmentation methods require many training images and precise masks, while insufficient anomaly images hinder their application in industrial scenarios. To address such an issue, we explore producing diverse anomalies and accurate pixel-wise annotations. By observing the real production lines, we find that anomalies vary randomly in shape and appearance, whereas products hold globally consistent patterns with slight local variations. Such a characteristic inspires us to develop a Separation and Sharing Fine-tuning (SeaS) approach using only a few abnormal and some normal images. Firstly, we propose the Unbalanced Abnormal (UA) Text Prompt tailored to industrial anomaly generation, consisting of one product token and several anomaly tokens. Then, for anomaly images, we propose a Decoupled Anomaly Alignment (DA) loss to bind the attributes of the anomalies to different anomaly tokens. Re-blending such attributes may produce never-seen anomalies, achieving a high diversity of anomalies. For normal images, we propose a Normal-image Alignment (NA) loss to learn the products' key features that are used to synthesize products with both global consistency and local variations. The two training processes are separated but conducted on a shared U-Net. Finally, SeaS produces high-fidelity annotations for the generated anomalies by fusing discriminative features of U-Net and high-resolution VAE features. Extensive evaluations on the challenging MVTec AD and MVTec 3D AD dataset demonstrate the effectiveness of our approach. For anomaly image generation, we achieve 1.88 on IS and 0.34 on IC-LPIPS on MVTec AD dataset, 1.95 on IS and 0.30 on IC-LPIPS on MVTec 3D AD dataset. For downstream task, using our generated anomaly image-mask pairs, three common segmentation methods achieve an average 11.17% improvement on IoU on MVTec AD dataset, and a 15.49% enhancement in IoU on MVTec 3D AD dataset.


[167] 2410.14989

AutoFPDesigner: Automated Flight Procedure Design Based on Multi-Agent Large Language Model

Current flight procedure design methods heavily rely on human-led design process, which is not only low auto-mation but also suffer from complex algorithm modelling and poor generalization. To address these challenges, this paper proposes an agent-driven flight procedure design method based on large language model, named Au-toFPDesigner, which utilizes multi-agent collaboration to complete procedure design. The method enables end-to-end automated design of performance-based navigation (PBN) procedures. In this process, the user input the design requirements in natural language, AutoFPDesigner models the flight procedure design by loading the design speci-fications and utilizing tool libraries complete the design. AutoFPDesigner allows users to oversee and seamlessly participate in the design process. Experimental results show that AutoFPDesigner ensures nearly 100% safety in the designed flight procedures and achieves 75% task completion rate, with good adaptability across different design tasks. AutoFPDesigner introduces a new paradigm for flight procedure design and represents a key step towards the automation of this process. Keywords: Flight Procedure Design; Large Language Model; Performance-Based Navigation (PBN); Multi Agent;


[168] 2410.14990

Audio Processing using Pattern Recognition for Music Genre Classification

This project explores the application of machine learning techniques for music genre classification using the GTZAN dataset, which contains 100 audio files per genre. Motivated by the growing demand for personalized music recommendations, we focused on classifying five genres-Blues, Classical, Jazz, Hip Hop, and Country-using a variety of algorithms including Logistic Regression, K-Nearest Neighbors (KNN), Random Forest, and Artificial Neural Networks (ANN) implemented via Keras. The ANN model demonstrated the best performance, achieving a validation accuracy of 92.44%. We also analyzed key audio features such as spectral roll-off, spectral centroid, and MFCCs, which helped enhance the model's accuracy. Future work will expand the model to cover all ten genres, investigate advanced methods like Long Short-Term Memory (LSTM) networks and ensemble approaches, and develop a web application for real-time genre classification and playlist generation. This research aims to contribute to improving music recommendation systems and content curation.


[169] 2410.14991

ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla

Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of a proper benchmark dataset. The absence of such datasets challenges models that are known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little cultural relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset titled ChitroJera, totaling over 15k samples where diverse and locally relevant data sources are used. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of its scale. We also evaluate the performance of large language models (LLMs) using prompt-based techniques, with LLMs achieving the best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.


[170] 2410.14992

Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span

This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs) under the Bellman optimality condition. Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $\widetilde{\mathcal{O}}(d\sqrt{\mathrm{sp}(v^*)T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. Our algorithm applies the recently developed technique of running value iteration on a discounted-reward MDP approximation with clipping by the span. We prove that the value iteration procedure, even with the clipping operation, converges. Moreover, we show that the associated variance term due to random transitions can be bounded even under clipping. Combined with the weighted ridge regression-based parameter estimation scheme, this leads to the nearly minimax optimal regret guarantee.


[171] 2410.14993

Making Every Frame Matter: Continuous Video Understanding for Large Models via Adaptive State Modeling

Video understanding has become increasingly important with the rise of multi-modality applications. Understanding continuous video poses considerable challenges due to the fast expansion of streaming video, which contains multi-scale and untrimmed events. We introduce a novel system, C-VUE, to overcome these issues through adaptive state modeling. C-VUE has three key designs. The first is a long-range history modeling technique that uses a video-aware approach to retain historical video information. The second is a spatial redundancy reduction technique, which enhances the efficiency of history modeling based on temporal relations. The third is a parallel training structure that incorporates the frame-weighted loss to understand multi-scale events in long videos. Our C-VUE offers high accuracy and efficiency. It runs at speeds >30 FPS on typical edge devices and outperforms all baselines in accuracy. Moreover, applying C-VUE to a video foundation model as a video encoder in our case study resulted in a 0.46-point enhancement (on a 5-point scale) on the in-distribution dataset, and an improvement ranging from 1.19\% to 4\% on zero-shot datasets.


[172] 2410.14996

EDRF: Enhanced Driving Risk Field Based on Multimodal Trajectory Prediction and Its Applications

Driving risk assessment is crucial for both autonomous vehicles and human-driven vehicles. The driving risk can be quantified as the product of the probability that an event (such as collision) will occur and the consequence of that event. However, the probability of events occurring is often difficult to predict due to the uncertainty of drivers' or vehicles' behavior. Traditional methods generally employ kinematic-based approaches to predict the future trajectories of entities, which often yield unrealistic prediction results. In this paper, the Enhanced Driving Risk Field (EDRF) model is proposed, integrating deep learning-based multimodal trajectory prediction results with Gaussian distribution models to quantitatively capture the uncertainty of traffic entities' behavior. The applications of the EDRF are also proposed. It is applied across various tasks (traffic risk monitoring, ego-vehicle risk analysis, and motion and trajectory planning) through the defined concept Interaction Risk (IR). Adequate example scenarios are provided for each application to illustrate the effectiveness of the model.


[173] 2410.14997

Improving Pronunciation and Accent Conversion through Knowledge Distillation And Synthetic Ground-Truth from Native TTS

Previous approaches on accent conversion (AC) mainly aimed at making non-native speech sound more native while maintaining the original content and speaker identity. However, non-native speakers sometimes have pronunciation issues, which can make it difficult for listeners to understand them. Hence, we developed a new AC approach that not only focuses on accent conversion but also improves pronunciation of non-native accented speaker. By providing the non-native audio and the corresponding transcript, we generate the ideal ground-truth audio with native-like pronunciation with original duration and prosody. This ground-truth data aids the model in learning a direct mapping between accented and native speech. We utilize the end-to-end VITS framework to achieve high-quality waveform reconstruction for the AC task. As a result, our system not only produces audio that closely resembles native accents and while retaining the original speaker's identity but also improve pronunciation, as demonstrated by evaluation results.


[174] 2410.14998

A comparative study of NeuralODE and Universal ODE approaches to solving Chandrasekhar White Dwarf equation

In this study, we apply two pillars of Scientific Machine Learning: Neural Ordinary Differential Equations (Neural ODEs) and Universal Differential Equations (UDEs) to the Chandrasekhar White Dwarf Equation (CWDE). The CWDE is fundamental for understanding the life cycle of a star, and describes the relationship between the density of the white dwarf and its distance from the center. Despite the rise in Scientific Machine Learning frameworks, very less attention has been paid to the systematic applications of the above SciML pillars on astronomy based ODEs. Through robust modeling in the Julia programming language, we show that both Neural ODEs and UDEs can be used effectively for both prediction as well as forecasting of the CWDE. More importantly, we introduce the forecasting breakdown point - the time at which forecasting fails for both Neural ODEs and UDEs. Through a robust hyperparameter optimization testing, we provide insights on the neural network architecture, activation functions and optimizers which provide the best results. This study provides opens a door to investigate the applicability of Scientific Machine Learning frameworks in forecasting tasks for a wide range of scientific domains.


[175] 2410.15001

Faster Inference Time for GNNs using coarsening

Graph Neural Networks (GNNs) have shown remarkable success in various graph-based tasks, including node classification, node regression, graph classification, and graph regression. However, their scalability remains a significant challenge, particularly when dealing with large-scale graphs. To tackle this challenge, coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation. However, no previous research has tackled the computation cost during the inference. This motivated us to ponder whether we can trade off the improvement in training time of coarsening-based approaches with inference time. This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques. We reduce the computational burden during the training and inference phases by using the coarsening algorithm to partition large graphs into smaller, manageable subgraphs. Previously, graph-level tasks had not been explored using this approach. We propose a novel approach for using the coarsening algorithm for graph-level tasks such as graph classification and graph regression. We conduct extensive experiments on multiple benchmark datasets to evaluate the performance of our approach. The results demonstrate that our subgraph-based GNN method achieves competitive results in node classification, node regression, graph classification, and graph regression tasks compared to traditional GNN models. Furthermore, our approach significantly reduces the inference time, enabling the practical application of GNNs to large-scale graphs.


[176] 2410.15002

How Many Van Goghs Does It Take to Van Gogh? Finding the Imitation Threshold

Text-to-image models are trained using large datasets collected by scraping image-text pairs from the internet. These datasets often include private, copyrighted, and licensed material. Training models on such datasets enables them to generate images with such content, which might violate copyright laws and individual privacy. This phenomenon is termed imitation -- generation of images with content that has recognizable similarity to its training images. In this work we study the relationship between a concept's frequency in the training dataset and the ability of a model to imitate it. We seek to determine the point at which a model was trained on enough instances to imitate a concept -- the imitation threshold. We posit this question as a new problem: Finding the Imitation Threshold (FIT) and propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training multiple models from scratch. We experiment with two domains -- human faces and art styles -- for which we create four datasets, and evaluate three text-to-image models which were trained on two pretraining datasets. Our results reveal that the imitation threshold of these models is in the range of 200-600 images, depending on the domain and the model. The imitation threshold can provide an empirical basis for copyright violation claims and acts as a guiding principle for text-to-image model developers that aim to comply with copyright and privacy laws. We release the code and data at \url{https://github.com/vsahil/MIMETIC-2.git} and the project's website is hosted at \url{https://how-many-van-goghs-does-it-take.github.io}.


[177] 2410.15005

CAP: Data Contamination Detection via Consistency Amplification

Large language models (LLMs) are widely used, but concerns about data contamination challenge the reliability of LLM evaluations. Existing contamination detection methods are often task-specific or require extra prerequisites, limiting practicality. We propose a novel framework, Consistency Amplification-based Data Contamination Detection (CAP), which introduces the Performance Consistency Ratio (PCR) to measure dataset leakage by leveraging LM consistency. To the best of our knowledge, this is the first method to explicitly differentiate between fine-tuning and contamination, which is crucial for detecting contamination in domain-specific models. Additionally, CAP is applicable to various benchmarks and works for both white-box and black-box models. We validate CAP's effectiveness through experiments on seven LLMs and four domain-specific benchmarks. Our findings also show that composite benchmarks from various dataset sources are particularly prone to unintentional contamination. Codes will be publicly available soon.


[178] 2410.15006

Nonconvex Robust Quaternion Matrix Completion for Imaging Processing

One of the tasks in color image processing and computer vision is to recover clean data from partial observations corrupted by noise. To this end, robust quaternion matrix completion (QMC) has recently attracted more attention and shown its effectiveness, whose convex relaxation is to minimize the quaternion nuclear norm plus the quaternion $L_1$-norm. However, there is still room to improve due to the convexity of the convex surrogates. This paper proposes a new nonconvex robust QMC model, in which the nonconvex MCP function and the quaternion $L_p$-norm are used to enhance the low-rankness and sparseness of the low-rank term and sparse term, respectively. An alternating direction method of multipliers (ADMM) algorithm is developed to solve the proposed model and its convergence is given. Moreover, a novel nonlocal-self-similarity-based nonconvex robust quaternion completion method is proposed to handle large-scale data. Numerical results on color images and videos indicate the advantages of the proposed method over some existing ones.


[179] 2410.15007

DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer

Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image. Existing methods train specific networks or utilize pre-trained models to learn content and style features. However, they rely solely on textual or spatial representations that are inadequate to achieve the balance between content and style. In this work, we propose a novel and training-free approach for style transfer, combining textual embedding with spatial features and separating the injection of content or style. Specifically, we adopt the BLIP-2 encoder to extract the textual representation of the style image. We utilize the DDIM inversion technique to extract intermediate embeddings in content and style branches as spatial features. Finally, we harness the step-by-step property of diffusion models by separating the injection of content and style in the target branch, which improves the balance between content preservation and style fusion. Various experiments have demonstrated the effectiveness and robustness of our proposed DiffeseST for achieving balanced and controllable style transfer results, as well as the potential to extend to other tasks.


[180] 2410.15008

IANUS: Integrated Accelerator based on NPU-PIM Unified Memory System

Accelerating end-to-end inference of transformer-based large language models (LLMs) is a critical component of AI services in datacenters. However, diverse compute characteristics of end-to-end LLM inference present challenges as previously proposed accelerators only address certain operations or stages (e.g., self-attention, generation stage, etc.). To address the unique challenges of accelerating end-to-end inference, we propose IANUS -- Integrated Accelerator based on NPU-PIM Unified Memory System. IANUS is a domain-specific system architecture that combines a Neural Processing Unit (NPU) with a Processing-in-Memory (PIM) to leverage both the NPU's high computation throughput and the PIM's high effective memory bandwidth. In particular, IANUS employs a unified main memory system where the PIM memory is used both for PIM operations and for NPU's main memory. The unified main memory system ensures that memory capacity is efficiently utilized and the movement of shared data between NPU and PIM is minimized. However, it introduces new challenges since normal memory accesses and PIM computations cannot be performed simultaneously. Thus, we propose novel PIM Access Scheduling that manages normal memory accesses and PIM computations through workload mapping and scheduling across the PIM and the NPU. Our detailed simulation evaluations show that IANUS improves the performance of GPT-2 by 6.2$\times$ and 3.2$\times$, on average, compared to the NVIDIA A100 GPU and the state-of-the-art accelerator. As a proof-of-concept, we develop a prototype of IANUS with a commercial PIM, NPU, and an FPGA-based PIM controller to demonstrate the feasibility of IANUS.


[181] 2410.15010

FlexMol: A Flexible Toolkit for Benchmarking Molecular Relational Learning

Molecular relational learning (MRL) is crucial for understanding the interaction behaviors between molecular pairs, a critical aspect of drug discovery and development. However, the large feasible model space of MRL poses significant challenges to benchmarking, and existing MRL frameworks face limitations in flexibility and scope. To address these challenges, avoid repetitive coding efforts, and ensure fair comparison of models, we introduce FlexMol, a comprehensive toolkit designed to facilitate the construction and evaluation of diverse model architectures across various datasets and performance metrics. FlexMol offers a robust suite of preset model components, including 16 drug encoders, 13 protein sequence encoders, 9 protein structure encoders, and 7 interaction layers. With its easy-to-use API and flexibility, FlexMol supports the dynamic construction of over 70, 000 distinct combinations of model architectures. Additionally, we provide detailed benchmark results and code examples to demonstrate FlexMol's effectiveness in simplifying and standardizing MRL model development and comparison.


[182] 2410.15013

DST-TransitNet: A Dynamic Spatio-Temporal Deep Learning Model for Scalable and Efficient Network-Wide Prediction of Station-Level Transit Ridership

Accurate prediction of public transit ridership is vital for efficient planning and management of transit in rapidly growing urban areas in Canada. Unexpected increases in passengers can cause overcrowded vehicles, longer boarding times, and service disruptions. Traditional time series models like ARIMA and SARIMA face limitations, particularly in short-term predictions and integration of spatial and temporal features. These models struggle with the dynamic nature of ridership patterns and often ignore spatial correlations between nearby stops. Deep Learning (DL) models present a promising alternative, demonstrating superior performance in short-term prediction tasks by effectively capturing both spatial and temporal features. However, challenges such as dynamic spatial feature extraction, balancing accuracy with computational efficiency, and ensuring scalability remain. This paper introduces DST-TransitNet, a hybrid DL model for system-wide station-level ridership prediction. This proposed model uses graph neural networks (GNN) and recurrent neural networks (RNN) to dynamically integrate the changing temporal and spatial correlations within the stations. The model also employs a precise time series decomposition framework to enhance accuracy and interpretability. Tested on Bogota's BRT system data, with three distinct social scenarios, DST-TransitNet outperformed state-of-the-art models in precision, efficiency and robustness. Meanwhile, it maintains stability over long prediction intervals, demonstrating practical applicability.


[183] 2410.15015

MambaSOD: Dual Mamba-Driven Cross-Modal Fusion Network for RGB-D Salient Object Detection

The purpose of RGB-D Salient Object Detection (SOD) is to pinpoint the most visually conspicuous areas within images accurately. While conventional deep models heavily rely on CNN extractors and overlook the long-range contextual dependencies, subsequent transformer-based models have addressed the issue to some extent but introduce high computational complexity. Moreover, incorporating spatial information from depth maps has been proven effective for this task. A primary challenge of this issue is how to fuse the complementary information from RGB and depth effectively. In this paper, we propose a dual Mamba-driven cross-modal fusion network for RGB-D SOD, named MambaSOD. Specifically, we first employ a dual Mamba-driven feature extractor for both RGB and depth to model the long-range dependencies in multiple modality inputs with linear complexity. Then, we design a cross-modal fusion Mamba for the captured multi-modal features to fully utilize the complementary information between the RGB and depth features. To the best of our knowledge, this work is the first attempt to explore the potential of the Mamba in the RGB-D SOD task, offering a novel perspective. Numerous experiments conducted on six prevailing datasets demonstrate our method's superiority over sixteen state-of-the-art RGB-D SOD models. The source code will be released at https://github.com/YueZhan721/MambaSOD.


[184] 2410.15016

Transit Pulse: Utilizing Social Media as a Source for Customer Feedback and Information Extraction with Large Language Model

Users of the transit system flood social networks daily with messages that contain valuable insights crucial for improving service quality. These posts help transit agencies quickly identify emerging issues. Parsing topics and sentiments is key to gaining comprehensive insights to foster service excellence. However, the volume of messages makes manual analysis impractical, and standard NLP techniques like Term Frequency-Inverse Document Frequency (TF-IDF) fall short in nuanced interpretation. Traditional sentiment analysis separates topics and sentiments before integrating them, often missing the interaction between them. This incremental approach complicates classification and reduces analytical productivity. To address these challenges, we propose a novel approach to extracting and analyzing transit-related information, including sentiment and sarcasm detection, identification of unusual system problems, and location data from social media. Our method employs Large Language Models (LLM), specifically Llama 3, for a streamlined analysis free from pre-established topic labels. To enhance the model's domain-specific knowledge, we utilize Retrieval-Augmented Generation (RAG), integrating external knowledge sources into the information extraction pipeline. We validated our method through extensive experiments comparing its performance with traditional NLP approaches on user tweet data from the real world transit system. Our results demonstrate the potential of LLMs to transform social media data analysis in the public transit domain, providing actionable insights and enhancing transit agencies' responsiveness by extracting a broader range of information.


[185] 2410.15017

DM-Codec: Distilling Multimodal Representations for Speech Tokenization

Recent advancements in speech-language models have yielded significant improvements in speech tokenization and synthesis. However, effectively mapping the complex, multidimensional attributes of speech into discrete tokens remains challenging. This process demands acoustic, semantic, and contextual information for precise speech representations. Existing speech representations generally fall into two categories: acoustic tokens from audio codecs and semantic tokens from speech self-supervised learning models. Although recent efforts have unified acoustic and semantic tokens for improved performance, they overlook the crucial role of contextual representation in comprehensive speech modeling. Our empirical investigations reveal that the absence of contextual representations results in elevated Word Error Rate (WER) and Word Information Lost (WIL) scores in speech transcriptions. To address these limitations, we propose two novel distillation approaches: (1) a language model (LM)-guided distillation method that incorporates contextual information, and (2) a combined LM and self-supervised speech model (SM)-guided distillation technique that effectively distills multimodal representations (acoustic, semantic, and contextual) into a comprehensive speech tokenizer, termed DM-Codec. The DM-Codec architecture adopts a streamlined encoder-decoder framework with a Residual Vector Quantizer (RVQ) and incorporates the LM and SM during the training process. Experiments show DM-Codec significantly outperforms state-of-the-art speech tokenization models, reducing WER by up to 13.46%, WIL by 9.82%, and improving speech quality by 5.84% and intelligibility by 1.85% on the LibriSpeech benchmark dataset. The code, samples, and model checkpoints are available at https://github.com/mubtasimahasan/DM-Codec.


[186] 2410.15019

A Survey of Ontology Expansion for Conversational Understanding

In the rapidly evolving field of conversational AI, Ontology Expansion (OnExp) is crucial for enhancing the adaptability and robustness of conversational agents. Traditional models rely on static, predefined ontologies, limiting their ability to handle new and unforeseen user needs. This survey paper provides a comprehensive review of the state-of-the-art techniques in OnExp for conversational understanding. It categorizes the existing literature into three main areas: (1) New Intent Discovery, (2) New Slot-Value Discovery, and (3) Joint OnExp. By examining the methodologies, benchmarks, and challenges associated with these areas, we highlight several emerging frontiers in OnExp to improve agent performance in real-world scenarios and discuss their corresponding challenges. This survey aspires to be a foundational reference for researchers and practitioners, promoting further exploration and innovation in this crucial domain.


[187] 2410.15020

Iterative Methods via Locally Evolving Set Process

Given the damping factor $\alpha$ and precision tolerance $\epsilon$, \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by $\Theta(1/(\alpha\epsilon))$ independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using $\tilde{O}(1/(\sqrt{\alpha}\epsilon))$ operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let $\overline{\operatorname{vol}}{ (S_t)}$ and $\overline{\gamma}_{t}$ be the running average of volume and the residual ratio of active nodes $\textstyle S_{t}$ during the process. We show $\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon$ and prove APPR admits a new runtime bound $\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))$ mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is $\Theta(\sqrt{\alpha})$, then there exists $c \in (0,2)$ such that the local Chebyshev method has runtime $\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))$ without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.


[188] 2410.15021

Theoretical Aspects of Bias and Diversity in Minimum Bayes Risk Decoding

Text generation commonly relies on greedy and beam decoding that limit the search space and degrade output quality. Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references. Previous studies have conducted empirical analyses to reveal the improvement by MBR decoding, and reported various observations. However, despite these observations, the theoretical relationship between them remains uncertain. To address this, we present a novel theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. We decompose errors in the estimated quality of generated hypotheses in MBR decoding into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions. Our theoretical analysis reveals the difficulty in simultaneously improving both bias and diversity, and highlights the effectiveness of increasing diversity to enhance MBR decoding performance. This analysis verifies the alignment between our theoretical insights and the empirical results reported in previous work. Furthermore, to support our theoretical findings, we propose a new metric, pseudo-bias, which approximates the bias term using gold references. We also introduce a new MBR approach, Metric-augmented MBR (MAMBR), which increases diversity by adjusting the behavior of utility functions without altering the pseudo-references. Experimental results across multiple NLP tasks show that the decomposed terms in the bias-diversity decomposition correlate well with performance, and that MAMBR improves text generation quality by modifying utility function behavior. Our code will be available at https://github.com/naist-nlp/mbr-bias-diversity.


[189] 2410.15023

PaperWave: Listening to Research Papers as Conversational Podcasts Scripted by LLM

Listening to audio content, such as podcasts and audiobooks, is one of the ways people engage with knowledge. Listening affords people more mobility than reading by seeing, thus broadening learning opportunities. This study explores the potential applications of large language models (LLMs) to adapt text documents into audio content, addressing the lack of listening-friendly materials for niche content like research papers. LLMs can generate scripts of audio content in various styles tailored to specific needs, such as the duration of the content and whether it is a monologue or dialogue. To explore this potential, we developed PaperWave, a prototype that transforms academic paper PDFs into conversational podcasts. Our two-month investigation involving 11 participants (including the authors) employed autobiographical design, a field study, and a design workshop. The findings highlight the importance of considering listeners' interaction with their environment when designing document-to-audio systems.


[190] 2410.15025

LLM-Driven Learning Analytics Dashboard for Teachers in EFL Writing Education

This paper presents the development of a dashboard designed specifically for teachers in English as a Foreign Language (EFL) writing education. Leveraging LLMs, the dashboard facilitates the analysis of student interactions with an essay writing system, which integrates ChatGPT for real-time feedback. The dashboard aids teachers in monitoring student behavior, identifying noneducational interaction with ChatGPT, and aligning instructional strategies with learning objectives. By combining insights from NLP and Human-Computer Interaction (HCI), this study demonstrates how a human-centered approach can enhance the effectiveness of teacher dashboards, particularly in ChatGPT-integrated learning.


[191] 2410.15026

A Recommendation Model Utilizing Separation Embedding and Self-Attention for Feature Mining

With the explosive growth of Internet data, users are facing the problem of information overload, which makes it a challenge to efficiently obtain the required resources. Recommendation systems have emerged in this context. By filtering massive amounts of information, they provide users with content that meets their needs, playing a key role in scenarios such as advertising recommendation and product recommendation. However, traditional click-through rate prediction and TOP-K recommendation mechanisms are gradually unable to meet the recommendations needs in modern life scenarios due to high computational complexity, large memory consumption, long feature selection time, and insufficient feature interaction. This paper proposes a recommendations system model based on a separation embedding cross-network. The model uses an embedding neural network layer to transform sparse feature vectors into dense embedding vectors, and can independently perform feature cross operations on different dimensions, thereby improving the accuracy and depth of feature mining. Experimental results show that the model shows stronger adaptability and higher prediction accuracy in processing complex data sets, effectively solving the problems existing in existing models.


[192] 2410.15027

Group Diffusion Transformers are Unsupervised Multitask Learners

While large language models (LLMs) have revolutionized natural language processing with their task-agnostic capabilities, visual generation tasks such as image translation, style transfer, and character customization still rely heavily on supervised, task-specific datasets. In this work, we introduce Group Diffusion Transformers (GDTs), a novel framework that unifies diverse visual generation tasks by redefining them as a group generation problem. In this approach, a set of related images is generated simultaneously, optionally conditioned on a subset of the group. GDTs build upon diffusion transformers with minimal architectural modifications by concatenating self-attention tokens across images. This allows the model to implicitly capture cross-image relationships (e.g., identities, styles, layouts, surroundings, and color schemes) through caption-based correlations. Our design enables scalable, unsupervised, and task-agnostic pretraining using extensive collections of image groups sourced from multimodal internet articles, image galleries, and video frames. We evaluate GDTs on a comprehensive benchmark featuring over 200 instructions across 30 distinct visual generation tasks, including picture book creation, font design, style transfer, sketching, colorization, drawing sequence generation, and character customization. Our models achieve competitive zero-shot performance without any additional fine-tuning or gradient updates. Furthermore, ablation studies confirm the effectiveness of key components such as data scaling, group size, and model design. These results demonstrate the potential of GDTs as scalable, general-purpose visual generation systems.


[193] 2410.15028

A Novel Reinforcement Learning Model for Post-Incident Malware Investigations

This Research proposes a Novel Reinforcement Learning (RL) model to optimise malware forensics investigation during cyber incident response. It aims to improve forensic investigation efficiency by reducing false negatives and adapting current practices to evolving malware signatures. The proposed RL framework leverages techniques such as Q-learning and the Markov Decision Process (MDP) to train the system to identify malware patterns in live memory dumps, thereby automating forensic tasks. The RL model is based on a detailed malware workflow diagram that guides the analysis of malware artefacts using static and behavioural techniques as well as machine learning algorithms. Furthermore, it seeks to address challenges in the UK justice system by ensuring the accuracy of forensic evidence. We conduct testing and evaluation in controlled environments, using datasets created with Windows operating systems to simulate malware infections. The experimental results demonstrate that RL improves malware detection rates compared to conventional methods, with the RL model's performance varying depending on the complexity and learning rate of the environment. The study concludes that while RL offers promising potential for automating malware forensics, its efficacy across diverse malware types requires ongoing refinement of reward systems and feature extraction methods.


[194] 2410.15029

Enhancing Multimodal Sentiment Analysis for Missing Modality through Self-Distillation and Unified Modality Cross-Attention

In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC


[195] 2410.15030

Cutting-Edge Detection of Fatigue in Drivers: A Comparative Study of Object Detection Models

This research delves into the development of a fatigue detection system based on modern object detection algorithms, particularly YOLO (You Only Look Once) models, including YOLOv5, YOLOv6, YOLOv7, and YOLOv8. By comparing the performance of these models, we evaluate their effectiveness in real-time detection of fatigue-related behavior in drivers. The study addresses challenges like environmental variability and detection accuracy and suggests a roadmap for enhancing real-time detection. Experimental results demonstrate that YOLOv8 offers superior performance, balancing accuracy with speed. Data augmentation techniques and model optimization have been key in enhancing system adaptability to various driving conditions.


[196] 2410.15031

The Constrained Layer Tree Problem and Applications to Solar Farm Cabling

Motivated by the cabling of solar farms, we study the problem Constrained Layer Tree. At its core, it asks whether there exists a tree that connects a set of sources (the leaves) to one sink (the root) such that certain capacity constraints at the inner nodes are satisfied. Our main algorithmic contribution is a dynamic program with various optimizations for Constrained Layer Tree. It outperforms the previously used MILP by multiple orders of magnitude. Moreover, our experiments show that the somewhat abstract problem Constrained Layer Tree is actually the core of the cabling problem in solar farms, i.e., the feasible solution produced by our dynamic program can be used to bootstrap an MILP that can then find good solutions for the original cabling problem efficiently.


[197] 2410.15033

DynaMO: Protecting Mobile DL Models through Coupling Obfuscated DL Operators

Deploying DL models on mobile Apps has become ever-more popular. However, existing studies show attackers can easily reverse-engineer mobile DL models in Apps to steal intellectual property or generate effective attacks. A recent approach, Model Obfuscation, has been proposed to defend against such reverse engineering by obfuscating DL model representations, such as weights and computational graphs, without affecting model performance. These existing model obfuscation methods use static methods to obfuscate the model representation, or they use half-dynamic methods but require users to restore the model information through additional input arguments. However, these static methods or half-dynamic methods cannot provide enough protection for on-device DL models. Attackers can use dynamic analysis to mine the sensitive information in the inference codes as the correct model information and intermediate results must be recovered at runtime for static and half-dynamic obfuscation methods. We assess the vulnerability of the existing obfuscation strategies using an instrumentation method and tool, DLModelExplorer, that dynamically extracts correct sensitive model information at runtime. Experiments show it achieves very high attack performance. To defend against such attacks based on dynamic instrumentation, we propose DynaMO, a Dynamic Model Obfuscation strategy similar to Homomorphic Encryption. The obfuscation and recovery process can be done through simple linear transformation for the weights of randomly coupled eligible operators, which is a fully dynamic obfuscation strategy. Experiments show that our proposed strategy can dramatically improve model security compared with the existing obfuscation strategies, with only negligible overheads for on-device models.


[198] 2410.15035

Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging

Text embeddings are vital for tasks such as text retrieval and semantic textual similarity (STS). Recently, the advent of pretrained language models, along with unified benchmarks like the Massive Text Embedding Benchmark (MTEB), has facilitated the development of versatile general-purpose text embedding models. Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks. However, our experimental analysis reveals two significant drawbacks of joint training: 1) Task Conflict: Gradients from different tasks interfere with each other, leading to negative transfer. 2) Data Imbalance: Disproportionate data distribution introduces biases that negatively impact performance across tasks. To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution. We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the interpolation space of task vectors using stochastic gradient descent. Our experiments demonstrate that Self Positioning significantly enhances multi-task performance on the MTEB dataset, achieving an absolute improvement of 0.7 points. It outperforms traditional resampling methods while reducing computational costs. This work offers a robust approach to building generalized text embedding models with superior performance across diverse embedding-related tasks.


[199] 2410.15037

mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation

Recent advancements in large language models (LLMs) have significantly enhanced code generation from natural language prompts. The HumanEval Benchmark, developed by OpenAI, remains the most widely used code generation benchmark. However, this and other Code LLM benchmarks face critical limitations, particularly in task diversity, test coverage, and linguistic scope. Current evaluations primarily focus on English-to-Python conversion tasks with limited test cases, potentially overestimating model performance. While recent works have addressed test coverage and programming language (PL) diversity, code generation from low-resource language prompts remains largely unexplored. To address this gap, we introduce mHumanEval, an extended benchmark supporting prompts in over 200 natural languages. We employ established machine translation methods to compile the benchmark, coupled with a quality assurance process. Furthermore, we provide expert human translations for 15 diverse natural languages (NLs). We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs, offering insights into the current landscape of cross-lingual code generation.


[200] 2410.15038

A General-Purpose Multimodal Foundation Model for Dermatology

Diagnosing and treating skin diseases require advanced visual skills across multiple domains and the ability to synthesize information from various imaging modalities. Current deep learning models, while effective at specific tasks such as diagnosing skin cancer from dermoscopic images, fall short in addressing the complex, multimodal demands of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on a dataset of over 2 million real-world images of skin diseases, sourced from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse datasets covering a range of clinical tasks, including skin cancer screening, phenotype assessment and risk stratification, diagnosis of neoplastic and inflammatory skin diseases, skin lesion segmentation, change monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models even when using only 5-10% of labeled data. PanDerm's clinical utility was demonstrated through reader studies in real-world clinical settings across multiple imaging modalities. It outperformed clinicians by 10.2% in early-stage melanoma detection accuracy and enhanced clinicians' multiclass skin cancer diagnostic accuracy by 11% in a collaborative human-AI setting. Additionally, PanDerm demonstrated robust performance across diverse demographic factors, including different body locations, age groups, genders, and skin tones. The strong results in benchmark evaluations and real-world clinical scenarios suggest that PanDerm could enhance the management of skin diseases and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare.


[201] 2410.15040

Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization

Antibodies are essential proteins responsible for immune responses in organisms, capable of specifically recognizing antigen molecules of pathogens. Recent advances in generative models have significantly enhanced rational antibody design. However, existing methods mainly create antibodies from scratch without template constraints, leading to model optimization challenges and unnatural sequences. To address these issues, we propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design. Our method leverages a set of structural homologous motifs that align with query structural constraints to guide the generative model in inversely optimizing antibodies according to desired design criteria. Specifically, we introduce a structure-informed retrieval mechanism that integrates these exemplar motifs with the input backbone through a novel dual-branch denoising module, utilizing both structural and evolutionary information. Additionally, we develop a conditional diffusion model that iteratively refines the optimization process by incorporating both global context and local evolutionary conditions. Our approach is agnostic to the choice of generative models. Empirical experiments demonstrate that our method achieves state-of-the-art performance in multiple antibody inverse folding and optimization tasks, offering a new perspective on biomolecular generative models.


[202] 2410.15042

Adversarial Training: A Survey

Adversarial training (AT) refers to integrating adversarial examples -- inputs altered with imperceptible perturbations that can significantly impact model predictions -- into the training process. Recent studies have demonstrated the effectiveness of AT in improving the robustness of deep neural networks against diverse adversarial attacks. However, a comprehensive overview of these developments is still missing. This survey addresses this gap by reviewing a broad range of recent and representative studies. Specifically, we first describe the implementation procedures and practical applications of AT, followed by a comprehensive review of AT techniques from three perspectives: data enhancement, network design, and training configurations. Lastly, we discuss common challenges in AT and propose several promising directions for future research.


[203] 2410.15044

Adanonymizer: Interactively Navigating and Balancing the Duality of Privacy and Output Performance in Human-LLM Interaction

Current Large Language Models (LLMs) cannot support users to precisely balance privacy protection and output performance during individual consultations. We introduce Adanonymizer, an anonymization plug-in that allows users to control this balance by navigating a trade-off curve. A survey (N=221) revealed a privacy paradox, where users frequently disclosed sensitive information despite acknowledging privacy risks. The study further demonstrated that privacy risks were not significantly correlated with model output performance, highlighting the potential to navigate this trade-off. Adanonymizer normalizes privacy and utility ratings by type and automates the pseudonymization of sensitive terms based on user preferences, significantly reducing user effort. Its 2D color palette interface visualizes the privacy-utility trade-off, allowing users to adjust the balance by manipulating a point. An evaluation (N=36) compared Adanonymizer with ablation methods and differential privacy techniques, where Adanonymizer significantly reduced modification time, achieved better perceived model performance and overall user preference.


[204] 2410.15045

Mind the Remaining: Mechanism Design for Robust Federated Unlearning

Federated Unlearning (FU) aims to remove target clients' influence from trained models for privacy regulations. However, due to data distribution shifts, it can introduce side effects, including global model performance degradation and uneven impacts on the remaining clients. These effects potentially cause remaining clients to deviate, threatening the system's robustness. To address these challenges, we present a novel and robust mechanism modeling a Stackelberg game for FU. In this game, the server designs an optimal payment to stimulate remaining clients to participate in FU, ensuring unlearning effectiveness and stability. In response, the remaining clients strategically determine their participation level to maximize profit, accounting for offered payments and unlearning impacts. In modeling FU outcomes, we develop, for the first time, a comprehensive framework analytically capturing FU-induced side effects for both the server and clients. Based on this, we establish utility functions for the server and clients in FU, inherently determining their dynamic strategic decision-making. Our rigorous equilibrium analysis reveals how data heterogeneity affects the side effects in their utility and decision-making. Additionally, we develop a low-complexity algorithm for the non-convex optimization problem, enabling efficient computation of the equilibrium.


[205] 2410.15046

Towards Truss-Based Temporal Community Search

Identifying communities from temporal networks facilitates the understanding of potential dynamic relationships among entities, which has already received extensive applications. However, existing methods primarily rely on lower-order connectivity (e.g., temporal edges) to capture the structural and temporal cohesiveness of the community, often neglecting higher-order temporal connectivity, which leads to sub-optimal results. To overcome this dilemma, we propose a novel temporal community model named maximal-truss (MDT). This model emphasizes maximal temporal support, ensuring all edges are connected by a sequence of triangles with elegant temporal properties. To search the MDT containing the user-initiated query node q (q-MDT), we first design a powerful local search framework with some effective pruning strategies. This approach aims to identify the solution from the small temporal subgraph which is expanded from q. To further improve the performance on large graphs, we build the temporal trussness index (TT-index) for all edges. Leveraging the TT-index allows us to efficiently search high-probability target subgraphs instead of performing a full search across the entire input graph. Empirical results on nine real-world networks and seven competitors demonstrate the superiority of our solutions in terms of efficiency, effectiveness, and scalability


[206] 2410.15047

Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting

Accurate forecasting of electrical demand is essential for maintaining a stable and reliable power grid, optimizing the allocation of energy resources, and promoting efficient energy consumption practices. This study investigates the effectiveness of five hyperparameter optimization (HPO) algorithms -- Random Search, Covariance Matrix Adaptation Evolution Strategy (CMA--ES), Bayesian Optimization, Partial Swarm Optimization (PSO), and Nevergrad Optimizer (NGOpt) across univariate and multivariate Short-Term Load Forecasting (STLF) tasks. Using the Panama Electricity dataset (n=48,049), we evaluate HPO algorithms' performances on a surrogate forecasting algorithm, XGBoost, in terms of accuracy (i.e., MAPE, $R^2$) and runtime. Performance plots visualize these metrics across varying sample sizes from 1,000 to 20,000, and Kruskal--Wallis tests assess the statistical significance of the performance differences. Results reveal significant runtime advantages for HPO algorithms over Random Search. In univariate models, Bayesian optimization exhibited the lowest accuracy among the tested methods. This study provides valuable insights for optimizing XGBoost in the STLF context and identifies areas for future research.


[207] 2410.15048

MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration

Large Language Model (LLM) based multi-agent systems (MAS) have shown promise in tackling complex tasks, but often rely on predefined roles and centralized coordination, limiting their adaptability to evolving challenges. This paper introduces MorphAgent, a novel framework for decentralized multi-agent collaboration that enables agents to dynamically evolve their roles and capabilities. Our approach employs self-evolving agent profiles, optimized through three key metrics, guiding agents in refining their individual expertise while maintaining complementary team dynamics. MorphAgent implements a two-phase process: a warm-up phase for initial profile optimization, followed by a task execution phase where agents continuously adapt their roles based on task feedback. Our experimental results show that MorphAgent outperforms traditional static-role MAS in terms of task performance and adaptability to changing requirements, paving the way for more robust and versatile multi-agent collaborative systems. Our code will be publicly available at \url{https://github.com/LINs-lab/learn2collaborate}.


[208] 2410.15050

Are LLMs Good Zero-Shot Fallacy Classifiers?

Fallacies are defective arguments with faulty reasoning. Detecting and classifying them is a crucial NLP task to prevent misinformation, manipulative claims, and biased decisions. However, existing fallacy classifiers are limited by the requirement for sufficient labeled data for training, which hinders their out-of-distribution (OOD) generalization abilities. In this paper, we focus on leveraging Large Language Models (LLMs) for zero-shot fallacy classification. To elicit fallacy-related knowledge and reasoning abilities of LLMs, we propose diverse single-round and multi-round prompting schemes, applying different task-specific instructions such as extraction, summarization, and Chain-of-Thought reasoning. With comprehensive experiments on benchmark datasets, we suggest that LLMs could be potential zero-shot fallacy classifiers. In general, LLMs under single-round prompting schemes have achieved acceptable zero-shot performances compared to the best full-shot baselines and can outperform them in all OOD inference scenarios and some open-domain tasks. Our novel multi-round prompting schemes can effectively bring about more improvements, especially for small LLMs. Our analysis further underlines the future research on zero-shot fallacy classification. Codes and data are available at: https://github.com/panFJCharlotte98/Fallacy_Detection.


[209] 2410.15051

Weakly-supervised diagnosis identification from Italian discharge letters

Objective: Recognizing diseases from discharge letters is crucial for cohort selection and epidemiological analyses, as this is the only type of data consistently produced across hospitals. This is a classic document classification problem, typically requiring supervised learning. However, manual annotation of large datasets of discharge letters is uncommon since it is extremely time-consuming. We propose a novel weakly-supervised pipeline to recognize diseases from Italian discharge letters. Methods: Our Natural Language Processing pipeline is based on a fine-tuned version of the Italian Umberto model. The pipeline extracts diagnosis-related sentences from a subset of letters and applies a two-level clustering using the embeddings generated by the fine-tuned Umberto model. These clusters are summarized and those mapped to the diseases of interest are selected as weak labels. Finally, the same BERT-based model is trained using these weak labels to detect the targeted diseases. Results: A case study related to the identification of bronchiolitis with 33'176 Italian discharge letters from 44 hospitals in the Veneto Region shows the potential of our method, with an AUC of 77.7 % and an F1-Score of 75.1 % on manually annotated labels, improving compared to other non-supervised methods and with a limited loss compared to fully supervised methods. Results are robust to the cluster selection and the identified clusters highlight the potential to recognize a variety of diseases. Conclusions: This study demonstrates the feasibility of diagnosis identification from Italian discharge letters in the absence of labelled data. Our pipeline showed strong performance and robustness, and its flexibility allows for easy adaptation to various diseases. This approach offers a scalable solution for clinical text classification, reducing the need for manual annotation while maintaining good accuracy.


[210] 2410.15052

Mining Glitch Tokens in Large Language Models via Gradient-based Discrete Optimization

Glitch tokens in Large Language Models (LLMs) can trigger unpredictable behaviors, compromising model reliability and safety. Existing detection methods often rely on manual observation to infer the prior distribution of glitch tokens, which is inefficient and lacks adaptability across diverse model architectures. To address these limitations, we introduce GlitchMiner, a gradient-based discrete optimization framework designed for efficient glitch token detection in LLMs. GlitchMiner leverages an entropy-based loss function to quantify the uncertainty in model predictions and integrates first-order Taylor approximation with a local search strategy to effectively explore the token space. Our evaluation across various mainstream LLM architectures demonstrates that GlitchMiner surpasses existing methods in both detection precision and adaptability. In comparison to the previous state-of-the-art, GlitchMiner achieves an average improvement of 19.07% in precision@1000 for glitch token detection. By enabling efficient detection of glitch tokens, GlitchMiner provides a valuable tool for assessing and mitigating potential vulnerabilities in LLMs, contributing to their overall security.


[211] 2410.15054

A Dual-Fusion Cognitive Diagnosis Framework for Open Student Learning Environments

Cognitive diagnosis model (CDM) is a fundamental and upstream component in intelligent education. It aims to infer students' mastery levels based on historical response logs. However, existing CDMs usually follow the ID-based embedding paradigm, which could often diminish the effectiveness of CDMs in open student learning environments. This is mainly because they can hardly directly infer new students' mastery levels or utilize new exercises or knowledge without retraining. Textual semantic information, due to its unified feature space and easy accessibility, can help alleviate this issue. Unfortunately, directly incorporating semantic information may not benefit CDMs, since it does not capture response-relevant features and thus discards the individual characteristics of each student. To this end, this paper proposes a dual-fusion cognitive diagnosis framework (DFCD) to address the challenge of aligning two different modalities, i.e., textual semantic features and response-relevant features. Specifically, in DFCD, we first propose the exercise-refiner and concept-refiner to make the exercises and knowledge concepts more coherent and reasonable via large language models. Then, DFCD encodes the refined features using text embedding models to obtain the semantic information. For response-related features, we propose a novel response matrix to fully incorporate the information within the response logs. Finally, DFCD designs a dual-fusion module to merge the two modal features. The ultimate representations possess the capability of inference in open student learning environments and can be also plugged in existing CDMs. Extensive experiments across real-world datasets show that DFCD achieves superior performance by integrating different modalities and strong adaptability in open student learning environments.


[212] 2410.15058

Design and Implementation of Hedge Algebra Controller using Recursive Semantic Values for Cart-pole System

This paper presents a novel approach to designing a Hedge Algebra Controller named Hedge Algebra Controller with Recursive Semantic Values (RS-HAC). This approach incorporates several newly introduced concepts, including Semantically Quantifying Simplified Mapping (SQSM) featuring a recursive algorithm, Infinite General Semantization (IGS), and Infinite General De-semantization (IGDS). These innovations aim to enhance the optimizability, scalability, and flexibility of hedge algebra theory, allowing the design of a hedge algebra-based controller to be carried out more efficiently and straightforward. An application of stabilizing an inverted pendulum on a cart is conducted to illustrate the superiority of the proposed approach. Comparisons are made between RS-HAC and a fuzzy controller of Takagi-Sugeno type (FC), as well as a linear quadratic regulator (LQR). The results indicate that the RS-HAC surpasses the FC by up to 400\% in control efficiency and is marginally better than the LQR regarding transient time in balancing an inverted pendulum on a cart.


[213] 2410.15059

Deep Equilibrium Algorithmic Reasoning

Neural Algorithmic Reasoning (NAR) research has demonstrated that graph neural networks (GNNs) could learn to execute classical algorithms. However, most previous approaches have always used a recurrent architecture, where each iteration of the GNN matches an iteration of the algorithm. In this paper we study neurally solving algorithms from a different perspective: since the algorithm's solution is often an equilibrium, it is possible to find the solution directly by solving an equilibrium equation. Our approach requires no information on the ground-truth number of steps of the algorithm, both during train and test time. Furthermore, the proposed method improves the performance of GNNs on executing algorithms and is a step towards speeding up existing NAR models. Our empirical evidence, leveraging algorithms from the CLRS-30 benchmark, validates that one can train a network to solve algorithmic problems by directly finding the equilibrium. We discuss the practical implementation of such models and propose regularisations to improve the performance of these equilibrium reasoners.


[214] 2410.15060

BYOCL: Build Your Own Consistent Latent with Hierarchical Representative Latent Clustering

To address the semantic inconsistency issue with SAM or other single-image segmentation models handling image sequences, we introduce BYOCL. This novel model outperforms SAM in extensive experiments, showcasing its Hierarchical prototype capabilities across CLIP and other representations. BYOCL significantly reduces time and space consumption by dividing inputs into smaller batches, achieving exponential time reduction compared to previous methods. Our approach leverages the SAM image encoder for feature extraction, followed by Intra-Batch and Inter-Batch clustering algorithms. Extensive experiments demonstrate that BYOCL far exceeds the previous state-of-the-art single image segmentation model. Our work is the first to apply consistent segmentation using foundation models without requiring training, utilizing plug-and-play modules for any latent space, making our method highly efficientModels are available at \href{https://github.com/cyt1202/BYOCL.git


[215] 2410.15062

PAT: Parameter-Free Audio-Text Aligner to Boost Zero-Shot Audio Classification

Audio-Language Models (ALMs) have demonstrated remarkable performance in zero-shot audio classification. In this paper, we introduce PAT (Parameter-free Audio-Text aligner), a simple and training-free method aimed at boosting the zero-shot audio classification performance of CLAP-like ALMs. To achieve this, we propose to improve the cross-modal interaction between audio and language modalities by enhancing the representations for both modalities using mutual feedback. Precisely, to enhance textual representations, we propose a prompt ensemble algorithm that automatically selects and combines the most relevant prompts from a datastore with a large pool of handcrafted prompts and weighs them according to their relevance to the audio. On the other hand, to enhance audio representations, we reweigh the frame-level audio features based on the enhanced textual information. Our proposed method does not require any additional modules or parameters and can be used with any existing CLAP-like ALM to improve zero-shot audio classification performance. We experiment across 18 diverse benchmark datasets and 6 ALMs and show that the PAT outperforms vanilla zero-shot evaluation with significant margins of 0.42%-27.0%. Additionally, we demonstrate that PAT maintains robust performance even when input audio is degraded by varying levels of noise. Our code will be open-sourced upon acceptance.


[216] 2410.15064

A Prompt Engineering Approach and a Knowledge Graph based Framework for Tackling Legal Implications of Large Language Model Answers

With the recent surge in popularity of Large Language Models (LLMs), there is the rising risk of users blindly trusting the information in the response, even in cases where the LLM recommends actions that have potential legal implications and this may put the user in danger. We provide an empirical analysis on multiple existing LLMs showing the urgency of the problem. Hence, we propose a short-term solution consisting in an approach for isolating these legal issues through prompt re-engineering. We further analyse the outcomes but also the limitations of the prompt engineering based approach and we highlight the need of additional resources for fully solving the problem We also propose a framework powered by a legal knowledge graph (KG) to generate legal citations for these legal issues, enriching the response of the LLM.


[217] 2410.15065

EndoMetric: Near-light metric scale monocular SLAM

Geometric reconstruction and SLAM with endoscopic images have seen significant advancements in recent years. In most medical specialties, the endoscopes used are monocular, and the algorithms applied are typically extensions of those designed for external environments, resulting in 3D reconstructions up to an unknown scale factor. In this paper, we take advantage of the fact that standard endoscopes are equipped with near-light sources positioned at a small but non-zero baseline from the camera. By leveraging the inverse-square law of light decay, we enable, for the first time, monocular reconstructions with accurate metric scale. This paves the way to transform any endoscope into a metric device, which is essential for practical applications such as measuring polyps, stenosis, or the extent of tissue affected by disease.


[218] 2410.15067

A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends

Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on. Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions. In response to this challenge, the all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types. These innovative models enhance both convenience and versatility by adaptively learning degradation-specific features while simultaneously leveraging shared knowledge across diverse corruptions. In this review, we delve into the AiOIR methodologies, emphasizing their architecture innovations and learning paradigm and offering a systematic review of prevalent approaches. We systematically categorize prevalent approaches and critically assess the challenges these models encounter, proposing future research directions to advance this dynamic field. Our paper begins with an introduction to the foundational concepts of AiOIR models, followed by a categorization of cutting-edge designs based on factors such as prior knowledge and generalization capability. Next, we highlight key advancements in AiOIR, aiming to inspire further inquiry and innovation within the community. To facilitate a robust evaluation of existing methods, we collate and summarize commonly used datasets, implementation details, and evaluation metrics. Additionally, we present an objective comparison of open-sourced methods, providing valuable insights for researchers and practitioners alike. This paper stands as the first comprehensive and insightful review of AiOIR. A related repository is available at https://github.com/Harbinzzy/All-in-One-Image-Restoration-Survey.


[219] 2410.15068

A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation

Low Dynamic Range (LDR) to High Dynamic Range (HDR) image translation is an important computer vision problem. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task where the model learns a mapping between domains, i.e., LDR to HDR. To address limitations of current methods, such as the paired data constraint , as well as unwanted blurring and visual artifacts in the reconstructed HDR, we propose a method that uses a modified cycle-consistent adversarial architecture and utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. The method achieves state-of-the-art results across several benchmark datasets and reconstructs high-quality HDR images.


[220] 2410.15070

Infinite families of almost MDS codes holding 3-designs

There is a close relationship between linear codes and $t$-designs. Through their research on a class of narrow-sense BCH codes, Ding and Tang made a breakthrough by presenting the first two infinite families of near MDS codes holding $t$-designs with $t=2$ or 3. In this paper, we present an infinite family of MDS codes over $\mathbb{F}_{2^s}$ and two infinite families of almost MDS codes over $\mathbb{F}_{p^s}$ for any prime $p$, by investigating the parameters of the dual codes of two families of BCH codes. Notably, these almost MDS codes include two infinite families of near MDS codes over $\mathbb{F}_{3^s}$, resolving a conjecture posed by Geng et al. in 2022. Furthermore, we demonstrate that both of these almost AMDS codes and their dual codes hold infinite families of $3$-designs over \(\mathbb{F}_{p^s}\) for any prime $p$. Additionally, we study the subfield subcodes of these families of MDS and near MDS codes, and provide several binary, ternary, and quaternary codes with best known parameters.


[221] 2410.15071

Soft-Output Fast Successive-Cancellation List Decoder for Polar Codes

The soft-output successive cancellation list (SOSCL) decoder provides a methodology for estimating the a-posteriori probability log-likelihood ratios by only leveraging the conventional SCL decoder for polar codes. However, the sequential nature of SCL decoding leads to a high decoding latency for the SO-SCL decoder. In this paper, we propose a soft-output fast SCL (SO-FSCL) decoder by incorporating node-based fast decoding into the SO-SCL framework. Simulation results demonstrate that the proposed SO-FSCL decoder significantly reduces the decoding latency without loss of performance compared with the SO-SCL decoder.


[222] 2410.15073

Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer

Federated Learning(FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data. However, statistical heterogeneity poses a significant challenge for FL. As a subfield of FL, personalized FL (pFL) has attracted attention for its ability to achieve personalized models that perform well on non-independent and identically distributed (Non-IID) data. However, existing pFL methods are limited in terms of leveraging the global model's knowledge to enhance generalization while achieving personalization on local data. To address this, we proposed a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK), to train better feature extractors while balancing generalization and personalization for participating clients, which improves the performance of personalized models on Non-IID data. We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.


[223] 2410.15074

LLaVA-Ultra: Large Chinese Language and Vision Assistant for Ultrasound

Multimodal Large Language Model (MLLM) has recently garnered attention as a prominent research focus. By harnessing powerful LLM, it facilitates a transition of conversational generative AI from unimodal text to performing multimodal tasks. This boom begins to significantly impact medical field. However, general visual language model (VLM) lacks sophisticated comprehension for medical visual question answering (Med-VQA). Even models specifically tailored for medical domain tend to produce vague answers with weak visual relevance. In this paper, we propose a fine-grained adaptive VLM architecture for Chinese medical visual conversations through parameter-efficient tuning. Specifically, we devise a fusion module with fine-grained vision encoders to achieve enhancement for subtle medical visual semantics. Then we note data redundancy common to medical scenes is ignored in most prior works. In cases of a single text paired with multiple figures, we utilize weighted scoring with knowledge distillation to adaptively screen valid images mirroring text descriptions. For execution, we leverage a large-scale multimodal Chinese ultrasound dataset obtained from the hospital. We create instruction-following data based on text from professional doctors, which ensures effective tuning. With enhanced model and quality data, our Large Chinese Language and Vision Assistant for Ultrasound (LLaVA-Ultra) shows strong capability and robustness to medical scenarios. On three Med-VQA datasets, LLaVA-Ultra surpasses previous state-of-the-art models on various metrics.


[224] 2410.15075

SLIC: Secure Learned Image Codec through Compressed Domain Watermarking to Defend Image Manipulation

The digital image manipulation and advancements in Generative AI, such as Deepfake, has raised significant concerns regarding the authenticity of images shared on social media. Traditional image forensic techniques, while helpful, are often passive and insufficient against sophisticated tampering methods. This paper introduces the Secure Learned Image Codec (SLIC), a novel active approach to ensuring image authenticity through watermark embedding in the compressed domain. SLIC leverages neural network-based compression to embed watermarks as adversarial perturbations in the latent space, creating images that degrade in quality upon re-compression if tampered with. This degradation acts as a defense mechanism against unauthorized modifications. Our method involves fine-tuning a neural encoder/decoder to balance watermark invisibility with robustness, ensuring minimal quality loss for non-watermarked images. Experimental results demonstrate SLIC's effectiveness in generating visible artifacts in tampered images, thereby preventing their redistribution. This work represents a significant step toward developing secure image codecs that can be widely adopted to safeguard digital image integrity.


[225] 2410.15076

EPT-1.5 Technical Report

We announce the release of EPT-1.5, the latest iteration in our Earth Physics Transformer (EPT) family of foundation AI earth system models. EPT-1.5 demonstrates substantial improvements over its predecessor, EPT-1. Built specifically for the European energy industry, EPT-1.5 shows remarkable performance in predicting energy-relevant variables, particularly 10m & 100m wind speed and solar radiation. Especially in wind prediction, it outperforms existing AI weather models like GraphCast, FuXi, and Pangu-Weather, as well as the leading numerical weather model, IFS HRES by the European Centre for Medium-Range Weather Forecasts (ECMWF), setting a new state of the art.


[226] 2410.15077

Emotionally Enriched Feedback via Generative AI

This study investigates the impact of emotionally enriched AI feedback on student engagement and emotional responses in higher education. Leveraging the Control-Value Theory of Achievement Emotions, we conducted a randomized controlled experiment involving 425 participants where the experimental group received AI feedback enhanced with motivational elements, while the control group received neutral feedback. Our findings reveal that emotionally enriched feedback is perceived as more beneficial and helps reduce negative emotions, particularly anger, towards receiving feedback. However, it had no significant impact on the level of engagement with feedback or the quality of student work. These results suggest that incorporating emotional elements into AI-driven feedback can positively influence student perceptions and emotional well-being, without compromising work quality. Our study contributes to the growing body of research on AI in education by highlighting the importance of emotional considerations in educational technology design.


[227] 2410.15079

Parsimonious convolution quadrature

We present a method to rapidly approximate convolution quadrature (CQ) approximations, based on a piecewise polynomial interpolation of the Laplace domain operator, which we call the \emph{parsimonious} convolution quadrature method. For implicit Euler and second order backward difference formula based discretizations, we require $O(\sqrt{N}\log N)$ evaluations in the Laplace domain to approximate $N$ time steps of the convolution quadrature method to satisfactory accuracy. The methodology proposed here differentiates from the well-understood fast and oblivious convolution quadrature \cite{SLL06}, since it is applicable to Laplace domain operator families that are only defined and polynomially bounded on a positive half space, which includes acoustic and electromagnetic wave scattering problems. The methods is applicable to linear and nonlinear integral equations. To elucidate the core idea, we give a complete and extensive analysis of the simplest case and derive worst-case estimates for the performance of parsimonious CQ based on the implicit Euler method. For sectorial Laplace transforms, we obtain methods that require $O(\log^2 N)$ Laplace domain evaluations on the complex right-half space. We present different implementation strategies, which only differ slightly from the classical realization of CQ methods. Numerical experiments demonstrate the use of the method with a time-dependent acoustic scattering problem, which was discretized by the boundary element method in space.


[228] 2410.15081

A Distribution Semantics for Probabilistic Term Rewriting

Probabilistic programming is becoming increasingly popular thanks to its ability to specify problems with a certain degree of uncertainty. In this work, we focus on term rewriting, a well-known computational formalism. In particular, we consider systems that combine traditional rewriting rules with probabilities. Then, we define a distribution semantics for such systems that can be used to model the probability of reducing a term to some value. We also show how to compute a set of "explanations" for a given reduction, which can be used to compute its probability. Finally, we illustrate our approach with several examples and outline a couple of extensions that may prove useful to improve the expressive power of probabilistic rewrite systems.


[229] 2410.15086

Towards Safer Heuristics With XPlain

Many problems that cloud operators solve are computationally expensive, and operators often use heuristic algorithms (that are faster and scale better than optimal) to solve them more efficiently. Heuristic analyzers enable operators to find when and by how much their heuristics underperform. However, these tools do not provide enough detail for operators to mitigate the heuristic's impact in practice: they only discover a single input instance that causes the heuristic to underperform (and not the full set), and they do not explain why. We propose XPlain, a tool that extends these analyzers and helps operators understand when and why their heuristics underperform. We present promising initial results that show such an extension is viable.


[230] 2410.15087

The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling

The rapid increase in computing demand and its corresponding energy consumption have focused attention on computing's impact on the climate and sustainability. Prior work proposes metrics that quantify computing's carbon footprint across several lifecycle phases, including its supply chain, operation, and end-of-life. Industry uses these metrics to optimize the carbon footprint of manufacturing hardware and running computing applications. Unfortunately, prior work on optimizing datacenters' carbon footprint often succumbs to the \emph{sunk cost fallacy} by considering embodied carbon emissions (a sunk cost) when making operational decisions (i.e., job scheduling and placement), which leads to operational decisions that do not always reduce the total carbon footprint. In this paper, we evaluate carbon-aware job scheduling and placement on a given set of servers for a number of carbon accounting metrics. Our analysis reveals state-of-the-art carbon accounting metrics that include embodied carbon emissions when making operational decisions can actually increase the total carbon footprint of executing a set of jobs. We study the factors that affect the added carbon cost of such suboptimal decision-making. We then use a real-world case study from a datacenter to demonstrate how the sunk carbon fallacy manifests itself in practice. Finally, we discuss the implications of our findings in better guiding effective carbon-aware scheduling in on-premise and cloud datacenters.


[231] 2410.15089

A Least-Squares-Based Neural Network (LS-Net) for Solving Linear Parametric PDEs

Developing efficient methods for solving parametric partial differential equations is crucial for addressing inverse problems. This work introduces a Least-Squares-based Neural Network (LS-Net) method for solving linear parametric PDEs. It utilizes a separated representation form for the parametric PDE solution via a deep neural network and a least-squares solver. In this approach, the output of the deep neural network consists of a vector-valued function, interpreted as basis functions for the parametric solution space, and the least-squares solver determines the optimal solution within the constructed solution space for each given parameter. The LS-Net method requires a quadratic loss function for the least-squares solver to find optimal solutions given the set of basis functions. In this study, we consider loss functions derived from the Deep Fourier Residual and Physics-Informed Neural Networks approaches. We also provide theoretical results similar to the Universal Approximation Theorem, stating that there exists a sufficiently large neural network that can theoretically approximate solutions of parametric PDEs with the desired accuracy. We illustrate the LS-net method by solving one- and two-dimensional problems. Numerical results clearly demonstrate the method's ability to approximate parametric solutions.


[232] 2410.15091

Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion

Selective state space models (SSMs), such as Mamba, highly excel at capturing long-range dependencies in 1D sequential data, while their applications to 2D vision tasks still face challenges. Current visual SSMs often convert images into 1D sequences and employ various scanning patterns to incorporate local spatial dependencies. However, these methods are limited in effectively capturing the complex image spatial structures and the increased computational cost caused by the lengthened scanning paths. To address these limitations, we propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space. Instead of relying solely on sequential state transitions, we introduce a structure-aware state fusion equation, which leverages dilated convolutions to capture image spatial structural dependencies, significantly enhancing the flow of visual contextual information. Spatial-Mamba proceeds in three stages: initial state computation in a unidirectional scan, spatial context acquisition through structure-aware state fusion, and final state computation using the observation equation. Our theoretical analysis shows that Spatial-Mamba unifies the original Mamba and linear attention under the same matrix multiplication framework, providing a deeper understanding of our method. Experimental results demonstrate that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation. Source codes and trained models can be found at $\href{https://github.com/EdwardChasel/Spatial-Mamba}{\text{this https URL}}$.


[233] 2410.15092

Exploring the Design of Virtual Reality Museums to Support Remote Visitation With Older Adults

Virtual Reality (VR) museums provide immersive visiting experiences. Despite growing efforts in VR museum design optimization, limited research addresses its efficacy for older adults. We sought to investigate the challenges of and preferences for VR museum visits among older adults through a user-centered participatory workshop. Our preliminary findings illuminate issues regarding spatial navigation, interpretive descriptions, collective aspiration for augmented multi-sensory interactions, and imagined content visualization. Based on our preliminary findings, we discuss potential design principles for enhancing the accessibility of VR museums for older adults.


[234] 2410.15093

DPVS-Shapley:Faster and Universal Contribution Evaluation Component in Federated Learning

In the current era of artificial intelligence, federated learning has emerged as a novel approach to addressing data privacy concerns inherent in centralized learning paradigms. This decentralized learning model not only mitigates the risk of data breaches but also enhances the system's scalability and robustness. However, this approach introduces a new challenge: how to fairly and accurately assess the contribution of each participant. Developing an effective contribution evaluation mechanism is crucial for federated learning. Such a mechanism incentivizes participants to actively contribute their data and computational resources, thereby improving the overall performance of the federated learning system. By allocating resources and rewards based on the size of the contributions, it ensures that each participant receives fair treatment, fostering sustained engagement.Currently, Shapley value-based methods are widely used to evaluate participants' contributions, with many researchers proposing modifications to adapt these methods to real-world scenarios. In this paper, we introduce a component called Dynamic Pruning Validation Set Shapley (DPVS-Shapley). This method accelerates the contribution assessment process by dynamically pruning the original dataset without compromising the evaluation's accuracy. Furthermore, this component can assign different weights to various samples, thereby allowing clients capable of distinguishing difficult examples to receive higher contribution scores.


[235] 2410.15094

CosFairNet:A Parameter-Space based Approach for Bias Free Learning

Deep neural networks trained on biased data often inadvertently learn unintended inference rules, particularly when labels are strongly correlated with biased features. Existing bias mitigation methods typically involve either a) predefining bias types and enforcing them as prior knowledge or b) reweighting training samples to emphasize bias-conflicting samples over bias-aligned samples. However, both strategies address bias indirectly in the feature or sample space, with no control over learned weights, making it difficult to control the bias propagation across different layers. Based on this observation, we introduce a novel approach to address bias directly in the model's parameter space, preventing its propagation across layers. Our method involves training two models: a bias model for biased features and a debias model for unbiased details, guided by the bias model. We enforce dissimilarity in the debias model's later layers and similarity in its initial layers with the bias model, ensuring it learns unbiased low-level features without adopting biased high-level abstractions. By incorporating this explicit constraint during training, our approach shows enhanced classification accuracy and debiasing effectiveness across various synthetic and real-world datasets of different sizes. Moreover, the proposed method demonstrates robustness across different bias types and percentages of biased samples in the training data. The code is available at: https://visdomlab.github.io/CosFairNet/


[236] 2410.15096

GDPO: Learning to Directly Align Language Models with Diversity Using GFlowNets

A critical component of the current generation of language models is preference alignment, which aims to precisely control the model's behavior to meet human needs and values. The most notable among such methods is Reinforcement Learning with Human Feedback (RLHF) and its offline variant Direct Preference Optimization (DPO), both of which seek to maximize a reward model based on human preferences. In particular, DPO derives reward signals directly from the offline preference data, but in doing so overfits the reward signals and generates suboptimal responses that may contain human biases in the dataset. In this work, we propose a practical application of a diversity-seeking RL algorithm called GFlowNet-DPO (GDPO) in an offline preference alignment setting to curtail such challenges. Empirical results show GDPO can generate far more diverse responses than the baseline methods that are still relatively aligned with human values in dialog generation and summarization tasks.


[237] 2410.15098

Incorporating Group Prior into Variational Inference for Tail-User Behavior Modeling in CTR Prediction

User behavior modeling -- which aims to extract user interests from behavioral data -- has shown great power in Click-through rate (CTR) prediction, a key component in recommendation systems. Recently, attention-based algorithms have become a promising direction, as attention mechanisms emphasize the relevant interactions from rich behaviors. However, the methods struggle to capture the preferences of tail users with sparse interaction histories. To address the problem, we propose a novel variational inference approach, namely Group Prior Sampler Variational Inference (GPSVI), which introduces group preferences as priors to refine latent user interests for tail users. In GPSVI, the extent of adjustments depends on the estimated uncertainty of individual preference modeling. In addition, We further enhance the expressive power of variational inference by a volume-preserving flow. An appealing property of the GPSVI method is its ability to revert to traditional attention for head users with rich behavioral data while consistently enhancing performance for long-tail users with sparse behaviors. Rigorous analysis and extensive experiments demonstrate that GPSVI consistently improves the performance of tail users. Moreover, online A/B testing on a large-scale real-world recommender system further confirms the effectiveness of our proposed approach.


[238] 2410.15105

Standardizing Generative Face Video Compression using Supplemental Enhancement Information

This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.


[239] 2410.15107

Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models

Retrieval Augmented Language Models (RALMs) have gained significant attention for their ability to generate accurate answer and improve efficiency. However, RALMs are inherently vulnerable to imperfect information due to their reliance on the imperfect retriever or knowledge source. We identify three common scenarios-unanswerable, adversarial, conflicting-where retrieved document sets can confuse RALM with plausible real-world examples. We present the first comprehensive investigation to assess how well RALMs detect and handle such problematic scenarios. Among these scenarios, to systematically examine adversarial robustness we propose a new adversarial attack method, Generative model-based ADVersarial attack (GenADV) and a novel metric Robustness under Additional Document (RAD). Our findings reveal that RALMs often fail to identify the unanswerability or contradiction of a document set, which frequently leads to hallucinations. Moreover, we show the addition of an adversary significantly degrades RALM's performance, with the model becoming even more vulnerable when the two scenarios overlap (adversarial+unanswerable). Our research identifies critical areas for assessing and enhancing the robustness of RALMs, laying the foundation for the development of more robust models.


[240] 2410.15111

A Prompt Refinement-based Large Language Model for Metro Passenger Flow Forecasting under Delay Conditions

Accurate short-term forecasts of passenger flow in metro systems under delay conditions are crucial for emergency response and service recovery, which pose significant challenges and are currently under-researched. Due to the rare occurrence of delay events, the limited sample size under delay condictions make it difficult for conventional models to effectively capture the complex impacts of delays on passenger flow, resulting in low forecasting accuracy. Recognizing the strengths of large language models (LLMs) in few-shot learning due to their powerful pre-training, contextual understanding, ability to perform zero-shot and few-shot reasoning, to address the issues that effectively generalize and adapt with minimal data, we propose a passenger flow forecasting framework under delay conditions that synthesizes an LLM with carefully designed prompt engineering. By Refining prompt design, we enable the LLM to understand delay event information and the pattern from historical passenger flow data, thus overcoming the challenges of passenger flow forecasting under delay conditions. The propmpt engineering in the framework consists of two main stages: systematic prompt generation and prompt refinement. In the prompt generation stage, multi-source data is transformed into descriptive texts understandable by the LLM and stored. In the prompt refinement stage, we employ the multidimensional Chain of Thought (CoT) method to refine the prompts. We verify the proposed framework by conducting experiments using real-world datasets specifically targeting passenger flow forecasting under delay conditions of Shenzhen metro in China. The experimental results demonstrate that the proposed model performs particularly well in forecasting passenger flow under delay conditions.


[241] 2410.15115

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.


[242] 2410.15116

Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models

Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM) -- which enhances models with up-to-date knowledge -- emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel \textbf{CO}arse-to-\textbf{F}ine highligh\textbf{T}ing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: \textit{recaller}, \textit{scorer}, and \textit{selector}. First, \textit{recaller} applies a knowledge graph to extract potential key entities in a given context. Second, \textit{scorer} measures the importance of each entity by calculating its contextual weight. Finally, \textit{selector} selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on the knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over $30\%$ in the F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.


[243] 2410.15117

Accelerating k-Means Clustering with Cover Trees

The k-means clustering algorithm is a popular algorithm that partitions data into k clusters. There are many improvements to accelerate the standard algorithm. Most current research employs upper and lower bounds on point-to-cluster distances and the triangle inequality to reduce the number of distance computations, with only arrays as underlying data structures. These approaches cannot exploit that nearby points are likely assigned to the same cluster. We propose a new k-means algorithm based on the cover tree index, that has relatively low overhead and performs well, for a wider parameter range, than previous approaches based on the k-d tree. By combining this with upper and lower bounds, as in state-of-the-art approaches, we obtain a hybrid algorithm that combines the benefits of tree aggregation and bounds-based filtering.


[244] 2410.15120

Generalizable Prediction Model of Molten Salt Mixture Density with Chemistry-Informed Transfer Learning

Optimally designing molten salt applications requires knowledge of their thermophysical properties, but existing databases are incomplete, and experiments are challenging. Ideal mixing and Redlich-Kister models are computationally cheap but lack either accuracy or generality. To address this, a transfer learning approach using deep neural networks (DNNs) is proposed, combining Redlich-Kister models, experimental data, and ab initio properties. The approach predicts molten salt density with high accuracy ($r^{2}$ > 0.99, MAPE < 1%), outperforming the alternatives.


[245] 2410.15123

MeshDMP: Motion Planning on Discrete Manifolds using Dynamic Movement Primitives

An open problem in industrial automation is to reliably perform tasks requiring in-contact movements with complex workpieces, as current solutions lack the ability to seamlessly adapt to the workpiece geometry. In this paper, we propose a Learning from Demonstration approach that allows a robot manipulator to learn and generalise motions across complex surfaces by leveraging differential mathematical operators on discrete manifolds to embed information on the geometry of the workpiece extracted from triangular meshes, and extend the Dynamic Movement Primitives (DMPs) framework to generate motions on the mesh surfaces. We also propose an effective strategy to adapt the motion to different surfaces, by introducing an isometric transformation of the learned forcing term. The resulting approach, namely MeshDMP, is evaluated both in simulation and real experiments, showing promising results in typical industrial automation tasks like car surface polishing.


[246] 2410.15126

MELT: Materials-aware Continued Pre-training for Language Model Adaptation to Materials Science

We introduce a novel continued pre-training method, MELT (MatEriaLs-aware continued pre-Training), specifically designed to efficiently adapt the pre-trained language models (PLMs) for materials science. Unlike previous adaptation strategies that solely focus on constructing domain-specific corpus, MELT comprehensively considers both the corpus and the training strategy, given that materials science corpus has distinct characteristics from other domains. To this end, we first construct a comprehensive materials knowledge base from the scientific corpus by building semantic graphs. Leveraging this extracted knowledge, we integrate a curriculum into the adaptation process that begins with familiar and generalized concepts and progressively moves toward more specialized terms. We conduct extensive experiments across diverse benchmarks to verify the effectiveness and generality of MELT. A comprehensive evaluation convincingly supports the strength of MELT, demonstrating superior performance compared to existing continued pre-training methods. The in-depth analysis also shows that MELT enables PLMs to effectively represent materials entities compared to the existing adaptation methods, thereby highlighting its broad applicability across a wide spectrum of materials science.


[247] 2410.15127

Reinfier and Reintrainer: Verification and Interpretation-Driven Safe Deep Reinforcement Learning Frameworks

Ensuring verifiable and interpretable safety of deep reinforcement learning (DRL) is crucial for its deployment in real-world applications. Existing approaches like verification-in-the-loop training, however, face challenges such as difficulty in deployment, inefficient training, lack of interpretability, and suboptimal performance in property satisfaction and reward performance. In this work, we propose a novel verification-driven interpretation-in-the-loop framework Reintrainer to develop trustworthy DRL models, which are guaranteed to meet the expected constraint properties. Specifically, in each iteration, this framework measures the gap between the on-training model and predefined properties using formal verification, interprets the contribution of each input feature to the model's output, and then generates the training strategy derived from the on-the-fly measure results, until all predefined properties are proven. Additionally, the low reusability of existing verifiers and interpreters motivates us to develop Reinfier, a general and fundamental tool within Reintrainer for DRL verification and interpretation. Reinfier features breakpoints searching and verification-driven interpretation, associated with a concise constraint-encoding language DRLP. Evaluations demonstrate that Reintrainer outperforms the state-of-the-art on six public benchmarks in both performance and property guarantees. Our framework can be accessed at https://github.com/Kurayuri/Reinfier.


[248] 2410.15128

Generalized Flow Matching for Transition Dynamics Modeling

Simulating transition dynamics between metastable states is a fundamental challenge in dynamical systems and stochastic processes with wide real-world applications in understanding protein folding, chemical reactions and neural activities. However, the computational challenge often lies on sampling exponentially many paths in which only a small fraction ends in the target metastable state due to existence of high energy barriers. To amortize the cost, we propose a data-driven approach to warm-up the simulation by learning nonlinear interpolations from local dynamics. Specifically, we infer a potential energy function from local dynamics data. To find plausible paths between two metastable states, we formulate a generalized flow matching framework that learns a vector field to sample propable paths between the two marginal densities under the learned energy function. Furthermore, we iteratively refine the model by assigning importance weights to the sampled paths and buffering more likely paths for training. We validate the effectiveness of the proposed method to sample probable paths on both synthetic and real-world molecular systems.


[249] 2410.15135

Augmenting the Veracity and Explanations of Complex Fact Checking via Iterative Self-Revision with LLMs

Explanation generation plays a more pivotal role than fact verification in producing interpretable results and facilitating comprehensive fact-checking, which has recently garnered considerable attention. However, previous studies on explanation generation has shown several limitations, such as being confined to English scenarios, involving overly complex inference processes, and not fully unleashing the potential of the mutual feedback between veracity labels and explanation texts. To address these issues, we construct two complex fact-checking datasets in the Chinese scenarios: CHEF-EG and TrendFact. These datasets involve complex facts in areas such as health, politics, and society, presenting significant challenges for fact verification methods. In response to these challenges, we propose a unified framework called FactISR (Augmenting Fact-Checking via Iterative Self-Revision) to perform mutual feedback between veracity and explanations by leveraging the capabilities of large language models(LLMs). FactISR uses a single model to address tasks such as fact verification and explanation generation. Its self-revision mechanism can further revision the consistency between veracity labels, explanation texts, and evidence, as well as eliminate irrelevant noise. We conducted extensive experiments with baselines and FactISR on the proposed datasets. The experimental results demonstrate the effectiveness of our method.


[250] 2410.15136

CAST: Corpus-Aware Self-similarity Enhanced Topic modelling

Topic modelling is a pivotal unsupervised machine learning technique for extracting valuable insights from large document collections. Existing neural topic modelling methods often encode contextual information of documents, while ignoring contextual details of candidate centroid words, leading to the inaccurate selection of topic words due to the contextualization gap. In parallel, it is found that functional words are frequently selected over topical words. To address these limitations, we introduce CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling method that builds upon candidate centroid word embeddings contextualized on the dataset, and a novel self-similarity-based method to filter out less meaningful tokens. Inspired by findings in contrastive learning that self-similarities of functional token embeddings in different contexts are much lower than topical tokens, we find self-similarity to be an effective metric to prevent functional words from acting as candidate topic words. Our approach significantly enhances the coherence and diversity of generated topics, as well as the topic model's ability to handle noisy data. Experiments on news benchmark datasets and one Twitter dataset demonstrate the method's superiority in generating coherent, diverse topics, and handling noisy data, outperforming strong baselines.


[251] 2410.15137

Collaborative State Fusion in Partially Known Multi-agent Environments

In this paper, we study the collaborative state fusion problem in a multi-agent environment, where mobile agents collaborate to track movable targets. Due to the limited sensing range and potential errors of on-board sensors, it is necessary to aggregate individual observations to provide target state fusion for better target state estimation. Existing schemes do not perform well due to (1) impractical assumption of the fully known prior target state-space model and (2) observation outliers from individual sensors. To address the issues, we propose a two-stage collaborative fusion framework, namely \underline{L}earnable Weighted R\underline{o}bust \underline{F}usion (\textsf{LoF}). \textsf{LoF} combines a local state estimator (e.g., Kalman Filter) with a learnable weight generator to address the mismatch between the prior state-space model and underlying patterns of moving targets. Moreover, given observation outliers, we develop a time-series soft medoid(TSM) scheme to perform robust fusion. We evaluate \textsf{LoF} in a collaborative detection simulation environment with promising results. In an example setting with 4 agents and 2 targets, \textsf{LoF} leads to a 9.1\% higher fusion gain compared to the state-of-the-art.


[252] 2410.15143

Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling

The majority of online continual learning (CL) advocates single-epoch training and imposes restrictions on the size of replay memory. However, single-epoch training would incur a different amount of computations per CL algorithm, and the additional storage cost to store logit or model in addition to replay memory is largely ignored in calculating the storage budget. Arguing different computational and storage budgets hinder fair comparison among CL algorithms in practice, we propose to use floating point operations (FLOPs) and total memory size in Byte as a metric for computational and memory budgets, respectively, to compare and develop CL algorithms in the same 'total resource budget.' To improve a CL method in a limited total budget, we propose adaptive layer freezing that does not update the layers for less informative batches to reduce computational costs with a negligible loss of accuracy. In addition, we propose a memory retrieval method that allows the model to learn the same amount of knowledge as using random retrieval in fewer iterations. Empirical validations on the CIFAR-10/100, CLEAR-10/100, and ImageNet-1K datasets demonstrate that the proposed approach outperforms the state-of-the-art methods within the same total budget


[253] 2410.15144

A survey of neural-network-based methods utilising comparable data for finding translation equivalents

The importance of inducing bilingual dictionary components in many natural language processing (NLP) applications is indisputable. However, the dictionary compilation process requires extensive work and combines two disciplines, NLP and lexicography, while the former often omits the latter. In this paper, we present the most common approaches from NLP that endeavour to automatically induce one of the essential dictionary components, translation equivalents and focus on the neural-network-based methods using comparable data. We analyse them from a lexicographic perspective since their viewpoints are crucial for improving the described methods. Moreover, we identify the methods that integrate these viewpoints and can be further exploited in various applications that require them. This survey encourages a connection between the NLP and lexicography fields as the NLP field can benefit from lexicographic insights, and it serves as a helping and inspiring material for further research in the context of neural-network-based methods utilising comparable data.


[254] 2410.15145

Mining Asymmetric Intertextuality

This paper introduces a new task in Natural Language Processing (NLP) and Digital Humanities (DH): Mining Asymmetric Intertextuality. Asymmetric intertextuality refers to one-sided relationships between texts, where one text cites, quotes, or borrows from another without reciprocation. These relationships are common in literature and historical texts, where a later work references aclassical or older text that remain static. We propose a scalable and adaptive approach for mining asymmetric intertextuality, leveraging a split-normalize-merge paradigm. In this approach, documents are split into smaller chunks, normalized into structured data using LLM-assisted metadata extraction, and merged during querying to detect both explicit and implicit intertextual relationships. Our system handles intertextuality at various levels, from direct quotations to paraphrasing and cross-document influence, using a combination of metadata filtering, vector similarity search, and LLM-based verification. This method is particularly well-suited for dynamically growing corpora, such as expanding literary archives or historical databases. By enabling the continuous integration of new documents, the system can scale efficiently, making it highly valuable for digital humanities practitioners in literacy studies, historical research and related fields.


[255] 2410.15148

Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning

Intermediate task transfer learning can greatly improve model performance. If, for example, one has little training data for emotion detection, first fine-tuning a language model on a sentiment classification dataset may improve performance strongly. But which task to choose for transfer learning? Prior methods producing useful task rankings are infeasible for large source pools, as they require forward passes through all source language models. We overcome this by introducing Embedding Space Maps (ESMs), light-weight neural networks that approximate the effect of fine-tuning a language model. We conduct the largest study on NLP task transferability and task selection with 12k source-target pairs. We find that applying ESMs on a prior method reduces execution time and disk space usage by factors of 10 and 278, respectively, while retaining high selection performance (avg. regret@5 score of 2.95).


[256] 2410.15151

A Comparative Analysis of Nigeria's Power Sector with and without Grid-Scale Storage: Future Implications for Emission and Renewable Energy Integration

This research proposes a framework for modeling and comparing two electricity scenarios for Nigeria by 2050, focusing on the inclusion and exclusion of electricity storage technologies. A Central Composite Design (CCD) was used to generate a design matrix for data collection, with EnergyPLAN software used to create energy system simulations on the CCD data for four outputs: total annual cost, CO2 emissions, critical excess electricity production (CEEP), and electricity import. Three machine learning algorithms, support vector regression (SVR), extreme gradient boosting (XGBoost), and multi-layer perceptron (MLP), were tuned using Bayesian optimization to develop models mapping the inputs to outputs. A genetic algorithm was employed for multi-objective optimization to determine the optimal input capacities that minimize the outputs. Results indicated that incorporating electricity storage technologies (EST) leads to a 37% increase in renewable electricity sources (RES) share, resulting in a 19.14% reduction in CO2 emissions. EST such as battery energy storage systems (BESS), pumped hydro storage (PHS), and vehicle-to-grid (V2G) storage allow for the storage of the critical excess electricity that comes with increasing RES share. Integrating EST in Nigeria's 2050 energy landscape is crucial for incorporating more renewable electricity sources into the energy system, thereby reducing CO2 emissions and managing excess electricity production. This study outlines a plan for optimal electricity production to meet Nigeria's 2050 demand, highlighting the need for a balanced approach that combines fossil fuels, renewable energy, nuclear power, and advanced storage solutions to achieve a sustainable and efficient electricity system.


[257] 2410.15153

Evaluating Deep Unlearning in Large Language Models

Machine unlearning is a key requirement of many data protection regulations such as GDPR. Prior work on unlearning has mostly considered superficial unlearning tasks where a single or a few related pieces of information are required to be removed. However, the task of unlearning a fact is much more challenging in recent large language models (LLMs), because the facts in LLMs can be deduced from each other. In this work, we investigate whether current unlearning methods for LLMs succeed beyond superficial unlearning of facts. Specifically, we formally propose a framework and a definition for deep unlearning facts that are interrelated. We design the metric, recall, to quantify the extent of deep unlearning. To systematically evaluate deep unlearning, we construct a synthetic dataset EDU-RELAT, which consists of a synthetic knowledge base of family relationships and biographies, together with a realistic logical rule set that connects them. We use this dataset to test four unlearning methods in four LLMs at different sizes. Our findings reveal that in the task of deep unlearning only a single fact, they either fail to properly unlearn with high recall, or end up unlearning many other irrelevant facts. Our dataset and code are publicly available at: https://github.com/wrh14/deep_unlearning.


[258] 2410.15154

MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification

Large Language Models (LLMs) have shown considerable promise in code generation. However, the automation sector, especially in motion control, continues to rely heavily on manual programming due to the complexity of tasks and critical safety considerations. In this domain, incorrect code execution can pose risks to both machinery and personnel, necessitating specialized expertise. To address these challenges, we introduce MCCoder, an LLM-powered system designed to generate code that addresses complex motion control tasks, with integrated soft-motion data verification. MCCoder enhances code generation through multitask decomposition, hybrid retrieval-augmented generation (RAG), and self-correction with a private motion library. Moreover, it supports data verification by logging detailed trajectory data and providing simulations and plots, allowing users to assess the accuracy of the generated code and bolstering confidence in LLM-based programming. To ensure robust validation, we propose MCEVAL, an evaluation dataset with metrics tailored to motion control tasks of varying difficulties. Experiments indicate that MCCoder improves performance by 11.61% overall and by 66.12% on complex tasks in MCEVAL dataset compared with base models with naive RAG. This system and dataset aim to facilitate the application of code generation in automation settings with strict safety requirements. MCCoder is publicly available at https://github.com/MCCodeAI/MCCoder.


[259] 2410.15155

Pipeline Gradient-based Model Training on Analog In-memory Accelerators

Aiming to accelerate the training of large deep neural models (DNN) in an energy-efficient way, an analog in-memory computing (AIMC) accelerator emerges as a solution with immense potential. In AIMC accelerators, trainable weights are kept in memory without the need to move from memory to processors during the training, reducing a bunch of overhead. However, although the in-memory feature enables efficient computation, it also constrains the use of data parallelism since copying weights from one AIMC to another is expensive. To enable parallel training using AIMC, we propose synchronous and asynchronous pipeline parallelism for AIMC accelerators inspired by the pipeline in digital domains. This paper provides a theoretical convergence guarantee for both synchronous and asynchronous pipelines in terms of both sampling and clock cycle complexity, which is non-trivial since the physical characteristic of AIMC accelerators leads to analog updates that suffer from asymmetric bias. The simulations of training DNN on real datasets verify the efficiency of pipeline training.


[260] 2410.15156

Simulation-Based Optimistic Policy Iteration For Multi-Agent MDPs with Kullback-Leibler Control Cost

This paper proposes an agent-based optimistic policy iteration (OPI) scheme for learning stationary optimal stochastic policies in multi-agent Markov Decision Processes (MDPs), in which agents incur a Kullback-Leibler (KL) divergence cost for their control efforts and an additional cost for the joint state. The proposed scheme consists of a greedy policy improvement step followed by an m-step temporal difference (TD) policy evaluation step. We use the separable structure of the instantaneous cost to show that the policy improvement step follows a Boltzmann distribution that depends on the current value function estimate and the uncontrolled transition probabilities. This allows agents to compute the improved joint policy independently. We show that both the synchronous (entire state space evaluation) and asynchronous (a uniformly sampled set of substates) versions of the OPI scheme with finite policy evaluation rollout converge to the optimal value function and an optimal joint policy asymptotically. Simulation results on a multi-agent MDP with KL control cost variant of the Stag-Hare game validates our scheme's performance in terms of minimizing the cost return.


[261] 2410.15161

Evaluation Of P300 Speller Performance Using Large Language Models Along With Cross-Subject Training

Amyotrophic lateral sclerosis (ALS), a progressive neuromuscular degenerative disease, severely restricts patient communication capacity within a few years of onset, resulting in a significant deterioration of quality of life. The P300 speller brain computer interface (BCI) offers an alternative communication medium by leveraging a subject's EEG response to characters traditionally highlighted on a character grid on a graphical user interface (GUI). A recurring theme in P300-based research is enhancing performance to enable faster subject interaction. This study builds on that theme by addressing key limitations, particularly in the training of multi-subject classifiers, and by integrating advanced language models to optimize stimuli presentation and word prediction, thereby improving communication efficiency. Furthermore, various advanced large language models such as Generative Pre-Trained Transformer (GPT2), BERT, and BART, alongside Dijkstra's algorithm, are utilized to optimize stimuli and provide word completion choices based on the spelling history. In addition, a multi-layered smoothing approach is applied to allow for out-of-vocabulary (OOV) words. By conducting extensive simulations based on randomly sampled EEG data from subjects, we show substantial speed improvements in typing passages that include rare and out-of-vocabulary (OOV) words, with the extent of improvement varying depending on the language model utilized. The gains through such character-level interface optimizations are approximately 10%, and GPT2 for multi-word prediction provides gains of around 40%. In particular, some large language models achieve performance levels within 10% of the theoretical performance limits established in this study. In addition, both within and across subjects, training techniques are explored, and speed improvements are shown to hold in both cases.


[262] 2410.15163

Optimizing Large Language Models for Dynamic Constraints through Human-in-the-Loop Discriminators

Large Language Models (LLMs) have recently demonstrated impressive capabilities across various real-world applications. However, due to the current text-in-text-out paradigm, it remains challenging for LLMs to handle dynamic and complex application constraints, let alone devise general solutions that meet predefined system goals. Current common practices like model finetuning and reflection-based reasoning often address these issues case-by-case, limiting their generalizability. To address this issue, we propose a flexible framework that enables LLMs to interact with system interfaces, summarize constraint concepts, and continually optimize performance metrics by collaborating with human experts. As a case in point, we initialized a travel planner agent by establishing constraints from evaluation interfaces. Then, we employed both LLM-based and human discriminators to identify critical cases and continuously improve agent performance until the desired outcomes were achieved. After just one iteration, our framework achieved a $7.78\%$ pass rate with the human discriminator (a $40.2\%$ improvement over baseline) and a $6.11\%$ pass rate with the LLM-based discriminator. Given the adaptability of our proposal, we believe this framework can be applied to a wide range of constraint-based applications and lay a solid foundation for model finetuning with performance-sensitive data samples.


[263] 2410.15164

SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation

Smartphone agents are increasingly important for helping users control devices efficiently, with (Multimodal) Large Language Model (MLLM)-based approaches emerging as key contenders. Fairly comparing these agents is essential but challenging, requiring a varied task scope, the integration of agents with different implementations, and a generalisable evaluation pipeline to assess their strengths and weaknesses. In this paper, we present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents in an interactive environment that simulates real-world conditions. SPA-Bench offers three key contributions: (1) A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines; (2) A plug-and-play framework enabling real-time agent interaction with Android devices, integrating over ten agents with the flexibility to add more; (3) A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption. Our extensive experiments across tasks and agents reveal challenges like interpreting mobile user interfaces, action grounding, memory retention, and execution costs. We propose future research directions to ease these difficulties, moving closer to real-world smartphone agent applications.


[264] 2410.15165

Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction

In recent years, Graph Neural Networks (GNNs) have become successful in molecular property prediction tasks such as toxicity analysis. However, due to the black-box nature of GNNs, their outputs can be concerning in high-stakes decision-making scenarios, e.g., drug discovery. Facing such an issue, Graph Counterfactual Explanation (GCE) has emerged as a promising approach to improve GNN transparency. However, current GCE methods usually fail to take domain-specific knowledge into consideration, which can result in outputs that are not easily comprehensible by humans. To address this challenge, we propose a novel GCE method, LLM-GCE, to unleash the power of large language models (LLMs) in explaining GNNs for molecular property prediction. Specifically, we utilize an autoencoder to generate the counterfactual graph topology from a set of counterfactual text pairs (CTPs) based on an input graph. Meanwhile, we also incorporate a CTP dynamic feedback module to mitigate LLM hallucination, which provides intermediate feedback derived from the generated counterfactuals as an attempt to give more faithful guidance. Extensive experiments demonstrate the superior performance of LLM-GCE. Our code is released on https://github.com/YinhanHe123/new\_LLM4GNNExplanation.


[265] 2410.15168

An Electoral Approach to Diversify LLM-based Multi-Agent Collective Decision-Making

Modern large language models (LLMs) have exhibited cooperative synergy on complex task-solving, and collective decision-making (CDM) is a pivotal component in LLM-based multi-agent collaboration frameworks. Our survey on 52 recent such systems uncovers a severe lack of diversity, with a heavy reliance on dictatorial and plurality voting for CDM. Through the lens of social choice theory, we scrutinize widely-adopted CDM methods and identify their limitations. To enrich current landscape of LLM-based CDM, we present GEDI, an electoral CDM module that incorporates various ordinal preferential voting mechanisms. Our empirical case study across three benchmarks shows that the integration of certain CDM methods can markedly improve the reasoning capabilities and robustness of some leading LLMs, all without requiring intricate system designs. Additionally, we find that some CDM mechanisms generate positive synergies even with as few as three agents. The voting-based methods also demonstrate robustness against single points of failure, as well as diversity in terms of hit-rate@k and subject-wise impacts.


[266] 2410.15171

Linguistic Fuzzy Information Evolution with Random Leader Election Mechanism for Decision-Making Systems

Linguistic fuzzy information evolution is crucial in understanding information exchange among agents. However, different agent weights may lead to different convergence results in the classic DeGroot model. Similarly, in the Hegselmann-Krause bounded confidence model (HK model), changing the confidence threshold values of agents can lead to differences in the final results. To address these limitations, this paper proposes three new models of linguistic fuzzy information dynamics: the per-round random leader election mechanism-based DeGroot model (PRRLEM-DeGroot), the PRRLEM-based homogeneous HK model (PRRLEM-HOHK), and the PRRLEM-based heterogeneous HK model (PRRLEM-HEHK). In these models, after each round of fuzzy information updates, an agent is randomly selected to act as a temporary leader with more significant influence, with the leadership structure being reset after each update. This strategy increases the information sharing and enhances decision-making by integrating multiple agents' evaluation information, which is also in line with real life (\emph{Leader is not unchanged}). The Monte Carlo method is then employed to simulate the behavior of complex systems through repeated random tests, obtaining confidence intervals for different fuzzy information. Subsequently, an improved golden rule representative value (GRRV) in fuzzy theory is proposed to rank these confidence intervals. Simulation examples and a real-world scenario about space situational awareness validate the effectiveness of the proposed models. Comparative analysis with the other models demonstrate our ability to address the echo chamber and improve the robustness.


[267] 2410.15173

Uncovering Autoregressive LLM Knowledge of Thematic Fit in Event Representation

The thematic fit estimation task measures the compatibility between a predicate (typically a verb), an argument (typically a noun phrase), and a specific semantic role assigned to the argument. Previous state-of-the-art work has focused on modeling thematic fit through distributional or neural models of event representation, trained in a supervised fashion with indirect labels. In this work, we assess whether pre-trained autoregressive LLMs possess consistent, expressible knowledge about thematic fit. We evaluate both closed and open state-of-the-art LLMs on several psycholinguistic datasets, along three axes: (1) Reasoning Form: multi-step logical reasoning (chain-of-thought prompting) vs. simple prompting. (2) Input Form: providing context (generated sentences) vs. raw tuples <predicate, argument, role>. (3) Output Form: categorical vs. numeric. Our results show that chain-of-thought reasoning is more effective on datasets with self-explanatory semantic role labels, especially Location. Generated sentences helped only in few settings, and lowered results in many others. Predefined categorical (compared to numeric) output raised GPT's results across the board with few exceptions, but lowered Llama's. We saw that semantically incoherent generated sentences, which the models lack the ability to consistently filter out, hurt reasoning and overall performance too. Our GPT-powered methods set new state-of-the-art on all tested datasets.


[268] 2410.15174

Crafting Tomorrow: The Influence of Design Choices on Fresh Content in Social Media Recommendation

The rise in popularity of social media platforms, has resulted in millions of new, content pieces being created every day. This surge in content creation underscores the need to pay attention to our design choices as they can greatly impact how long content remains relevant. In today's landscape where regularly recommending new content is crucial, particularly in the absence of detailed information, a variety of factors such as UI features, algorithms and system settings contribute to shaping the journey of content across the platform. While previous research has focused on how new content affects users' experiences, this study takes a different approach by analyzing these decisions considering the content itself. Through a series of carefully crafted experiments we explore how seemingly small decisions can influence the longevity of content, measured by metrics like Content Progression (CVP) and Content Survival (CSR). We also emphasize the importance of recognizing the stages that content goes through underscoring the need to tailor strategies for each stage as a one size fits all approach may not be effective. Additionally we argue for a departure from traditional experimental setups in the study of content lifecycles, to avoid potential misunderstandings while proposing advanced techniques, to achieve greater precision and accuracy in the evaluation process.


[269] 2410.15176

Beyond Pruning Criteria: The Dominant Role of Fine-Tuning and Adaptive Ratios in Neural Network Robustness

Deep neural networks (DNNs) excel in tasks like image recognition and natural language processing, but their increasing complexity complicates deployment in resource-constrained environments and increases susceptibility to adversarial attacks. While traditional pruning methods reduce model size, they often compromise the network's ability to withstand subtle perturbations. This paper challenges the conventional emphasis on weight importance scoring as the primary determinant of a pruned network's performance. Through extensive analysis, including experiments conducted on CIFAR, Tiny-ImageNet, and various network architectures, we demonstrate that effective fine-tuning plays a dominant role in enhancing both performance and adversarial robustness, often surpassing the impact of the chosen pruning criteria. To address this issue, we introduce Module Robust Sensitivity, a novel metric that adaptively adjusts the pruning ratio for each network layer based on its sensitivity to adversarial perturbations. By integrating this metric into the pruning process, we develop a stable algorithm that maintains accuracy and robustness simultaneously. Experimental results show that our approach enables the practical deployment of more robust and efficient neural networks.


[270] 2410.15178

Enhancing Robot Navigation Policies with Task-Specific Uncertainty Management

Robots performing navigation tasks in complex environments face significant challenges due to uncertainty in state estimation. Effectively managing this uncertainty is crucial, but the optimal approach varies depending on the specific details of the task: different tasks require varying levels of precision in different regions of the environment. For instance, a robot navigating a crowded space might need precise localization near obstacles but can operate effectively with less precise state estimates in open areas. This varying need for certainty in different parts of the environment, depending on the task, calls for policies that can adapt their uncertainty management strategies based on task-specific requirements. In this paper, we present a framework for integrating task-specific uncertainty requirements directly into navigation policies. We introduce Task-Specific Uncertainty Map (TSUM), which represents acceptable levels of state estimation uncertainty across different regions of the operating environment for a given task. Using TSUM, we propose Generalized Uncertainty Integration for Decision-Making and Execution (GUIDE), a policy conditioning framework that incorporates these uncertainty requirements into the robot's decision-making process. We find that conditioning policies on TSUMs provides an effective way to express task-specific uncertainty requirements and enables the robot to reason about the context-dependent value of certainty. We show how integrating GUIDE into reinforcement learning frameworks allows the agent to learn navigation policies without the need for explicit reward engineering to balance task completion and uncertainty management. We evaluate GUIDE on a variety of real-world navigation tasks and find that it demonstrates significant improvements in task completion rates compared to baselines. Evaluation videos can be found at https://guided-agents.github.io.


[271] 2410.15179

HPVM-HDC: A Heterogeneous Programming System for Hyperdimensional Computing

Hyperdimensional Computing (HDC), a technique inspired by cognitive models of computation, has garnered significant interest in recent years. For example, HDC has been proposed as a more efficient and robust alternative basis for machine learning. The highly parallel nature of HDC algorithms makes them well-suited for execution on several hardware architectures, including CPUs, GPUs, FPGAs, ASIC-based and Resistive RAM-based accelerators. Traditionally, these diverse architectures are programmed using different languages and programming models, making heterogeneous programming for HDC prohibitively difficult. To make matters worse, currently no compiler framework that enables heterogeneous compilation of HDC programs and generates efficient code for a wide variety of hardware targets exists. We propose an end-to-end heterogeneous programming system for HDC: a novel programming language, HDC++, that enables programmers to write programs using a unified programming model, including a set of high-level, HDC-specific, abstractions to ease programmability; and a heterogeneous compilation framework, HPVM-HDC, that provides an intermediate representation that reflects the parallel character of HDC algorithms and enables compilation of HDC++ programs to a wide array of hardware targets, including a custom HD Digital ASIC and an HD Resistive RAM accelerator. HPVM-HDC can perform HD specific optimizations, which we demonstrate by implementing two domain specific optimizations. Our evaluation shows that HPVM-HDC generates performance competitive code, compared with baseline HD applications. Additionally, HPVM-HDC efficiently targets an HD Digital ASIC and an HD ReRAM accelerator simulator, achieving a geomean 1.28x and 2.15x speed-up over our compiled GPU implementations, respectively.


[272] 2410.15181

GUIDE: Real-Time Human-Shaped Agents

The recent rapid advancement of machine learning has been driven by increasingly powerful models with the growing availability of training data and computational resources. However, real-time decision-making tasks with limited time and sparse learning signals remain challenging. One way of improving the learning speed and performance of these agents is to leverage human guidance. In this work, we introduce GUIDE, a framework for real-time human-guided reinforcement learning by enabling continuous human feedback and grounding such feedback into dense rewards to accelerate policy learning. Additionally, our method features a simulated feedback module that learns and replicates human feedback patterns in an online fashion, effectively reducing the need for human input while allowing continual training. We demonstrate the performance of our framework on challenging tasks with sparse rewards and visual observations. Our human study involving 50 subjects offers strong quantitative and qualitative evidence of the effectiveness of our approach. With only 10 minutes of human feedback, our algorithm achieves up to 30% increase in success rate compared to its RL baseline.


[273] 2410.15182

The Computational Anatomy of Humility: Modeling Intellectual Humility in Online Public Discourse

The ability for individuals to constructively engage with one another across lines of difference is a critical feature of a healthy pluralistic society. This is also true in online discussion spaces like social media platforms. To date, much social media research has focused on preventing ills -- like political polarization and the spread of misinformation. While this is important, enhancing the quality of online public discourse requires not just reducing ills but also promoting foundational human virtues. In this study, we focus on one particular virtue: ``intellectual humility'' (IH), or acknowledging the potential limitations in one's own beliefs. Specifically, we explore the development of computational methods for measuring IH at scale. We manually curate and validate an IH codebook on 350 posts about religion drawn from subreddits and use them to develop LLM-based models for automating this measurement. Our best model achieves a Macro-F1 score of 0.64 across labels (and 0.70 when predicting IH/IA/Neutral at the coarse level), higher than an expected naive baseline of 0.51 (0.32 for IH/IA/Neutral) but lower than a human annotator-informed upper bound of 0.85 (0.83 for IH/IA/Neutral). Our results both highlight the challenging nature of detecting IH online -- opening the door to new directions in NLP research -- and also lay a foundation for computational social science researchers interested in analyzing and fostering more IH in online public discourse.


[274] 2410.15184

Action abstractions for amortized sampling

As trajectories sampled by policies used by reinforcement learning (RL) and generative flow networks (GFlowNets) grow longer, credit assignment and exploration become more challenging, and the long planning horizon hinders mode discovery and generalization. The challenge is particularly pronounced in entropy-seeking RL methods, such as generative flow networks, where the agent must learn to sample from a structured distribution and discover multiple high-reward states, each of which take many steps to reach. To tackle this challenge, we propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process. Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and `chunking' them into a single action that is added to the action space. In empirical evaluation on synthetic and real-world environments, our approach demonstrates improved sample efficiency performance in discovering diverse high-reward objects, especially on harder exploration problems. We also observe that the abstracted high-order actions are interpretable, capturing the latent structure of the reward landscape of the action space. This work provides a cognitively motivated approach to action abstraction in RL and is the first demonstration of hierarchical planning in amortized sequential sampling.


[275] 2410.15185

Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards

Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is unsafe as the water may spill" or "rotating a cup of water is unsafe as it can lead to pouring its content"). Recent advances in computer vision and machine learning have enabled robots to acquire a semantic understanding of and reason about their operating environments. While extensive literature on safe robot decision-making exists, semantic understanding is rarely integrated into these formulations. In this work, we propose a semantic safety filter framework to certify robot inputs with respect to semantically defined constraints (e.g., unsafe spatial relationships, behaviours, and poses) and geometrically defined constraints (e.g., environment-collision and self-collision constraints). In our proposed approach, given perception inputs, we build a semantic map of the 3D environment and leverage the contextual reasoning capabilities of large language models to infer semantically unsafe conditions. These semantically unsafe conditions are then mapped to safe actions through a control barrier certification formulation. We evaluated our semantic safety filter approach in teleoperated tabletop manipulation tasks and pick-and-place tasks, demonstrating its effectiveness in incorporating semantic constraints to ensure safe robot operation beyond collision avoidance.


[276] 2410.15186

Fine-tuning foundational models to code diagnoses from veterinary health records

Veterinary medical records represent a large data resource for application to veterinary and One Health clinical research efforts. Use of the data is limited by interoperability challenges including inconsistent data formats and data siloing. Clinical coding using standardized medical terminologies enhances the quality of medical records and facilitates their interoperability with veterinary and human health records from other sites. Previous studies, such as DeepTag and VetTag, evaluated the application of Natural Language Processing (NLP) to automate veterinary diagnosis coding, employing long short-term memory (LSTM) and transformer models to infer a subset of Systemized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) diagnosis codes from free-text clinical notes. This study expands on these efforts by incorporating all 7,739 distinct SNOMED-CT diagnosis codes recognized by the Colorado State University (CSU) Veterinary Teaching Hospital (VTH) and by leveraging the increasing availability of pre-trained large language models (LLMs). Ten freely-available pre-trained LLMs were fine-tuned on the free-text notes from 246,473 manually-coded veterinary patient visits included in the CSU VTH's electronic health records (EHRs), which resulted in superior performance relative to previous efforts. The most accurate results were obtained when expansive labeled data were used to fine-tune relatively large clinical LLMs, but the study also showed that comparable results can be obtained using more limited resources and non-clinical LLMs. The results of this study contribute to the improvement of the quality of veterinary EHRs by investigating accessible methods for automated coding and support both animal and human health research by paving the way for more integrated and comprehensive health databases that span species and institutions.


[277] 2410.15188

Augmented Lagrangian-Based Safe Reinforcement Learning Approach for Distribution System Volt/VAR Control

This paper proposes a data-driven solution for Volt-VAR control problem in active distribution system. As distribution system models are always inaccurate and incomplete, it is quite difficult to solve the problem. To handle with this dilemma, this paper formulates the Volt-VAR control problem as a constrained Markov decision process (CMDP). By synergistically combining the augmented Lagrangian method and soft actor critic algorithm, a novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP. The actor network is updated in a policy gradient manner with the Lagrangian value function. A double-critics network is adopted to synchronously estimate the action-value function to avoid overestimation bias. The proposed algorithm does not require strong convexity guarantee of examined problems and is sample efficient. A two-stage strategy is adopted for offline training and online execution, so the accurate distribution system model is no longer needed. To achieve scalability, a centralized training distributed execution strategy is adopted for a multi-agent framework, which enables a decentralized Volt-VAR control for large-scale distribution system. Comprehensive numerical experiments with real-world electricity data demonstrate that our proposed algorithm can achieve high solution optimality and constraints compliance.


[278] 2410.15189

Smart-optimism. Uncovering the Resilience of Romanian City Halls in Online Service Delivery

Recent technological advancements have significantly impacted the public sector's service delivery. Romanian city halls are embracing digitalization as part of their development strategies, aiming to deploy web-based platforms for public services, enhancing efficiency and accessibility for citizens. The COVID-19 pandemic has expedited this digital shift, prompting public institutions to transition from in-person to online services. This study assesses the adaptability of Romanian city halls to digitalization, offering fresh insights into public institutions' resilience amidst technological shifts. It evaluates the service provision through the official web portals of Romania's 103 municipalities, using 23 indicators for measuring e-service dissemination within local contexts. The research reveals notable progress in the digital transformation of services over time (2014-2023), with a majority of municipalities offering online functionalities, such as property tax payments, public transportation information, and civil status documentation. It also discovers disparities in service quality and availability, suggesting a need for uniform digitalization standards. The findings enlighten policymakers, assist public institutions in advancing digital service delivery, and contribute to research on technology in public sector reform.


[279] 2410.15194

FSCsec: Collaboration in Financial Sector Cybersecurity -- Exploring the Impact of Resource Sharing on IT Security

The financial sector's dependence on digital infrastructure increases its vulnerability to cybersecurity threats, requiring strong IT security protocols with other entities. This collaboration, however, is often identified as the most vulnerable link in the chain of cybersecurity. Adopting both symbolic and substantive measures lessens the impact of IT security spending on decreasing the frequency of data security breaches in the long run. The Protection Motivation Theory clarifies actions triggered by data sharing with other organizations, and the Institutional theory aids in comprehending the intricate relationship between transparency and organizational conduct. We investigate how things like regulatory pressure, teamwork among institutions, and people's motivations to protect themselves influence cybersecurity. By using simple theories to understand these factors, this research aims to provide insights that can help financial institutions make better decisions to protect. We have also included the discussion, conclusion, and future directions in regard to collaboration in financial sector cybersecurity for exploring impact of resource sharing.


[280] 2410.15198

Medical-GAT: Cancer Document Classification Leveraging Graph-Based Residual Network for Scenarios with Limited Data

Accurate classification of cancer-related medical abstracts is crucial for healthcare management and research. However, obtaining large, labeled datasets in the medical domain is challenging due to privacy concerns and the complexity of clinical data. This scarcity of annotated data impedes the development of effective machine learning models for cancer document classification. To address this challenge, we present a curated dataset of 1,874 biomedical abstracts, categorized into thyroid cancer, colon cancer, lung cancer, and generic topics. Our research focuses on leveraging this dataset to improve classification performance, particularly in data-scarce scenarios. We introduce a Residual Graph Attention Network (R-GAT) with multiple graph attention layers that capture the semantic information and structural relationships within cancer-related documents. Our R-GAT model is compared with various techniques, including transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT), RoBERTa, and domain-specific models like BioBERT and Bio+ClinicalBERT. We also evaluated deep learning models (CNNs, LSTMs) and traditional machine learning models (Logistic Regression, SVM). Additionally, we explore ensemble approaches that combine deep learning models to enhance classification. Various feature extraction methods are assessed, including Term Frequency-Inverse Document Frequency (TF-IDF) with unigrams and bigrams, Word2Vec, and tokenizers from BERT and RoBERTa. The R-GAT model outperforms other techniques, achieving precision, recall, and F1 scores of 0.99, 0.97, and 0.98 for thyroid cancer; 0.96, 0.94, and 0.95 for colon cancer; 0.96, 0.99, and 0.97 for lung cancer; and 0.95, 0.96, and 0.95 for generic topics.


[281] 2410.15199

CLIPtortionist: Zero-shot Text-driven Deformation for Manufactured 3D Shapes

We propose a zero-shot text-driven 3D shape deformation system that deforms an input 3D mesh of a manufactured object to fit an input text description. To do this, our system optimizes the parameters of a deformation model to maximize an objective function based on the widely used pre-trained vision language model CLIP. We find that CLIP-based objective functions exhibit many spurious local optima; to circumvent them, we parameterize deformations using a novel deformation model called BoxDefGraph which our system automatically computes from an input mesh, the BoxDefGraph is designed to capture the object aligned rectangular/circular geometry features of most manufactured objects. We then use the CMA-ES global optimization algorithm to maximize our objective, which we find to work better than popular gradient-based optimizers. We demonstrate that our approach produces appealing results and outperforms several baselines.


[282] 2410.15200

Exploring LLM Support for Generating IEC 61131-3 Graphic Language Programs

The capabilities demonstrated by Large Language Models (LLMs) inspire researchers to integrate them into industrial production and automation. In the field of Programmable Logic Controller (PLC) programming, previous researchers have focused on using LLMs to generate Structured Text (ST) language, and created automatic programming workflows based on it. The IEC 61131 graphic programming languages, which still has the most users, have however been overlooked. In this paper we explore using LLMs to generate graphic languages in ASCII art to provide assistance to engineers. Our series of experiments indicate that, contrary to what researchers usually think, it is possible to generate a correct Sequential Function Chart (SFC) for simple requirements when LLM is provided with several examples. On the other hand, generating a Ladder Diagram (LD) automatically remains a challenge even for very simple use cases. The automatic conversion between LD and SFC without extra information also fails when using prompt engineering alone.


[283] 2410.15205

DTPPO: Dual-Transformer Encoder-based Proximal Policy Optimization for Multi-UAV Navigation in Unseen Complex Environments

Existing multi-agent deep reinforcement learning (MADRL) methods for multi-UAV navigation face challenges in generalization, particularly when applied to unseen complex environments. To address these limitations, we propose a Dual-Transformer Encoder-based Proximal Policy Optimization (DTPPO) method. DTPPO enhances multi-UAV collaboration through a Spatial Transformer, which models inter-agent dynamics, and a Temporal Transformer, which captures temporal dependencies to improve generalization across diverse environments. This architecture allows UAVs to navigate new, unseen environments without retraining. Extensive simulations demonstrate that DTPPO outperforms current MADRL methods in terms of transferability, obstacle avoidance, and navigation efficiency across environments with varying obstacle densities. The results confirm DTPPO's effectiveness as a robust solution for multi-UAV navigation in both known and unseen scenarios.


[284] 2410.15206

Unsupervised Domain Adaptation Approaches for Chessboard Recognition

Chess involves extensive study and requires players to keep manual records of their matches, a process which is time-consuming and distracting. The lack of high-quality labeled photographs of chess boards, and the tediousness of manual labeling, have hindered the wide application of Deep Learning (DL) to automating this record-keeping process. This paper proposes an end-to-end pipeline that employs domain adaptation (DA) to predict the labels of real, top-view, unlabeled chessboard images using synthetic, labeled images. The pipeline is composed of a pre-processing phase which detects the board, crops the individual squares, and feeds them one at a time to a DL model. The model then predicts the labels of the squares and passes the ordered predictions to a post-processing pipeline which generates the Forsyth-Edwards Notation (FEN) of the position. The three approaches considered are the following: A VGG16 model pre-trained on ImageNet, defined here as the Base-Source model, fine-tuned to predict source domain squares and then used to predict target domain squares without any domain adaptation; an improved version of the Base-Source model which applied CORAL loss to some of the final fully connected layers of the VGG16 to implement DA; and a Domain Adversarial Neural Network (DANN) which used the adversarial training of a domain discriminator to perform the DA. Also, although we opted not to use the labels of the target domain for this study, we trained a baseline with the same architecture as the Base-Source model (Named Base-Target) directly on the target domain in order to get an upper bound on the performance achievable through domain adaptation. The results show that the DANN model only results in a 3% loss in accuracy when compared to the Base-Target model while saving all the effort required to label the data.


[285] 2410.15207

The Politics of Fear and the Experience of Bangladeshi Religious Minority Communities Using Social Media Platforms

Despite significant research on online harm, polarization, public deliberation, and justice, CSCW still lacks a comprehensive understanding of the experiences of religious minorities, particularly in relation to fear, as prominently evident in our study. Gaining faith-sensitive insights into the expression, participation, and inter-religious interactions on social media can contribute to CSCW's literature on online safety and interfaith communication. In pursuit of this goal, we conducted a six-month-long, interview-based study with the Hindu, Buddhist, and Indigenous communities in Bangladesh. Our study draws on an extensive body of research encompassing the spiral of silence, the cultural politics of fear, and communication accommodation to examine how social media use by religious minorities is influenced by fear, which is associated with social conformity, misinformation, stigma, stereotypes, and South Asian postcolonial memory. Moreover, we engage with scholarly perspectives from religious studies, justice, and South Asian violence and offer important critical insights and design lessons for the CSCW literature on public deliberation, justice, and interfaith communication.


[286] 2410.15208

Low-cost Robust Night-time Aerial Material Segmentation through Hyperspectral Data and Sparse Spatio-Temporal Learning

Material segmentation is a complex task, particularly when dealing with aerial data in poor lighting and atmospheric conditions. To address this, hyperspectral data from specialized cameras can be very useful in addition to RGB images. However, due to hardware constraints, high spectral data often come with lower spatial resolution. Additionally, incorporating such data into a learning-based segmentation framework is challenging due to the numerous data channels involved. To overcome these difficulties, we propose an innovative Siamese framework that uses time series-based compression to effectively and scalably integrate the additional spectral data into the segmentation task. We demonstrate our model's effectiveness through competitive benchmarks on aerial datasets in various environmental conditions.


[287] 2410.15212

The Shifting Paradigm in AI : Why Generative Artificial Intelligence is the new Economic Variable

The relentless pursuit of technological advancements has ushered in a new era where artificial intelligence (AI) is not only a powerful tool but also a critical economic driver. At the forefront of this transformation is Generative AI, which is catalyzing a paradigm shift across industries. Deep generative models, an integration of generative and deep learning techniques, excel in creating new data beyond analyzing existing ones, revolutionizing sectors from production and manufacturing to finance. By automating design, optimization, and innovation cycles, Generative AI is reshaping core industrial processes. In the financial sector, it is transforming risk assessment, trading strategies, and forecasting, demonstrating its profound impact. This paper explores the sweeping changes driven by deep learning models like Large Language Models (LLMs), highlighting their potential to foster innovative business models, disruptive technologies, and novel economic landscapes. As we stand at the threshold of an AI-driven economic era, Generative AI is emerging as a pivotal force, driving innovation, disruption, and economic evolution on a global scale.


[288] 2410.15214

Relay Incentive Mechanisms Using Wireless Power Transfer in Non-Cooperative Networks

This paper studies the use of a multi-attribute auction in a communication system to bring about efficient relaying in a non-cooperative setting. We consider a system where a source seeks to offload data to an access point (AP) while balancing both the timeliness and energy-efficiency of the transmission. A deep fade in the communication channel (due to, e.g., a line-of-sight blockage) makes direct communication costly, and the source may alternatively rely on non-cooperative UEs to act as relays. We propose a multi-attribute auction to select a UE and to determine the duration and power of the transmission, with payments to the UE taking the form of energy sent via wireless power transfer (WPT). The quality of the channel from a UE to the AP constitutes private information, and bids consist of a transmission time and transmission power. We show that under a second-preferred-offer auction, truthful bidding by all candidate UEs forms a Nash Equilibrium. However, this auction is not incentive compatible, and we present a modified auction in which truthful bidding is in fact a dominant strategy. Extensive numerical experimentation illustrates the efficacy of our approach, which we compare to a cooperative baseline. We demonstrate that with as few as two candidates, our improved mechanism leads to as much as a 76% reduction in energy consumption, and that with as few as three candidates, the transmission time decreases by as much as 55%. Further, we see that as the number of candidates increases, the performance of our mechanism approaches that of the cooperative baseline. Overall, our findings highlight the potential of multi-attribute auctions to enhance the efficiency of data transfer in non-cooperative settings.


[289] 2410.15215

DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data

Fully Homomorphic Encryption (FHE) allows computations to be performed directly on encrypted data without needing to decrypt it first. This "encryption-in-use" feature is crucial for securely outsourcing computations in privacy-sensitive areas such as healthcare and finance. Nevertheless, in the context of FHE-based cloud computing, clients often worry about the integrity and accuracy of the outcomes. This concern arises from the potential for a malicious server or server-side vulnerabilities that could result in tampering with the data, computations, and results. Ensuring integrity and verifiability with low overhead remains an open problem, as prior attempts have not yet achieved this goal. To tackle this challenge and ensure the verification of FHE's private computations on encrypted data, we introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of FHE, offering high efficiency and verification capability. Through thorough testing in diverse contexts, we demonstrate that DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE. DataSeal's space and computation overheads decrease to nearly negligible as the problem size increases.


[290] 2410.15217

Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting

Accurate time-series forecasting is essential across a multitude of scientific and industrial domains, yet deep learning models often struggle with challenges such as capturing long-term dependencies and adapting to drift in data distributions over time. We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding. Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data. When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates, effectively minimizing surprise and adapting to shifts in the data distribution by aligning its predictions with actual future outcomes. This feedback loop, drawing upon principles of predictive coding, enables the forecasting model to dynamically adjust its parameters, improving accuracy by focusing on features that remain relevant despite changes in the underlying data. We validate our method on a variety of tasks such as seizure prediction in biomedical signal analysis and forecasting in dynamical systems, achieving a 40\% increase in the area under the receiver operating characteristic curve (AUC-ROC) and a 10\% reduction in mean absolute error (MAE), respectively. By incorporating a predictive feedback mechanism that adapts to data distribution drift, Future-Guided Learning offers a promising avenue for advancing time-series forecasting with deep learning.


[291] 2410.15218

Science Time Series: Deep Learning in Hydrology

This research is part of a systematic study of scientific time series. In the last three years, hundreds of papers and over fifty new deep-learning models have been described for time series models. These mainly focus on the key aspect of time dependence, whereas in some scientific time series, the situation is more complex with multiple locations, each location having multiple observed and target time-dependent streams and multiple exogenous (known) properties that are either constant or time-dependent. Here, we analyze the hydrology time series using the CAMELS and Caravan global datasets on catchment rainfall and runoff. Together, these have up to 6 observed streams and up to 209 static parameters defined at each of about 8000 locations. This analysis is fully open source with a Jupyter Notebook running on Google Colab for both an LSTM-based analysis and the data engineering preprocessing. Our goal is to investigate the importance of exogenous data, which we look at using eight different choices on representative hydrology tasks. Increasing the exogenous information significantly improves the data representation, with the mean square error decreasing to 60% of its initial value in the largest dataset examined. We present the initial results of studies of other deep-learning neural network architectures where the approaches that can use the full observed and exogenous observations outperform less flexible methods, including Foundation models. Using the natural annual periodic exogenous time series produces the largest impact, but the static and other periodic exogenous streams are also important. Our analysis is intended to be valuable as an educational resource and benchmark.


[292] 2410.15221

IntersectionZoo: Eco-driving for Benchmarking Multi-Agent Contextual Reinforcement Learning

Despite the popularity of multi-agent reinforcement learning (RL) in simulated and two-player applications, its success in messy real-world applications has been limited. A key challenge lies in its generalizability across problem variations, a common necessity for many real-world problems. Contextual reinforcement learning (CRL) formalizes learning policies that generalize across problem variations. However, the lack of standardized benchmarks for multi-agent CRL has hindered progress in the field. Such benchmarks are desired to be based on real-world applications to naturally capture the many open challenges of real-world problems that affect generalization. To bridge this gap, we propose IntersectionZoo, a comprehensive benchmark suite for multi-agent CRL through the real-world application of cooperative eco-driving in urban road networks. The task of cooperative eco-driving is to control a fleet of vehicles to reduce fleet-level vehicular emissions. By grounding IntersectionZoo in a real-world application, we naturally capture real-world problem characteristics, such as partial observability and multiple competing objectives. IntersectionZoo is built on data-informed simulations of 16,334 signalized intersections derived from 10 major US cities, modeled in an open-source industry-grade microscopic traffic simulator. By modeling factors affecting vehicular exhaust emissions (e.g., temperature, road conditions, travel demand), IntersectionZoo provides one million data-driven traffic scenarios. Using these traffic scenarios, we benchmark popular multi-agent RL and human-like driving algorithms and demonstrate that the popular multi-agent RL algorithms struggle to generalize in CRL settings.


[293] 2410.15222

AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA

Monte Carlo (MC) simulations, particularly using FLUKA, are essential for replicating real-world scenarios across scientific and engineering fields. Despite the robustness and versatility, FLUKA faces significant limitations in automation and integration with external post-processing tools, leading to workflows with a steep learning curve, which are time-consuming and prone to human errors. Traditional methods involving the use of shell and Python scripts, MATLAB, and Microsoft Excel require extensive manual intervention and lack flexibility, adding complexity to evolving scenarios. This study explores the potential of Large Language Models (LLMs) and AI agents to address these limitations. AI agents, integrate natural language processing with autonomous reasoning for decision-making and adaptive planning, making them ideal for automation. We introduce AutoFLUKA, an AI agent application developed using the LangChain Python Framework to automate typical MC simulation workflows in FLUKA. AutoFLUKA can modify FLUKA input files, execute simulations, and efficiently process results for visualization, significantly reducing human labor and error. Our case studies demonstrate that AutoFLUKA can handle both generalized and domain-specific cases, such as Microdosimetry, with an streamlined automated workflow, showcasing its scalability and flexibility. The study also highlights the potential of Retrieval Augmentation Generation (RAG) tools to act as virtual assistants for FLUKA, further improving user experience, time and efficiency. In conclusion, AutoFLUKA represents a significant advancement in automating MC simulation workflows, offering a robust solution to the inherent limitations. This innovation not only saves time and resources but also opens new paradigms for research and development in high energy physics, medical physics, nuclear engineering space and environmental science.


[294] 2410.15225

Chasing Random: Instruction Selection Strategies Fail to Generalize

Prior work has shown that language models can be tuned to follow user instructions using only a small set of high-quality instructions. This has accelerated the development of methods that filter a large, noisy instruction-tuning datasets down to high-quality subset which works just as well. However, typically, the performance of these methods is not demonstrated across a uniform experimental setup and thus their generalization capabilities are not well established. In this work, we analyze popular selection strategies across different source datasets, selection budgets and evaluation benchmarks: Our results indicate that selection strategies generalize poorly, often failing to consistently outperform even random baselines. We also analyze the cost-performance trade-offs of using data selection. Our findings reveal that data selection can often exceed the cost of fine-tuning on the full dataset, yielding only marginal and sometimes no gains compared to tuning on the full dataset or a random subset.


[295] 2410.15226

On the Diversity of Synthetic Data and its Impact on Training Large Language Models

The rise of Large Language Models (LLMs) has accentuated the need for diverse, high-quality pre-training data. Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility. While previous literature has focused predominantly on the quality and quantity of real data, our work enables the measurement of diversity in synthetic data and explores its impact on LLM performance. We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages by introducing a new diversity metric, \textit{LLM cluster-agent}, designed to evaluate the diversity of synthetic datasets. Through a series of controlled experiments with models of 350M and 1.4B parameters, we demonstrate that the proposed cluster-based LLM scoring of diversity correlates positively with both pre-training and supervised fine-tuning performance. Our findings also reveal that synthetic data diversity in pre-training affects supervised fine-tuning more significantly than pre-training itself, even for smaller models. We hope this study advances our understanding of the optimal use of synthetic data in LLM training and opens new avenues for efficient data generation processes.


[296] 2410.15229

Deep Learning-based Detection of Bacterial Swarm Motion Using a Single Image

Distinguishing between swarming and swimming, the two principal forms of bacterial movement, holds significant conceptual and clinical relevance. This is because bacteria that exhibit swarming capabilities often possess unique properties crucial to the pathogenesis of infectious diseases and may also have therapeutic potential. Here, we report a deep learning-based swarming classifier that rapidly and autonomously predicts swarming probability using a single blurry image. Compared with traditional video-based, manually-processed approaches, our method is particularly suited for high-throughput environments and provides objective, quantitative assessments of swarming probability. The swarming classifier demonstrated in our work was trained on Enterobacter sp. SM3 and showed good performance when blindly tested on new swarming (positive) and swimming (negative) test images of SM3, achieving a sensitivity of 97.44% and a specificity of 100%. Furthermore, this classifier demonstrated robust external generalization capabilities when applied to unseen bacterial species, such as Serratia marcescens DB10 and Citrobacter koseri H6. It blindly achieved a sensitivity of 97.92% and a specificity of 96.77% for DB10, and a sensitivity of 100% and a specificity of 97.22% for H6. This competitive performance indicates the potential to adapt our approach for diagnostic applications through portable devices or even smartphones. This adaptation would facilitate rapid, objective, on-site screening for bacterial swarming motility, potentially enhancing the early detection and treatment assessment of various diseases, including inflammatory bowel diseases (IBD) and urinary tract infections (UTI).


[297] 2410.15233

A Semidefinite Relaxation Approach for Fair Graph Clustering

Fair graph clustering is crucial for ensuring equitable representation and treatment of diverse communities in network analysis. Traditional methods often ignore disparities among social, economic, and demographic groups, perpetuating biased outcomes and reinforcing inequalities. This study introduces fair graph clustering within the framework of the disparate impact doctrine, treating it as a joint optimization problem integrating clustering quality and fairness constraints. Given the NP-hard nature of this problem, we employ a semidefinite relaxation approach to approximate the underlying optimization problem. For up to medium-sized graphs, we utilize a singular value decomposition-based algorithm, while for larger graphs, we propose a novel algorithm based on the alternative direction method of multipliers. Unlike existing methods, our formulation allows for tuning the trade-off between clustering quality and fairness. Experimental results on graphs generated from the standard stochastic block model demonstrate the superiority of our approach in achieving an optimal accuracy-fairness trade-off compared to state-of-the-art methods.


[298] 2410.15234

Bias Amplification: Language Models as Increasingly Biased Media

As Large Language Models (LLMs) become increasingly integrated into various facets of society, a significant portion of online text consequently become synthetic. This raises concerns about bias amplification, a phenomenon where models trained on synthetic data amplify the pre-existing biases over successive training iterations. Previous literature seldom discusses bias amplification as an independent issue from model collapse. In this work, we address the gap in understanding the bias amplification of LLMs with four main contributions. Firstly, we propose a theoretical framework, defining the necessary and sufficient conditions for its occurrence, and emphasizing that it occurs independently of model collapse. Using statistical simulations with weighted maximum likelihood estimation, we demonstrate the framework and show how bias amplification arises without the sampling and functional form issues that typically drive model collapse. Secondly, we conduct experiments with GPT-2 to empirically demonstrate bias amplification, specifically examining open-ended generational political bias with a benchmark we developed. We observe that GPT-2 exhibits a right-leaning bias in sentence continuation tasks and that the bias progressively increases with iterative fine-tuning on synthetic data generated by previous iterations. Thirdly, we explore three potential mitigation strategies: Overfitting, Preservation, and Accumulation. We find that both Preservation and Accumulation effectively mitigate bias amplification and model collapse. Finally, using novel mechanistic interpretation techniques, we demonstrate that in the GPT-2 experiments, bias amplification and model collapse are driven by distinct sets of neurons, which aligns with our theoretical framework.


[299] 2410.15235

Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Background: Image memorability refers to the phenomenon where certain images are more likely to be remembered than others. It is a quantifiable and intrinsic image attribute, defined as the likelihood of being remembered upon a single exposure. Despite advances in understanding human visual perception and memory, it is unclear what features contribute to an image's memorability. To address this question, we propose a deep learning-based computational modeling approach. Methods: We modeled the subjective experience of visual memorability using an autoencoder based on VGG16 Convolutional Neural Networks (CNNs). The model was trained on images for one epoch, to simulate the single-exposure condition used in human memory tests. We investigated the relationship between memorability and reconstruction error, assessed latent space representations distinctiveness, and developed a Gated Recurrent Unit (GRU) model to predict memorability likelihood. Interpretability analysis was conducted to identify key image characteristics contributing to memorability. Results: Our results demonstrate a significant correlation between the images memorability score and autoencoder's reconstruction error, and the robust predictive performance of its latent representations. Distinctiveness in these representations correlated significantly with memorability. Additionally, certain visual characteristics, such as strong contrasts, distinctive objects, and prominent foreground elements were among the features contributing to image memorability in our model. Conclusions: Images with unique features that challenge the autoencoder's capacity are inherently more memorable. Moreover, these memorable images are distinct from others the model has encountered, and the latent space of the encoder contains features predictive of memorability.


[300] 2410.15236

Jailbreaking and Mitigation of Vulnerabilities in Large Language Models

Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation, enabling applications across fields beyond healthcare, software engineering, and conversational systems. Despite these advancements in the past few years, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks. This review analyzes the state of research on these vulnerabilities and presents available defense strategies. We roughly categorize attack approaches into prompt-based, model-based, multimodal, and multilingual, covering techniques such as adversarial prompting, backdoor injections, and cross-modality exploits. We also review various defense mechanisms, including prompt filtering, transformation, alignment techniques, multi-agent defenses, and self-regulation, evaluating their strengths and shortcomings. We also discuss key metrics and benchmarks used to assess LLM safety and robustness, noting challenges like the quantification of attack success in interactive contexts and biases in existing datasets. Identifying current research gaps, we suggest future directions for resilient alignment strategies, advanced defenses against evolving attacks, automation of jailbreak detection, and consideration of ethical and societal impacts. This review emphasizes the need for continued research and cooperation within the AI community to enhance LLM security and ensure their safe deployment.


[301] 2410.15238

Economic Anthropology in the Era of Generative Artificial Intelligence

This paper explores the intersection of economic anthropology and generative artificial intelligence (GenAI). It examines how large language models (LLMs) can simulate human decision-making and the inductive biases present in AI research. The study introduces two AI models: C.A.L.L.O.N. (Conventionally Average Late Liberal ONtology) and M.A.U.S.S. (More Accurate Understanding of Society and its Symbols). The former is trained on standard data, while the latter is adapted with anthropological knowledge. The research highlights how anthropological training can enhance LLMs' ability to recognize diverse economic systems and concepts. The findings suggest that integrating economic anthropology with AI can provide a more pluralistic understanding of economics and improve the sustainability of non-market economic systems.


[302] 2410.15239

Conditional Prediction ROC Bands for Graph Classification

Graph classification in medical imaging and drug discovery requires accuracy and robust uncertainty quantification. To address this need, we introduce Conditional Prediction ROC (CP-ROC) bands, offering uncertainty quantification for ROC curves and robustness to distributional shifts in test data. Although developed for Tensorized Graph Neural Networks (TGNNs), CP-ROC is adaptable to general Graph Neural Networks (GNNs) and other machine learning models. We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition. This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data. Empirically, to establish local exchangeability for TGNNs, we introduce a data-driven approach to construct local calibration sets for graphs. Comprehensive evaluations show that CP-ROC significantly improves prediction reliability across diverse tasks. This method enhances uncertainty quantification efficiency and reliability for ROC curves, proving valuable for real-world applications with non-iid objects.


[303] 2410.15240

Fastrack: Fast IO for Secure ML using GPU TEEs

As cloud-based ML expands, ensuring data security during training and inference is critical. GPU-based Trusted Execution Environments (TEEs) offer secure, high-performance solutions, with CPU TEEs managing data movement and GPU TEEs handling authentication and computation. However, CPU-to-GPU communication overheads significantly hinder performance, as data must be encrypted, authenticated, decrypted, and verified, increasing costs by 12.69 to 33.53 times. This results in GPU TEE inference becoming 54.12% to 903.9% slower and training 10% to 455% slower than non-TEE systems, undermining GPU TEE advantages in latency-sensitive applications. This paper analyzes Nvidia H100 TEE protocols and identifies three key overheads: 1) redundant CPU re-encryption, 2) limited authentication parallelism, and 3) unnecessary operation serialization. We propose Fastrack, optimizing with 1) direct GPU TEE communication, 2) parallelized authentication, and 3) overlapping decryption with PCI-e transmission. These optimizations cut communication costs and reduce inference/training runtime by up to 84.6%, with minimal overhead compared to non-TEE systems.


[304] 2410.15241

Conditional Uncertainty Quantification for Tensorized Topological Neural Networks

Graph Neural Networks (GNNs) have become the de facto standard for analyzing graph-structured data, leveraging message-passing techniques to capture both structural and node feature information. However, recent studies have raised concerns about the statistical reliability of uncertainty estimates produced by GNNs. This paper addresses this crucial challenge by introducing a novel technique for quantifying uncertainty in non-exchangeable graph-structured data, while simultaneously reducing the size of label prediction sets in graph classification tasks. We propose Conformalized Tensor-based Topological Neural Networks (CF-T2NN), a new approach for rigorous prediction inference over graphs. CF-T2NN employs tensor decomposition and topological knowledge learning to navigate and interpret the inherent uncertainty in decision-making processes. This method enables a more nuanced understanding and handling of prediction uncertainties, enhancing the reliability and interpretability of neural network outcomes. Our empirical validation, conducted across 10 real-world datasets, demonstrates the superiority of CF-T2NN over a wide array of state-of-the-art methods on various graph benchmarks. This work not only enhances the GNN framework with robust uncertainty quantification capabilities but also sets a new standard for reliability and precision in graph-structured data analysis.


[305] 2410.15243

An Image-Guided Robotic System for Transcranial Magnetic Stimulation: System Development and Experimental Evaluation

Transcranial magnetic stimulation (TMS) is a noninvasive medical procedure that can modulate brain activity, and it is widely used in neuroscience and neurology research. Compared to manual operators, robots may improve the outcome of TMS due to their superior accuracy and repeatability. However, there has not been a widely accepted standard protocol for performing robotic TMS using fine-segmented brain images, resulting in arbitrary planned angles with respect to the true boundaries of the modulated cortex. Given that the recent study in TMS simulation suggests a noticeable difference in outcomes when using different anatomical details, cortical shape should play a more significant role in deciding the optimal TMS coil pose. In this work, we introduce an image-guided robotic system for TMS that focuses on (1) establishing standardized planning methods and heuristics to define a reference (true zero) for the coil poses and (2) solving the issue that the manual coil placement requires expert hand-eye coordination which often leading to low repeatability of the experiments. To validate the design of our robotic system, a phantom study and a preliminary human subject study were performed. Our results show that the robotic method can half the positional error and improve the rotational accuracy by up to two orders of magnitude. The accuracy is proven to be repeatable because the standard deviation of multiple trials is lowered by an order of magnitude. The improved actuation accuracy successfully translates to the TMS application, with a higher and more stable induced voltage in magnetic field sensors.


[306] 2410.15247

Tensor-Fused Multi-View Graph Contrastive Learning

Graph contrastive learning (GCL) has emerged as a promising approach to enhance graph neural networks' (GNNs) ability to learn rich representations from unlabeled graph-structured data. However, current GCL models face challenges with computational demands and limited feature utilization, often relying only on basic graph properties like node degrees and edge attributes. This constrains their capacity to fully capture the complex topological characteristics of real-world phenomena represented by graphs. To address these limitations, we propose Tensor-Fused Multi-View Graph Contrastive Learning (TensorMV-GCL), a novel framework that integrates extended persistent homology (EPH) with GCL representations and facilitates multi-scale feature extraction. Our approach uniquely employs tensor aggregation and compression to fuse information from graph and topological features obtained from multiple augmented views of the same graph. By incorporating tensor concatenation and contraction modules, we reduce computational overhead by separating feature tensor aggregation and transformation. Furthermore, we enhance the quality of learned topological features and model robustness through noise-injected EPH. Experiments on molecular, bioinformatic, and social network datasets demonstrate TensorMV-GCL's superiority, outperforming 15 state-of-the-art methods in graph classification tasks across 9 out of 11 benchmarks while achieving comparable results on the remaining two. The code for this paper is publicly available at https://github.com/CS-SAIL/Tensor-MV-GCL.git.


[307] 2410.15248

FastSTI: A Fast Conditional Pseudo Numerical Diffusion Model for Spatio-temporal Traffic Data Imputation

High-quality spatiotemporal traffic data is crucial for intelligent transportation systems (ITS) and their data-driven applications. Inevitably, the issue of missing data caused by various disturbances threatens the reliability of data acquisition. Recent studies of diffusion probability models have demonstrated the superiority of deep generative models in imputation tasks by precisely capturing the spatio-temporal correlation of traffic data. One drawback of diffusion models is their slow sampling/denoising process. In this work, we aim to accelerate the imputation process while retaining the performance. We propose a fast conditional diffusion model for spatiotemporal traffic data imputation (FastSTI). To speed up the process yet, obtain better performance, we propose the application of a high-order pseudo-numerical solver. Our method further revs the imputation by introducing a predefined alignment strategy of variance schedule during the sampling process. Evaluating FastSTI on two types of real-world traffic datasets (traffic speed and flow) with different missing data scenarios proves its ability to impute higher-quality samples in only six sampling steps, especially under high missing rates (60\% $\sim$ 90\%). The experimental results illustrate a speed-up of $\textbf{8.3} \times$ faster than the current state-of-the-art model while achieving better performance.


[308] 2410.15250

Multimodal Policies with Physics-informed Representations

In the control problems of the PDE systems, observation is important to make the decision. However, the observation is generally sparse and missing in practice due to the limitation and fault of sensors. The above challenges cause observations with uncertain quantities and modalities. Therefore, how to leverage the uncertain observations as the states in control problems of the PDE systems has become a scientific problem. The dynamics of PDE systems rely on the initial conditions, boundary conditions, and PDE formula. Given the above three elements, PINNs can be used to solve the PDE systems. In this work, we discover that the neural network can also be used to identify and represent the PDE systems using PDE loss and sparse data loss. Inspired by the above discovery, we propose a Physics-Informed Representation (PIR) algorithm for multimodal policies in PDE systems' control. It leverages PDE loss to fit the neural network and data loss calculated on the observations with random quantities and modalities to propagate the information of initial conditions and boundary conditions into the inputs. The inputs can be the learnable parameters or the output of the encoders. Then, under the environments of the PDE systems, such inputs are the representation of the current state. In our experiments, the PIR illustrates the superior consistency with the features of the ground truth compared with baselines, even when there are missing modalities. Furthermore, PIR has been successfully applied in the downstream control tasks where the robot leverages the learned state by PIR faster and more accurately, passing through the complex vortex street from a random starting location to reach a random target.


[309] 2410.15252

Lossless KV Cache Compression to 2%

Large language models have revolutionized data processing in numerous domains, with their ability to handle extended context reasoning receiving notable recognition. To speed up inference, maintaining a key-value (KV) cache memory is essential. Nonetheless, the growing demands for KV cache memory create significant hurdles for efficient implementation. This work introduces a novel architecture, Cross-Layer Latent Attention (CLLA), aimed at compressing the KV cache to less than 2% of its original size while maintaining comparable performance levels. CLLA integrates multiple aspects of KV cache compression, including attention head/dimension reduction, layer sharing, and quantization techniques, into a cohesive framework. Our extensive experiments demonstrate that CLLA achieves lossless performance on most tasks while utilizing minimal KV cache, marking a significant advancement in practical KV cache compression.


[310] 2410.15257

Learning-Augmented Algorithms for the Bahncard Problem

In this paper, we study learning-augmented algorithms for the Bahncard problem. The Bahncard problem is a generalization of the ski-rental problem, where a traveler needs to irrevocably and repeatedly decide between a cheap short-term solution and an expensive long-term one with an unknown future. Even though the problem is canonical, only a primal-dual-based learning-augmented algorithm was explicitly designed for it. We develop a new learning-augmented algorithm, named PFSUM, that incorporates both history and short-term future to improve online decision making. We derive the competitive ratio of PFSUM as a function of the prediction error and conduct extensive experiments to show that PFSUM outperforms the primal-dual-based algorithm.


[311] 2410.15260

Multi-class within-day dynamic traffic equilibrium with strategic travel time information

Most research on within-day dynamic traffic equilibrium with information provision implicitly considers travel time information, often assuming information to be perfect or imperfect based on travelers' perception error. However, lacking explicit formulation of information limits insightful analysis of information impact on dynamic traffic equilibrium and the potential benefits of leveraging information provision to improve system-level performance. To address this gap, this paper proposes a within-day dynamic traffic equilibrium model that explicitly formulates strategic information provision as an endogenous element. In the proposed framework, two classes of travelers receive different types of travel time information: one class receives instantaneous travel time reflecting the prevailing traffic conditions, while the other class receives strategic forecasts of travel times, generated by accounting for travelers' reactions to instantaneous information based on strategic thinking from behavioral game theory. The resulting multi-class within-day dynamic equilibrium differs from existing models by explicitly modeling information provision and consideration of information consistency. The inherent dynamics of real-time updated traffic information, traffic conditions, and travelers' choice behaviors are analytically modeled, with the resulting dynamic equilibrium formulated as a fixed-point problem. The theoretical propositions and numerical findings offer rich insights into the impact of information on the traffic network, strategic forecast information penetration, the relationship between the proposed equilibrium and traditional dynamic traffic equilibria, and information accuracy. This research contributes to a deeper understanding of the interplay between information and traffic dynamics, paving the way for more effective traffic management strategies.


[312] 2410.15262

HyQE: Ranking Contexts with Hypothetical Query Embeddings

In retrieval-augmented systems, context ranking techniques are commonly employed to reorder the retrieved contexts based on their relevance to a user query. A standard approach is to measure this relevance through the similarity between contexts and queries in the embedding space. However, such similarity often fails to capture the relevance. Alternatively, large language models (LLMs) have been used for ranking contexts. However, they can encounter scalability issues when the number of candidate contexts grows and the context window sizes of the LLMs remain constrained. Additionally, these approaches require fine-tuning LLMs with domain-specific data. In this work, we introduce a scalable ranking framework that combines embedding similarity and LLM capabilities without requiring LLM fine-tuning. Our framework uses a pre-trained LLM to hypothesize the user query based on the retrieved contexts and ranks the context based on the similarity between the hypothesized queries and the user query. Our framework is efficient at inference time and is compatible with many other retrieval and ranking techniques. Experimental results show that our method improves the ranking performance across multiple benchmarks. The complete code and data are available at https://github.com/zwc662/hyqe


[313] 2410.15263

Back to School: Translation Using Grammar Books

Machine translation systems for high resource languages perform exceptionally well and produce high quality translations. Unfortunately, the vast majority of languages are not considered high resource and lack the quantity of parallel sentences needed to train such systems. These under-represented languages are not without resources, however, and bilingual dictionaries and grammar books are available as linguistic reference material. With current large language models (LLMs) supporting near book-length contexts, we can begin to use the available material to ensure advancements are shared among all of the world's languages. In this paper, we demonstrate incorporating grammar books in the prompt of GPT-4 to improve machine translation and evaluate the performance on 16 topologically diverse low-resource languages, using a combination of reference material to show that the machine translation performance of LLMs can be improved using this method.


[314] 2410.15264

AI Can Enhance Creativity in Social Networks

Can peer recommendation engines elevate people's creative performances in self-organizing social networks? Answering this question requires resolving challenges in data collection (e.g., tracing inspiration links and psycho-social attributes of nodes) and intervention design (e.g., balancing idea stimulation and redundancy in evolving information environments). We trained a model that predicts people's ideation performances using semantic and network-structural features in an online platform. Using this model, we built SocialMuse, which maximizes people's predicted performances to generate peer recommendations for them. We found treatment networks leveraging SocialMuse outperforming AI-agnostic control networks in several creativity measures. The treatment networks were more decentralized than the control, as SocialMuse increasingly emphasized network-structural features at large network sizes. This decentralization spreads people's inspiration sources, helping inspired ideas stand out better. Our study provides actionable insights into building intelligent systems for elevating creativity.


[315] 2410.15266

GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning

Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.


[316] 2410.15267

When Machine Unlearning Meets Retrieval-Augmented Generation (RAG): Keep Secret or Forget Knowledge?

The deployment of large language models (LLMs) like ChatGPT and Gemini has shown their powerful natural language generation capabilities. However, these models can inadvertently learn and retain sensitive information and harmful content during training, raising significant ethical and legal concerns. To address these issues, machine unlearning has been introduced as a potential solution. While existing unlearning methods take into account the specific characteristics of LLMs, they often suffer from high computational demands, limited applicability, or the risk of catastrophic forgetting. To address these limitations, we propose a lightweight unlearning framework based on Retrieval-Augmented Generation (RAG) technology. By modifying the external knowledge base of RAG, we simulate the effects of forgetting without directly interacting with the unlearned LLM. We approach the construction of unlearned knowledge as a constrained optimization problem, deriving two key components that underpin the effectiveness of RAG-based unlearning. This RAG-based approach is particularly effective for closed-source LLMs, where existing unlearning methods often fail. We evaluate our framework through extensive experiments on both open-source and closed-source models, including ChatGPT, Gemini, Llama-2-7b-chat-hf, and PaLM 2. The results demonstrate that our approach meets five key unlearning criteria: effectiveness, universality, harmlessness, simplicity, and robustness. Meanwhile, this approach can extend to multimodal large language models and LLM-based agents.


[317] 2410.15268

TAGExplainer: Narrating Graph Explanations for Text-Attributed Graph Learning Models

Representation learning of Text-Attributed Graphs (TAGs) has garnered significant attention due to its applications in various domains, including recommendation systems and social networks. Despite advancements in TAG learning methodologies, challenges remain in explainability due to the black-box nature of existing TAG representation learning models. This paper presents TAGExplainer, the first method designed to generate natural language explanations for TAG learning. TAGExplainer employs a generative language model that maps input-output pairs to explanations reflecting the model's decision-making process. To address the lack of annotated ground truth explanations in real-world scenarios, we propose first generating pseudo-labels that capture the model's decisions from saliency-based explanations, then the pseudo-label generator is iteratively trained based on three training objectives focusing on faithfulness and brevity via Expert Iteration, to improve the quality of generated pseudo-labels. The high-quality pseudo-labels are finally utilized to train an end-to-end explanation generator model. Extensive experiments are conducted to demonstrate the effectiveness of TAGExplainer in producing faithful and concise natural language explanations.


[318] 2410.15270

Can LVLMs Describe Videos like Humans? A Five-in-One Video Annotations Benchmark for Better Human-Machine Comparison

Large vision-language models (LVLMs) have made significant strides in addressing complex video tasks, sparking researchers' interest in their human-like multimodal understanding capabilities. Video description serves as a fundamental task for evaluating video comprehension, necessitating a deep understanding of spatial and temporal dynamics, which presents challenges for both humans and machines. Thus, investigating whether LVLMs can describe videos as comprehensively as humans (through reasonable human-machine comparisons using video captioning as a proxy task) will enhance our understanding and application of these models. However, current benchmarks for video comprehension have notable limitations, including short video durations, brief annotations, and reliance on a single annotator's perspective. These factors hinder a comprehensive assessment of LVLMs' ability to understand complex, lengthy videos and prevent the establishment of a robust human baseline that accurately reflects human video comprehension capabilities. To address these issues, we propose a novel benchmark, FIOVA (Five In One Video Annotations), designed to evaluate the differences between LVLMs and human understanding more comprehensively. FIOVA includes 3,002 long video sequences (averaging 33.6 seconds) that cover diverse scenarios with complex spatiotemporal relationships. Each video is annotated by five distinct annotators, capturing a wide range of perspectives and resulting in captions that are 4-15 times longer than existing benchmarks, thereby establishing a robust baseline that represents human understanding comprehensively for the first time in video description tasks. Using the FIOVA benchmark, we conducted an in-depth evaluation of six state-of-the-art LVLMs, comparing their performance with humans. More detailed information can be found at https://huuuuusy.github.io/fiova/.


[319] 2410.15271

Onboard Health Estimation using Distribution of Relaxation Times for Lithium-ion Batteries

Real-life batteries tend to experience a range of operating conditions, and undergo degradation due to a combination of both calendar and cycling aging. Onboard health estimation models typically use cycling aging data only, and account for at most one operating condition e.g., temperature, which can limit the accuracy of the models for state-of-health (SOH) estimation. In this paper, we utilize electrochemical impedance spectroscopy (EIS) data from 5 calendar-aged and 17 cycling-aged cells to perform SOH estimation under various operating conditions. The EIS curves are deconvoluted using the distribution of relaxation times (DRT) technique to map them onto a function $\textbf{g}$ which consists of distinct timescales representing different resistances inside the cell. These DRT curves, $\textbf{g}$, are then used as inputs to a long short-term memory (LSTM)-based neural network model for SOH estimation. We validate the model performance by testing it on ten different test sets, and achieve an average RMSPE of 1.69% across these sets.


[320] 2410.15272

Performance-Driven QUBO for Recommender Systems on Quantum Annealers

We propose Counterfactual Analysis Quadratic Unconstrained Binary Optimization (CAQUBO) to solve QUBO problems for feature selection in recommender systems. CAQUBO leverages counterfactual analysis to measure the impact of individual features and feature combinations on model performance and employs the measurements to construct the coefficient matrix for a quantum annealer to select the optimal feature combinations for recommender systems, thereby improving their final recommendation performance. By establishing explicit connections between features and the recommendation performance, the proposed approach demonstrates superior performance compared to the state-of-the-art quantum annealing methods. Extensive experiments indicate that integrating quantum computing with counterfactual analysis holds great promise for addressing these challenges.


[321] 2410.15273

ArchiTone: A LEGO-Inspired Gamified System for Visualized Music Education

Participation in music activities has many benefits, but often requires music theory knowledge and aural skills, which can be challenging for beginners. To help them engage more easily, it's crucial to adopt teaching strategies that lower these barriers. Informed by formative investigation and inspired by LEGO, we introduce ArchiTone, a gamified system that employs constructivism by visualizing music theory concepts as musical blocks and buildings for music education. This system includes two modes: Learning Mode, which involves recognizing and learning common musical blocks through familiar musical works; Creation Mode, which allows learners to freely create and combine musical blocks to produce new musical works. User studies demonstrate that our gamified system is not only more engaging than traditional music education methods but also more effective in helping learners understand abstract music theory and apply it to music praxis. Additionally, learners demonstrate superior performance on music theory tasks after using ArchiTone.


[322] 2410.15275

MAD: Move AI Decompiler to Improve Transparency and Auditability on Non-Open-Source Blockchain Smart Contract

Web3 aims to enhance user control over data and assets, but this vision is challenged by non-transparent, scam-prone applications and vulnerable smart contracts. While code audits are one solution to this problem, the lack of smart contracts source code on many blockchain platforms, such as Sui, hinders the ease of auditing. A promising approach to this issue is the use of a decompiler to reverse-engineer smart contract bytecode. However, existing decompilers for Sui produce code that is difficult to understand and cannot be directly recompiled. To address this, we developed the Move AI Decompiler (MAD), a Large Language Model (LLM)-powered web application that decompiles smart contract bytecodes on Sui into logically correct, human-readable, and re-compilable source code. Our evaluation shows that MAD produces logically correct code that successfully passes original unit tests and achieves a 66.7% recompilation success rate on real-world smart contracts. Additionally, in a user study involving 12 developers, MAD significantly reduced the auditing workload compared to using traditional decompilers. Participants found MAD's outputs comparable to the original source code, simplifying the process of smart contract logic comprehension and auditing. Despite some limitations, such as occasional hallucinations and compile errors, MAD still provides significant improvements over traditional decompilers. MAD has practical implications for blockchain smart contract transparency, auditing, and education. It empowers users to review and audit non-open-source smart contracts, fostering trust and accountability. Additionally, MAD's approach could potentially extend to other smart contract languages, like Solidity, promoting transparency across various blockchains.


[323] 2410.15277

BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression

Retrieval-augmented generation (RAG) can supplement large language models (LLMs) by integrating external knowledge. However, as the number of retrieved documents increases, the input length to LLMs grows linearly, causing a dramatic increase in latency and a degradation in long-context understanding. This is particularly serious for multi-hop questions that require a chain of reasoning across documents. To accelerate inference, reduce costs, and minimize distractions, this paper presents BRIEF (Bridging Retrieval and Inference through Evidence Fusion), a lightweight approach that performs query-aware multi-hop reasoning by compressing retrieved documents into highly dense textual summaries to integrate into in-context learning. To enable learning compression for multi-hop reasoning, we curate synthetic data by extracting atomic proposition expressions that encapsulate distinct factoids from the source documents to compose synthetic summaries. Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries and enables a range of LLMs to achieve exceptional open-domain question answering (QA) performance. For example, on HotpotQA, BRIEF improves the compression rate by 2 times compared to the state-of-the-art baseline, while outperforming it by 3.00% EM and 4.16% F1 with Flan-UL2 as the reader LM. It also generates more concise summaries than proprietary GPT-3.5, while demonstrating nearly identical QA performance.


[324] 2410.15279

ContextDet: Temporal Action Detection with Adaptive Context Aggregation

Temporal action detection (TAD), which locates and recognizes action segments, remains a challenging task in video understanding due to variable segment lengths and ambiguous boundaries. Existing methods treat neighboring contexts of an action segment indiscriminately, leading to imprecise boundary predictions. We introduce a single-stage ContextDet framework, which makes use of large-kernel convolutions in TAD for the first time. Our model features a pyramid adaptive context aggragation (ACA) architecture, capturing long context and improving action discriminability. Each ACA level consists of two novel modules. The context attention module (CAM) identifies salient contextual information, encourages context diversity, and preserves context integrity through a context gating block (CGB). The long context module (LCM) makes use of a mixture of large- and small-kernel convolutions to adaptively gather long-range context and fine-grained local features. Additionally, by varying the length of these large kernels across the ACA pyramid, our model provides lightweight yet effective context aggregation and action discrimination. We conducted extensive experiments and compared our model with a number of advanced TAD methods on six challenging TAD benchmarks: MultiThumos, Charades, FineAction, EPIC-Kitchens 100, Thumos14, and HACS, demonstrating superior accuracy at reduced inference speed.


[325] 2410.15280

Neural Normalized Compression Distance and the Disconnect Between Compression and Classification

It is generally well understood that predictive classification and compression are intrinsically related concepts in information theory. Indeed, many deep learning methods are explained as learning a kind of compression, and that better compression leads to better performance. We interrogate this hypothesis via the Normalized Compression Distance (NCD), which explicitly relies on compression as the means of measuring similarity between sequences and thus enables nearest-neighbor classification. By turning popular large language models (LLMs) into lossless compressors, we develop a Neural NCD and compare LLMs to classic general-purpose algorithms like gzip. In doing so, we find that classification accuracy is not predictable by compression rate alone, among other empirical aberrations not predicted by current understanding. Our results imply that our intuition on what it means for a neural network to ``compress'' and what is needed for effective classification are not yet well understood.


[326] 2410.15281

Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment

With the broader usage and highly successful development of Large Language Models (LLMs), there has been a growth of interest and demand for applying LLMs to autonomous driving technology. Driven by their natural language understanding and reasoning ability, LLMs have the potential to enhance various aspects of autonomous driving systems, from perception and scene understanding to language interaction and decision-making. In this paper, we first introduce novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD). Then, we propose a comprehensive benchmark for evaluating the instruction-following abilities of LLMs within the autonomous driving domain. Furthermore, we conduct a series of experiments on both simulation and real-world vehicle platforms, thoroughly evaluating the performance and potential of our LLM4AD systems. Our research highlights the significant potential of LLMs to enhance various aspects of autonomous vehicle technology, from perception and scene understanding to language interaction and decision-making.


[327] 2410.15283

TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model

With the advancement of global climate change and sustainable development goals, urban building energy consumption optimization and carbon emission reduction have become the focus of research. Traditional energy consumption prediction methods often lack accuracy and adaptability due to their inability to fully consider complex energy consumption patterns, especially in dealing with seasonal fluctuations and dynamic changes. This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction. TRIZ plays a key role in model design, providing innovative solutions to achieve an effective balance between energy efficiency, cost and comfort by systematically analyzing the contradictions in energy consumption optimization. GWO is used to optimize the parameters of the model to ensure that the model maintains high accuracy under different conditions. The SARIMA model focuses on capturing seasonal trends in the data, while the LSTM model handles short-term and long-term dependencies in the data, further improving the accuracy of the prediction. The main contribution of this research is the development of a robust model that leverages the strengths of TRIZ and advanced deep learning techniques, improving the accuracy of energy consumption predictions. Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models. This innovative approach not only enhances urban energy management but also provides a new framework for optimizing energy use and reducing carbon emissions, contributing to sustainable development.


[328] 2410.15284

Customized FinGPT Search Agents Using Foundation Models

Current large language models (LLMs) have proven useful for analyzing financial data, but most existing models, such as BloombergGPT and FinGPT, lack customization for specific user needs. In this paper, we address this gap by developing FinGPT Search Agents tailored for two types of users: individuals and institutions. For individuals, we leverage Retrieval-Augmented Generation (RAG) to integrate local documents and user-specified data sources. For institutions, we employ dynamic vector databases and fine-tune models on proprietary data. There are several key issues to address, including data privacy, the time-sensitive nature of financial information, and the need for fast responses. Experiments show that FinGPT agents outperform existing models in accuracy, relevance, and response time, making them practical for real-world applications.


[329] 2410.15285

Contextual Augmented Multi-Model Programming (CAMP): A Hybrid Local-Cloud Copilot Framework

The advancements in cloud-based Large Languages Models (LLMs) have revolutionized AI-assisted programming. However, their integration into certain local development environments like ones within the Apple software ecosystem (e.g., iOS apps, macOS) remains challenging due to computational demands and sandboxed constraints. This paper presents CAMP, a multi-model AI-assisted programming framework that consists of a local model that employs Retrieval-Augmented Generation (RAG) to retrieve contextual information from the codebase to facilitate context-aware prompt construction thus optimizing the performance of the cloud model, empowering LLMs' capabilities in local Integrated Development Environments (IDEs). The methodology is actualized in Copilot for Xcode, an AI-assisted programming tool crafted for Xcode that employs the RAG module to address software constraints and enables diverse generative programming tasks, including automatic code completion, documentation, error detection, and intelligent user-agent interaction. The results from objective experiments on generated code quality and subjective experiments on user adoption collectively demonstrate the pilot success of the proposed system and mark its significant contributions to the realm of AI-assisted programming.


[330] 2410.15286

LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting

Against the backdrop of increasingly severe global environmental changes, accurately predicting and meeting renewable energy demands has become a key challenge for sustainable business development. Traditional energy demand forecasting methods often struggle with complex data processing and low prediction accuracy. To address these issues, this paper introduces a novel approach that combines deep learning techniques with environmental decision support systems. The model integrates advanced deep learning techniques, including LSTM and Transformer, and PSO algorithm for parameter optimization, significantly enhancing predictive performance and practical applicability. Results show that our model achieves substantial improvements across various metrics, including a 30% reduction in MAE, a 20% decrease in MAPE, a 25% drop in RMSE, and a 35% decline in MSE. These results validate the model's effectiveness and reliability in renewable energy demand forecasting. This research provides valuable insights for applying deep learning in environmental decision support systems.


[331] 2410.15287

Training Language Models to Critique With Multi-agent Feedback

Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.


[332] 2410.15288

Attention Is All You Need for LLM-based Code Vulnerability Localization

The rapid expansion of software systems and the growing number of reported vulnerabilities have emphasized the importance of accurately identifying vulnerable code segments. Traditional methods for vulnerability localization, such as manual code audits or rule-based tools, are often time-consuming and limited in scope, typically focusing on specific programming languages or types of vulnerabilities. In recent years, the introduction of large language models (LLMs) such as GPT and LLaMA has opened new possibilities for automating vulnerability detection. However, while LLMs show promise in this area, they face challenges, particularly in maintaining accuracy over longer code contexts. This paper introduces LOVA, a novel framework leveraging the self-attention mechanisms inherent in LLMs to enhance vulnerability localization. Our key insight is that self-attention mechanisms assign varying importance to different parts of the input, making it possible to track how much attention the model focuses on specific lines of code. In the context of vulnerability localization, the hypothesis is that vulnerable lines of code will naturally attract higher attention weights because they have a greater influence on the model's output. By systematically tracking changes in attention weights and focusing on specific lines of code, LOVA improves the precision of identifying vulnerable lines across various programming languages. Through rigorous experimentation and evaluation, we demonstrate that LOVA significantly outperforms existing LLM-based approaches, achieving up to a 5.3x improvement in F1-scores. LOVA also demonstrated strong scalability, with up to a 14.6x improvement in smart contract vulnerability localization across languages like C, Python, Java, and Solidity. Its robustness was proven through consistent performance across different LLM architectures.


[333] 2410.15289

Automatic verification of Finite Variant Property beyond convergent equational theories

Computer-aided analysis of security protocols heavily relies on equational theories to model cryptographic primitives. Most automated verifiers for security protocols focus on equational theories that satisfy the Finite Variant Property (FVP), for which solving unification is decidable. However, they either require to prove FVP by hand or at least to provide a representation as an E-convergent rewrite system, usually E being at most the equational theory for an associative and commutative function symbol (AC). The verifier ProVerif is probably the only exception amongst these tools as it automatically proves FVP without requiring a representation, but on a small class of equational theories. In this work, we propose a novel semi-decision procedure for proving FVP, without the need for a specific representation, and for a class of theories that goes beyond the ones expressed by an E-convergent rewrite system. We implemented a prototype and successfully applied it on several theories from the literature.


[334] 2410.15290

On the size of error ball in DNA storage channels

Recent experiments have demonstrated the feasibility of storing digital information in macromolecules such as DNA and protein. However, the DNA storage channel is prone to errors such as deletions, insertions, and substitutions. During the synthesis and reading phases of DNA strings, many noisy copies of the original string are generated. The problem of recovering the original string from these noisy copies is known as sequence reconstruction. A key concept in this problem is the error ball, which is the set of all possible sequences that can result from a limited number of errors applied to the original sequence. Levenshtein showed that the minimum number of noisy copies required for a given channel to recover the original sequence is equal to one plus the maximum size of the intersection of two error balls. Therefore, deriving the size of the error ball for any channel and any sequence is essential for solving the sequence reconstruction problem. In DNA storage systems, multiple types of errors such as deletion, insertion and substitution in a string could occur simultaneously. In this work, we aim to derive the size of the error ball for channels with multiple types of errors and at most three edits. Specifically, we consider the channels with single-deletion double-substitution, single-deletion double-insertion and single-insertion single-substitution errors.


[335] 2410.15293

Fractional-order spike-timing-dependent gradient descent for multi-layer spiking neural networks

Accumulated detailed knowledge about the neuronal activities in human brains has brought more attention to bio-inspired spiking neural networks (SNNs). In contrast to non-spiking deep neural networks (DNNs), SNNs can encode and transmit spatiotemporal information more efficiently by exploiting biologically realistic and low-power event-driven neuromorphic architectures. However, the supervised learning of SNNs still remains a challenge because the spike-timing-dependent plasticity (STDP) of connected spiking neurons is difficult to implement and interpret in existing backpropagation learning schemes. This paper proposes a fractional-order spike-timing-dependent gradient descent (FO-STDGD) learning model by considering a derived nonlinear activation function that describes the relationship between the quasi-instantaneous firing rate and the temporal membrane potentials of nonleaky integrate-and-fire neurons. The training strategy can be generalized to any fractional orders between 0 and 2 since the FO-STDGD incorporates the fractional gradient descent method into the calculation of spike-timing-dependent loss gradients. The proposed FO-STDGD model is tested on the MNIST and DVS128 Gesture datasets and its accuracy under different network structure and fractional orders is analyzed. It can be found that the classification accuracy increases as the fractional order increases, and specifically, the case of fractional order 1.9 improves by 155% relative to the case of fractional order 1 (traditional gradient descent). In addition, our scheme demonstrates the state-of-the-art computational efficacy for the same SNN structure and training epochs.


[336] 2410.15294

Unsupervised feature selection algorithm framework based on neighborhood interval disturbance fusion

Feature selection technology is a key technology of data dimensionality reduction. Becauseof the lack of label information of collected data samples, unsupervised feature selection has attracted more attention. The universality and stability of many unsupervised feature selection algorithms are very low and greatly affected by the dataset structure. For this reason, many researchers have been keen to improve the stability of the algorithm. This paper attempts to preprocess the data set and use an interval method to approximate the data set, experimentally verifying the advantages and disadvantages of the new interval data set. This paper deals with these data sets from the global perspective and proposes a new algorithm-unsupervised feature selection algorithm based on neighborhood interval disturbance fusion(NIDF). This method can realize the joint learning of the final score of the feature and the approximate data interval. By comparing with the original unsupervised feature selection methods and several existing feature selection frameworks, the superiority of the proposed model is verified.


[337] 2410.15296

A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI

Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning. Comprising a 'neuro' component for feature extraction and a 'symbolic' component for decision-making, neuro-symbolic AI has yet to fully benefit from efficient hardware accelerators. Additionally, current hardware struggles to accommodate applications requiring dynamic resource allocation between these two components. To address these challenges-and mitigate the typical data-transfer bottleneck of classical Von Neumann architectures-we propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI. This array seamlessly handles both the critical multiply-accumulate (MAC) operations of the 'neuro' workload and the parallel associative search operations of the 'symbolic' workload. To enable this approach, we introduce an innovative 1FeFET-1C cell, combining a ferroelectric field-effect transistor (FeFET) with a capacitor. This design, overcomes the destructive sensing limitations of DRAM in CiM applications, while capable of capitalizing decades of DRAM expertise with a similar cell structure as DRAM, achieves high immunity against FeFET variation-crucial for neuro-symbolic AI-and demonstrates superior energy efficiency. The functionalities of our design have been successfully validated through SPICE simulations and prototype fabrication and testing. Our hardware platform has been benchmarked in executing typical neuro-symbolic AI reasoning tasks, showing over 2x improvement in latency and 1000x improvement in energy efficiency compared to GPU-based implementations.


[338] 2410.15297

Redefining Proactivity for Information Seeking Dialogue

Information-Seeking Dialogue (ISD) agents aim to provide accurate responses to user queries. While proficient in directly addressing user queries, these agents, as well as LLMs in general, predominantly exhibit reactive behavior, lacking the ability to generate proactive responses that actively engage users in sustained conversations. However, existing definitions of proactive dialogue in this context do not focus on how each response actively engages the user and sustains the conversation. Hence, we present a new definition of proactivity that focuses on enhancing the `proactiveness' of each generated response via the introduction of new information related to the initial query. To this end, we construct a proactive dialogue dataset comprising 2,000 single-turn conversations, and introduce several automatic metrics to evaluate response `proactiveness' which achieved high correlation with human annotation. Additionally, we introduce two innovative Chain-of-Thought (CoT) prompts, the 3-step CoT and the 3-in-1 CoT prompts, which consistently outperform standard prompts by up to 90% in the zero-shot setting.


[339] 2410.15299

Does ChatGPT Have a Poetic Style?

Generating poetry has become a popular application of LLMs, perhaps especially of OpenAI's widely-used chatbot ChatGPT. What kind of poet is ChatGPT? Does ChatGPT have its own poetic style? Can it successfully produce poems in different styles? To answer these questions, we prompt the GPT-3.5 and GPT-4 models to generate English-language poems in 24 different poetic forms and styles, about 40 different subjects, and in response to 3 different writing prompt templates. We then analyze the resulting 5.7k poems, comparing them to a sample of 3.7k poems from the Poetry Foundation and the Academy of American Poets. We find that the GPT models, especially GPT-4, can successfully produce poems in a range of both common and uncommon English-language forms in superficial yet noteworthy ways, such as by producing poems of appropriate lengths for sonnets (14 lines), villanelles (19 lines), and sestinas (39 lines). But the GPT models also exhibit their own distinct stylistic tendencies, both within and outside of these specific forms. Our results show that GPT poetry is much more constrained and uniform than human poetry, showing a strong penchant for rhyme, quatrains (4-line stanzas), iambic meter, first-person plural perspectives (we, us, our), and specific vocabulary like "heart," "embrace," "echo," and "whisper."


[340] 2410.15302

Likelihood-Free Inference and Hierarchical Data Assimilation for Geological Carbon Storage

Data assimilation will be essential for the management and expansion of geological carbon storage operations. In traditional data assimilation approaches a fixed set of geological hyperparameters, such as mean and standard deviation of log-permeability, is often assumed. Such hyperparameters, however, may be highly uncertain in practical CO2 storage applications. In this study, we develop a hierarchical data assimilation framework for carbon storage that treats hyperparameters as uncertain variables characterized by hyperprior distributions. To deal with the computationally intractable likelihood function in hyperparameter estimation, we apply a likelihood-free (or simulation-based) inference algorithm, specifically sequential Monte Carlo-based approximate Bayesian computation (SMC-ABC), to draw independent posterior samples of hyperparameters given dynamic monitoring-well data. In the second step we use an ensemble smoother with multiple data assimilation (ESMDA) procedure to provide posterior realizations of grid-block permeability. To reduce computational costs, a 3D recurrent R-U-Net deep-learning surrogate model is applied for forward function evaluations. The accuracy of the surrogate model is established through comparisons to high-fidelity simulation results. A rejection sampling (RS) procedure for data assimilation is applied to provide reference posterior results. Detailed data assimilation results from SMC-ABC-ESMDA are compared to those from the reference RS method. These include marginal posterior distributions of hyperparameters, pairwise posterior samples, and history matching results for pressure and saturation at the monitoring location. Close agreement is achieved with 'converged' RS results, for two synthetic true models, in all quantities considered. Importantly, the SMC-ABC-ESMDA procedure provides speedup of 1-2 orders of magnitude relative to RS for the two cases.


[341] 2410.15304

Multiple Kernel Clustering via Local Regression Integration

Multiple kernel methods less consider the intrinsic manifold structure of multiple kernel data and estimate the consensus kernel matrix with quadratic number of variables, which makes it vulnerable to the noise and outliers within multiple candidate kernels. This paper first presents the clustering method via kernelized local regression (CKLR). It captures the local structure of kernel data and employs kernel regression on the local region to predict the clustering results. Moreover, this paper further extends it to perform clustering via the multiple kernel local regression (CMKLR). We construct the kernel level local regression sparse coefficient matrix for each candidate kernel, which well characterizes the kernel level manifold structure. We then aggregate all the kernel level local regression coefficients via linear weights and generate the consensus sparse local regression coefficient, which largely reduces the number of candidate variables and becomes more robust against noises and outliers within multiple kernel data. Thus, the proposed method CMKLR avoids the above two limitations. It only contains one additional hyperparameter for tuning. Extensive experimental results show that the clustering performance of the proposed method on benchmark datasets is better than that of 10 state-of-the-art multiple kernel clustering methods.


[342] 2410.15306

Symmetry Nonnegative Matrix Factorization Algorithm Based on Self-paced Learning

A symmetric nonnegative matrix factorization algorithm based on self-paced learning was proposed to improve the clustering performance of the model. It could make the model better distinguish normal samples from abnormal samples in an error-driven way. A weight variable that could measure the degree of difficulty to all samples was assigned in this method, and the variable was constrained by adopting both hard-weighting and soft-weighting strategies to ensure the rationality of the model. Cluster analysis was carried out on multiple data sets such as images and texts, and the experimental results showed the effectiveness of the proposed algorithm.


[343] 2410.15308

LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content

Large Language Models (LLMs) have demonstrated remarkable success as general-purpose task solvers across various fields, including NLP, healthcare, finance, and law. However, their capabilities remain limited when addressing domain-specific problems, particularly in downstream NLP tasks. Research has shown that models fine-tuned on instruction-based downstream NLP datasets outperform those that are not fine-tuned. While most efforts in this area have primarily focused on resource-rich languages like English and broad domains, little attention has been given to multilingual settings and specific domains. To address this gap, this study focuses on developing a specialized LLM, LlamaLens, for analyzing news and social media content in a multilingual context. To the best of our knowledge, this is the first attempt to tackle both domain specificity and multilinguality, with a particular focus on news and social media. Our experimental setup includes 19 tasks, represented by 52 datasets covering Arabic, English, and Hindi. We demonstrate that LlamaLens outperforms the current state-of-the-art (SOTA) on 16 testing sets, and achieves comparable performance on 10 sets. We make the models and resources publicly available for the research community.(https://huggingface.co/QCRI)


[344] 2410.15310

On Cold Posteriors of Probabilistic Neural Networks: Understanding the Cold Posterior Effect and A New Way to Learn Cold Posteriors with Tight Generalization Guarantees

Bayesian inference provides a principled probabilistic framework for quantifying uncertainty by updating beliefs based on prior knowledge and observed data through Bayes' theorem. In Bayesian deep learning, neural network weights are treated as random variables with prior distributions, allowing for a probabilistic interpretation and quantification of predictive uncertainty. However, Bayesian methods lack theoretical generalization guarantees for unseen data. PAC-Bayesian analysis addresses this limitation by offering a frequentist framework to derive generalization bounds for randomized predictors, thereby certifying the reliability of Bayesian methods in machine learning. Temperature $T$, or inverse-temperature $\lambda = \frac{1}{T}$, originally from statistical mechanics in physics, naturally arises in various areas of statistical inference, including Bayesian inference and PAC-Bayesian analysis. In Bayesian inference, when $T < 1$ (``cold'' posteriors), the likelihood is up-weighted, resulting in a sharper posterior distribution. Conversely, when $T > 1$ (``warm'' posteriors), the likelihood is down-weighted, leading to a more diffuse posterior distribution. By balancing the influence of observed data and prior regularization, temperature adjustments can address issues of underfitting or overfitting in Bayesian models, bringing improved predictive performance.


[345] 2410.15311

Who is Undercover? Guiding LLMs to Explore Multi-Perspective Team Tactic in the Game

Large Language Models (LLMs) are pivotal AI agents in complex tasks but still face challenges in open decision-making problems within complex scenarios. To address this, we use the language logic game ``Who is Undercover?'' (WIU) as an experimental platform to propose the Multi-Perspective Team Tactic (MPTT) framework. MPTT aims to cultivate LLMs' human-like language expression logic, multi-dimensional thinking, and self-perception in complex scenarios. By alternating speaking and voting sessions, integrating techniques like self-perspective, identity-determination, self-reflection, self-summary and multi-round find-teammates, LLM agents make rational decisions through strategic concealment and communication, fostering human-like trust. Preliminary results show that MPTT, combined with WIU, leverages LLMs' cognitive capabilities to create a decision-making framework that can simulate real society. This framework aids minority groups in communication and expression, promoting fairness and diversity in decision-making. Additionally, our Human-in-the-loop experiments demonstrate that LLMs can learn and align with human behaviors through interactive, indicating their potential for active participation in societal decision-making.


[346] 2410.15312

Synergistic Dual Spatial-aware Generation of Image-to-Text and Text-to-Image

In the visual spatial understanding (VSU) area, spatial image-to-text (SI2T) and spatial text-to-image (ST2I) are two fundamental tasks that appear in dual form. Existing methods for standalone SI2T or ST2I perform imperfectly in spatial understanding, due to the difficulty of 3D-wise spatial feature modeling. In this work, we consider modeling the SI2T and ST2I together under a dual learning framework. During the dual framework, we then propose to represent the 3D spatial scene features with a novel 3D scene graph (3DSG) representation that can be shared and beneficial to both tasks. Further, inspired by the intuition that the easier 3D$\to$image and 3D$\to$text processes also exist symmetrically in the ST2I and SI2T, respectively, we propose the Spatial Dual Discrete Diffusion (SD$^3$) framework, which utilizes the intermediate features of the 3D$\to$X processes to guide the hard X$\to$3D processes, such that the overall ST2I and SI2T will benefit each other. On the visual spatial understanding dataset VSD, our system outperforms the mainstream T2I and I2T methods significantly. Further in-depth analysis reveals how our dual learning strategy advances.


[347] 2410.15314

KTCR: Improving Implicit Hate Detection with Knowledge Transfer driven Concept Refinement

The constant shifts in social and political contexts, driven by emerging social movements and political events, lead to new forms of hate content and previously unrecognized hate patterns that machine learning models may not have captured. Some recent literature proposes the data augmentation-based techniques to enrich existing hate datasets by incorporating samples that reveal new implicit hate patterns. This approach aims to improve the model's performance on out-of-domain implicit hate instances. It is observed, that further addition of more samples for augmentation results in the decrease of the performance of the model. In this work, we propose a Knowledge Transfer-driven Concept Refinement method that distills and refines the concepts related to implicit hate samples through novel prototype alignment and concept losses, alongside data augmentation based on concept activation vectors. Experiments with several publicly available datasets show that incorporating additional implicit samples reflecting new hate patterns through concept refinement enhances the model's performance, surpassing baseline results while maintaining cross-dataset generalization capabilities.\footnote{DISCLAIMER: This paper contains explicit statements that are potentially offensive.}


[348] 2410.15315

Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability

Open-vocabulary object detection (OVD), detecting specific classes of objects using only their linguistic descriptions (e.g., class names) without any image samples, has garnered significant attention. However, in real-world applications, the target class concepts is often hard to describe in text and the only way to specify target objects is to provide their image examples, yet it is often challenging to obtain a good number of samples. Thus, there is a high demand from practitioners for few-shot object detection (FSOD). A natural question arises: Can the benefits of OVD extend to FSOD for object classes that are difficult to describe in text? Compared to traditional methods that learn only predefined classes (referred to in this paper as closed-set object detection, COD), can the extra cost of OVD be justified? To answer these questions, we propose a method to quantify the ``text-describability'' of object detection datasets using the zero-shot image classification accuracy with CLIP. This allows us to categorize various OD datasets with different text-describability and emprically evaluate the FSOD performance of OVD and COD methods within each category. Our findings reveal that: i) there is little difference between OVD and COD for object classes with low text-describability under equal conditions in OD pretraining; and ii) although OVD can learn from more diverse data than OD-specific data, thereby increasing the volume of training data, it can be counterproductive for classes with low-text-describability. These findings provide practitioners with valuable guidance amidst the recent advancements of OVD methods.


[349] 2410.15316

Ichigo: Mixed-Modal Early-Fusion Realtime Voice Assistant

Large Language Models (LLMs) have revolutionized natural language processing, but their application to speech-based tasks remains challenging due to the complexities of integrating audio and text modalities. This paper introduces Ichigo, a mixed-modal model that seamlessly processes interleaved sequences of speech and text. Utilizing a tokenized early-fusion approach, Ichigo quantizes speech into discrete tokens and employs a uniform transformer-based architecture for both speech and text modalities. This method enables joint reasoning and generation across modalities without the need for separate adapters. We present a comprehensive training methodology, including pre-training on multilingual speech recognition datasets and fine-tuning on a curated instruction dataset. Ichigo demonstrates state-of-the-art performance on speech question-answering benchmarks, outperforming existing open-source speech language models and achieving comparable results to cascaded systems. Notably, Ichigo exhibits a latency of just 111 ms to first token generation, significantly lower than current models. Our approach not only advances the field of multimodal AI but also provides a framework for smaller research teams to contribute effectively to open-source speech-language models.


[350] 2410.15318

SNAP: Stopping Catastrophic Forgetting in Hebbian Learning with Sigmoidal Neuronal Adaptive Plasticity

Artificial Neural Networks (ANNs) suffer from catastrophic forgetting, where the learning of new tasks causes the catastrophic forgetting of old tasks. Existing Machine Learning (ML) algorithms, including those using Stochastic Gradient Descent (SGD) and Hebbian Learning typically update their weights linearly with experience i.e., independently of their current strength. This contrasts with biological neurons, which at intermediate strengths are very plastic, but consolidate with Long-Term Potentiation (LTP) once they reach a certain strength. We hypothesize this mechanism might help mitigate catastrophic forgetting. We introduce Sigmoidal Neuronal Adaptive Plasticity (SNAP) an artificial approximation to Long-Term Potentiation for ANNs by having the weights follow a sigmoidal growth behaviour allowing the weights to consolidate and stabilize when they reach sufficiently large or small values. We then compare SNAP to linear weight growth and exponential weight growth and see that SNAP completely prevents the forgetting of previous tasks for Hebbian Learning but not for SGD-base learning.


[351] 2410.15319

Causality for Large Language Models

Recent breakthroughs in artificial intelligence have driven a paradigm shift, where large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks. However, despite these successes, LLMs still rely on probabilistic modeling, which often captures spurious correlations rooted in linguistic patterns and social stereotypes, rather than the true causal relationships between entities and events. This limitation renders LLMs vulnerable to issues such as demographic biases, social stereotypes, and LLM hallucinations. These challenges highlight the urgent need to integrate causality into LLMs, moving beyond correlation-driven paradigms to build more reliable and ethically aligned AI systems. While many existing surveys and studies focus on utilizing prompt engineering to activate LLMs for causal knowledge or developing benchmarks to assess their causal reasoning abilities, most of these efforts rely on human intervention to activate pre-trained models. How to embed causality into the training process of LLMs and build more general and intelligent models remains unexplored. Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it. These prompt-based methods are still limited to human interventional improvements. This survey aims to address this gap by exploring how causality can enhance LLMs at every stage of their lifecycle-from token embedding learning and foundation model training to fine-tuning, alignment, inference, and evaluation-paving the way for more interpretable, reliable, and causally-informed models. Additionally, we further outline six promising future directions to advance LLM development, enhance their causal reasoning capabilities, and address the current limitations these models face.


[352] 2410.15321

Integrated Design and Control of a Robotic Arm on a Quadcopter for Enhanced Package Delivery

This paper presents a comprehensive design process for the integration of a robotic arm into a quadcopter, emphasizing the physical modeling, system integration, and controller development. Utilizing SolidWorks for mechanical design and MATLAB Simscape for simulation and control, this study addresses the challenges encountered in integrating the robotic arm with the drone, encompassing both mechanical and control aspects. Two types of controllers are developed and analyzed: a Proportional-Integral-Derivative (PID) controller and a Model Reference Adaptive Controller (MRAC). The design and tuning of these controllers are key components of this research, with the focus on their application in package delivery tasks. Extensive simulations demonstrate the performance of each controller, with PID controllers exhibiting superior trajectory tracking and lower Root Mean Square (RMS) errors under various payload conditions. The results underscore the efficacy of PID control for stable flight and precise maneuvering, while highlighting adaptability of MRAC to changing dynamics.


[353] 2410.15322

FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model

Mobile traffic forecasting allows operators to anticipate network dynamics and performance in advance, offering substantial potential for enhancing service quality and improving user experience. However, existing models are often task-oriented and are trained with tailored data, which limits their effectiveness in diverse mobile network tasks of Base Station (BS) deployment, resource allocation, energy optimization, etc. and hinders generalization across different urban environments. Foundation models have made remarkable strides across various domains of NLP and CV due to their multi-tasking adaption and zero/few-shot learning capabilities. In this paper, we propose an innovative Foundation model for Mo}bile traffic forecasting (FoMo), aiming to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization. FoMo combines diffusion models and transformers, where various spatio-temporal masks are proposed to enable FoMo to learn intrinsic features of different tasks, and a contrastive learning strategy is developed to capture the correlations between mobile traffic and urban contexts, thereby improving its transfer learning capability. Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning, showcasing a strong universality. We further deploy the FoMo on the JiuTian optimization platform of China Mobile, where we use the predicted mobile data to formulate network planning and optimization applications, including BS deployment, resource block scheduling, and BS sleep control.


[354] 2410.15326

A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice

As large language models (LLMs) continue to evolve, understanding and quantifying the uncertainty in their predictions is critical for enhancing application credibility. However, the existing literature relevant to LLM uncertainty estimation often relies on heuristic approaches, lacking systematic classification of the methods. In this survey, we clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions. On this basis, we integrate theoretical perspectives, including Bayesian inference, information theory, and ensemble strategies, to categorize various classes of uncertainty estimation methods derived from heuristic approaches. Additionally, we address challenges that arise when applying these methods to LLMs. We also explore techniques for incorporating uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification. Our review provides insights into uncertainty estimation from both definitional and theoretical angles, contributing to a comprehensive understanding of this critical aspect in LLMs. We aim to inspire the development of more reliable and effective uncertainty estimation approaches for LLMs in real-world scenarios.


[355] 2410.15331

A novel polyhedronal scaled boundary finite element method solving three-dimensional heat conduction problems

In this work, we derived the three-dimensional scaled boundary finite element formulation for thermal conduction problems. By introducing Wachspress shape functions, we proposed a novel polyhedral scaled boundary finite element method (PSBFEM) to address thermal conduction problems. The proposed method effectively addresses the challenges associated with complex geometries by integrating the polyhedral mesh and the octree mesh. The presented formulation handles both steady-state and transient thermal conduction analyses. Through a series of numerical examples, the accuracy and convergence of the proposed method were validated. The results demonstrate that mesh refinement leads to superior accuracy for the PSBFEM compared to the FEM. Moreover, Polyhedral elements provide an effective and efficient approach for complex simulations that substantially reduces computational costs.


[356] 2410.15332

EPIC: Efficient Position-Independent Context Caching for Serving Large Language Models

Large Language Models (LLMs) are critical for a wide range of applications, but serving them efficiently becomes increasingly challenging as inputs become more complex. Context caching improves serving performance by exploiting inter-request dependency and reusing key-value (KV) cache across requests, thus improving time-to-first-token (TTFT). However, existing prefix-based context caching requires exact token prefix matches, limiting cache reuse in few-shot learning, multi-document QA, or retrieval-augmented generation, where prefixes may vary. In this paper, we present EPIC, an LLM serving system that introduces position-independent context caching (PIC), enabling modular KV cache reuse regardless of token chunk position (or prefix). EPIC features two key designs: AttnLink, which leverages static attention sparsity to minimize recomputation for accuracy recovery, and KVSplit, a customizable chunking method that preserves semantic coherence. Our experiments demonstrate that Epic delivers up to 8x improvements in TTFT and 7x throughput over existing systems, with negligible or no accuracy loss. By addressing the limitations of traditional caching approaches, Epic enables more scalable and efficient LLM inference.


[357] 2410.15334

Modality-Fair Preference Optimization for Trustworthy MLLM Alignment

Direct Preference Optimization (DPO) is effective for aligning large language models (LLMs), but when applied to multimodal models (MLLMs), it often favors text over image information, leading to unreliable outputs and visual hallucinations. To address this, we propose Modality-Fair Preference Optimization (MFPO) to balance text and image preferences. First, we found that the lack of image-related rewards in preference data biases optimization toward text, so we created automated, fine-grained image preference data to correct this. Then, we designed a learning objective to ensure the model captures both text and image preferences while maintaining high-quality outputs. Finally, we use a multi-stage alignment approach to stabilize training and improve learning across both modalities. Extensive experiments demonstrate that MFPO significantly enhances MLLM trustworthiness. On models like LLaVA-v1.5 (7B, 13B), our approach reduces hallucinations substantially. On the 7B model, MFPO outperforms GPT-4V and achieves a nearly 40\% improvement over previous methods on Object HalBench, as well as achieving state-of-the-art performance on both Object HalBench and AMBER when combined with the latest LLaVA-v1.6. Code will be released.


[358] 2410.15335

A Distributed Primal-Dual Method for Constrained Multi-agent Reinforcement Learning with General Parameterization

This paper proposes a novel distributed approach for solving a cooperative Constrained Multi-agent Reinforcement Learning (CMARL) problem, where agents seek to minimize a global objective function subject to shared constraints. Unlike existing methods that rely on centralized training or coordination, our approach enables fully decentralized online learning, with each agent maintaining local estimates of both primal and dual variables. Specifically, we develop a distributed primal-dual algorithm based on actor-critic methods, leveraging local information to estimate Lagrangian multipliers. We establish consensus among the Lagrangian multipliers across agents and prove the convergence of our algorithm to an equilibrium point, analyzing the sub-optimality of this equilibrium compared to the exact solution of the unparameterized problem. Furthermore, we introduce a constrained cooperative Cournot game with stochastic dynamics as a test environment to evaluate the algorithm's performance in complex, real-world scenarios.


[359] 2410.15341

IKDP: Inverse Kinematics through Diffusion Process

It is a common problem in robotics to specify the position of each joint of the robot so that the endpoint reaches a certain target in space. This can be solved in two ways, forward kinematics method and inverse kinematics method. However, inverse kinematics cannot be solved by an algorithm. The common method is the Jacobian inverse technique, and some people have tried to find the answer by machine learning. In this project, we will show how to use the Conditional Denoising Diffusion Probabilistic Model to integrate the solution of calculating IK. Index Terms: Inverse kinematics, Denoising Diffusion Probabilistic Model, self Attention, Transformer


[360] 2410.15342

ConSinger: Efficient High-Fidelity Singing Voice Generation with Minimal Steps

Singing voice synthesis (SVS) system is expected to generate high-fidelity singing voice from given music scores (lyrics, duration and pitch). Recently, diffusion models have performed well in this field. However, sacrificing inference speed to exchange with high-quality sample generation limits its application scenarios. In order to obtain high quality synthetic singing voice more efficiently, we propose a singing voice synthesis method based on the consistency model, ConSinger, to achieve high-fidelity singing voice synthesis with minimal steps. The model is trained by applying consistency constraint and the generation quality is greatly improved at the expense of a small amount of inference speed. Our experiments show that ConSinger is highly competitive with the baseline model in terms of generation speed and quality. Audio samples are available at https://keylxiao.github.io/consinger.


[361] 2410.15343

POSE: Pose estimation Of virtual Sync Exhibit system

This work is a portable MetaVerse implementation, and we use 3D pose estimation with AI to make virtual avatars do synchronized actions and interact with the environment. The motivation is that we find it inconvenient to use joysticks and sensors when playing with fitness rings. In order to replace joysticks and reduce costs, we developed a platform that can control virtual avatars through pose estimation to identify the movements of real people, and we also implemented a multi-process to achieve modularization and reduce the overall latency.


[362] 2410.15344

LLC Intra-set Write Balancing

The increasing use of Non-Volatile Memory (NVM) in computer architecture has brought about new challenges, one of which is the write endurance problem. Frequent writes to a particular cache cell in NVM can lead to degradation of the memory cell and reduce its lifespan. To solve this problem, we propose a sample-based blocking technique for the Last Level Cache (LLC). Our approach involves defining a threshold value and sampling a subset of cache sets. If the number of writes to a way in a sampled set exceeds the threshold, the way is blocked, and writes are redirected to other ways. We also maintain a history structure to record the number of writes in a set and a PC-Table to use for blocking in unsampled sets. Based on blocking on sampled sets, variance of values stored in history is used to determine whether blocking had a positive impact or not, and on this basis, value corresponding to instruction pointer is incremented or decremented. This value is later used for blocking in unsampled sets. Our results show that our approach significantly balances write traffic to the cache and improves the overall lifespan of the memory cells while having better performance to the base-line system. Our approach can also be applied to other cache hierarchies and NVM technologies to mitigate the problem of write endurance.


[363] 2410.15346

YOLO-RD: Introducing Relevant and Compact Explicit Knowledge to YOLO by Retriever-Dictionary

Identifying and localizing objects within images is a fundamental challenge, and numerous efforts have been made to enhance model accuracy by experimenting with diverse architectures and refining training strategies. Nevertheless, a prevalent limitation in existing models is overemphasizing the current input while ignoring the information from the entire dataset. We introduce an innovative {\em \textbf{R}etriever}-{\em\textbf{D}ictionary} (RD) module to address this issue. This architecture enables YOLO-based models to efficiently retrieve features from a Dictionary that contains the insight of the dataset, which is built by the knowledge from Visual Models (VM), Large Language Models (LLM), or Visual Language Models (VLM). The flexible RD enables the model to incorporate such explicit knowledge that enhances the ability to benefit multiple tasks, specifically, segmentation, detection, and classification, from pixel to image level. The experiments show that using the RD significantly improves model performance, achieving more than a 3\% increase in mean Average Precision for object detection with less than a 1\% increase in model parameters. Beyond 1-stage object detection models, the RD module improves the effectiveness of 2-stage models and DETR-based architectures, such as Faster R-CNN and Deformable DETR


[364] 2410.15349

Estimation of spectral gaps for sparse symmetric matrices

In this paper we propose and analyze an algorithm for identifying spectral gaps of a real symmetric matrix $A$ by simultaneously approximating the traces of spectral projectors associated with multiple different spectral slices. Our method utilizes Hutchinson's stochastic trace estimator together with the Lanczos algorithm to approximate quadratic forms involving spectral projectors. Instead of focusing on determining the gap between two particular consecutive eigenvalues of $A$, we aim to find all gaps that are wider than a specified threshold. By examining the problem from this perspective, and thoroughly analyzing both the Hutchinson and the Lanczos components of the algorithm, we obtain error bounds that allow us to determine the numbers of Hutchinson's sample vectors and Lanczos iterations needed to ensure the detection of all gaps above the target width with high probability. In particular, we conclude that the most efficient strategy is to always use a single random sample vector for Hutchinson's estimator and concentrate all computational effort in the Lanczos algorithm. Our numerical experiments demonstrate the efficiency and reliability of this approach.


[365] 2410.15352

CompAct: Compressed Activations for Memory-Efficient LLM Training

We introduce CompAct, a technique that reduces peak memory utilization on GPU by 25-30% for pretraining and 50% for fine-tuning of LLMs. Peak device memory is a major limiting factor in training LLMs, with various recent works aiming to reduce model memory. However most works don't target the largest component of allocated memory during training: the model's compute graph, which is stored for the backward pass. By storing low-rank, compressed activations to be used in the backward pass we greatly reduce the required memory, unlike previous methods which only reduce optimizer overheads or the number of trained parameters. Our compression uses random projection matrices, thus avoiding additional memory overheads. Comparisons with previous techniques for either pretraining or fine-tuning show that CompAct substantially improves existing compute-performance tradeoffs. We expect CompAct's savings to scale even higher for larger models.


[366] 2410.15355

LAC: Graph Contrastive Learning with Learnable Augmentation in Continuous Space

Graph Contrastive Learning frameworks have demonstrated success in generating high-quality node representations. The existing research on efficient data augmentation methods and ideal pretext tasks for graph contrastive learning remains limited, resulting in suboptimal node representation in the unsupervised setting. In this paper, we introduce LAC, a graph contrastive learning framework with learnable data augmentation in an orthogonal continuous space. To capture the representative information in the graph data during augmentation, we introduce a continuous view augmenter, that applies both a masked topology augmentation module and a cross-channel feature augmentation module to adaptively augment the topological information and the feature information within an orthogonal continuous space, respectively. The orthogonal nature of continuous space ensures that the augmentation process avoids dimension collapse. To enhance the effectiveness of pretext tasks, we propose an information-theoretic principle named InfoBal and introduce corresponding pretext tasks. These tasks enable the continuous view augmenter to maintain consistency in the representative information across views while maximizing diversity between views, and allow the encoder to fully utilize the representative information in the unsupervised setting. Our experimental results show that LAC significantly outperforms the state-of-the-art frameworks.


[367] 2410.15357

Wireless Link Quality Estimation Using LSTM Model

In recent years, various services have been provided through high-speed and high-capacity wireless networks on mobile communication devices, necessitating stable communication regardless of indoor or outdoor environments. To achieve stable communication, it is essential to implement proactive measures, such as switching to an alternative path and ensuring data buffering before the communication quality becomes unstable. The technology of Wireless Link Quality Estimation (WLQE), which predicts the communication quality of wireless networks in advance, plays a crucial role in this context. In this paper, we propose a novel WLQE model for estimating the communication quality of wireless networks by leveraging sequential information. Our proposed method is based on Long Short-Term Memory (LSTM), enabling highly accurate estimation by considering the sequential information of link quality. We conducted a comparative evaluation with the conventional model, stacked autoencoder-based link quality estimator (LQE-SAE), using a dataset recorded in real-world environmental conditions. Our LSTM-based LQE model demonstrates its superiority, achieving a 4.0% higher accuracy and a 4.6% higher macro-F1 score than the LQE-SAE model in the evaluation.


[368] 2410.15359

A Survey of Hallucination in Large Visual Language Models

The Large Visual Language Models (LVLMs) enhances user interaction and enriches user experience by integrating visual modality on the basis of the Large Language Models (LLMs). It has demonstrated their powerful information processing and generation capabilities. However, the existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields. Although lots of work has been devoted to the issue of hallucination mitigation and correction, there are few reviews to summary this issue. In this survey, we first introduce the background of LVLMs and hallucinations. Then, the structure of LVLMs and main causes of hallucination generation are introduced. Further, we summary recent works on hallucination correction and mitigation. In addition, the available hallucination evaluation benchmarks for LVLMs are presented from judgmental and generative perspectives. Finally, we suggest some future research directions to enhance the dependability and utility of LVLMs.


[369] 2410.15362

Faster-GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models

Aligned Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, LLMs remain susceptible to jailbreak adversarial attacks, where adversaries manipulate prompts to elicit malicious responses that aligned LLMs should have avoided. Identifying these vulnerabilities is crucial for understanding the inherent weaknesses of LLMs and preventing their potential misuse. One pioneering work in jailbreaking is the GCG attack, a discrete token optimization algorithm that seeks to find a suffix capable of jailbreaking aligned LLMs. Despite the success of GCG, we find it suboptimal, requiring significantly large computational costs, and the achieved jailbreaking performance is limited. In this work, we propose Faster-GCG, an efficient adversarial jailbreak method by delving deep into the design of GCG. Experiments demonstrate that Faster-GCG can surpass the original GCG with only 1/10 of the computational cost, achieving significantly higher attack success rates on various open-source aligned LLMs. In addition, We demonstrate that Faster-GCG exhibits improved attack transferability when testing on closed-sourced LLMs such as ChatGPT.


[370] 2410.15364

Scene Graph Generation with Role-Playing Large Language Models

Current approaches for open-vocabulary scene graph generation (OVSGG) use vision-language models such as CLIP and follow a standard zero-shot pipeline -- computing similarity between the query image and the text embeddings for each category (i.e., text classifiers). In this work, we argue that the text classifiers adopted by existing OVSGG methods, i.e., category-/part-level prompts, are scene-agnostic as they remain unchanged across contexts. Using such fixed text classifiers not only struggles to model visual relations with high variance, but also falls short in adapting to distinct contexts. To plug these intrinsic shortcomings, we devise SDSGG, a scene-specific description based OVSGG framework where the weights of text classifiers are adaptively adjusted according to the visual content. In particular, to generate comprehensive and diverse descriptions oriented to the scene, an LLM is asked to play different roles (e.g., biologist and engineer) to analyze and discuss the descriptive features of a given scene from different views. Unlike previous efforts simply treating the generated descriptions as mutually equivalent text classifiers, SDSGG is equipped with an advanced renormalization mechanism to adjust the influence of each text classifier based on its relevance to the presented scene (this is what the term "specific" means). Furthermore, to capture the complicated interplay between subjects and objects, we propose a new lightweight module called mutual visual adapter. It refines CLIP's ability to recognize relations by learning an interaction-aware semantic space. Extensive experiments on prevalent benchmarks show that SDSGG outperforms top-leading methods by a clear margin.


[371] 2410.15365

BERTtime Stories: Investigating the Role of Synthetic Story Data in Language pre-training

We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using TinyStories: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of TinyStories, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train LTG-BERT encoder models on a combined dataset of: a subset of TinyStories, story completions generated by GPT-Neo, and a subset of the BabyLM dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub.


[372] 2410.15369

Ethical AI in Retail: Consumer Privacy and Fairness

The adoption of artificial intelligence (AI) in retail has significantly transformed the industry, enabling more personalized services and efficient operations. However, the rapid implementation of AI technologies raises ethical concerns, particularly regarding consumer privacy and fairness. This study aims to analyze the ethical challenges of AI applications in retail, explore ways retailers can implement AI technologies ethically while remaining competitive, and provide recommendations on ethical AI practices. A descriptive survey design was used to collect data from 300 respondents across major e-commerce platforms. Data were analyzed using descriptive statistics, including percentages and mean scores. Findings shows a high level of concerns among consumers regarding the amount of personal data collected by AI-driven retail applications, with many expressing a lack of trust in how their data is managed. Also, fairness is another major issue, as a majority believe AI systems do not treat consumers equally, raising concerns about algorithmic bias. It was also found that AI can enhance business competitiveness and efficiency without compromising ethical principles, such as data privacy and fairness. Data privacy and transparency were highlighted as critical areas where retailers need to focus their efforts, indicating a strong demand for stricter data protection protocols and ongoing scrutiny of AI systems. The study concludes that retailers must prioritize transparency, fairness, and data protection when deploying AI systems. The study recommends ensuring transparency in AI processes, conducting regular audits to address biases, incorporating consumer feedback in AI development, and emphasizing consumer data privacy.


[373] 2410.15371

FrameBridge: Improving Image-to-Video Generation with Bridge Models

Image-to-video (I2V) generation is gaining increasing attention with its wide application in video synthesis. Recently, diffusion-based I2V models have achieved remarkable progress given their novel design on network architecture, cascaded framework, and motion representation. However, restricted by their noise-to-data generation process, diffusion-based methods inevitably suffer the difficulty to generate video samples with both appearance consistency and temporal coherence from an uninformative Gaussian noise, which may limit their synthesis quality. In this work, we present FrameBridge, taking the given static image as the prior of video target and establishing a tractable bridge model between them. By formulating I2V synthesis as a frames-to-frames generation task and modelling it with a data-to-data process, we fully exploit the information in input image and facilitate the generative model to learn the image animation process. In two popular settings of training I2V models, namely fine-tuning a pre-trained text-to-video (T2V) model or training from scratch, we further propose two techniques, SNR-Aligned Fine-tuning (SAF) and neural prior, which improve the fine-tuning efficiency of diffusion-based T2V models to FrameBridge and the synthesis quality of bridge-based I2V models respectively. Experiments conducted on WebVid-2M and UCF-101 demonstrate that: (1) our FrameBridge achieves superior I2V quality in comparison with the diffusion counterpart (zero-shot FVD 83 vs. 176 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101); (2) our proposed SAF and neural prior effectively enhance the ability of bridge-based I2V models in the scenarios of fine-tuning and training from scratch. Demo samples can be visited at: https://framebridge-demo.github.io/.


[374] 2410.15372

Hybrid Memory Replay: Blending Real and Distilled Data for Class Incremental Learning

Incremental learning (IL) aims to acquire new knowledge from current tasks while retaining knowledge learned from previous tasks. Replay-based IL methods store a set of exemplars from previous tasks in a buffer and replay them when learning new tasks. However, there is usually a size-limited buffer that cannot store adequate real exemplars to retain the knowledge of previous tasks. In contrast, data distillation (DD) can reduce the exemplar buffer's size, by condensing a large real dataset into a much smaller set of more information-compact synthetic exemplars. Nevertheless, DD's performance gain on IL quickly vanishes as the number of synthetic exemplars grows. To overcome the weaknesses of real-data and synthetic-data buffers, we instead optimize a hybrid memory including both types of data. Specifically, we propose an innovative modification to DD that distills synthetic data from a sliding window of checkpoints in history (rather than checkpoints on multiple training trajectories). Conditioned on the synthetic data, we then optimize the selection of real exemplars to provide complementary improvement to the DD objective. The optimized hybrid memory combines the strengths of synthetic and real exemplars, effectively mitigating catastrophic forgetting in Class IL (CIL) when the buffer size for exemplars is limited. Notably, our method can be seamlessly integrated into most existing replay-based CIL models. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing replay-based baselines.


[375] 2410.15373

DynaVINS++: Robust Visual-Inertial State Estimator in Dynamic Environments by Adaptive Truncated Least Squares and Stable State Recovery

Despite extensive research in robust visual-inertial navigation systems~(VINS) in dynamic environments, many approaches remain vulnerable to objects that suddenly start moving, which are referred to as \textit{abruptly dynamic objects}. In addition, most approaches have considered the effect of dynamic objects only at the feature association level. In this study, we observed that the state estimation diverges when errors from false correspondences owing to moving objects incorrectly propagate into the IMU bias terms. To overcome these problems, we propose a robust VINS framework called \mbox{\textit{DynaVINS++}}, which employs a) adaptive truncated least square method that adaptively adjusts the truncation range using both feature association and IMU preintegration to effectively minimize the effect of the dynamic objects while reducing the computational cost, and b)~stable state recovery with bias consistency check to correct misestimated IMU bias and to prevent the divergence caused by abruptly dynamic objects. As verified in both public and real-world datasets, our approach shows promising performance in dynamic environments, including scenes with abruptly dynamic objects.


[376] 2410.15374

Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations

In today's world, the significance of explainable AI (XAI) is growing in robotics and point cloud applications, as the lack of transparency in decision-making can pose considerable safety risks, particularly in autonomous systems. As these technologies are integrated into real-world environments, ensuring that model decisions are interpretable and trustworthy is vital for operational reliability and safety assurance. This study explores the implementation of SMILE, a novel explainability method originally designed for deep neural networks, on point cloud-based models. SMILE builds on LIME by incorporating Empirical Cumulative Distribution Function (ECDF) statistical distances, offering enhanced robustness and interpretability, particularly when the Anderson-Darling distance is used. The approach demonstrates superior performance in terms of fidelity loss, R2 scores, and robustness across various kernel widths, perturbation numbers, and clustering configurations. Moreover, this study introduces a stability analysis for point cloud data using the Jaccard index, establishing a new benchmark and baseline for model stability in this field. The study further identifies dataset biases in the classification of the 'person' category, emphasizing the necessity for more comprehensive datasets in safety-critical applications like autonomous driving and robotics. The results underscore the potential of advanced explainability models and highlight areas for future research, including the application of alternative surrogate models and explainability techniques in point cloud data.


[377] 2410.15376

ActiveNeuS: Neural Signed Distance Fields for Active Stereo

3D-shape reconstruction in extreme environments, such as low illumination or scattering condition, has been an open problem and intensively researched. Active stereo is one of potential solution for such environments for its robustness and high accuracy. However, active stereo systems usually consist of specialized system configurations with complicated algorithms, which narrow their application. In this paper, we propose Neural Signed Distance Field for active stereo systems to enable implicit correspondence search and triangulation in generalized Structured Light. With our technique, textureless or equivalent surfaces by low light condition are successfully reconstructed even with a small number of captured images. Experiments were conducted to confirm that the proposed method could achieve state-of-the-art reconstruction quality under such severe condition. We also demonstrated that the proposed method worked in an underwater scenario.


[378] 2410.15378

Neural Active Structure-from-Motion in Dark and Textureless Environment

Active 3D measurement, especially structured light (SL) has been widely used in various fields for its robustness against textureless or equivalent surfaces by low light illumination. In addition, reconstruction of large scenes by moving the SL system has become popular, however, there have been few practical techniques to obtain the system's precise pose information only from images, since most conventional techniques are based on image features, which cannot be retrieved under textureless environments. In this paper, we propose a simultaneous shape reconstruction and pose estimation technique for SL systems from an image set where sparsely projected patterns onto the scene are observed (i.e. no scene texture information), which we call Active SfM. To achieve this, we propose a full optimization framework of the volumetric shape that employs neural signed distance fields (Neural-SDF) for SL with the goal of not only reconstructing the scene shape but also estimating the poses for each motion of the system. Experimental results show that the proposed method is able to achieve accurate shape reconstruction as well as pose estimation from images where only projected patterns are observed.


[379] 2410.15379

Synthetic Data Generation for Residential Load Patterns via Recurrent GAN and Ensemble Method

Generating synthetic residential load data that can accurately represent actual electricity consumption patterns is crucial for effective power system planning and operation. The necessity for synthetic data is underscored by the inherent challenges associated with using real-world load data, such as privacy considerations and logistical complexities in large-scale data collection. In this work, we tackle the above-mentioned challenges by developing the Ensemble Recurrent Generative Adversarial Network (ERGAN) framework to generate high-fidelity synthetic residential load data. ERGAN leverages an ensemble of recurrent Generative Adversarial Networks, augmented by a loss function that concurrently takes into account adversarial loss and differences between statistical properties. Our developed ERGAN can capture diverse load patterns across various households, thereby enhancing the realism and diversity of the synthetic data generated. Comprehensive evaluations demonstrate that our method consistently outperforms established benchmarks in the synthetic generation of residential load data across various performance metrics including diversity, similarity, and statistical measures. The findings confirm the potential of ERGAN as an effective tool for energy applications requiring synthetic yet realistic load data. We also make the generated synthetic residential load patterns publicly available.


[380] 2410.15385

LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration

Prompt-based all-in-one image restoration (IR) frameworks have achieved remarkable performance by incorporating degradation-specific information into prompt modules. Nevertheless, handling the complex and diverse degradations encountered in real-world scenarios remains a significant challenge. To address this challenge, we propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration. Specifically, LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning. In the pre-training stage, we enhance the pre-trained CLIP model by introducing a simple mechanism that scales it to higher resolutions, allowing us to extract robust degradation representations that adaptively guide the IR network. In the fine-tuning stage, we refine the pre-trained IR network using low-rank adaptation (LoRA). Built upon a Mixture-of-Experts (MoE) architecture, LoRA-IR dynamically integrates multiple low-rank restoration experts through a degradation-guided router. This dynamic integration mechanism significantly enhances our model's adaptability to diverse and unknown degradations in complex real-world scenarios. Extensive experiments demonstrate that LoRA-IR achieves state-of-the-art performance across 14 image restoration tasks and 29 benchmarks. Code and pre-trained models will be available at: https://github.com/shallowdream204/LoRA-IR.


[381] 2410.15386

Formalization of Differential Privacy in Isabelle/HOL

Differential privacy is a statistical definition of privacy that has attracted the interest of both academia and industry. Its formulations are easy to understand, but the differential privacy of databases is complicated to determine. One of the reasons for this is that small changes in database programs can break their differential privacy. Therefore, formal verification of differential privacy has been studied for over a decade. In this paper, we propose an Isabelle/HOL library for formalizing differential privacy in a general setting. To our knowledge, it is the first formalization of differential privacy that supports continuous probability distributions. First, we formalize the standard definition of differential privacy and its basic properties. Second, we formalize the Laplace mechanism and its differential privacy. Finally, we formalize the differential privacy of the report noisy max mechanism.


[382] 2410.15387

Deep Class-guided Hashing for Multi-label Cross-modal Retrieval

Deep hashing, due to its low cost and efficient retrieval advantages, is widely valued in cross-modal retrieval. However, existing cross-modal hashing methods either explore the relationships between data points, which inevitably leads to intra-class dispersion, or explore the relationships between data points and categories while ignoring the preservation of inter-class structural relationships, resulting in the generation of suboptimal hash codes. How to maintain both intra-class aggregation and inter-class structural relationships, In response to this issue, this paper proposes a DCGH method. Specifically, we use proxy loss as the mainstay to maintain intra-class aggregation of data, combined with pairwise loss to maintain inter-class structural relationships, and on this basis, further propose a variance constraint to address the semantic bias issue caused by the combination. A large number of comparative experiments on three benchmark datasets show that the DCGH method has comparable or even better performance compared to existing cross-modal retrieval methods. The code for the implementation of our DCGH framework is available at https://github.com/donnotnormal/DCGH.


[383] 2410.15391

Layout-your-3D: Controllable and Precise 3D Generation with 2D Blueprint

We present Layout-Your-3D, a framework that allows controllable and compositional 3D generation from text prompts. Existing text-to-3D methods often struggle to generate assets with plausible object interactions or require tedious optimization processes. To address these challenges, our approach leverages 2D layouts as a blueprint to facilitate precise and plausible control over 3D generation. Starting with a 2D layout provided by a user or generated from a text description, we first create a coarse 3D scene using a carefully designed initialization process based on efficient reconstruction models. To enforce coherent global 3D layouts and enhance the quality of instance appearances, we propose a collision-aware layout optimization process followed by instance-wise refinement. Experimental results demonstrate that Layout-Your-3D yields more reasonable and visually appealing compositional 3D assets while significantly reducing the time required for each prompt. Additionally, Layout-Your-3D can be easily applicable to downstream tasks, such as 3D editing and object insertion. Our project page is available at:https://colezwhy.github.io/layoutyour3d/


[384] 2410.15392

EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting

Scene reconstruction from casually captured videos has wide applications in real-world scenarios. With recent advancements in differentiable rendering techniques, several methods have attempted to simultaneously optimize scene representations (NeRF or 3DGS) and camera poses. Despite recent progress, existing methods relying on traditional camera input tend to fail in high-speed (or equivalently low-frame-rate) scenarios. Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution, providing valuable scene and motion information in blind inter-frame intervals. In this paper, we introduce the event camera to aid scene construction from a casually captured video for the first time, and propose Event-Aided Free-Trajectory 3DGS, called EF-3DGS, which seamlessly integrates the advantages of event cameras into 3DGS through three key components. First, we leverage the Event Generation Model (EGM) to fuse events and frames, supervising the rendered views observed by the event stream. Second, we adopt the Contrast Maximization (CMax) framework in a piece-wise manner to extract motion information by maximizing the contrast of the Image of Warped Events (IWE), thereby calibrating the estimated poses. Besides, based on the Linear Event Generation Model (LEGM), the brightness information encoded in the IWE is also utilized to constrain the 3DGS in the gradient domain. Third, to mitigate the absence of color information of events, we introduce photometric bundle adjustment (PBA) to ensure view consistency across events and frames.We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS. Our project page is https://lbh666.github.io/ef-3dgs/.


[385] 2410.15393

CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges

The use of large language models (LLMs) as automated evaluation tools to assess the quality of generated natural language, known as LLMs-as-Judges, has demonstrated promising capabilities and is rapidly gaining widespread attention. However, when applied to pairwise comparisons of candidate responses, LLM-based evaluators often exhibit selection bias. Specifically, their judgments may become inconsistent when the option positions or ID tokens are swapped, compromising the effectiveness and fairness of the evaluation result. To address this challenge, we introduce CalibraEval, a novel label-free method for mitigating selection bias during inference. Specifically, CalibraEval reformulates debiasing as an optimization task aimed at adjusting observed prediction distributions to align with unbiased prediction distributions. To solve this optimization problem, we propose a non-parametric order-preserving algorithm (NOA). This algorithm leverages the partial order relationships between model prediction distributions, thereby eliminating the need for explicit labels and precise mathematical function modeling.Empirical evaluations of LLMs in multiple representative benchmarks demonstrate that CalibraEval effectively mitigates selection bias and improves performance compared to existing debiasing methods. This work marks a step toward building more robust and unbiased automated evaluation frameworks, paving the way for improved reliability in AI-driven assessments


[386] 2410.15394

A Semi-decentralized and Variational-Equilibrium-Based Trajectory Planner for Connected and Autonomous Vehicles

This paper designs a novel trajectory planning approach to resolve the computational efficiency and safety problems in uncoordinated methods by exploiting vehicle-to-everything (V2X) technology. The trajectory planning for connected and autonomous vehicles (CAVs) is formulated as a game with coupled safety constraints. We then define interaction-fair trajectories and prove that they correspond to the variational equilibrium (VE) of this game. We propose a semi-decentralized planner for the vehicles to seek VE-based fair trajectories, which can significantly improve computational efficiency through parallel computing among CAVs and enhance the safety of planned trajectories by ensuring equilibrium concordance among CAVs. Finally, experimental results show the advantages of the approach, including fast computation speed, high scalability, equilibrium concordance, and safety.


[387] 2410.15396

The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks

As large language models (LLMs) continue to evolve, their potential use in automating cyberattacks becomes increasingly likely. With capabilities such as reconnaissance, exploitation, and command execution, LLMs could soon become integral to autonomous cyber agents, capable of launching highly sophisticated attacks. In this paper, we introduce novel defense strategies that exploit the inherent vulnerabilities of attacking LLMs. By targeting weaknesses such as biases, trust in input, memory limitations, and their tunnel-vision approach to problem-solving, we develop techniques to mislead, delay, or neutralize these autonomous agents. We evaluate our defenses under black-box conditions, starting with single prompt-response scenarios and progressing to real-world tests using custom-built CTF machines. Our results show defense success rates of up to 90\%, demonstrating the effectiveness of turning LLM vulnerabilities into defensive strategies against LLM-driven cyber threats.


[388] 2410.15397

IPO: Interpretable Prompt Optimization for Vision-Language Models

Pre-trained vision-language models like CLIP have remarkably adapted to various downstream tasks. Nonetheless, their performance heavily depends on the specificity of the input text prompts, which requires skillful prompt template engineering. Instead, current approaches to prompt optimization learn the prompts through gradient descent, where the prompts are treated as adjustable parameters. However, these methods tend to lead to overfitting of the base classes seen during training and produce prompts that are no longer understandable by humans. This paper introduces a simple but interpretable prompt optimizer (IPO), that utilizes large language models (LLMs) to generate textual prompts dynamically. We introduce a Prompt Optimization Prompt that not only guides LLMs in creating effective prompts but also stores past prompts with their performance metrics, providing rich in-context information. Additionally, we incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions, which enhance the interaction between textual and visual modalities. This allows for thae creation of dataset-specific prompts that improve generalization performance, while maintaining human comprehension. Extensive testing across 11 datasets reveals that IPO not only improves the accuracy of existing gradient-descent-based prompt learning methods but also considerably enhances the interpretability of the generated prompts. By leveraging the strengths of LLMs, our approach ensures that the prompts remain human-understandable, thereby facilitating better transparency and oversight for vision-language models.


[389] 2410.15398

Evaluation of Human-Robot Interfaces based on 2D/3D Visual and Haptic Feedback for Aerial Manipulation

Most telemanipulation systems for aerial robots provide the operator with only 2D screen visual information. The lack of richer information about the robot's status and environment can limit human awareness and, in turn, task performance. While the pilot's experience can often compensate for this reduced flow of information, providing richer feedback is expected to reduce the cognitive workload and offer a more intuitive experience overall. This work aims to understand the significance of providing additional pieces of information during aerial telemanipulation, namely (i) 3D immersive visual feedback about the robot's surroundings through mixed reality (MR) and (ii) 3D haptic feedback about the robot interaction with the environment. To do so, we developed a human-robot interface able to provide this information. First, we demonstrate its potential in a real-world manipulation task requiring sub-centimeter-level accuracy. Then, we evaluate the individual effect of MR vision and haptic feedback on both dexterity and workload through a human subjects study involving a virtual block transportation task. Results show that both 3D MR vision and haptic feedback improve the operator's dexterity in the considered teleoperated aerial interaction tasks. Nevertheless, pilot experience remains the most significant factor.


[390] 2410.15399

Reinforcement Learning-Based REST API Testing with Multi-Coverage

REST (Representational State Transfer) APIs have become integral for data communication and exchange due to their simplicity, scalability, and compatibility with web standards. However, ensuring REST APIs' reliability through rigorous testing poses significant challenges, given the complexities of operations, parameters, inputs, dependencies, and call sequences. In this paper, we introduce MUCOREST, a novel Reinforcement Learning (RL)-based API testing approach that leverages Q-learning to maximize code coverage and output coverage, thereby improving bug discovery. By focusing on these proximate objectives rather than the abstract goal of maximizing failures, MUCOREST effectively discovers critical code areas and diverse API behaviors. The experimental results on a benchmark of 10 services show that MUCOREST significantly outperforms state-of-the-art API testing approaches by 11.6-261.1% in the number of discovered API bugs. MUCOREST can generate much fewer API calls to discover the same number of bugs compared to the other approaches. Furthermore, 12.17%-64.09% of the bugs discovered by the other techniques can also be found by MUCOREST.


[391] 2410.15403

MMCS: A Multimodal Medical Diagnosis System Integrating Image Analysis and Knowledge-based Departmental Consultation

We present MMCS, a system capable of recognizing medical images and patient facial details, and providing professional medical diagnoses. The system consists of two core components: The first component is the analysis of medical images and videos. We trained a specialized multimodal medical model capable of interpreting medical images and accurately analyzing patients' facial emotions and facial paralysis conditions. The model achieved an accuracy of 72.59% on the FER2013 facial emotion recognition dataset, with a 91.1% accuracy in recognizing the happy emotion. In facial paralysis recognition, the model reached an accuracy of 92%, which is 30% higher than that of GPT-4o. Based on this model, we developed a parser for analyzing facial movement videos of patients with facial paralysis, achieving precise grading of the paralysis severity. In tests on 30 videos of facial paralysis patients, the system demonstrated a grading accuracy of 83.3%.The second component is the generation of professional medical responses. We employed a large language model, integrated with a medical knowledge base, to generate professional diagnoses based on the analysis of medical images or videos. The core innovation lies in our development of a department-specific knowledge base routing management mechanism, in which the large language model categorizes data by medical departments and, during the retrieval process, determines the appropriate knowledge base to query. This significantly improves retrieval accuracy in the RAG (retrieval-augmented generation) process. This mechanism led to an average increase of 4 percentage points in accuracy for various large language models on the MedQA dataset.Our code is open-sourced and available at: https://github.com/renllll/MMCS.


[392] 2410.15405

XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems

The rapid advancement of autonomous vehicle (AV) technology has introduced significant challenges in ensuring transportation security and reliability. Traditional AI models for anomaly detection in AVs are often opaque, posing difficulties in understanding and trusting their decision making processes. This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods: SHAP, LIME, and DALEX with various AI models to enhance both anomaly detection and interpretability. By fusing top features identified by these XAI methods across six diverse AI models (Decision Trees, Random Forests, Deep Neural Networks, K Nearest Neighbors, Support Vector Machines, and AdaBoost), the framework creates a robust and comprehensive set of features critical for detecting anomalies. These feature sets, produced by our feature ensemble framework, are evaluated using independent classifiers (CatBoost, Logistic Regression, and LightGBM) to ensure unbiased performance. We evaluated our feature ensemble approach on two popular autonomous driving datasets (VeReMi and Sensor) datasets. Our feature ensemble technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.


[393] 2410.15409

PEAS: A Strategy for Crafting Transferable Adversarial Examples

Black box attacks, where adversaries have limited knowledge of the target model, pose a significant threat to machine learning systems. Adversarial examples generated with a substitute model often suffer from limited transferability to the target model. While recent work explores ranking perturbations for improved success rates, these methods see only modest gains. We propose a novel strategy called PEAS that can boost the transferability of existing black box attacks. PEAS leverages the insight that samples which are perceptually equivalent exhibit significant variability in their adversarial transferability. Our approach first generates a set of images from an initial sample via subtle augmentations. We then evaluate the transferability of adversarial perturbations on these images using a set of substitute models. Finally, the most transferable adversarial example is selected and used for the attack. Our experiments show that PEAS can double the performance of existing attacks, achieving a 2.5x improvement in attack success rates on average over current ranking methods. We thoroughly evaluate PEAS on ImageNet and CIFAR-10, analyze hyperparameter impacts, and provide an ablation study to isolate each component's importance.


[394] 2410.15411

A Simplified Parameterized Algorithm for Directed Feedback Vertex Set

The Directed Feedback Vertex Set problem (DFVS) asks whether it is possible to remove at most $k$ vertices from a directed graph to make it acyclic. Whether DFVS is fixed-parameter tractable was a long-standing open problem in parameterized complexity until it was solved by Chen et al. in 2008 (STOC 2008). Now the running-time bound of this problem is improved to $\mathcal O(k!4^kk^5(n+m))$ (Lokshtanov et al, SODA 2018), where $n$ and $m$ are the numbers of vertices and arcs in the graph. In this paper, we simplify one crucial step in all previous parameterized algorithms for DFVS, which is to solve the compression version of the problem, and refine the running-time bound for DFVS to $\mathcal O(k!2^{o(k)}(n+m))$.


[395] 2410.15413

A Comprehensive Evaluation of Cognitive Biases in LLMs

We present a large-scale evaluation of 30 cognitive biases in 20 state-of-the-art large language models (LLMs) under various decision-making scenarios. Our contributions include a novel general-purpose test framework for reliable and large-scale generation of tests for LLMs, a benchmark dataset with 30,000 tests for detecting cognitive biases in LLMs, and a comprehensive assessment of the biases found in the 20 evaluated LLMs. Our work confirms and broadens previous findings suggesting the presence of cognitive biases in LLMs by reporting evidence of all 30 tested biases in at least some of the 20 LLMs. We publish our framework code to encourage future research on biases in LLMs: https://github.com/simonmalberg/cognitive-biases-in-llms


[396] 2410.15414

An Agile Large-Workspace Teleoperation Interface Based on Human Arm Motion and Force Estimation

Teleoperation can transfer human perception and cognition to a slave robot to cope with some complex tasks, in which the agility and flexibility of the interface play an important role in mapping human intention to the robot. In this paper, we developed an agile large-workspace teleoperation interface by estimating human arm behavior. Using the wearable sensor, namely the inertial measurement unit and surface electromyography armband, we can capture the human arm motion and force information, thereby intuitively controlling the manipulation of the robot. The control principle of our wearable interface includes two parts: (1) the arm incremental kinematics and (2) the grasping recognition. Moreover, we developed a teleoperation framework with a time synchronization mechanism for the real-time application. We conducted experimental comparisons with a versatile haptic device (Omega 7) to verify the effectiveness of our interface and framework. Seven subjects are invited to complete three different tasks: free motion, handover, and pick-and-place action (each task ten times), and the total number of tests is 420. Objectively, we used the task completion time and success rate to compare the performance of the two interfaces quantitatively. In addition, to quantify the operator experience, we used the NASA Task Load Index to assess their subjective feelings. The results showed that the proposed interface achieved a competitive performance with a better operating experience.


[397] 2410.15416

Dynamic Contrastive Learning for Time Series Representation

Understanding events in time series is an important task in a variety of contexts. However, human analysis and labeling are expensive and time-consuming. Therefore, it is advantageous to learn embeddings for moments in time series in an unsupervised way, which allows for good performance in classification or detection tasks after later minimal human labeling. In this paper, we propose dynamic contrastive learning (DynaCL), an unsupervised contrastive representation learning framework for time series that uses temporal adjacent steps to define positive pairs. DynaCL adopts N-pair loss to dynamically treat all samples in a batch as positive or negative pairs, enabling efficient training and addressing the challenges of complicated sampling of positives. We demonstrate that DynaCL embeds instances from time series into semantically meaningful clusters, which allows superior performance on downstream tasks on a variety of public time series datasets. Our findings also reveal that high scores on unsupervised clustering metrics do not guarantee that the representations are useful in downstream tasks.


[398] 2410.15419

CASET: Complexity Analysis using Simple Execution Traces for CS* submissions

The most common method to auto-grade a student's submission in a CS1 or a CS2 course is to run it against a pre-defined test suite and compare the results against reference results. However, this technique cannot be used if the correctness of the solution goes beyond simple output, such as the algorithm used to obtain the result. There is no convenient method for the graders to identify the kind of algorithm used in solving a problem. They must read the source code and understand the algorithm implemented and its features, which makes the process tedious. We propose CASET(Complexity Analysis using Simple Execution Traces), a novel tool to analyze the time complexity of algorithms using dynamic traces and unsupervised machine learning. CASET makes it convenient for tutors to classify the submissions for a program into time complexity baskets. Thus, tutors can identify the algorithms used by the submissions without necessarily going through the code written by the students. CASET's analysis can be used to improve grading and provide detailed feedback for submissions that try to match the results without a proper algorithm, for example, hard-coding a binary result, pattern-matching the visible or common inputs. We show the effectiveness of CASET by computing the time complexity of many classes of algorithms like sorting, searching and those using dynamic programming paradigm.


[399] 2410.15420

Where to Build Food Banks and Pantries: A Two-Level Machine Learning Approach

Over 44 million Americans currently suffer from food insecurity, of whom 13 million are children. Across the United States, thousands of food banks and pantries serve as vital sources of food and other forms of aid for food insecure families. By optimizing food bank and pantry locations, food would become more accessible to families who desperately require it. In this work, we introduce a novel two-level optimization framework, which utilizes the K-Medoids clustering algorithm in conjunction with the Open-Source Routing Machine engine, to optimize food bank and pantry locations based on real road distances to houses and house blocks. Our proposed framework also has the adaptability to factor in considerations such as median household income using a pseudo-weighted K-Medoids algorithm. Testing conducted with California and Indiana household data, as well as comparisons with real food bank and pantry locations showed that interestingly, our proposed framework yields food pantry locations superior to those of real existing ones and saves significant distance for households, while there is a marginal penalty on the first level food bank to food pantry distance. Overall, we believe that the second-level benefits of this framework far outweigh any drawbacks and yield a net benefit result.


[400] 2410.15423

Power Plays: Unleashing Machine Learning Magic in Smart Grids

The integration of machine learning into smart grid systems represents a transformative step in enhancing the efficiency, reliability, and sustainability of modern energy networks. By adding advanced data analytics, these systems can better manage the complexities of renewable energy integration, demand response, and predictive maintenance. Machine learning algorithms analyze vast amounts of data from smart meters, sensors, and other grid components to optimize energy distribution, forecast demand, and detect irregularities that could indicate potential failures. This enables more precise load balancing, reduces operational costs, and enhances the resilience of the grid against disturbances. Furthermore, the use of predictive models helps in anticipating equipment failures, thereby improving the reliability of the energy supply. As smart grids continue to evolve, the role of machine learning in managing decentralized energy sources and enabling real-time decision-making will become increasingly critical. However, the deployment of these technologies also raises challenges related to data privacy, security, and the need for robust infrastructure. Addressing these issues in this research authors will focus on realizing the full potential of smart grids, ensuring they meet the growing energy demands while maintaining a focus on sustainability and efficiency using Machine Learning techniques. Furthermore, this research will help determine the smart grid's essentiality with the aid of Machine Learning. Multiple ML algorithms have been integrated along with their pros and cons. The future scope of these algorithms are also integrated.


[401] 2410.15425

Accelerated Sub-Image Search For Variable-Size Patches Identification Based On Virtual Time Series Transformation And Segmentation

This paper addresses two tasks: (i) fixed-size objects such as hay bales are to be identified in an aerial image for a given reference image of the object, and (ii) variable-size patches such as areas on fields requiring spot spraying or other handling are to be identified in an image for a given small-scale reference image. Both tasks are related. The second differs in that identified sub-images similar to the reference image are further clustered before patches contours are determined by solving a traveling salesman problem. Both tasks are complex in that the exact number of similar sub-images is not known a priori. The main discussion of this paper is presentation of an acceleration mechanism for sub-image search that is based on a transformation of an image to multivariate time series along the RGB-channels and subsequent segmentation to reduce the 2D search space in the image. Two variations of the acceleration mechanism are compared to exhaustive search on diverse synthetic and real-world images. Quantitatively, proposed method results in solve time reductions of up to 2 orders of magnitude, while qualitatively delivering comparative visual results. Proposed method is neural network-free and does not use any image pre-processing.


[402] 2410.15427

Human-Data Interaction: Thinking beyond individual datasets

Having greater access to data leads to many benefits, from advancing science to promoting accountability in government to boosting innovation. However, merely providing data access does not make data easy to use; even when data is openly available online, people may struggle to work with it. In this article, we draw on prior work, including our own, and a case study of Kaggle (a large online data science community) to discuss the importance of moving away from viewing datasets as static resources. Instead, we describe the view of data as a process with its own interactional affordances that offer many different possibilities for data, as well as for social interaction. We advocate for the notion of Human Data Interactions and their potential implications for various audiences.


[403] 2410.15428

Multiset Combinatorial Gray Codes with Application to Proximity Sensor Networks

We investigate coding schemes that map source symbols into multisets of an alphabet set. Such a formulation of source coding is an alternative approach to the traditional framework and is inspired by an object tracking problem over proximity sensor networks. We define a \textit{multiset combinatorial Gray code} as a mulitset code with fixed multiset cardinality that possesses combinatorial Gray code characteristic. For source codes that are organized as a grid, namely an integer lattice, we propose a solution by first constructing a mapping from the grid to the alphabet set, the codes are then defined as the images of rectangular blocks in the grid of fixed dimensions. We refer to the mapping as a \textit{color mapping} and the code as a \textit{color multiset code}. We propose the idea of product multiset code that enables us to construct codes for high dimensional grids based on 1-dimensional (1D) grids. We provide a detailed analysis of color multiset codes on 1D grids, focusing on codes that require the minimal number of colors. To illustrate the application of such a coding scheme, we consider an object tracking problem on 2D grids and show its efficiency, which comes from exploiting transmission parallelism. Some numerical results are presented to conclude the paper.


[404] 2410.15429

Efficient Model Extraction via Boundary Sampling

This paper introduces a novel data-free model extraction attack that significantly advances the current state-of-the-art in terms of efficiency, accuracy, and effectiveness. Traditional black-box methods rely on using the victim's model as an oracle to label a vast number of samples within high-confidence areas. This approach not only requires an extensive number of queries but also results in a less accurate and less transferable model. In contrast, our method innovates by focusing on sampling low-confidence areas (along the decision boundaries) and employing an evolutionary algorithm to optimize the sampling process. These novel contributions allow for a dramatic reduction in the number of queries needed by the attacker by a factor of 10x to 600x while simultaneously improving the accuracy of the stolen model. Moreover, our approach improves boundary alignment, resulting in better transferability of adversarial examples from the stolen model to the victim's model (increasing the attack success rate from 60\% to 82\% on average). Finally, we accomplish all of this with a strict black-box assumption on the victim, with no knowledge of the target's architecture or dataset. We demonstrate our attack on three datasets with increasingly larger resolutions and compare our performance to four state-of-the-art model extraction attacks.


[405] 2410.15430

BoostAdapter: Improving Test-Time Adaptation via Regional Bootstrapping

Adaptation of pretrained vision-language models such as CLIP to various downstream tasks have raised great interest in recent researches. Previous works have proposed a variety of test-time adaptation (TTA) methods to achieve strong generalization without any knowledge of the target domain. However, existing training-required TTA approaches like TPT necessitate entropy minimization that involves large computational overhead, while training-free methods like TDA overlook the potential for information mining from the test samples themselves. In this paper, we break down the design of existing popular training-required and training-free TTA methods and bridge the gap between them within our framework. Specifically, we maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples. The historical samples are filtered from the testing data stream and serve to extract useful information from the target distribution, while the boosting samples are drawn from regional bootstrapping and capture the knowledge of the test sample itself. We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets, showcasing its applicability in real-world situations.


[406] 2410.15432

MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications

Diffusion models have achieved significant success in both the natural image and medical image domains, encompassing a wide range of applications. Previous investigations in medical images have often been constrained to specific anatomical regions, particular applications, and limited datasets, resulting in isolated diffusion models. This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM. MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model, and explores the capabilities of the diffusion foundation model across a variety of application scenarios. The diffusion foundation model handles multi-level image processing both at the image-level and patch-level, and utilizes position embedding to establish multi-level spatial relationships as well as anatomical structures and region classes to control certain anatomical regions. MedDiff-FM manages several downstream tasks seamlessly, including image denoising, anomaly detection, and image synthesis. MedDiff-FM is also capable of performing lesion generation and lesion inpainting by rapidly fine-tuning the diffusion foundation model using ControlNet with task-specific conditions. Experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.


[407] 2410.15438

Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs

Retrieval-Augmented Generation (RAG) significantly improved the ability of Large Language Models (LLMs) to solve knowledge-intensive tasks. While existing research seeks to enhance RAG performance by retrieving higher-quality documents or designing RAG-specific LLMs, the internal mechanisms within LLMs that contribute to the effectiveness of RAG systems remain underexplored. In this paper, we aim to investigate these internal mechanisms within the popular Mixture-of-Expert (MoE)-based LLMs and demonstrate how to improve RAG by examining expert activations in these LLMs. Our controlled experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors. The activation of these core experts can signify the model's inclination towards external/internal knowledge and adjust its behavior. For instance, we identify core experts that can (1) indicate the sufficiency of the model's internal knowledge, (2) assess the quality of retrieved documents, and (3) enhance the model's ability to utilize context. Based on these findings, we propose several strategies to enhance RAG's efficiency and effectiveness through expert activation. Experimental results across various datasets and MoE-based LLMs show the effectiveness of our method.


[408] 2410.15440

Evaluating Consistencies in LLM responses through a Semantic Clustering of Question Answering

In the realm of Large Language Model (LLM) functionalities, providing reliable information is paramount, yet reports suggest that LLM outputs lack consistency. This inconsistency, often at-tributed to randomness in token sampling, under-mines user trust as it leads to varying responses even for identical queries. In this paper, we present a new approach for evaluating semantic consistencies of LLM including comparison of alternative tech-niques. Our approach evaluates whether LLM re-sponses are semantically congruent for a given question, recognizing that as syntactically different sentences may convey the same meaning. Here-tofore, To enhance LLM consistency, two main approaches have been explored: Leverage external knowledge as context like the RAG pattern or use Zero-shot-CoT to improve performance of LLM itself. We apply our evaluation approach to these techniques, and demonstrate to compare the im-pact of these methods on LLM response con-sistency across different domains of question an-swering tasks. Using the TruthfulQA dataset to assess LLM responses, the study induces N re-sponses per question from the LLM and clusters semantically equivalent sentences to measure semantic consistency across 37 categories. Through this, it quantitatively analyzes the effectiveness of the aforementioned methods in improving LLM performance before and after their adoption.


[409] 2410.15441

A Global Coordinate-Free Approach to Invariant Contraction on Homogeneous Manifolds

In this work, we provide a global condition for contraction with respect to an invariant Riemannian metric on reductive homogeneous spaces. Using left-invariant frames, vector fields on the manifold are horizontally lifted to the ambient Lie group, where the Levi-Civita connection is globally characterized as a real matrix multiplication. By linearizing in these left-invariant frames, we characterize contraction using matrix measures on real square matrices, avoiding the use of local charts. Applying this global condition, we provide a necessary condition for a prescribed subset of the manifold to possibly admit a contracting system with respect to an invariant metric. Applied to the sphere, this condition implies that no closed hemisphere can be contained in a contraction region. Finally, we apply our results to compute reachable sets for an attitude control problem.


[410] 2410.15442

Exploring Social Desirability Response Bias in Large Language Models: Evidence from GPT-4 Simulations

Large language models (LLMs) are employed to simulate human-like responses in social surveys, yet it remains unclear if they develop biases like social desirability response (SDR) bias. To investigate this, GPT-4 was assigned personas from four societies, using data from the 2022 Gallup World Poll. These synthetic samples were then prompted with or without a commitment statement intended to induce SDR. The results were mixed. While the commitment statement increased SDR index scores, suggesting SDR bias, it reduced civic engagement scores, indicating an opposite trend. Additional findings revealed demographic associations with SDR scores and showed that the commitment statement had limited impact on GPT-4's predictive performance. The study underscores potential avenues for using LLMs to investigate biases in both humans and LLMs themselves.


[411] 2410.15443

Lie Theory Based Optimization for Unified State Planning of Mobile Manipulators

Mobile manipulators are finding use in numerous practical applications. The current issues with mobile manipulation are the large state space owing to the mobile base and the challenge of modeling high degree of freedom systems. It is critical to devise fast and accurate algorithms that generate smooth motion plans for such mobile manipulators. Existing techniques attempt to solve this problem but focus on separating the motion of the base and manipulator. We propose an approach using Lie theory to find the inverse kinematic constraints by converting the kinematic model, created using screw coordinates, between its Lie group and vector representation. An optimization function is devised to solve for the desired joint states of the entire mobile manipulator. This allows the motion of the mobile base and manipulator to be planned and applied in unison resulting in a smooth and accurate motion plan. The performance of the proposed state planner is validated on simulated mobile manipulators in an analytical experiment. Our solver is available with further derivations and results at https://github.com/peleito/slithers.


[412] 2410.15444

MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation

The accurate segmentation of retinal vessels in fundus images is a great challenge in medical image segmentation tasks due to their highly complex structure from other organs.Currently, deep-learning based methods for retinal cessel segmentation achieved suboptimal outcoms,since vessels with indistinct features are prone to being overlooked in deeper layers of the network. Additionally, the abundance of redundant information in the background poses significant interference to feature extraction, thus increasing the segmentation difficulty. To address this issue, this paper proposes a feature-enhanced interaction network based on DPCN, named MDFI-Net.Specifically, we design a feature enhancement structure, the Deformable-convolutional Pulse Coupling Network (DPCN), to provide an enhanced feature iteration sequence to the segmentation network in a simple and efficient manner. Subsequently, these features will interact within the segmentation network.Extensive experiments were conducted on publicly available retinal vessel segmentation datasets to validate the effectiveness of our network structure. Experimental results of our algorithm show that the detection accuracy of the retinal blood vessel achieves 97.91%, 97.97% and 98.16% across all datasets. Finally, plentiful experimental results also prove that the proposed MDFI-Net achieves segmentation performance superior to state-of-the-art methods on public datasets.


[413] 2410.15446

Concept Complement Bottleneck Model for Interpretable Medical Image Diagnosis

Models based on human-understandable concepts have received extensive attention to improve model interpretability for trustworthy artificial intelligence in the field of medical image analysis. These methods can provide convincing explanations for model decisions but heavily rely on the detailed annotation of pre-defined concepts. Consequently, they may not be effective in cases where concepts or annotations are incomplete or low-quality. Although some methods automatically discover effective and new visual concepts rather than using pre-defined concepts or could find some human-understandable concepts via large Language models, they are prone to veering away from medical diagnostic evidence and are challenging to understand. In this paper, we propose a concept complement bottleneck model for interpretable medical image diagnosis with the aim of complementing the existing concept set and finding new concepts bridging the gap between explainable models. Specifically, we propose to use concept adapters for specific concepts to mine the concept differences and score concepts in their own attention channels to support almost fairly concept learning. Then, we devise a concept complement strategy to learn new concepts while jointly using known concepts to improve model performance. Comprehensive experiments on medical datasets demonstrate that our model outperforms the state-of-the-art competitors in concept detection and disease diagnosis tasks while providing diverse explanations to ensure model interpretability effectively.


[414] 2410.15449

Heterogeneous Graph Reinforcement Learning for Dependency-aware Multi-task Allocation in Spatial Crowdsourcing

Spatial Crowdsourcing (SC) is gaining traction in both academia and industry, with tasks on SC platforms becoming increasingly complex and requiring collaboration among workers with diverse skills. Recent research works address complex tasks by dividing them into subtasks with dependencies and assigning them to suitable workers. However, the dependencies among subtasks and their heterogeneous skill requirements, as well as the need for efficient utilization of workers' limited work time in the multi-task allocation mode, pose challenges in achieving an optimal task allocation scheme. Therefore, this paper formally investigates the problem of Dependency-aware Multi-task Allocation (DMA) and presents a well-designed framework to solve it, known as Heterogeneous Graph Reinforcement Learning-based Task Allocation (HGRL-TA). To address the challenges associated with representing and embedding diverse problem instances to ensure robust generalization, we propose a multi-relation graph model and a Compound-path-based Heterogeneous Graph Attention Network (CHANet) for effectively representing and capturing intricate relations among tasks and workers, as well as providing embedding of problem state. The task allocation decision is determined sequentially by a policy network, which undergoes simultaneous training with CHANet using the proximal policy optimization algorithm. Extensive experiment results demonstrate the effectiveness and generality of the proposed HGRL-TA in solving the DMA problem, leading to average profits that is 21.78% higher than those achieved using the metaheuristic methods.


[415] 2410.15451

Heuristic-based Dynamic Leiden Algorithm for Efficient Tracking of Communities on Evolving Graphs

Community detection, or clustering, identifies groups of nodes in a graph that are more densely connected to each other than to the rest of the network. Given the size and dynamic nature of real-world graphs, efficient community detection is crucial for tracking evolving communities, enhancing our understanding and management of complex systems. The Leiden algorithm, which improves upon the Louvain algorithm, efficiently detects communities in large networks, producing high-quality structures. However, existing multicore dynamic community detection algorithms based on Leiden are inefficient and lack support for tracking evolving communities. This technical report introduces the first implementations of parallel Naive-dynamic (ND), Delta-screening (DS), and Dynamic Frontier (DF) Leiden algorithms that efficiently track communities over time. Experiments on a 64-core AMD EPYC-7742 processor demonstrate that ND, DS, and DF Leiden achieve average speedups of 3.9x, 4.4x, and 6.1x, respectively, on large graphs with random batch updates compared to the Static Leiden algorithm, and these approaches scale at 1.4 - 1.5x for every thread doubling.


[416] 2410.15453

CROPE: Evaluating In-Context Adaptation of Vision and Language Models to Culture-Specific Concepts

As Vision and Language models (VLMs) become accessible across the globe, it is important that they demonstrate cultural knowledge. In this paper, we introduce CROPE, a visual question answering benchmark designed to probe the knowledge of culture-specific concepts and evaluate the capacity for cultural adaptation through contextual information. This allows us to distinguish between parametric knowledge acquired during training and contextual knowledge provided during inference via visual and textual descriptions. Our evaluation of several state-of-the-art open VLMs shows large performance disparities between culture-specific and common concepts in the parametric setting. Moreover, experiments with contextual knowledge indicate that models struggle to effectively utilize multimodal information and bind culture-specific concepts to their depictions. Our findings reveal limitations in the cultural understanding and adaptability of current VLMs that need to be addressed toward more culturally inclusive models.


[417] 2410.15458

Allegro: Open the Black Box of Commercial-Level Video Generation Model

Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce $\textbf{Allegro}$, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .


[418] 2410.15460

Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training

As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.


[419] 2410.15461

EVA: An Embodied World Model for Future Video Anticipation

World models integrate raw data from various modalities, such as images and language to simulate comprehensive interactions in the world, thereby displaying crucial roles in fields like mixed reality and robotics. Yet, applying the world model for accurate video prediction is quite challenging due to the complex and dynamic intentions of the various scenes in practice. In this paper, inspired by the human rethinking process, we decompose the complex video prediction into four meta-tasks that enable the world model to handle this issue in a more fine-grained manner. Alongside these tasks, we introduce a new benchmark named Embodied Video Anticipation Benchmark (EVA-Bench) to provide a well-rounded evaluation. EVA-Bench focused on evaluating the video prediction ability of human and robot actions, presenting significant challenges for both the language model and the generation model. Targeting embodied video prediction, we propose the Embodied Video Anticipator (EVA), a unified framework aiming at video understanding and generation. EVA integrates a video generation model with a visual language model, effectively combining reasoning capabilities with high-quality generation. Moreover, to enhance the generalization of our framework, we tailor-designed a multi-stage pretraining paradigm that adaptatively ensembles LoRA to produce high-fidelity results. Extensive experiments on EVA-Bench highlight the potential of EVA to significantly improve performance in embodied scenes, paving the way for large-scale pre-trained models in real-world prediction tasks.


[420] 2410.15463

MedLogic-AQA: Enhancing Medical Question Answering with Abstractive Models Focusing on Logical Structures

In Medical question-answering (QA) tasks, the need for effective systems is pivotal in delivering accurate responses to intricate medical queries. However, existing approaches often struggle to grasp the intricate logical structures and relationships inherent in medical contexts, thus limiting their capacity to furnish precise and nuanced answers. In this work, we address this gap by proposing a novel Abstractive QA system MedLogic-AQA that harnesses First Order Logic (FOL) based rules extracted from both context and questions to generate well-grounded answers. Through initial experimentation, we identified six pertinent first-order logical rules, which were then used to train a Logic-Understanding (LU) model capable of generating logical triples for a given context, question, and answer. These logic triples are then integrated into the training of MedLogic-AQA, enabling effective and coherent reasoning during answer generation. This distinctive fusion of logical reasoning with abstractive QA equips our system to produce answers that are logically sound, relevant, and engaging. Evaluation with respect to both automated and human-based demonstrates the robustness of MedLogic-AQA against strong baselines. Through empirical assessments and case studies, we validate the efficacy of MedLogic-AQA in elevating the quality and comprehensiveness of answers in terms of reasoning as well as informativeness


[421] 2410.15464

A Novel Interpretability Metric for Explaining Bias in Language Models: Applications on Multilingual Models from Southeast Asia

Work on bias in pretrained language models (PLMs) focuses on bias evaluation and mitigation and fails to tackle the question of bias attribution and explainability.We propose a novel metric, the $\textit{bias attribution score}$, which draws from information theory to measure token-level contributions to biased behavior in PLMs. We then demonstrate the utility of this metric by applying it on multilingual PLMs, including models from Southeast Asia which have not yet been thoroughly examined in bias evaluation literature. Our results confirm the presence of sexist and homophobic bias in Southeast Asian PLMs. Interpretability and semantic analyses also reveal that PLM bias is strongly induced by words relating to crime, intimate relationships, and helping among other discursive categories, suggesting that these are topics where PLMs strongly reproduce bias from pretraining data and where PLMs should be used with more caution.


[422] 2410.15466

Keep Guessing? When Considering Inference Scaling, Mind the Baselines

Scaling inference compute in large language models (LLMs) through repeated sampling consistently increases the coverage (fraction of problems solved) as the number of samples increases. We conjecture that this observed improvement is partially due to the answer distribution of standard evaluation benchmarks, which is skewed towards a relatively small set of common answers. To test this conjecture, we define a baseline that enumerates answers according to their prevalence in the training set. Experiments spanning two domains -- mathematical reasoning and factual knowledge -- reveal that this baseline outperforms repeated model sampling for some LLMs, while the coverage for others is on par with that of a mixture strategy that obtains $k$ answers by using only $10$ model samples and similarly guessing the remaining $k-10$ attempts via enumeration. Our baseline enables a more accurate measurement of how much repeated sampling improves coverage in such settings beyond prompt-agnostic guessing.


[423] 2410.15467

Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI

The widespread adoption of large language models (LLMs) and generative AI (GenAI) tools across diverse applications has amplified the importance of addressing societal biases inherent within these technologies. While the NLP community has extensively studied LLM bias, research investigating how non-expert users perceive and interact with biases from these systems remains limited. As these technologies become increasingly prevalent, understanding this question is crucial to inform model developers in their efforts to mitigate bias. To address this gap, this work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools. We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI. Our finding provides unique insights into how non-expert users perceive and interact with biases from GenAI tools.


[424] 2410.15469

AssemblyComplete: 3D Combinatorial Construction with Deep Reinforcement Learning

A critical goal in robotics and autonomy is to teach robots to adapt to real-world collaborative tasks, particularly in automatic assembly. The ability of a robot to understand the original intent of an incomplete assembly and complete missing features without human instruction is valuable but challenging. This paper introduces 3D combinatorial assembly completion, which is demonstrated using combinatorial unit primitives (i.e., Lego bricks). Combinatorial assembly is challenging due to the possible assembly combinations and complex physical constraints (e.g., no brick collisions, structure stability, inventory constraints, etc.). To address these challenges, we propose a two-part deep reinforcement learning (DRL) framework that tackles teaching the robot to understand the objective of an incomplete assembly and learning a construction policy to complete the assembly. The robot queries a stable object library to facilitate assembly inference and guide learning. In addition to the robot policy, an action mask is developed to rule out invalid actions that violate physical constraints for object-oriented construction. We demonstrate the proposed framework's feasibility and robustness in a variety of assembly scenarios in which the robot satisfies real-life assembly with respect to both solution and runtime quality. Furthermore, results demonstrate that the proposed framework effectively infers and assembles incomplete structures for unseen and unique object types.


[425] 2410.15470

Data Augmentation via Diffusion Model to Enhance AI Fairness

AI fairness seeks to improve the transparency and explainability of AI systems by ensuring that their outcomes genuinely reflect the best interests of users. Data augmentation, which involves generating synthetic data from existing datasets, has gained significant attention as a solution to data scarcity. In particular, diffusion models have become a powerful technique for generating synthetic data, especially in fields like computer vision. This paper explores the potential of diffusion models to generate synthetic tabular data to improve AI fairness. The Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM), a diffusion model adaptable to any tabular dataset and capable of handling various feature types, was utilized with different amounts of generated data for data augmentation. Additionally, reweighting samples from AIF360 was employed to further enhance AI fairness. Five traditional machine learning models-Decision Tree (DT), Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF)-were used to validate the proposed approach. Experimental results demonstrate that the synthetic data generated by Tab-DDPM improves fairness in binary classification.


[426] 2410.15471

How Aligned are Generative Models to Humans in High-Stakes Decision-Making?

Large generative models (LMs) are increasingly being considered for high-stakes decision-making. This work considers how such models compare to humans and predictive AI models on a specific case of recidivism prediction. We combine three datasets -- COMPAS predictive AI risk scores, human recidivism judgements, and photos -- into a dataset on which we study the properties of several state-of-the-art, multimodal LMs. Beyond accuracy and bias, we focus on studying human-LM alignment on the task of recidivism prediction. We investigate if these models can be steered towards human decisions, the impact of adding photos, and whether anti-discimination prompting is effective. We find that LMs can be steered to outperform humans and COMPAS using in context-learning. We find anti-discrimination prompting to have unintended effects, causing some models to inhibit themselves and significantly reduce their number of positive predictions.


[427] 2410.15472

Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation

Renal tumors, especially renal cell carcinoma (RCC), show significant heterogeneity, posing challenges for diagnosis using radiology images such as MRI, echocardiograms, and CT scans. U-Net based deep learning techniques are emerging as a promising approach for automated medical image segmentation for minimally invasive diagnosis of renal tumors. However, current techniques need further improvements in accuracy to become clinically useful to radiologists. In this study, we present an improved U-Net based model for end-to-end automated semantic segmentation of CT scan images to identify renal tumors. The model uses residual connections across convolution layers, integrates a multi-layer feature fusion (MFF) and cross-channel attention (CCA) within encoder blocks, and incorporates skip connections augmented with additional information derived using MFF and CCA. We evaluated our model on the KiTS19 dataset, which contains data from 210 patients. For kidney segmentation, our model achieves a Dice Similarity Coefficient (DSC) of 0.97 and a Jaccard index (JI) of 0.95. For renal tumor segmentation, our model achieves a DSC of 0.96 and a JI of 0.91. Based on a comparison of available DSC scores, our model outperforms the current leading models.


[428] 2410.15473

Bayesian data fusion for distributed learning

One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data, which may occur in practice due to unbalanced datasets and use of different data sources across clients. Knowledge sharing and model personalization are key strategies for addressing this issue. Clustered federated learning is a class of FL methods that groups clients that observe similarly distributed data into clusters, such that every client is typically associated with one data distribution and participates in training a model for that distribution along their cluster peers. In this paper, we present a unified Bayesian framework for clustered FL which associates clients to clusters. Then we propose several practical algorithms to handle the, otherwise growing, data associations in a way that trades off performance and computational complexity. This work provides insights on client-cluster associations and enables client knowledge sharing in new ways. The proposed framework circumvents the need for unique client-cluster associations, which is seen to increase the performance of the resulting models in a variety of experiments.


[429] 2410.15474

Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization

Generative Flow Networks (GFlowNets) are a family of generative models that learn to sample objects with probabilities proportional to a given reward function. The key concept behind GFlowNets is the use of two stochastic policies: a forward policy, which incrementally constructs compositional objects, and a backward policy, which sequentially deconstructs them. Recent results show a close relationship between GFlowNet training and entropy-regularized reinforcement learning (RL) problems with a particular reward design. However, this connection applies only in the setting of a fixed backward policy, which might be a significant limitation. As a remedy to this problem, we introduce a simple backward policy optimization algorithm that involves direct maximization of the value function in an entropy-regularized Markov Decision Process (MDP) over intermediate rewards. We provide an extensive experimental evaluation of the proposed approach across various benchmarks in combination with both RL and GFlowNet algorithms and demonstrate its faster convergence and mode discovery in complex environments.


[430] 2410.15475

Generalized Multimodal Fusion via Poisson-Nernst-Planck Equation

Previous studies have highlighted significant advancements in multimodal fusion. Nevertheless, such methods often encounter challenges regarding the efficacy of feature extraction, data integrity, consistency of feature dimensions, and adaptability across various downstream tasks. This paper proposes a generalized multimodal fusion method (GMF) via the Poisson-Nernst-Planck (PNP) equation, which adeptly addresses the aforementioned issues. Theoretically, the optimization objective for traditional multimodal tasks is formulated and redefined by integrating information entropy and the flow of gradient backward step. Leveraging these theoretical insights, the PNP equation is applied to feature fusion, rethinking multimodal features through the framework of charged particles in physics and controlling their movement through dissociation, concentration, and reconstruction. Building on these theoretical foundations, GMF disassociated features which extracted by the unimodal feature extractor into modality-specific and modality-invariant subspaces, thereby reducing mutual information and subsequently lowering the entropy of downstream tasks. The identifiability of the feature's origin enables our approach to function independently as a frontend, seamlessly integrated with a simple concatenation backend, or serve as a prerequisite for other modules. Experimental results on multiple downstream tasks show that the proposed GMF achieves performance close to the state-of-the-art (SOTA) accuracy while utilizing fewer parameters and computational resources. Furthermore, by integrating GMF with advanced fusion methods, we surpass the SOTA results.


[431] 2410.15479

Automated Formal Verification of a Highly-Configurable Register Generator

Registers in IP blocks of an SoC perform a variety of functions, most of which are essential to the SoC operation. The complexity of register implementation is relatively low when compared with other design blocks. However, the extensive number of registers, combined with the various potential functions they can perform, necessitates considerable effort during implementation, especially when using a manual approach. Therefore, an in-house register generator was proposed by the design team to reduce the manual effort in the register implementation. This in-house register generator supports not only the generation of register blocks but also bus-related blocks. Meanwhile, to support various requirements, 41 generation options are used for this generator, which is highly-configurable. From the verification perspective, it is infeasible to achieve complete verification results with a manual approach for all options combinations. Besides the complexity caused by configurability, the register verification is still time-consuming due to two widely recognized issues: the unreliability of specifications and the complexity arising from diverse access policies. To deal with the highly-configurable feature and both register verification issues, we propose an automated register verification framework using formal methods following the Model Driven Architecture (MDA). Based on our results, the human effort in the register verification can be reduced significantly, from 20Person-Day (20PD) to 3PD for each configuration, and 100\% code coverage can be achieved. During the project execution, eleven new design bugs were found with the proposed verification framework.


[432] 2410.15480

Event-based Sensor Fusion and Application on Odometry: A Survey

Event cameras, inspired by biological vision, are asynchronous sensors that detect changes in brightness, offering notable advantages in environments characterized by high-speed motion, low lighting, or wide dynamic range. These distinctive properties render event cameras particularly effective for sensor fusion in robotics and computer vision, especially in enhancing traditional visual or LiDAR-inertial odometry. Conventional frame-based cameras suffer from limitations such as motion blur and drift, which can be mitigated by the continuous, low-latency data provided by event cameras. Similarly, LiDAR-based odometry encounters challenges related to the loss of geometric information in environments such as corridors. To address these limitations, unlike the existing event camera-related surveys, this paper presents a comprehensive overview of recent advancements in event-based sensor fusion for odometry applications particularly, investigating fusion strategies that incorporate frame-based cameras, inertial measurement units (IMUs), and LiDAR. The survey critically assesses the contributions of these fusion methods to improving odometry performance in complex environments, while highlighting key applications, and discussing the strengths, limitations, and unresolved challenges. Additionally, it offers insights into potential future research directions to advance event-based sensor fusion for next-generation odometry applications.


[433] 2410.15483

Mitigating Forgetting in LLM Supervised Fine-Tuning and Preference Learning

Post-training of pre-trained LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning (RLHF or DPO) stage, is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, sequential training is sub-optimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. We theoretically prove the sub-optimality of sequential post-training. Furthermore, we propose a practical joint post-training framework with theoretical convergence guarantees and empirically outperforms sequential post-training framework, while having similar computational cost. Our code is available at https://github.com/heshandevaka/XRIGHT.


[434] 2410.15484

"What is the value of {templates}?" Rethinking Document Information Extraction Datasets for LLMs

The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template "What is the value for the {key}?". However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.


[435] 2410.15486

Evaluating Transferable Emotion Expressions for Zoomorphic Social Robots using VR Prototyping

Zoomorphic robots have the potential to offer companionship and well-being as accessible, low-maintenance alternatives to pet ownership. Many such robots, however, feature limited emotional expression, restricting their potential for rich affective relationships with everyday domestic users. Additionally, exploring this design space using hardware prototyping is obstructed by physical and logistical constraints. We leveraged virtual reality rapid prototyping with passive haptic interaction to conduct a broad mixed-methods evaluation of emotion expression modalities and participatory prototyping of multimodal expressions. We found differences in recognisability, effectiveness and user empathy between modalities while highlighting the importance of facial expressions and the benefits of combining animal-like and unambiguous modalities. We use our findings to inform promising directions for the affective zoomorphic robot design and potential implementations via hardware modification or augmented reality, then discuss how VR prototyping makes this field more accessible to designers and researchers.


[436] 2410.15489

Generative AI Agents in Autonomous Machines: A Safety Perspective

The integration of Generative Artificial Intelligence (AI) into autonomous machines represents a major paradigm shift in how these systems operate and unlocks new solutions to problems once deemed intractable. Although generative AI agents provide unparalleled capabilities, they also have unique safety concerns. These challenges require robust safeguards, especially for autonomous machines that operate in high-stakes environments. This work investigates the evolving safety requirements when generative models are integrated as agents into physical autonomous machines, comparing these to safety considerations in less critical AI applications. We explore the challenges and opportunities to ensure the safe deployment of generative AI-driven autonomous machines. Furthermore, we provide a forward-looking perspective on the future of AI-driven autonomous systems and emphasize the importance of evaluating and communicating safety risks. As an important step towards addressing these concerns, we recommend the development and implementation of comprehensive safety scorecards for the use of generative AI technologies in autonomous machines.


[437] 2410.15490

Dynamic Intelligence Assessment: Benchmarking LLMs on the Road to AGI with a Focus on Model Confidence

As machine intelligence evolves, the need to test and compare the problem-solving abilities of different AI models grows. However, current benchmarks are often overly simplistic, allowing models to perform uniformly well, making it difficult to distinguish their capabilities. Additionally, benchmarks typically rely on static question-answer pairs, which models might memorize or guess. To address these limitations, we introduce the Dynamic Intelligence Assessment (DIA), a novel methodology for testing AI models using dynamic question templates and improved metrics across multiple disciplines such as mathematics, cryptography, cybersecurity, and computer science. The accompanying DIA-Bench dataset, which includes 150 diverse and challenging task templates with mutable parameters, is presented in various formats such as text, PDFs, compiled binaries, and visual puzzles. Our framework introduces four new metrics to assess a model's reliability and confidence across multiple attempts. These metrics revealed that even simple questions are frequently answered incorrectly when posed in varying forms, highlighting significant gaps in models' reliability. Notably, models like GPT-4o tended to overestimate their mathematical abilities, while ChatGPT-4o demonstrated better decision-making and performance through effective tool usage. We evaluated eight state-of-the-art large language models (LLMs) using DIA-Bench, showing that current models struggle with complex tasks and often display unexpectedly low confidence, even with simpler questions. The DIA framework sets a new standard for assessing not only problem-solving but also a model's adaptive intelligence and ability to assess its own limitations. The dataset is publicly available on our project's website.


[438] 2410.15491

Structural Causality-based Generalizable Concept Discovery Models

The rising need for explainable deep neural network architectures has utilized semantic concepts as explainable units. Several approaches utilizing disentangled representation learning estimate the generative factors and utilize them as concepts for explaining DNNs. However, even though the generative factors for a dataset remain fixed, concepts are not fixed entities and vary based on downstream tasks. In this paper, we propose a disentanglement mechanism utilizing a variational autoencoder (VAE) for learning mutually independent generative factors for a given dataset and subsequently learning task-specific concepts using a structural causal model (SCM). Our method assumes generative factors and concepts to form a bipartite graph, with directed causal edges from generative factors to concepts. Experiments are conducted on datasets with known generative factors: D-sprites and Shapes3D. On specific downstream tasks, our proposed method successfully learns task-specific concepts which are explained well by the causal edges from the generative factors. Lastly, separate from current causal concept discovery methods, our methodology is generalizable to an arbitrary number of concepts and flexible to any downstream tasks.


[439] 2410.15492

Reinforcement Learning for Dynamic Memory Allocation

In recent years, reinforcement learning (RL) has gained popularity and has been applied to a wide range of tasks. One such popular domain where RL has been effective is resource management problems in systems. We look to extend work on RL for resource management problems by considering the novel domain of dynamic memory allocation management. We consider dynamic memory allocation to be a suitable domain for RL since current algorithms like first-fit, best-fit, and worst-fit can fail to adapt to changing conditions and can lead to fragmentation and suboptimal efficiency. In this paper, we present a framework in which an RL agent continuously learns from interactions with the system to improve memory management tactics. We evaluate our approach through various experiments using high-level and low-level action spaces and examine different memory allocation patterns. Our results show that RL can successfully train agents that can match and surpass traditional allocation strategies, particularly in environments characterized by adversarial request patterns. We also explore the potential of history-aware policies that leverage previous allocation requests to enhance the allocator's ability to handle complex request patterns. Overall, we find that RL offers a promising avenue for developing more adaptive and efficient memory allocation strategies, potentially overcoming limitations of hardcoded allocation algorithms.


[440] 2410.15494

Assessing Quantum Extreme Learning Machines for Software Testing in Practice

Machine learning has been extensively applied for various classical software testing activities such as test generation, minimization, and prioritization. Along the same lines, recently, there has been interest in applying quantum machine learning to software testing. For example, Quantum Extreme Learning Machines (QELMs) were recently applied for testing classical software of industrial elevators. However, most studies on QELMs, whether in software testing or other areas, used ideal quantum simulators that fail to account for the noise in current quantum computers. While ideal simulations offer insight into QELM's theoretical capabilities, they do not enable studying their performance on current noisy quantum computers. To this end, we study how quantum noise affects QELM in three industrial and real-world classical software testing case studies, providing insights into QELMs' robustness to noise. Such insights assess QELMs potential as a viable solution for industrial software testing problems in today's noisy quantum computing. Our results show that QELMs are significantly affected by quantum noise, with a performance drop of 250% in regression tasks and 50% in classification tasks. Although introducing noise during both ML training and testing phases can improve results, the reduction is insufficient for practical applications. While error mitigation techniques can enhance noise resilience, achieving an average 3.0% performance drop in classification, but their effectiveness varies by context, highlighting the need for QELM-tailored error mitigation strategies.


[441] 2410.15495

SEA: State-Exchange Attention for High-Fidelity Physics-Based Transformers

Current approaches using sequential networks have shown promise in estimating field variables for dynamical systems, but they are often limited by high rollout errors. The unresolved issue of rollout error accumulation results in unreliable estimations as the network predicts further into the future, with each step's error compounding and leading to an increase in inaccuracy. Here, we introduce the State-Exchange Attention (SEA) module, a novel transformer-based module enabling information exchange between encoded fields through multi-head cross-attention. The cross-field multidirectional information exchange design enables all state variables in the system to exchange information with one another, capturing physical relationships and symmetries between fields. In addition, we incorporate a ViT-like architecture to generate spatially coherent mesh embeddings, further improving the model's ability to capture spatial dependencies in the data. This enhances the model's ability to represent complex interactions between the field variables, resulting in improved rollout error accumulation. Our results show that the Transformer model integrated with the State-Exchange Attention (SEA) module outperforms competitive baseline models, including the PbGMR-GMUS Transformer-RealNVP and GMR-GMUS Transformer, with a reduction in error of 88\% and 91\%, respectively, achieving state-of-the-art performance. Furthermore, we demonstrate that the SEA module alone can reduce errors by 97\% for state variables that are highly dependent on other states of the system.


[442] 2410.15496

Taming Mambas for Voxel Level 3D Medical Image Segmentation

Recently, the field of 3D medical segmentation has been dominated by deep learning models employing Convolutional Neural Networks (CNNs) and Transformer-based architectures, each with their distinctive strengths and limitations. CNNs are constrained by a local receptive field, whereas transformers are hindered by their substantial memory requirements as well as they data hungriness, making them not ideal for processing 3D medical volumes at a fine-grained level. For these reasons, fully convolutional neural networks, as nnUNet, still dominate the scene when segmenting medical structures in 3D large medical volumes. Despite numerous advancements towards developing transformer variants with subquadratic time and memory complexity, these models still fall short in content-based reasoning. A recent breakthrough is Mamba, a Recurrent Neural Network (RNN) based on State Space Models (SSMs) outperforming Transformers in many long-context tasks (million-length sequences) on famous natural language processing and genomic benchmarks while keeping a linear complexity.


[443] 2410.15497

RoMemes: A multimodal meme corpus for the Romanian language

Memes are becoming increasingly more popular in online media, especially in social networks. They usually combine graphical representations (images, drawings, animations or video) with text to convey powerful messages. In order to extract, process and understand the messages, AI applications need to employ multimodal algorithms. In this paper, we introduce a curated dataset of real memes in the Romanian language, with multiple annotation levels. Baseline algorithms were employed to demonstrate the usability of the dataset. Results indicate that further research is needed to improve the processing capabilities of AI tools when faced with Internet memes.


[444] 2410.15498

Quasi-Static Continuum Model of Octopus-Like Soft Robot Arm Under Water Actuated by Twisted and Coiled Artificial Muscles (TCAMs)

The current work is a qualitative study that aims to explore the implementation of Twisted and Coiled Artificial Muscles (TCAMs) for actuating and replicating the bending motion of an octopus-like soft robot arm underwater. Additionally, it investigates the impact of hydrostatic and dynamic forces from steady-state fluid flow on the arm's motion. The artificial muscles are lightweight and low-cost actuators that generate a high power-to-weight ratio, producing tensile force up to 12,600 times their own weight, which is close to the functionality of biological muscles. The "extended" Cosserat theory of rods is employed to formulate a quasi-static continuum model of arm motion, where the arm's cross-section is not only capable of rigid rotation but also deforms within its plane. This planar deformation of the arm cross-section aligns with the biological behavior of the octopus arm, where the stiffness of the hydrostat is directly induced by the incompressibility of the tissues. In line with the main goal, a constitutive model is derived for the material of the octopus arm to capture its characteristic behavior.


[445] 2410.15499

Improving Voice Quality in Speech Anonymization With Just Perception-Informed Losses

The increasing use of cloud-based speech assistants has heightened the need for effective speech anonymization, which aims to obscure a speaker's identity while retaining critical information for subsequent tasks. One approach to achieving this is through voice conversion. While existing methods often emphasize complex architectures and training techniques, our research underscores the importance of loss functions inspired by the human auditory system. Our proposed loss functions are model-agnostic, incorporating handcrafted and deep learning-based features to effectively capture quality representations. Through objective and subjective evaluations, we demonstrate that a VQVAE-based model, enhanced with our perception-driven losses, surpasses the vanilla model in terms of naturalness, intelligibility, and prosody while maintaining speaker anonymity. These improvements are consistently observed across various datasets, languages, target speakers, and genders.


[446] 2410.15500

Anonymising Elderly and Pathological Speech: Voice Conversion Using DDSP and Query-by-Example

Speech anonymisation aims to protect speaker identity by changing personal identifiers in speech while retaining linguistic content. Current methods fail to retain prosody and unique speech patterns found in elderly and pathological speech domains, which is essential for remote health monitoring. To address this gap, we propose a voice conversion-based method (DDSP-QbE) using differentiable digital signal processing and query-by-example. The proposed method, trained with novel losses, aids in disentangling linguistic, prosodic, and domain representations, enabling the model to adapt to uncommon speech patterns. Objective and subjective evaluations show that DDSP-QbE significantly outperforms the voice conversion state-of-the-art concerning intelligibility, prosody, and domain preservation across diverse datasets, pathologies, and speakers while maintaining quality and speaker anonymity. Experts validate domain preservation by analysing twelve clinically pertinent domain attributes.


[447] 2410.15504

FlexDoc: Flexible Document Adaptation through Optimizing both Content and Layout

Designing adaptive documents that are visually appealing across various devices and for diverse viewers is a challenging task. This is due to the wide variety of devices and different viewer requirements and preferences. Alterations to a document's content, style, or layout often necessitate numerous adjustments, potentially leading to a complete layout redesign. We introduce FlexDoc, a framework for creating and consuming documents that seamlessly adapt to different devices, author, and viewer preferences and interactions. It eliminates the need for manually creating multiple document layouts, as FlexDoc enables authors to define desired document properties using templates and employs both discrete and continuous optimization in a novel comprehensive optimization process, which leverages automatic text summarization and image carving techniques to adapt both layout and content during consumption dynamically. Furthermore, we demonstrate FlexDoc in multiple real-world application scenarios, such as news readers and academic papers.


[448] 2410.15506

Improved Explicit Near-Optimal Codes in the High-Noise Regimes

We study uniquely decodable codes and list decodable codes in the high-noise regime, specifically codes that are uniquely decodable from $\frac{1-\varepsilon}{2}$ fraction of errors and list decodable from $1-\varepsilon$ fraction of errors. We present several improved explicit constructions that achieve near-optimal rates, as well as efficient or even linear-time decoding algorithms. Our contributions are as follows. 1. Explicit Near-Optimal Linear Time Uniquely Decodable Codes: We construct a family of explicit $\mathbb{F}_2$-linear codes with rate $\Omega(\varepsilon)$ and alphabet size $2^{\mathrm{poly} \log(1/\varepsilon)}$, that are capable of correcting $e$ errors and $s$ erasures whenever $2e + s < (1 - \varepsilon)n$ in linear-time. 2. Explicit Near-Optimal List Decodable Codes: We construct a family of explicit list decodable codes with rate $\Omega(\varepsilon)$ and alphabet size $2^{\mathrm{poly} \log(1/\varepsilon)}$, that are capable of list decoding from $1-\varepsilon$ fraction of errors with a list size $L = \exp\exp\exp(\log^{\ast}n)$ in polynomial time. 3. List Decodable Code with Near-Optimal List Size: We construct a family of explicit list decodable codes with an optimal list size of $O(1/\varepsilon)$, albeit with a suboptimal rate of $O(\varepsilon^2)$, capable of list decoding from $1-\varepsilon$ fraction of errors in polynomial time. Furthermore, we introduce a new combinatorial object called multi-set disperser, and use it to give a family of list decodable codes with near-optimal rate $\frac{\varepsilon}{\log^2(1/\varepsilon)}$ and list size $\frac{\log^2(1/\varepsilon)}{\varepsilon}$, that can be constructed in probabilistic polynomial time and decoded in deterministic polynomial time. We also introduce new decoding algorithms that may prove valuable for other graph-based codes.


[449] 2410.15509

Exploring Curriculum Learning for Vision-Language Tasks: A Study on Small-Scale Multimodal Training

For specialized domains, there is often not a wealth of data with which to train large machine learning models. In such limited data / compute settings, various methods exist aiming to $\textit{do more with less}$, such as finetuning from a pretrained model, modulating difficulty levels as data are presented to a model (curriculum learning), and considering the role of model type / size. Approaches to efficient $\textit{machine}$ learning also take inspiration from $\textit{human}$ learning by considering use cases where machine learning systems have access to approximately the same number of words experienced by a 13 year old child (100M words). We investigate the role of 3 primary variables in a limited data regime as part of the multimodal track of the BabyLM challenge. We contrast: (i) curriculum learning, (ii), pretraining (with text-only data), (iii) model type. We modulate these variables and assess them on two types of tasks: (a) multimodal (text+image), and (b) unimodal (text-only) tasks. We find that curriculum learning benefits multimodal evaluations over non-curriclum learning models, particularly when combining text-only pretraining. On text-only tasks, curriculum learning appears to help models with smaller trainable parameter counts. We suggest possible reasons based on architectural differences and training designs as to why one might observe such results.


[450] 2410.15510

Two Robust, Efficient, and optimally Accurate Algorithms for parameterized stochastic navier-stokes Flow Problems

This paper presents and analyzes two robust, efficient, and optimally accurate fully discrete finite element algorithms for computing the parameterized Navier-Stokes Equations (NSEs) flow ensemble. The timestepping algorithms are linearized, use the backward-Euler method for approximating the temporal derivative, and Ensemble Eddy Viscosity (EEV) regularized. The first algorithm is a coupled ensemble scheme, and the second algorithm is decoupled using projection splitting with grad-div stabilization. We proved the stability and convergence theorems for both algorithms. We have shown that for sufficiently large grad-div stabilization parameters, the outcomes of the projection scheme converge to the outcomes of the coupled scheme. We then combine the Stochastic Collocation Methods (SCMs) with the proposed two Uncertainty Quantification (UQ) algorithms. A series of numerical experiments are given to verify the predicted convergence rates and performance of the schemes on benchmark problems, which shows the superiority of the splitting algorithm.


[451] 2410.15511

ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation

Open-domain long-form text generation requires generating coherent, comprehensive responses that address complex queries with both breadth and depth. This task is challenging due to the need to accurately capture diverse facets of input queries. Existing iterative retrieval-augmented generation (RAG) approaches often struggle to delve deeply into each facet of complex queries and integrate knowledge from various sources effectively. This paper introduces ConTReGen, a novel framework that employs a context-driven, tree-structured retrieval approach to enhance the depth and relevance of retrieved content. ConTReGen integrates a hierarchical, top-down in-depth exploration of query facets with a systematic bottom-up synthesis, ensuring comprehensive coverage and coherent integration of multifaceted information. Extensive experiments on multiple datasets, including LFQA and ODSUM, alongside a newly introduced dataset, ODSUM-WikiHow, demonstrate that ConTReGen outperforms existing state-of-the-art RAG models.


[452] 2410.15512

Reverse Question Answering: Can an LLM Write a Question so Hard (or Bad) that it Can't Answer?

Question answering (QA)-producing correct answers for input questions-is popular, but we test a reverse question answering (RQA) task: given an input answer, generate a question with that answer. Past work tests QA and RQA separately, but we test them jointly, comparing their difficulty, aiding benchmark design, and assessing reasoning consistency. 16 LLMs run QA and RQA with trivia questions/answers, showing: 1) Versus QA, LLMs are much less accurate in RQA for numerical answers, but slightly more accurate in RQA for textual answers; 2) LLMs often answer their own invalid questions from RQA accurately in QA, so RQA errors are not from knowledge gaps alone; 3) RQA errors correlate with question difficulty and inversely correlate with answer frequencies in the Dolma corpus; and 4) LLMs struggle to give valid multi-hop questions. By finding question and answer types yielding RQA errors, we suggest improvements for LLM RQA reasoning.


[453] 2410.15516

Generating Tabular Data Using Heterogeneous Sequential Feature Forest Flow Matching

Privacy and regulatory constraints make data generation vital to advancing machine learning without relying on real-world datasets. A leading approach for tabular data generation is the Forest Flow (FF) method, which combines Flow Matching with XGBoost. Despite its good performance, FF is slow and makes errors when treating categorical variables as one-hot continuous features. It is also highly sensitive to small changes in the initial conditions of the ordinary differential equation (ODE). To overcome these limitations, we develop Heterogeneous Sequential Feature Forest Flow (HS3F). Our method generates data sequentially (feature-by-feature), reducing the dependency on noisy initial conditions through the additional information from previously generated features. Furthermore, it generates categorical variables using multinomial sampling (from an XGBoost classifier) instead of flow matching, improving generation speed. We also use a Runge-Kutta 4th order (Rg4) ODE solver for improved performance over the Euler solver used in FF. Our experiments with 25 datasets reveal that HS3F produces higher quality and more diverse synthetic data than FF, especially for categorical variables. It also generates data 21-27 times faster for datasets with $\geq20%$ categorical variables. HS3F further demonstrates enhanced robustness to affine transformation in flow ODE initial conditions compared to FF. This study not only validates the HS3F but also unveils promising new strategies to advance generative models.


[454] 2410.15517

SceneGraMMi: Scene Graph-boosted Hybrid-fusion for Multi-Modal Misinformation Veracity Prediction

Misinformation undermines individual knowledge and affects broader societal narratives. Despite growing interest in the research community in multi-modal misinformation detection, existing methods exhibit limitations in capturing semantic cues, key regions, and cross-modal similarities within multi-modal datasets. We propose SceneGraMMi, a Scene Graph-boosted Hybrid-fusion approach for Multi-modal Misinformation veracity prediction, which integrates scene graphs across different modalities to improve detection performance. Experimental results across four benchmark datasets show that SceneGraMMi consistently outperforms state-of-the-art methods. In a comprehensive ablation study, we highlight the contribution of each component, while Shapley values are employed to examine the explainability of the model's decision-making process.


[455] 2410.15518

TrackMe:A Simple and Effective Multiple Object Tracking Annotation Tool

Object tracking, especially animal tracking, is one of the key topics that attract a lot of attention due to its benefits of animal behavior understanding and monitoring. Recent state-of-the-art tracking methods are founded on deep learning architectures for object detection, appearance feature extraction and track association. Despite the good tracking performance, these methods are trained and evaluated on common objects such as human and cars. To perform on the animal, there is a need to create large datasets of different types in multiple conditions. The dataset construction comprises of data collection and data annotation. In this work, we put more focus on the latter task. Particularly, we renovate the well-known tool, LabelMe, so as to assist common user with or without in-depth knowledge about computer science to annotate the data with less effort. The new tool named as TrackMe inherits the simplicity, high compatibility with varied systems, minimal hardware requirement and convenient feature utilization from the predecessor. TrackMe is an upgraded version with essential features for multiple object tracking annotation.


[456] 2410.15519

Convolution tensor decomposition for efficient high-resolution solutions to the Allen-Cahn equation

This paper presents a convolution tensor decomposition based model reduction method for solving the Allen-Cahn equation. The Allen-Cahn equation is usually used to characterize phase separation or the motion of anti-phase boundaries in materials. Its solution is time-consuming when high-resolution meshes and large time scale integration are involved. To resolve these issues, the convolution tensor decomposition method is developed, in conjunction with a stabilized semi-implicit scheme for time integration. The development enables a powerful computational framework for high-resolution solutions of Allen-Cahn problems, and allows the use of relatively large time increments for time integration without violating the discrete energy law. To further improve the efficiency and robustness of the method, an adaptive algorithm is also proposed. Numerical examples have confirmed the efficiency of the method in both 2D and 3D problems. Orders-of-magnitude speedups were obtained with the method for high-resolution problems, compared to the finite element method. The proposed computational framework opens numerous opportunities for simulating complex microstructure formation in materials on large-volume high-resolution meshes at a deeply reduced computational cost.


[457] 2410.15522

M-RewardBench: Evaluating Reward Models in Multilingual Settings

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.


[458] 2410.15524

MIRA: A Method of Federated MultI-Task Learning for LaRge LAnguage Models

In this paper, we introduce a method for fine-tuning Large Language Models (LLMs), inspired by Multi-Task learning in a federated manner. Our approach leverages the structure of each client's model and enables a learning scheme that considers other clients' tasks and data distribution. To mitigate the extensive computational and communication overhead often associated with LLMs, we utilize a parameter-efficient fine-tuning method, specifically Low-Rank Adaptation (LoRA), reducing the number of trainable parameters. Experimental results, with different datasets and models, demonstrate the proposed method's effectiveness compared to existing frameworks for federated fine-tuning of LLMs in terms of average and local performances. The proposed scheme outperforms existing baselines by achieving lower local loss for each client while maintaining comparable global performance.


[459] 2410.15526

SDP4Bit: Toward 4-bit Communication Quantization in Sharded Data Parallelism for LLM Training

Recent years have witnessed a clear trend towards language models with an ever-increasing number of parameters, as well as the growing training overhead and memory usage. Distributed training, particularly through Sharded Data Parallelism (ShardedDP) which partitions optimizer states among workers, has emerged as a crucial technique to mitigate training time and memory usage. Yet, a major challenge in the scalability of ShardedDP is the intensive communication of weights and gradients. While compression techniques can alleviate this issue, they often result in worse accuracy. Driven by this limitation, we propose SDP4Bit (Toward 4Bit Communication Quantization in Sharded Data Parallelism for LLM Training), which effectively reduces the communication of weights and gradients to nearly 4 bits via two novel techniques: quantization on weight differences, and two-level gradient smooth quantization. Furthermore, SDP4Bit presents an algorithm-system co-design with runtime optimization to minimize the computation overhead of compression. In addition to the theoretical guarantees of convergence, we empirically evaluate the accuracy of SDP4Bit on the pre-training of GPT models with up to 6.7 billion parameters, and the results demonstrate a negligible impact on training loss. Furthermore, speed experiments show that SDP4Bit achieves up to 4.08$\times$ speedup in end-to-end throughput on a scale of 128 GPUs.


[460] 2410.15527

Who Puts the "Social" in "Social Computing"?: Using A Neurodiversity Framing to Review Social Computing Research

Human-Computer Interaction (HCI) and Computer Supported Collaborative Work (CSCW) have a longstanding tradition of interrogating the values that underlie systems in order to create novel and accessible experiences. In this work, we use a neurodiversity framing to examine how people with ways of thinking, speaking, and being that differ from normative assumptions are perceived by researchers seeking to study and design social computing systems for neurodivergent people. From a critical analysis of 84 publications systematically gathered across a decade of social computing research, we determine that research into social computing with neurodiverse participants is largely medicalized, adheres to historical stereotypes of neurodivergent children and their families, and is insensitive to the wide spectrum of neurodivergent people that are potential users of social technologies. When social computing systems designed for neurodivergent people rely upon a conception of disability that restricts expression for the sake of preserving existing norms surrounding social experience, the result is often simplistic and restrictive systems that prevent users from "being social" in a way that feels natural and enjoyable. We argue that a neurodiversity perspective informed by critical disability theory allows us to engage with alternative forms of sociality as meaningful and desirable rather than a deficit to be compensated for. We conclude by identifying opportunities for researchers to collaborate with neurodivergent users and their communities, including the creation of spectrum-conscious social systems and the embedding of double empathy into systems for more equitable design.


[461] 2410.15528

Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini

AI-powered medical scribes have emerged as a promising solution to alleviate the documentation burden in healthcare. Ambient AI scribes provide real-time transcription and automated data entry into Electronic Health Records (EHRs), with the potential to improve efficiency, reduce costs, and enhance scalability. Despite early success, the accuracy of AI scribes remains critical, as errors can lead to significant clinical consequences. Additionally, AI scribes face challenges in handling the complexity and variability of medical language and ensuring the privacy of sensitive patient data. This case study aims to evaluate Sporo Health's AI scribe, a multi-agent system leveraging fine-tuned medical LLMs, by comparing its performance with OpenAI's GPT-4o Mini on multiple performance metrics. Using a dataset of de-identified patient conversation transcripts, AI-generated summaries were compared to clinician-generated notes (the ground truth) based on clinical content recall, precision, and F1 scores. Evaluations were further supplemented by clinician satisfaction assessments using a modified Physician Documentation Quality Instrument revision 9 (PDQI-9), rated by both a medical student and a physician. The results show that Sporo AI consistently outperformed GPT-4o Mini, achieving higher recall, precision, and overall F1 scores. Moreover, the AI generated summaries provided by Sporo were rated more favorably in terms of accuracy, comprehensiveness, and relevance, with fewer hallucinations. These findings demonstrate that Sporo AI Scribe is an effective and reliable tool for clinical documentation, enhancing clinician workflows while maintaining high standards of privacy and security.


[462] 2410.15531

Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage

Evaluating retrieval-augmented generation (RAG) systems remains challenging, particularly for open-ended questions that lack definitive answers and require coverage of multiple sub-topics. In this paper, we introduce a novel evaluation framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question. We propose decomposing questions into sub-questions and classifying them into three types -- core, background, and follow-up -- to reflect their roles and importance. Using this categorization, we introduce a fine-grained evaluation protocol that provides insights into the retrieval and generation characteristics of RAG systems, including three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat. Interestingly, we find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions, revealing clear opportunities for improvement. Further, sub-question coverage metrics prove effective for ranking responses, achieving 82% accuracy compared to human preference annotations. Lastly, we also demonstrate that leveraging core sub-questions enhances both retrieval and answer generation in a RAG system, resulting in a 74% win rate over the baseline that lacks sub-questions.


[463] 2410.15532

Construction and Analysis of Impression Caption Dataset for Environmental Sounds

Some datasets with the described content and order of occurrence of sounds have been released for conversion between environmental sound and text. However, there are very few texts that include information on the impressions humans feel, such as "sharp" and "gorgeous," when they hear environmental sounds. In this study, we constructed a dataset with impression captions for environmental sounds that describe the impressions humans have when hearing these sounds. We used ChatGPT to generate impression captions and selected the most appropriate captions for sound by humans. Our dataset consists of 3,600 impression captions for environmental sounds. To evaluate the appropriateness of impression captions for environmental sounds, we conducted subjective and objective evaluations. From our evaluation results, we indicate that appropriate impression captions for environmental sounds can be generated.


[464] 2410.15533

Real-time Event Joining in Practice With Kafka and Flink

Historically, machine learning training pipelines have predominantly relied on batch training models, retraining models every few hours. However, industrial practitioners have proved that real-time training can lead to a more adaptive and personalized user experience. The transition from batch to real-time is full of tradeoffs to get the benefits of accuracy and freshness while keeping the costs low and having a predictable, maintainable system. Our work characterizes migrating to a streaming pipeline for a machine learning model using Apache Kafka and Flink. We demonstrate how to transition from Google Pub/Sub to Kafka to handle incoming real-time events and leverage Flink for streaming joins using RocksDB and checkpointing. We also address challenges such as managing causal dependencies between events, balancing event time versus processing time, and ensuring exactly-once versus at-least-once delivery guarantees, among other issues. Furthermore, we showcase how we improved scalability by using topic partitioning in Kafka, reduced event throughput by \textbf{85\%} through the use of Avro schema and compression, decreased costs by \textbf{40\%}, and implemented a separate pipeline to ensure data correctness. Our findings provide valuable insights into the tradeoffs and complexities of real-time systems, enabling better-informed decisions tailored to specific requirements for building effective streaming systems that enhance user satisfaction.


[465] 2410.15536

GRS: Generating Robotic Simulation Tasks from Real-World Images

We introduce GRS (Generating Robotic Simulation tasks), a novel system to address the challenge of real-to-sim in robotics, computer vision, and AR/VR. GRS enables the creation of digital twin simulations from single real-world RGB-D observations, complete with diverse, solvable tasks for virtual agent training. We use state-of-the-art vision-language models (VLMs) to achieve a comprehensive real-to-sim pipeline. GRS operates in three stages: 1) scene comprehension using SAM2 for object segmentation and VLMs for object description, 2) matching identified objects with simulation-ready assets, and 3) generating contextually appropriate robotic tasks. Our approach ensures simulations align with task specifications by generating test suites designed to verify adherence to the task specification. We introduce a router that iteratively refines the simulation and test code to ensure the simulation is solvable by a robot policy while remaining aligned to the task specification. Our experiments demonstrate the system's efficacy in accurately identifying object correspondence, which allows us to generate task environments that closely match input environments, and enhance automated simulation task generation through our novel router mechanism.


[466] 2410.15539

Grammatical Error Correction for Low-Resource Languages: The Case of Zarma

Grammatical error correction (GEC) is important for improving written materials for low-resource languages like Zarma -- spoken by over 5 million people in West Africa. Yet it remains a challenging problem. This study compares rule-based methods, machine translation (MT) models, and large language models (LLMs) for GEC in Zarma. We evaluate each approach's effectiveness on our manually-built dataset of over 250,000 examples using synthetic and human-annotated data. Our experiments show that the MT-based approach using the M2M100 model outperforms others, achieving a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations, and scoring 3.0 out of 5.0 in logical/grammar error correction during MEs by native speakers. The rule-based method achieved perfect detection (100%) and high suggestion accuracy (96.27%) for spelling corrections but struggled with context-level errors. LLMs like MT5-small showed moderate performance with a detection rate of 90.62% and a suggestion accuracy of 57.15%. Our work highlights the potential of MT models to enhance GEC in low-resource languages, paving the way for more inclusive NLP tools.


[467] 2410.15543

Distributed Thompson sampling under constrained communication

In Bayesian optimization, a black-box function is maximized via the use of a surrogate model. We apply distributed Thompson sampling, using a Gaussian process as a surrogate model, to approach the multi-agent Bayesian optimization problem. In our distributed Thompson sampling implementation, each agent receives sampled points from neighbors, where the communication network is encoded in a graph; each agent utilizes a Gaussian process to model the objective function. We demonstrate a theoretical bound on Bayesian Simple Regret, where the bound depends on the size of the largest complete subgraph of the communication graph. Unlike in batch Bayesian optimization, this bound is applicable in cases where the communication graph amongst agents is constrained. When compared to sequential Thompson sampling, our bound guarantees faster convergence with respect to time as long as there is a fully connected subgraph of at least two agents. We confirm the efficacy of our algorithm with numerical simulations on traditional optimization test functions, illustrating the significance of graph connectivity on improving regret convergence.


[468] 2410.15546

Improved Contact Graph Routing in Delay Tolerant Networks with Capacity and Buffer Constraints

Satellite communications present challenging characteristics. Continuous end-to-end connectivity may not be available due to the large distances between satellites. Moreover, resources such as link capacity and buffer memory may be limited. Routing in satellite networks is therefore both complex and crucial to avoid packet losses and long delays. The Delay Tolerant Network (DTN) paradigm has emerged as an efficient solution for managing these challenging networks. Contact Graph Routing (CGR), a deterministic routing algorithm, is one of the most popular DTN algorithms. CGR is compatible with the ``store, carry, and forward" principle, whereby a node receives a message and stores it in its buffer until a transmission opportunity becomes available. However, CGR relies on simplified models to incorporate potential constraints in the route search. For instance, the linear volume assumption is often used to consider capacity constraints. Moreover, capacity management and buffer management are mostly performed during the forwarding phase, once an issue has occurred. In this paper, we propose to take measures before or during the route search in order to find routes that respect both contact-capacity limits and node-buffer limits. We introduce the contact splitting and edge pruning operations to effectively account for the routing constraints. This ensures that CGR outputs the optimal solution among the subset of valid solutions. The proposed approach can also be used to book resources to be used in case of issues during the forwarding step.


[469] 2410.15547

Data Cleaning Using Large Language Models

Data cleaning is a crucial yet challenging task in data analysis, often requiring significant manual effort. To automate data cleaning, previous systems have relied on statistical rules derived from erroneous data, resulting in low accuracy and recall. This work introduces Cocoon, a novel data cleaning system that leverages large language models for rules based on semantic understanding and combines them with statistical error detection. However, data cleaning is still too complex a task for current LLMs to handle in one shot. To address this, we introduce Cocoon, which decomposes complex cleaning tasks into manageable components in a workflow that mimics human cleaning processes. Our experiments show that Cocoon outperforms state-of-the-art data cleaning systems on standard benchmarks.


[470] 2410.15549

A Dual Process VLA: Efficient Robotic Manipulation Leveraging VLM

Vision-Language-Action (VLA) models are receiving increasing attention for their ability to enable robots to perform complex tasks by integrating visual context with linguistic commands. However, achieving efficient real-time performance remains challenging due to the high computational demands of existing models. To overcome this, we propose Dual Process VLA (DP-VLA), a hierarchical framework inspired by dual-process theory. DP-VLA utilizes a Large System 2 Model (L-Sys2) for complex reasoning and decision-making, while a Small System 1 Model (S-Sys1) handles real-time motor control and sensory processing. By leveraging Vision-Language Models (VLMs), the L-Sys2 operates at low frequencies, reducing computational overhead, while the S-Sys1 ensures fast and accurate task execution. Experimental results on the RoboCasa dataset demonstrate that DP-VLA achieves faster inference and higher task success rates, providing a scalable solution for advanced robotic applications.


[471] 2410.15550

Hiding in Plain Sight: Reframing Hardware Trojan Benchmarking as a Hide&Seek Modification

This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as The Seeker's Dilemma where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative benchmark and methodology of creating benchmarks will help the community judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.


[472] 2410.15551

WHoW: A Cross-domain Approach for Analysing Conversation Moderation

We propose WHoW, an evaluation framework for analyzing the facilitation strategies of moderators across different domains/scenarios by examining their motives (Why), dialogue acts (How) and target speaker (Who). Using this framework, we annotated 5,657 moderation sentences with human judges and 15,494 sentences with GPT-4o from two domains: TV debates and radio panel discussions. Comparative analysis demonstrates the framework's cross-domain generalisability and reveals distinct moderation strategies: debate moderators emphasise coordination and facilitate interaction through questions and instructions, while panel discussion moderators prioritize information provision and actively participate in discussions. Our analytical framework works for different moderation scenarios, enhances our understanding of moderation behaviour through automatic large-scale analysis, and facilitates the development of moderator agents.


[473] 2410.15553

Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following

Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.


[474] 2410.15554

A Plug-and-Play Fully On-the-Job Real-Time Reinforcement Learning Algorithm for a Direct-Drive Tandem-Wing Experiment Platforms Under Multiple Random Operating Conditions

The nonlinear and unstable aerodynamic interference generated by the tandem wings of such biomimetic systems poses substantial challenges for motion control, especially under multiple random operating conditions. To address these challenges, the Concerto Reinforcement Learning Extension (CRL2E) algorithm has been developed. This plug-and-play, fully on-the-job, real-time reinforcement learning algorithm incorporates a novel Physics-Inspired Rule-Based Policy Composer Strategy with a Perturbation Module alongside a lightweight network optimized for real-time control. To validate the performance and the rationality of the module design, experiments were conducted under six challenging operating conditions, comparing seven different algorithms. The results demonstrate that the CRL2E algorithm achieves safe and stable training within the first 500 steps, improving tracking accuracy by 14 to 66 times compared to the Soft Actor-Critic, Proximal Policy Optimization, and Twin Delayed Deep Deterministic Policy Gradient algorithms. Additionally, CRL2E significantly enhances performance under various random operating conditions, with improvements in tracking accuracy ranging from 8.3% to 60.4% compared to the Concerto Reinforcement Learning (CRL) algorithm. The convergence speed of CRL2E is 36.11% to 57.64% faster than the CRL algorithm with only the Composer Perturbation and 43.52% to 65.85% faster than the CRL algorithm when both the Composer Perturbation and Time-Interleaved Capability Perturbation are introduced, especially in conditions where the standard CRL struggles to converge. Hardware tests indicate that the optimized lightweight network structure excels in weight loading and average inference time, meeting real-time control requirements.


[475] 2410.15555

Bayesian Concept Bottleneck Models with LLM Priors

Concept Bottleneck Models (CBMs) have been proposed as a compromise between white-box and black-box models, aiming to achieve interpretability without sacrificing accuracy. The standard training procedure for CBMs is to predefine a candidate set of human-interpretable concepts, extract their values from the training data, and identify a sparse subset as inputs to a transparent prediction model. However, such approaches are often hampered by the tradeoff between enumerating a sufficiently large set of concepts to include those that are truly relevant versus controlling the cost of obtaining concept extractions. This work investigates a novel approach that sidesteps these challenges: BC-LLM iteratively searches over a potentially infinite set of concepts within a Bayesian framework, in which Large Language Models (LLMs) serve as both a concept extraction mechanism and prior. BC-LLM is broadly applicable and multi-modal. Despite imperfections in LLMs, we prove that BC-LLM can provide rigorous statistical inference and uncertainty quantification. In experiments, it outperforms comparator methods including black-box models, converges more rapidly towards relevant concepts and away from spuriously correlated ones, and is more robust to out-of-distribution samples.


[476] 2410.15556

Gradient Rewiring for Editable Graph Neural Network Training

Deep neural networks are ubiquitously adopted in many applications, such as computer vision, natural language processing, and graph analytics. However, well-trained neural networks can make prediction errors after deployment as the world changes. \textit{Model editing} involves updating the base model to correct prediction errors with less accessible training data and computational resources. Despite recent advances in model editors in computer vision and natural language processing, editable training in graph neural networks (GNNs) is rarely explored. The challenge with editable GNN training lies in the inherent information aggregation across neighbors, which can lead model editors to affect the predictions of other nodes unintentionally. In this paper, we first observe the gradient of cross-entropy loss for the target node and training nodes with significant inconsistency, which indicates that directly fine-tuning the base model using the loss on the target node deteriorates the performance on training nodes. Motivated by the gradient inconsistency observation, we propose a simple yet effective \underline{G}radient \underline{R}ewiring method for \underline{E}ditable graph neural network training, named \textbf{GRE}. Specifically, we first store the anchor gradient of the loss on training nodes to preserve the locality. Subsequently, we rewire the gradient of the loss on the target node to preserve performance on the training node using anchor gradient. Experiments demonstrate the effectiveness of GRE on various model architectures and graph datasets in terms of multiple editing situations. The source code is available at \url{https://github.com/zhimengj0326/Gradient_rewiring_editing}


[477] 2410.15557

How to Find the Exact Pareto Front for Multi-Objective MDPs?

Multi-objective Markov Decision Processes (MDPs) are receiving increasing attention, as real-world decision-making problems often involve conflicting objectives that cannot be addressed by a single-objective MDP. The Pareto front identifies the set of policies that cannot be dominated, providing a foundation for finding optimal solutions that can efficiently adapt to various preferences. However, finding the Pareto front is a highly challenging problem. Most existing methods either (i) rely on traversing the continuous preference space, which is impractical and results in approximations that are difficult to evaluate against the true Pareto front, or (ii) focus solely on deterministic Pareto optimal policies, from which there are no known techniques to characterize the full Pareto front. Moreover, finding the structure of the Pareto front itself remains unclear even in the context of dynamic programming. This work addresses the challenge of efficiently discovering the Pareto front. By investigating the geometric structure of the Pareto front in MO-MDP, we uncover a key property: the Pareto front is on the boundary of a convex polytope whose vertices all correspond to deterministic policies, and neighboring vertices of the Pareto front differ by only one state-action pair of the deterministic policy, almost surely. This insight transforms the global comparison across all policies into a localized search among deterministic policies that differ by only one state-action pair, drastically reducing the complexity of searching for the exact Pareto front. We develop an efficient algorithm that identifies the vertices of the Pareto front by solving a single-objective MDP only once and then traversing the edges of the Pareto front, making it more efficient than existing methods. Our empirical studies demonstrate the effectiveness of our theoretical strategy in discovering the Pareto front.


[478] 2410.15558

The effect of self-efficacy and pair programming experience in learning results of introductory programming courses

The purpose of this study was to explore the interactive effect of self-efficacy and pair programming experience to the final learning results in introductory programming courses. We developed a 2x2 fractional design to explore their roles and relationships. Data was collected by distributing questionnaires to students have learnt or are learning CS367 at UW-Madison. They were asked to evaluate their self-efficacy levels and pair programming experience. After that, they needed to complete a quiz of 11 Java knowledge quiz indicating their learning results. We present results from 36 participants which show that students with high self-efficacy levels tended to earn a higher score in the Java knowledge quiz. However, pair programming experience shows no significant effects on learning results.Our finding suggests that high self-efficacy levels have a positive impact on students' performance in introductory programming courses.


[479] 2410.15559

Development of Minimal Biorobotic Stealth Distance and Its Application in the Design of Direct-Drive Dragonfly-Inspired Aircraft

This paper introduces the Minimal Biorobotic Stealth Distance (MBSD), a novel quantitative metric to evaluate the bionic resemblance of biorobotic aircraft. Current technological limitations prevent dragonfly-inspired aircrafts from achieving optimal performance at biological scales. To address these challenges, we use the DDD-1 dragonfly-inspired aircraft, a hover-capable direct-drive aircraft, to explore the impact of the MBSD on aircraft design. Key contributions of this research include: (1) the establishment of the MBSD as a quantifiable and operable evaluation metric that influences aircraft design, integrating seamlessly with the overall design process and providing a new dimension for optimizing bionic aircraft, balancing mechanical attributes and bionic characteristics; (2) the creation and analysis of a typical aircraft in four directions: essential characteristics of the MBSD, its coupling relationship with existing performance metrics (Longest Hover Duration and Maximum Instantaneous Forward Flight Speed), multi-objective optimization, and application in a typical mission scenario; (3) the construction and validation of a full-system model for the direct-drive dragonfly-inspired aircraft, demonstrating the design model's effectiveness against existing aircraft data. Detailed calculations of the MBSD consider appearance similarity, dynamic similarity, and environmental similarity.


[480] 2410.15564

Reward Maximization for Pure Exploration: Minimax Optimal Good Arm Identification for Nonparametric Multi-Armed Bandits

In multi-armed bandits, the tasks of reward maximization and pure exploration are often at odds with each other. The former focuses on exploiting arms with the highest means, while the latter may require constant exploration across all arms. In this work, we focus on good arm identification (GAI), a practical bandit inference objective that aims to label arms with means above a threshold as quickly as possible. We show that GAI can be efficiently solved by combining a reward-maximizing sampling algorithm with a novel nonparametric anytime-valid sequential test for labeling arm means. We first establish that our sequential test maintains error control under highly nonparametric assumptions and asymptotically achieves the minimax optimal e-power, a notion of power for anytime-valid tests. Next, by pairing regret-minimizing sampling schemes with our sequential test, we provide an approach that achieves minimax optimal stopping times for labeling arms with means above a threshold, under an error probability constraint. Our empirical results validate our approach beyond the minimax setting, reducing the expected number of samples for all stopping times by at least 50% across both synthetic and real-world settings.


[481] 2410.15567

Pruning Foundation Models for High Accuracy without Retraining

Despite the superior performance, it is challenging to deploy foundation models or large language models (LLMs) due to their massive parameters and computations. While pruning is a promising technique to reduce model size and accelerate the inference, the traditional pruning techniques can hardly be applied for LLMs as they need to finetune the model on the full dataset with multiple epochs consuming massive data and hardware resources. To deal with this problem, post-training pruning methods are proposed to prune LLMs in one-shot without retraining. However, their accuracy after pruning may suffer from certain performance degradation due to the lack of retraining with massive data. To address this issue, in this paper, we first formulate the post-training problem for layer-wise LLM compression to simultaneously prune multiple weights in LLMs. Next, we provide an optimal solution for this problem and design our post-training pruning algorithm for both unstructured and semi-structured sparsity. Our extensive experiments demonstrate the superior performance of the proposed methods in comparison to SOTA baselines across various LLM families including transformer-based LLMs and Mamba-based LLMs. Code link: https://github.com/piuzha/APT


[482] 2410.15568

ZK-DPPS: A Zero-Knowledge Decentralised Data Sharing and Processing Middleware

In the current digital landscape, supply chains have transformed into complex networks driven by the Internet of Things (IoT), necessitating enhanced data sharing and processing capabilities to ensure traceability and transparency. Leveraging Blockchain technology in IoT applications advances reliability and transparency in near-real-time insight extraction processes. However, it raises significant concerns regarding data privacy. Existing privacy-preserving approaches often rely on Smart Contracts for automation and Zero Knowledge Proofs (ZKP) for privacy. However, apart from being inflexible in adopting system changes while effectively protecting data confidentiality, these approaches introduce significant computational expenses and overheads that make them impractical for dynamic supply chain environments. To address these challenges, we propose ZK-DPPS, a framework that ensures zero-knowledge communications without the need for traditional ZKPs. In ZK-DPPS, privacy is preserved through a combination of Fully Homomorphic Encryption (FHE) for computations and Secure Multi-Party Computations (SMPC) for key reconstruction. To ensure that the raw data remains private throughout the entire process, we use FHE to execute computations directly on encrypted data. The "zero-knowledge" aspect of ZK-DPPS refers to the system's ability to process and share data insights without exposing sensitive information, thus offering a practical and efficient alternative to ZKP-based methods. We demonstrate the efficacy of ZK-DPPS through a simulated supply chain scenario, showcasing its ability to tackle the dual challenges of privacy preservation and computational trust in decentralised environments.


[483] 2410.15569

Online Pseudo-Label Unified Object Detection for Multiple Datasets Training

The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.


[484] 2410.15570

Stacking Small Language Models for Generalizability

Recent advances show that large language models (LLMs) generalize strong performance across different natural language benchmarks. However, the large size of LLMs makes training and inference expensive and impractical to run in resource-limited settings. This paper introduces a new approach called fine-tuning stacks of language models (FSLM), which involves stacking small language models (SLM) as an alternative to LLMs. By fine-tuning each SLM to perform a specific task, this approach breaks down high level reasoning into multiple lower-level steps that specific SLMs are responsible for. As a result, FSLM allows for lower training and inference costs, and also improves model interpretability as each SLM communicates with the subsequent one through natural language. By evaluating FSLM on common natural language benchmarks, this paper highlights promising early results toward generalizable performance using FSLM as a cost-effective alternative to LLMs.


[485] 2410.15572

Leveraging Retrieval-Augmented Generation for Culturally Inclusive Hakka Chatbots: Design Insights and User Perceptions

In an era where cultural preservation is increasingly intertwined with technological innovation, this study introduces a groundbreaking approach to promoting and safeguarding the rich heritage of Taiwanese Hakka culture through the development of a Retrieval-Augmented Generation (RAG)-enhanced chatbot. Traditional large language models (LLMs), while powerful, often fall short in delivering accurate and contextually rich responses, particularly in culturally specific domains. By integrating external databases with generative AI models, RAG technology bridges this gap, empowering chatbots to not only provide precise answers but also resonate deeply with the cultural nuances that are crucial for authentic interactions. This study delves into the intricate process of augmenting the chatbot's knowledge base with targeted cultural data, specifically curated to reflect the unique aspects of Hakka traditions, language, and practices. Through dynamic information retrieval, the RAG-enhanced chatbot becomes a versatile tool capable of handling complex inquiries that demand an in-depth understanding of Hakka cultural context. This is particularly significant in an age where digital platforms often dilute cultural identities, making the role of culturally aware AI systems more critical than ever. System usability studies conducted as part of our research reveal a marked improvement in both user satisfaction and engagement, highlighting the chatbot's effectiveness in fostering a deeper connection with Hakka culture. The feedback underscores the potential of RAG technology to not only enhance user experience but also to serve as a vital instrument in the broader mission of ethnic mainstreaming and cultural celebration.


[486] 2410.15573

OpenMU: Your Swiss Army Knife for Music Understanding

We present OpenMU-Bench, a large-scale benchmark suite for addressing the data scarcity issue in training multimodal language models to understand music. To construct OpenMU-Bench, we leveraged existing datasets and bootstrapped new annotations. OpenMU-Bench also broadens the scope of music understanding by including lyrics understanding and music tool usage. Using OpenMU-Bench, we trained our music understanding model, OpenMU, with extensive ablations, demonstrating that OpenMU outperforms baseline models such as MU-Llama. Both OpenMU and OpenMU-Bench are open-sourced to facilitate future research in music understanding and to enhance creative music production efficiency.


[487] 2410.15575

Neural Search Space in Gboard Decoder

Gboard Decoder produces suggestions by looking for paths that best match input touch points on the context aware search space, which is backed by the language Finite State Transducers (FST). The language FST is currently an N-gram language model (LM). However, N-gram LMs, limited in context length, are known to have sparsity problem under device model size constraint. In this paper, we propose \textbf{Neural Search Space} which substitutes the N-gram LM with a Neural Network LM (NN-LM) and dynamically constructs the search space during decoding. Specifically, we integrate the long range context awareness of NN-LM into the search space by converting its outputs given context, into the language FST at runtime. This involves language FST structure redesign, pruning strategy tuning, and data structure optimizations. Online experiments demonstrate improved quality results, reducing Words Modified Ratio by [0.26\%, 1.19\%] on various locales with acceptable latency increases. This work opens new avenues for further improving keyboard decoding quality by enhancing neural LM more directly.


[488] 2410.15576

A Survey of Conversational Search

As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.


[489] 2410.15577

ALDAS: Audio-Linguistic Data Augmentation for Spoofed Audio Detection

Spoofed audio, i.e. audio that is manipulated or AI-generated deepfake audio, is difficult to detect when only using acoustic features. Some recent innovative work involving AI-spoofed audio detection models augmented with phonetic and phonological features of spoken English, manually annotated by experts, led to improved model performance. While this augmented model produced substantial improvements over traditional acoustic features based models, a scalability challenge motivates inquiry into auto labeling of features. In this paper we propose an AI framework, Audio-Linguistic Data Augmentation for Spoofed audio detection (ALDAS), for auto labeling linguistic features. ALDAS is trained on linguistic features selected and extracted by sociolinguistics experts; these auto labeled features are used to evaluate the quality of ALDAS predictions. Findings indicate that while the detection enhancement is not as substantial as when involving the pure ground truth linguistic features, there is improvement in performance while achieving auto labeling. Labels generated by ALDAS are also validated by the sociolinguistics experts.


[490] 2410.15578

Generalized Probabilistic Attention Mechanism in Transformers

The Transformer architecture has become widely adopted due to its demonstrated success, attributed to the attention mechanism at its core. Despite these successes, the attention mechanism of Transformers is associated with two well-known issues: rank-collapse and gradient vanishing. In this paper, we present a theoretical analysis that it is inherently difficult to address both issues simultaneously in the conventional attention mechanism. To handle these issues, we introduce a novel class of attention mechanism, referred to as generalized probabilistic attention mechanism (GPAM), and its dual-attention implementation within the Transformer architecture. Unlike conventional attention mechanisms, GPAM allows for negative attention scores while preserving a fixed total sum. We provide theoretical evidence that the proposed dual-attention GPAM (daGPAM) effectively mitigates both the rank-collapse and gradient vanishing issues which are difficult to resolve simultaneously with the conventional attention mechanisms. Furthermore, we empirically validate this theoretical evidence, demonstrating the superiority of daGPAM compared to other alternative attention mechanisms that were proposed to address the same issues. Additionally, we demonstrate the practical benefits of GPAM in natural language processing tasks, such as language modeling and neural machine translation.


[491] 2410.15579

Intrinsic Finite Element Error Analysis on Manifolds with Regge Metrics, with Applications to Calculating Connection Forms

We present some aspects of the theory of finite element exterior calculus as applied to partial differential equations on manifolds, especially manifolds endowed with an approximate metric called a Regge metric. Our treatment is intrinsic, avoiding wherever possible the use of preferred coordinates or a preferred embedding into an ambient space, which presents some challenges but also conceptual and possibly computational advantages. As an application, we analyze and implement a method for computing an approximate Levi-Civita connection form for a disc whose metric is itself approximate.


[492] 2410.15580

Language Models are Symbolic Learners in Arithmetic

Large Language Models (LLMs) are thought to struggle with arithmetic learning due to the inherent differences between language modeling and numerical computation, but concrete evidence has been lacking. This work responds to this claim through a two-side experiment. We first investigate whether LLMs leverage partial products during arithmetic learning. We find that although LLMs can identify some partial products after learning, they fail to leverage them for arithmetic tasks, conversely. We then explore how LLMs approach arithmetic symbolically by breaking tasks into subgroups, hypothesizing that difficulties arise from subgroup complexity and selection. Our results show that when subgroup complexity is fixed, LLMs treat a collection of different arithmetic operations similarly. By analyzing position-level accuracy across different training sizes, we further observe that it follows a U-shaped pattern: LLMs quickly learn the easiest patterns at the first and last positions, while progressively learning the more difficult patterns in the middle positions. This suggests that LLMs select subgroup following an easy-to-hard paradigm during learning. Our work confirms that LLMs are pure symbolic learners in arithmetic tasks and underscores the importance of understanding them deeply through subgroup-level quantification.


[493] 2410.15581

Multimodal Learning for Embryo Viability Prediction in Clinical IVF

In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.


[494] 2410.15582

ARTS: Semi-Analytical Regressor using Disentangled Skeletal Representations for Human Mesh Recovery from Videos

Although existing video-based 3D human mesh recovery methods have made significant progress, simultaneously estimating human pose and shape from low-resolution image features limits their performance. These image features lack sufficient spatial information about the human body and contain various noises (e.g., background, lighting, and clothing), which often results in inaccurate pose and inconsistent motion. Inspired by the rapid advance in human pose estimation, we discover that compared to image features, skeletons inherently contain accurate human pose and motion. Therefore, we propose a novel semiAnalytical Regressor using disenTangled Skeletal representations for human mesh recovery from videos, called ARTS. Specifically, a skeleton estimation and disentanglement module is proposed to estimate the 3D skeletons from a video and decouple them into disentangled skeletal representations (i.e., joint position, bone length, and human motion). Then, to fully utilize these representations, we introduce a semi-analytical regressor to estimate the parameters of the human mesh model. The regressor consists of three modules: Temporal Inverse Kinematics (TIK), Bone-guided Shape Fitting (BSF), and Motion-Centric Refinement (MCR). TIK utilizes joint position to estimate initial pose parameters and BSF leverages bone length to regress bone-aligned shape parameters. Finally, MCR combines human motion representation with image features to refine the initial human model parameters. Extensive experiments demonstrate that our ARTS surpasses existing state-of-the-art video-based methods in both per-frame accuracy and temporal consistency on popular benchmarks: 3DPW, MPI-INF-3DHP, and Human3.6M. Code is available at https://github.com/TangTao-PKU/ARTS.


[495] 2410.15584

Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications

This book offers an in-depth exploration of object detection and semantic segmentation, combining theoretical foundations with practical applications. It covers state-of-the-art advancements in machine learning and deep learning, with a focus on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches like DETR. The book also delves into the integration of artificial intelligence (AI) techniques and large language models for enhanced object detection in complex environments. A thorough discussion of big data analysis is presented, highlighting the importance of data processing, model optimization, and performance evaluation metrics. By bridging the gap between traditional methods and modern deep learning frameworks, this book serves as a comprehensive guide for researchers, data scientists, and engineers aiming to leverage AI-driven methodologies in large-scale object detection tasks.


[496] 2410.15586

Automatic Search of Multiword Place Names on Historical Maps

Historical maps are invaluable sources of information about the past, and scanned historical maps are increasingly accessible in online libraries. To retrieve maps from these large libraries that contain specific places of interest, previous work has applied computer vision techniques to recognize words on historical maps, enabling searches for maps that contain specific place names. However, searching for multiword place names is challenging due to complex layouts of text labels on historical maps. This paper proposes an efficient query method for searching a given multiword place name on historical maps. Using existing methods to recognize words on historical maps, we link single-word text labels into potential multiword phrases by constructing minimum spanning trees. These trees aim to link pairs of text labels that are spatially close and have similar height, angle, and capitalization. We then query these trees for the given multiword place name. We evaluate the proposed method in two experiments: 1) to evaluate the accuracy of the minimum spanning tree approach at linking multiword place names and 2) to evaluate the number and time range of maps retrieved by the query approach. The resulting maps reveal how places using multiword names have changed on a large number of maps from across history.


[497] 2410.15589

SSMT: Few-Shot Traffic Forecasting with Single Source Meta-Transfer

Traffic forecasting in Intelligent Transportation Systems (ITS) is vital for intelligent traffic prediction. Yet, ITS often relies on data from traffic sensors or vehicle devices, where certain cities might not have all those smart devices or enabling infrastructures. Also, recent studies have employed meta-learning to generalize spatial-temporal traffic networks, utilizing data from multiple cities for effective traffic forecasting for data-scarce target cities. However, collecting data from multiple cities can be costly and time-consuming. To tackle this challenge, we introduce Single Source Meta-Transfer Learning (SSMT) which relies only on a single source city for traffic prediction. Our method harnesses this transferred knowledge to enable few-shot traffic forecasting, particularly when the target city possesses limited data. Specifically, we use memory-augmented attention to store the heterogeneous spatial knowledge from the source city and selectively recall them for the data-scarce target city. We extend the idea of sinusoidal positional encoding to establish meta-learning tasks by leveraging diverse temporal traffic patterns from the source city. Moreover, to capture a more generalized representation of the positions we introduced a meta-positional encoding that learns the most optimal representation of the temporal pattern across all the tasks. We experiment on five real-world benchmark datasets to demonstrate that our method outperforms several existing methods in time series traffic prediction.


[498] 2410.15591

AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection

Detecting fake news in large datasets is challenging due to its diversity and complexity, with traditional approaches often focusing on textual features while underutilizing semantic and emotional elements. Current methods also rely heavily on large annotated datasets, limiting their effectiveness in more nuanced analysis. To address these challenges, this paper introduces Emotion-\textbf{A}ware \textbf{M}ultimodal Fusion \textbf{P}rompt \textbf{L}\textbf{E}arning (\textbf{AMPLE}) framework to address the above issue by combining text sentiment analysis with multimodal data and hybrid prompt templates. This framework extracts emotional elements from texts by leveraging sentiment analysis tools. It then employs Multi-Head Cross-Attention (MCA) mechanisms and similarity-aware fusion methods to integrate multimodal data. The proposed AMPLE framework demonstrates strong performance on two public datasets in both few-shot and data-rich settings, with results indicating the potential of emotional aspects in fake news detection. Furthermore, the study explores the impact of integrating large language models with this method for text sentiment extraction, revealing substantial room for further improvement. The code can be found at :\url{https://github.com/xxm1215/MMM2025_few-shot/


[499] 2410.15595

A Comprehensive Survey of Datasets, Theories, Variants, and Applications in Direct Preference Optimization

With the rapid advancement of large language models (LLMs), aligning policy models with human preferences has become increasingly critical. Direct Preference Optimization (DPO) has emerged as a promising approach for alignment, acting as an RL-free alternative to Reinforcement Learning from Human Feedback (RLHF). Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature. In this work, we present a comprehensive review of the challenges and opportunities in DPO, covering theoretical analyses, variants, relevant preference datasets, and applications. Specifically, we categorize recent studies on DPO based on key research questions to provide a thorough understanding of DPO's current landscape. Additionally, we propose several future research directions to offer insights on model alignment for the research community.


[500] 2410.15597

A Comprehensive Comparative Study of Individual ML Models and Ensemble Strategies for Network Intrusion Detection Systems

The escalating frequency of intrusions in networked systems has spurred the exploration of new research avenues in devising artificial intelligence (AI) techniques for intrusion detection systems (IDS). Various AI techniques have been used to automate network intrusion detection tasks, yet each model possesses distinct strengths and weaknesses. Selecting the optimal model for a given dataset can pose a challenge, necessitating the exploration of ensemble methods to enhance generalization and applicability in network intrusion detection. This paper addresses this gap by conducting a comprehensive evaluation of diverse individual models and both simple and advanced ensemble methods for network IDS. We introduce an ensemble learning framework tailored for assessing individual models and ensemble methods in network intrusion detection tasks. Our framework encompasses the loading of input datasets, training of individual models and ensemble methods, and the generation of evaluation metrics. Furthermore, we incorporate all features across individual models and ensemble techniques. The study presents results for our framework, encompassing 14 methods, including various bagging, stacking, blending, and boosting techniques applied to multiple base learners such as decision trees, neural networks, and among others. We evaluate the framework using two distinct network intrusion datasets, RoEduNet-SIMARGL2021 and CICIDS-2017, each possessing unique characteristics. Additionally, we categorize AI models based on their performances on our evaluation metrics and via their confusion matrices. Our assessment demonstrates the efficacy of learning across most setups explored in this study. Furthermore, we contribute to the community by releasing our source codes, providing a foundational ensemble learning framework for network intrusion detection.


[501] 2410.15600

Patrol Security Game: Defending Against Adversary with Freedom in Attack Timing, Location, and Duration

We explored the Patrol Security Game (PSG), a robotic patrolling problem modeled as an extensive-form Stackelberg game, where the attacker determines the timing, location, and duration of their attack. Our objective is to devise a patrolling schedule with an infinite time horizon that minimizes the attacker's payoff. We demonstrated that PSG can be transformed into a combinatorial minimax problem with a closed-form objective function. By constraining the defender's strategy to a time-homogeneous first-order Markov chain (i.e., the patroller's next move depends solely on their current location), we proved that the optimal solution in cases of zero penalty involves either minimizing the expected hitting time or return time, depending on the attacker model, and that these solutions can be computed efficiently. Additionally, we observed that increasing the randomness in the patrol schedule reduces the attacker's expected payoff in high-penalty cases. However, the minimax problem becomes non-convex in other scenarios. To address this, we formulated a bi-criteria optimization problem incorporating two objectives: expected maximum reward and entropy. We proposed three graph-based algorithms and one deep reinforcement learning model, designed to efficiently balance the trade-off between these two objectives. Notably, the third algorithm can identify the optimal deterministic patrol schedule, though its runtime grows exponentially with the number of patrol spots. Experimental results validate the effectiveness and scalability of our solutions, demonstrating that our approaches outperform state-of-the-art baselines on both synthetic and real-world crime datasets.


[502] 2410.15601

All You Need is an Improving Column: Enhancing Column Generation for Parallel Machine Scheduling via Transformers

We present a neural network-enhanced column generation (CG) approach for a parallel machine scheduling problem. The proposed approach utilizes an encoder-decoder attention model, namely the transformer and pointer architectures, to develop job sequences with negative reduced cost and thus generate columns to add to the master problem. By training the neural network offline and using it in inference mode to predict negative reduced costs columns, we achieve significant computational time savings compared to dynamic programming (DP). Since the exact DP procedure is used to verify that no further columns with negative reduced cost can be identified at termination, the optimality guarantee of the original CG procedure is preserved. For small to medium-sized instances, our approach achieves an average 45% reduction in computation time compared to solving the subproblems with DP. Furthermore, the model generalizes not only to unseen, larger problem instances from the same probability distribution but also to instances from different probability distributions than those presented at training time. For large-sized instances, the proposed approach achieves an 80% improvement in the objective value in under 500 seconds, demonstrating both its scalability and efficiency.


[503] 2410.15602

P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving

Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted driving behaviors. Leveraging the Pretrained YOLOv8 (P-YOLOv8) model, a real-time object detection system is introduced, optimized for both speed and accuracy. This approach addresses the computational constraints and latency limitations commonly associated with conventional detection models. The study demonstrates P-YOLOv8 versatility in both object detection and image classification tasks using the Distracted Driver Detection dataset from State Farm, which includes 22,424 images across ten behavior categories. Our research explores the application of P-YOLOv8 for image classification, evaluating its performance compared to deep learning models such as VGG16, VGG19, and ResNet. Some traditional models often struggle with low accuracy, while others achieve high accuracy but come with high computational costs and slow detection speeds, making them unsuitable for real-time applications. P-YOLOv8 addresses these issues by achieving competitive accuracy with significant computational cost and efficiency advantages. In particular, P-YOLOv8 generates a lightweight model with a size of only 2.84 MB and a lower number of parameters, totaling 1,451,098, due to its innovative architecture. It achieves a high accuracy of 99.46 percent with this small model size, opening new directions for deployment on inexpensive and small embedded devices using Tiny Machine Learning (TinyML). The experimental results show robust performance, making P-YOLOv8 a cost-effective solution for real-time deployment. This study provides a detailed analysis of P-YOLOv8's architecture, training, and performance benchmarks, highlighting its potential for real-time use in detecting distracted driving.


[504] 2410.15605

Deep Active Learning with Manifold-preserving Trajectory Sampling

Active learning (AL) is for optimizing the selection of unlabeled data for annotation (labeling), aiming to enhance model performance while minimizing labeling effort. The key question in AL is which unlabeled data should be selected for annotation. Existing deep AL methods arguably suffer from bias incurred by clabeled data, which takes a much lower percentage than unlabeled data in AL context. We observe that such an issue is severe in different types of data, such as vision and non-vision data. To address this issue, we propose a novel method, namely Manifold-Preserving Trajectory Sampling (MPTS), aiming to enforce the feature space learned from labeled data to represent a more accurate manifold. By doing so, we expect to effectively correct the bias incurred by labeled data, which can cause a biased selection of unlabeled data. Despite its focus on manifold, the proposed method can be conveniently implemented by performing distribution mapping with MMD (Maximum Mean Discrepancies). Extensive experiments on various vision and non-vision benchmark datasets demonstrate the superiority of our method. Our source code can be found here.


[505] 2410.15607

Reinforced Imitative Trajectory Planning for Urban Automated Driving

Reinforcement learning (RL) faces challenges in trajectory planning for urban automated driving due to the poor convergence of RL and the difficulty in designing reward functions. The convergence problem is alleviated by combining RL with supervised learning. However, most existing approaches only reason one step ahead and lack the capability to plan for multiple future steps. Besides, although inverse reinforcement learning holds promise for solving the reward function design issue, existing methods for automated driving impose a linear structure assumption on reward functions, making them difficult to apply to urban automated driving. In light of these challenges, this paper proposes a novel RL-based trajectory planning method that integrates RL with imitation learning to enable multi-step planning. Furthermore, a transformer-based Bayesian reward function is developed, providing effective reward signals for RL in urban scenarios. Moreover, a hybrid-driven trajectory planning framework is proposed to enhance safety and interpretability. The proposed methods were validated on the large-scale real-world urban automated driving nuPlan dataset. The results demonstrated the significant superiority of the proposed methods over the baselines in terms of the closed-loop metrics. The code is available at https://github.com/Zigned/nuplan_zigned.


[506] 2410.15608

Moonshine: Speech Recognition for Live Transcription and Voice Commands

This paper introduces Moonshine, a family of speech recognition models optimized for live transcription and voice command processing. Moonshine is based on an encoder-decoder transformer architecture and employs Rotary Position Embedding (RoPE) instead of traditional absolute position embeddings. The model is trained on speech segments of various lengths, but without using zero-padding, leading to greater efficiency for the encoder during inference time. When benchmarked against OpenAI's Whisper tiny.en, Moonshine Tiny demonstrates a 5x reduction in compute requirements for transcribing a 10-second speech segment while incurring no increase in word error rates across standard evaluation datasets. These results highlight Moonshine's potential for real-time and resource-constrained applications.


[507] 2410.15609

Interventional Speech Noise Injection for ASR Generalizable Spoken Language Understanding

Recently, pre-trained language models (PLMs) have been increasingly adopted in spoken language understanding (SLU). However, automatic speech recognition (ASR) systems frequently produce inaccurate transcriptions, leading to noisy inputs for SLU models, which can significantly degrade their performance. To address this, our objective is to train SLU models to withstand ASR errors by exposing them to noises commonly observed in ASR systems, referred to as ASR-plausible noises. Speech noise injection (SNI) methods have pursued this objective by introducing ASR-plausible noises, but we argue that these methods are inherently biased towards specific ASR systems, or ASR-specific noises. In this work, we propose a novel and less biased augmentation method of introducing the noises that are plausible to any ASR system, by cutting off the non-causal effect of noises. Experimental results and analyses demonstrate the effectiveness of our proposed methods in enhancing the robustness and generalizability of SLU models against unseen ASR systems by introducing more diverse and plausible ASR noises in advance.


[508] 2410.15610

On The Global Convergence Of Online RLHF With Neural Parametrization

The importance of Reinforcement Learning from Human Feedback (RLHF) in aligning large language models (LLMs) with human values cannot be overstated. RLHF is a three-stage process that includes supervised fine-tuning (SFT), reward learning, and policy learning. Although there are several offline and online approaches to aligning LLMs, they often suffer from distribution shift issues. These issues arise from the inability to accurately capture the distributional interdependence between the reward learning and policy learning stages. Consequently, this has led to various approximated approaches, but the theoretical insights and motivations remain largely limited to tabular settings, which do not hold in practice. This gap between theoretical insights and practical implementations is critical. It is challenging to address this gap as it requires analyzing the performance of AI alignment algorithms in neural network-parameterized settings. Although bi-level formulations have shown promise in addressing distribution shift issues, they suffer from the hyper-gradient problem, and current approaches lack efficient algorithms to solve this. In this work, we tackle these challenges employing the bi-level formulation laid out in Kwon et al. (2024) along with the assumption \emph{Weak Gradient Domination} to demonstrate convergence in an RLHF setup, obtaining a sample complexity of $\epsilon^{-\frac{7}{2}}$ . Our key contributions are twofold: (i) We propose a bi-level formulation for AI alignment in parameterized settings and introduce a first-order approach to solve this problem. (ii) We analyze the theoretical convergence rates of the proposed algorithm and derive state-of-the-art bounds. To the best of our knowledge, this is the first work to establish convergence rate bounds and global optimality for the RLHF framework in neural network-parameterized settings.


[509] 2410.15612

In-Trajectory Inverse Reinforcement Learning: Learn Incrementally From An Ongoing Trajectory

Inverse reinforcement learning (IRL) aims to learn a reward function and a corresponding policy that best fit the demonstrated trajectories of an expert. However, current IRL works cannot learn incrementally from an ongoing trajectory because they have to wait to collect at least one complete trajectory to learn. To bridge the gap, this paper considers the problem of learning a reward function and a corresponding policy while observing the initial state-action pair of an ongoing trajectory and keeping updating the learned reward and policy when new state-action pairs of the ongoing trajectory are observed. We formulate this problem as an online bi-level optimization problem where the upper level dynamically adjusts the learned reward according to the newly observed state-action pairs with the help of a meta-regularization term, and the lower level learns the corresponding policy. We propose a novel algorithm to solve this problem and guarantee that the algorithm achieves sub-linear local regret $O(\sqrt{T}+\log T+\sqrt{T}\log T)$. If the reward function is linear, we prove that the proposed algorithm achieves sub-linear regret $O(\log T)$. Experiments are used to validate the proposed algorithm.


[510] 2410.15613

Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identificatio

Due to some complex factors (e.g., occlusion, pose variation and diverse camera perspectives), extracting stronger feature representation in person re-identification remains a challenging task. In this paper, we proposed a novel self-supervision and supervision combining transformer-based person re-identification framework, namely SSSC-TransReID. Different from the general transformer-based person re-identification models, we designed a self-supervised contrastive learning branch, which can enhance the feature representation for person re-identification without negative samples or additional pre-training. In order to train the contrastive learning branch, we also proposed a novel random rectangle mask strategy to simulate the occlusion in real scenes, so as to enhance the feature representation for occlusion. Finally, we utilized the joint-training loss function to integrate the advantages of supervised learning with ID tags and self-supervised contrastive learning without negative samples, which can reinforce the ability of our model to excavate stronger discriminative features, especially for occlusion. Extensive experimental results on several benchmark datasets show our proposed model obtains superior Re-ID performance consistently and outperforms the state-of-the-art ReID methods by large margins on the mean average accuracy (mAP) and Rank-1 accuracy.


[511] 2410.15615

Joint Top-Down and Bottom-Up Frameworks for 3D Visual Grounding

This paper tackles the challenging task of 3D visual grounding-locating a specific object in a 3D point cloud scene based on text descriptions. Existing methods fall into two categories: top-down and bottom-up methods. Top-down methods rely on a pre-trained 3D detector to generate and select the best bounding box, resulting in time-consuming processes. Bottom-up methods directly regress object bounding boxes with coarse-grained features, producing worse results. To combine their strengths while addressing their limitations, we propose a joint top-down and bottom-up framework, aiming to enhance the performance while improving the efficiency. Specifically, in the first stage, we propose a bottom-up based proposal generation module, which utilizes lightweight neural layers to efficiently regress and cluster several coarse object proposals instead of using a complex 3D detector. Then, in the second stage, we introduce a top-down based proposal consolidation module, which utilizes graph design to effectively aggregate and propagate the query-related object contexts among the generated proposals for further refinement. By jointly training these two modules, we can avoid the inherent drawbacks of the complex proposals in the top-down framework and the coarse proposals in the bottom-up framework. Experimental results on the ScanRefer benchmark show that our framework is able to achieve the state-of-the-art performance.


[512] 2410.15616

Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery

Gene-gene interactions play a crucial role in the manifestation of complex human diseases. Uncovering significant gene-gene interactions is a challenging task. Here, we present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth noteworthy gene-gene interactions. Despite the efficacy of Transformer models, their parameter intensity presents a bottleneck in data ingestion, hindering data efficiency. To mitigate this, we introduce a novel weighted diversified sampling algorithm. This algorithm computes the diversity score of each data sample in just two passes of the dataset, facilitating efficient subset generation for interaction discovery. Our extensive experimentation demonstrates that by sampling a mere 1\% of the single-cell dataset, we achieve performance comparable to that of utilizing the entire dataset.


[513] 2410.15617

Long-time Integration of Nonlinear Wave Equations with Neural Operators

Neural operators have shown promise in solving many types of Partial Differential Equations (PDEs). They are significantly faster compared to traditional numerical solvers once they have been trained with a certain amount of observed data. However, their numerical performance in solving time-dependent PDEs, particularly in long-time prediction of dynamic systems, still needs improvement. In this paper, we focus on solving the long-time integration of nonlinear wave equations via neural operators by replacing the initial condition with the prediction in a recurrent manner. Given limited observed temporal trajectory data, we utilize some intrinsic features of these nonlinear wave equations, such as conservation laws and well-posedness, to improve the algorithm design and reduce accumulated error. Our numerical experiments examine these improvements in the Korteweg-de Vries (KdV) equation, the sine-Gordon equation, and a semilinear wave equation on the irregular domain.


[514] 2410.15618

Erasing Undesirable Concepts in Diffusion Models with Adversarial Preservation

Diffusion models excel at generating visually striking content from text but can inadvertently produce undesirable or harmful content when trained on unfiltered internet data. A practical solution is to selectively removing target concepts from the model, but this may impact the remaining concepts. Prior approaches have tried to balance this by introducing a loss term to preserve neutral content or a regularization term to minimize changes in the model parameters, yet resolving this trade-off remains challenging. In this work, we propose to identify and preserving concepts most affected by parameter changes, termed as \textit{adversarial concepts}. This approach ensures stable erasure with minimal impact on the other concepts. We demonstrate the effectiveness of our method using the Stable Diffusion model, showing that it outperforms state-of-the-art erasure methods in eliminating unwanted content while maintaining the integrity of other unrelated elements. Our code is available at \url{https://github.com/tuananhbui89/Erasing-Adversarial-Preservation}.


[515] 2410.15620

Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation

Due to the rising awareness of privacy protection and the voluminous scale of speech data, it is becoming infeasible for Automatic Speech Recognition (ASR) system developers to train the acoustic model with complete data as before. For example, the data may be owned by different curators, and it is not allowed to share with others. In this paper, we propose a novel paradigm to solve salient problems plaguing the ASR field. In the first stage, multiple acoustic models are trained based upon different subsets of the complete speech data, while in the second phase, two novel algorithms are utilized to generate a high-quality acoustic model based upon those trained on data subsets. We first propose the Genetic Merge Algorithm (GMA), which is a highly specialized algorithm for optimizing acoustic models but suffers from low efficiency. We further propose the SGD-Based Optimizational Merge Algorithm (SOMA), which effectively alleviates the efficiency bottleneck of GMA and maintains superior model accuracy. Extensive experiments on public data show that the proposed methods can significantly outperform the state-of-the-art. Furthermore, we introduce Shapley Value to estimate the contribution score of the trained models, which is useful for evaluating the effectiveness of the data and providing fair incentives to their curators.


[516] 2410.15621

DRIM-ANN: An Approximate Nearest Neighbor Search Engine based on Commercial DRAM-PIMs

Approximate Nearest Neighbor Search (ANNS), which enables efficient semantic similarity search in large datasets, has become a fundamental component of critical applications such as information retrieval and retrieval-augmented generation (RAG). However, ANNS is a well-known I/O-intensive algorithm with a low compute-to-I/O ratio, often requiring massive storage due to the large volume of high-dimensional data. This leads to I/O bottlenecks on CPUs and memory limitations on GPUs. DRAM-based Processing-in-Memory (DRAM-PIM) architecture, which offers high bandwidth, large-capacity memory, and the ability to perform efficient computation in or near the data, presents a promising solution for ANNS. In this work, we investigate the use of commercial DRAM-PIM for ANNS for the first time and propose DRIM-ANN, an optimized ANNS engine based on DRAM-PIMs from UPMEM. Notably, given that the target DRAM-PIM exhibits an even lower compute-to-I/O ratio than basic ANNS, we leverage lookup tables (LUTs) to replace more multiplications with I/O operations. We then systematically tune ANNS to search optimized configurations with lower computational load, aligning the compute-to-I/O ratio of ANNS with that of DRAM-PIMs while maintaining accuracy constraints. Building on this tuned ANNS algorithm, we further explore implementation optimizations to fully utilize the two thousand parallel processing units with private local memory in DRAM-PIMs. To address the load imbalance caused by ANNS requests distributed across different clusters of large datasets, we propose a load-balancing strategy that combines static data layout optimization with dynamic runtime request scheduling. Experimental results on representative datasets show that DRIM-ANN achieves an average performance speedup of 2.92x compared to a 32-thread CPU counterpart.


[517] 2410.15623

Guardians of Discourse: Evaluating LLMs on Multilingual Offensive Language Detection

Identifying offensive language is essential for maintaining safety and sustainability in the social media era. Though large language models (LLMs) have demonstrated encouraging potential in social media analytics, they lack thorough evaluation when in offensive language detection, particularly in multilingual environments. We for the first time evaluate multilingual offensive language detection of LLMs in three languages: English, Spanish, and German with three LLMs, GPT-3.5, Flan-T5, and Mistral, in both monolingual and multilingual settings. We further examine the impact of different prompt languages and augmented translation data for the task in non-English contexts. Furthermore, we discuss the impact of the inherent bias in LLMs and the datasets in the mispredictions related to sensitive topics.


[518] 2410.15624

Test-time Adaptation for Cross-modal Retrieval with Query Shift

The success of most existing cross-modal retrieval methods heavily relies on the assumption that the given queries follow the same distribution of the source domain. However, such an assumption is easily violated in real-world scenarios due to the complexity and diversity of queries, thus leading to the query shift problem. Specifically, query shift refers to the online query stream originating from the domain that follows a different distribution with the source one. In this paper, we observe that query shift would not only diminish the uniformity (namely, within-modality scatter) of the query modality but also amplify the gap between query and gallery modalities. Based on the observations, we propose a novel method dubbed Test-time adaptation for Cross-modal Retrieval (TCR). In brief, TCR employs a novel module to refine the query predictions (namely, retrieval results of the query) and a joint objective to prevent query shift from disturbing the common space, thus achieving online adaptation for the cross-modal retrieval models with query shift. Expensive experiments demonstrate the effectiveness of the proposed TCR against query shift. The code will be released upon acceptance.


[519] 2410.15625

Improving Parallel Program Performance Through DSL-Driven Code Generation with LLM Optimizers

Mapping computations to processors and assigning data to memory are critical for maximizing performance in parallel programming. These mapping decisions are managed through the development of specialized low-level system code, called mappers, crafted by performance engineers. Each mapper is tailored to a specific application and optimized for the underlying machine architecture, a process that requires days of refinement and tuning from an expert. Despite advances in system research, automating mapper generation remains a challenge due to the complexity of making millions of decisions to find the optimal solution and generate the solution as code. We introduce an approach that leverages recent advances in LLM-based optimizers for mapper design. In under ten minutes, our method automatically discovers mappers that surpass human expert designs in scientific applications by up to 1.34X speedup. For parallel matrix multiplication algorithms, our mapper achieves up to 1.31X of the expert-designed solution. To achieve this, we simplify the complexity of low-level code generation by introducing a domain-specific language (DSL) that abstracts the low-level system programming details and defines a structured search space for LLMs to explore. To maximize the application performance, we use an LLM optimizer to improve an agentic system that generates the mapper code. As a result, this approach significantly reduces the workload for performance engineers while achieving substantial performance gains across diverse applications. Finally, our results demonstrate the effectiveness of LLM-based optimization in system design and suggest its potential for addressing other complex system challenges.


[520] 2410.15629

Fully Explicit Dynamic Gaussian Splatting

3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations. Unfortunately, the benefits of the prior and representation do not involve novel view synthesis for dynamic motions. Ironically, this is because the main barrier is the reliance on them, which requires increasing training and rendering times to account for dynamic motions. In this paper, we design a Explicit 4D Gaussian Splatting(Ex4DGS). Our key idea is to firstly separate static and dynamic Gaussians during training, and to explicitly sample positions and rotations of the dynamic Gaussians at sparse timestamps. The sampled positions and rotations are then interpolated to represent both spatially and temporally continuous motions of objects in dynamic scenes as well as reducing computational cost. Additionally, we introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence. We initially train Ex4DGS using short timestamps and progressively extend timestamps, which makes it work well with a few point clouds. The point-backtracking is used to quantify the cumulative error of each Gaussian over time, enabling the detection and removal of erroneous Gaussians in dynamic scenes. Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.


[521] 2410.15631

Security of Language Models for Code: A Systematic Literature Review

Language models for code (CodeLMs) have emerged as powerful tools for code-related tasks, outperforming traditional methods and standard machine learning approaches. However, these models are susceptible to security vulnerabilities, drawing increasing research attention from domains such as software engineering, artificial intelligence, and cybersecurity. Despite the growing body of research focused on the security of CodeLMs, a comprehensive survey in this area remains absent. To address this gap, we systematically review 67 relevant papers, organizing them based on attack and defense strategies. Furthermore, we provide an overview of commonly used language models, datasets, and evaluation metrics, and highlight open-source tools and promising directions for future research in securing CodeLMs.


[522] 2410.15633

Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement

The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.


[523] 2410.15636

LucidFusion: Generating 3D Gaussians with Arbitrary Unposed Images

Recent large reconstruction models have made notable progress in generating high-quality 3D objects from single images. However, these methods often struggle with controllability, as they lack information from multiple views, leading to incomplete or inconsistent 3D reconstructions. To address this limitation, we introduce LucidFusion, a flexible end-to-end feed-forward framework that leverages the Relative Coordinate Map (RCM). Unlike traditional methods linking images to 3D world thorough pose, LucidFusion utilizes RCM to align geometric features coherently across different views, making it highly adaptable for 3D generation from arbitrary, unposed images. Furthermore, LucidFusion seamlessly integrates with the original single-image-to-3D pipeline, producing detailed 3D Gaussians at a resolution of $512 \times 512$, making it well-suited for a wide range of applications.


[524] 2410.15637

Large Deviations and Improved Mean-squared Error Rates of Nonlinear SGD: Heavy-tailed Noise and Power of Symmetry

We study large deviations and mean-squared error (MSE) guarantees of a general framework of nonlinear stochastic gradient methods in the online setting, in the presence of heavy-tailed noise. Unlike existing works that rely on the closed form of a nonlinearity (typically clipping), our framework treats the nonlinearity in a black-box manner, allowing us to provide unified guarantees for a broad class of bounded nonlinearities, including many popular ones, like sign, quantization, normalization, as well as component-wise and joint clipping. We provide several strong results for a broad range of step-sizes in the presence of heavy-tailed noise with symmetric probability density function, positive in a neighbourhood of zero and potentially unbounded moments. In particular, for non-convex costs we provide a large deviation upper bound for the minimum norm-squared of gradients, showing an asymptotic tail decay on an exponential scale, at a rate $\sqrt{t} / \log(t)$. We establish the accompanying rate function, showing an explicit dependence on the choice of step-size, nonlinearity, noise and problem parameters. Next, for non-convex costs and the minimum norm-squared of gradients, we derive the optimal MSE rate $\widetilde{\mathcal{O}}(t^{-1/2})$. Moreover, for strongly convex costs and the last iterate, we provide an MSE rate that can be made arbitrarily close to the optimal rate $\mathcal{O}(t^{-1})$, improving on the state-of-the-art results in the presence of heavy-tailed noise. Finally, we establish almost sure convergence of the minimum norm-squared of gradients, providing an explicit rate, which can be made arbitrarily close to $o(t^{-1/4})$.


[525] 2410.15639

Can Large Language Models Invent Algorithms to Improve Themselves?

Large Language Models (LLMs) have shown remarkable performance improvements and are rapidly gaining adoption in industry. However, the methods for improving LLMs are still designed by humans, which restricts the invention of new model-improving algorithms to human expertise and imagination. To address this, we propose the Self-Developing framework, which enables LLMs to autonomously generate and learn model-improvement algorithms. In this framework, the seed model generates, applies, and evaluates model-improving algorithms, continuously improving both the seed model and the algorithms themselves. In mathematical reasoning tasks, Self-Developing not only creates models that surpass the seed model but also consistently outperforms models created using human-designed algorithms. Additionally, these LLM-discovered algorithms demonstrate strong effectiveness, including transferability to out-of-domain models.


[526] 2410.15640

Deep Graph Attention Networks

Graphs are useful for representing various realworld objects. However, graph neural networks (GNNs) tend to suffer from over-smoothing, where the representations of nodes of different classes become similar as the number of layers increases, leading to performance degradation. A method that does not require protracted tuning of the number of layers is needed to effectively construct a graph attention network (GAT), a type of GNN. Therefore, we introduce a method called "DeepGAT" for predicting the class to which nodes belong in a deep GAT. It avoids over-smoothing in a GAT by ensuring that nodes in different classes are not similar at each layer. Using DeepGAT to predict class labels, a 15-layer network is constructed without the need to tune the number of layers. DeepGAT prevented over-smoothing and achieved a 15-layer GAT with similar performance to a 2-layer GAT, as indicated by the similar attention coefficients. DeepGAT enables the training of a large network to acquire similar attention coefficients to a network with few layers. It avoids the over-smoothing problem and obviates the need to tune the number of layers, thus saving time and enhancing GNN performance.


[527] 2410.15641

SMILES-Prompting: A Novel Approach to LLM Jailbreak Attacks in Chemical Synthesis

The increasing integration of large language models (LLMs) across various fields has heightened concerns about their potential to propagate dangerous information. This paper specifically explores the security vulnerabilities of LLMs within the field of chemistry, particularly their capacity to provide instructions for synthesizing hazardous substances. We evaluate the effectiveness of several prompt injection attack methods, including red-teaming, explicit prompting, and implicit prompting. Additionally, we introduce a novel attack technique named SMILES-prompting, which uses the Simplified Molecular-Input Line-Entry System (SMILES) to reference chemical substances. Our findings reveal that SMILES-prompting can effectively bypass current safety mechanisms. These findings highlight the urgent need for enhanced domain-specific safeguards in LLMs to prevent misuse and improve their potential for positive social impact.


[528] 2410.15642

Resource-Efficient Medical Report Generation using Large Language Models

Medical report generation is the task of automatically writing radiology reports for chest X-ray images. Manually composing these reports is a time-consuming process that is also prone to human errors. Generating medical reports can therefore help reduce the burden on radiologists. In other words, we can promote greater clinical automation in the medical domain. In this work, we propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation. We introduce a lightweight solution that achieves better or comparative performance as compared to previous solutions on the task of medical report generation. We conduct extensive experiments exploring different model sizes and enhancement approaches, such as prefix tuning to improve the text generation abilities of the LLMs. We evaluate our approach on a prominent large-scale radiology report dataset - MIMIC-CXR. Our results demonstrate the capability of our resource-efficient framework to generate patient-specific reports with strong medical contextual understanding and high precision.


[529] 2410.15644

Procedural Content Generation in Games: A Survey with Insights on Emerging LLM Integration

Procedural Content Generation (PCG) is defined as the automatic creation of game content using algorithms. PCG has a long history in both the game industry and the academic world. It can increase player engagement and ease the work of game designers. While recent advances in deep learning approaches in PCG have enabled researchers and practitioners to create more sophisticated content, it is the arrival of Large Language Models (LLMs) that truly disrupted the trajectory of PCG advancement. This survey explores the differences between various algorithms used for PCG, including search-based methods, machine learning-based methods, other frequently used methods (e.g., noise functions), and the newcomer, LLMs. We also provide a detailed discussion on combined methods. Furthermore, we compare these methods based on the type of content they generate and the publication dates of their respective papers. Finally, we identify gaps in the existing academic work and suggest possible directions for future research.


[530] 2410.15645

Boosting Jailbreak Transferability for Large Language Models

Large language models have drawn significant attention to the challenge of safe alignment, especially regarding jailbreak attacks that circumvent security measures to produce harmful content. To address the limitations of existing methods like GCG, which perform well in single-model attacks but lack transferability, we propose several enhancements, including a scenario induction template, optimized suffix selection, and the integration of re-suffix attack mechanism to reduce inconsistent outputs. Our approach has shown superior performance in extensive experiments across various benchmarks, achieving nearly 100% success rates in both attack execution and transferability. Notably, our method has won the online first place in the AISG-hosted Global Challenge for Safe and Secure LLMs.


[531] 2410.15648

Linking Model Intervention to Causal Interpretation in Model Explanation

Intervention intuition is often used in model explanation where the intervention effect of a feature on the outcome is quantified by the difference of a model prediction when the feature value is changed from the current value to the baseline value. Such a model intervention effect of a feature is inherently association. In this paper, we will study the conditions when an intuitive model intervention effect has a causal interpretation, i.e., when it indicates whether a feature is a direct cause of the outcome. This work links the model intervention effect to the causal interpretation of a model. Such an interpretation capability is important since it indicates whether a machine learning model is trustworthy to domain experts. The conditions also reveal the limitations of using a model intervention effect for causal interpretation in an environment with unobserved features. Experiments on semi-synthetic datasets have been conducted to validate theorems and show the potential for using the model intervention effect for model interpretation.


[532] 2410.15650

Voice-Enabled AI Agents can Perform Common Scams

Recent advances in multi-modal, highly capable LLMs have enabled voice-enabled AI agents. These agents are enabling new applications, such as voice-enabled autonomous customer service. However, with all AI capabilities, these new capabilities have the potential for dual use. In this work, we show that voice-enabled AI agents can perform the actions necessary to perform common scams. To do so, we select a list of common scams collected by the government and construct voice-enabled agents with directions to perform these scams. We conduct experiments on our voice-enabled agents and show that they can indeed perform the actions necessary to autonomously perform such scams. Our results raise questions around the widespread deployment of voice-enabled AI agents.


[533] 2410.15651

Understanding and Alleviating Memory Consumption in RLHF for LLMs

Fine-tuning with Reinforcement Learning with Human Feedback (RLHF) is essential for aligning large language models (LLMs). However, RLHF often encounters significant memory challenges. This study is the first to examine memory usage in the RLHF context, exploring various memory management strategies and unveiling the reasons behind excessive memory consumption. Additionally, we introduce a simple yet effective approach that substantially reduces the memory required for RLHF fine-tuning.


[534] 2410.15653

Opportunities and Challenges of Generative-AI in Finance

Machine Learning and data mining have created widespread impact across various domains. However, these techniques are limited in their ability to reason, understand and generalize w.r.t language specific tasks. The aforementioned challenges were overcome, with the advancement of LLMs/Gen-AI. Gen-AI techniques are able to improve understanding of context and nuances in language modeling, translation between languages, handle large volumes of data, provide fast, low-latency responses and can be fine-tuned for various tasks and domains. In this manuscript, we present a comprehensive overview of the applications of Gen-AI techniques in the finance domain. In particular, we present the opportunities and challenges associated with the usage of Gen-AI techniques in finance. We also illustrate the various methodologies which can be used to train Gen-AI and present the various application areas of Gen-AI techniques in the finance ecosystem. To the best of our knowledge, this work represents the most comprehensive summarization of Gen-AI techniques within the financial domain. The analysis is designed for a deep overview of areas marked for substantial advancement while simultaneously pin-point those warranting future prioritization. We also hope that this work would serve as a conduit between finance and other domains, thus fostering the cross-pollination of innovative concepts and practices.


[535] 2410.15655

Accounting for Missing Covariates in Heterogeneous Treatment Estimation

Many applications of causal inference require using treatment effects estimated on a study population to make decisions in a separate target population. We consider the challenging setting where there are covariates that are observed in the target population that were not seen in the original study. Our goal is to estimate the tightest possible bounds on heterogeneous treatment effects conditioned on such newly observed covariates. We introduce a novel partial identification strategy based on ideas from ecological inference; the main idea is that estimates of conditional treatment effects for the full covariate set must marginalize correctly when restricted to only the covariates observed in both populations. Furthermore, we introduce a bias-corrected estimator for these bounds and prove that it enjoys fast convergence rates and statistical guarantees (e.g., asymptotic normality). Experimental results on both real and synthetic data demonstrate that our framework can produce bounds that are much tighter than would otherwise be possible.


[536] 2410.15656

LightFusionRec: Lightweight Transformers-Based Cross-Domain Recommendation Model

This paper presents LightFusionRec, a novel lightweight cross-domain recommendation system that integrates DistilBERT for textual feature extraction and FastText for genre embedding. Important issues in recommendation systems, such as data sparsity, computational efficiency, and cold start issues, are addressed in methodology. LightFusionRec uses a small amount of information to produce precise and contextually relevant recommendations for many media formats by fusing genre vector embedding with natural language processing algorithms. Tests conducted on extensive movie and book datasets show notable enhancements in suggestion quality when compared to conventional methods. Because of its lightweight design, the model can be used for a variety of purposes and allows for ondevice inference. LightFusionRec is a noteworthy development in cross-domain recommendation systems, providing accurate and scalable recommendations to improve user experience on digital content platforms.


[537] 2410.15657

CL-HOI: Cross-Level Human-Object Interaction Distillation from Vision Large Language Models

Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels.


[538] 2410.15658

Calibration of ordinal regression networks

Recent studies have shown that deep neural networks are not well-calibrated and produce over-confident predictions. The miscalibration issue primarily stems from the minimization of cross-entropy, which aims to align predicted softmax probabilities with one-hot labels. In ordinal regression tasks, this problem is compounded by an additional challenge: the expectation that softmax probabilities should exhibit unimodal distribution is not met with cross-entropy. Rather, the ordinal regression literature has focused on unimodality and overlooked calibration. To address these issues, we propose a novel loss function that introduces order-aware calibration, ensuring that prediction confidence adheres to ordinal relationships between classes. It incorporates soft ordinal encoding and label-smoothing-based regularization to enforce both calibration and unimodality. Extensive experiments across three popular ordinal regression benchmarks demonstrate that our approach achieves state-of-the-art calibration without compromising accuracy.


[539] 2410.15659

Decentralized Hybrid Precoding for Massive MU-MIMO ISAC

Integrated sensing and communication (ISAC) is a very promising technology designed to provide both high rate communication capabilities and sensing capabilities. However, in Massive Multi User Multiple-Input Multiple-Output (Massive MU MIMO-ISAC) systems, the dense user access creates a serious multi-user interference (MUI) problem, leading to degradation of communication performance. To alleviate this problem, we propose a decentralized baseband processing (DBP) precoding method. We first model the MUI of dense user scenarios with minimizing Cramer-Rao bound (CRB) as an objective function.Hybrid precoding is an attractive ISAC technique, and hybrid precoding using Partially Connected Structures (PCS) can effectively reduce hardware cost and power consumption. We mitigate the MUI between dense users based on ThomlinsonHarashima Precoding (THP). We demonstrate the effectiveness of the proposed method through simulation experiments. Compared with the existing methods, it can effectively improve the communication data rates and energy efficiency in dense user access scenario, and reduce the hardware complexity of Massive MU MIMO-ISAC systems. The experimental results demonstrate the usefulness of our method for improving the MUI problem in ISAC systems for dense user access scenarios.


[540] 2410.15660

SPARC: Prediction-Based Safe Control for Coupled Controllable and Uncontrollable Agents with Conformal Predictions

We investigate the problem of safe control synthesis for systems operating in environments with uncontrollable agents whose dynamics are unknown but coupled with those of the controlled system. This scenario naturally arises in various applications, such as autonomous driving and human-robot collaboration, where the behavior of uncontrollable agents, like pedestrians, cannot be directly controlled but is influenced by the actions of the autonomous vehicle or robot. In this paper, we present SPARC (Safe Prediction-Based Robust Controller for Coupled Agents), a novel framework designed to ensure safe control in the presence of coupled uncontrollable agents. SPARC leverages conformal prediction to quantify uncertainty in data-driven prediction of agent behavior. Particularly, we introduce a joint distribution-based approach to account for the coupled dynamics of the controlled system and uncontrollable agents. By integrating the control barrier function (CBF) technique, SPARC provides provable safety guarantees at a high confidence level. We illustrate our framework with a case study involving an autonomous driving scenario with walking pedestrians.


[541] 2410.15661

Scalable Data Ablation Approximations for Language Models through Modular Training and Merging

Training data compositions for Large Language Models (LLMs) can significantly affect their downstream performance. However, a thorough data ablation study exploring large sets of candidate data mixtures is typically prohibitively expensive since the full effect is seen only after training the models; this can lead practitioners to settle for sub-optimal data mixtures. We propose an efficient method for approximating data ablations which trains individual models on subsets of a training corpus and reuses them across evaluations of combinations of subsets. In continued pre-training experiments, we find that, given an arbitrary evaluation set, the perplexity score of a single model trained on a candidate set of data is strongly correlated with perplexity scores of parameter averages of models trained on distinct partitions of that data. From this finding, we posit that researchers and practitioners can conduct inexpensive simulations of data ablations by maintaining a pool of models that were each trained on partitions of a large training corpus, and assessing candidate data mixtures by evaluating parameter averages of combinations of these models. This approach allows for substantial improvements in amortized training efficiency -- scaling only linearly with respect to new data -- by enabling reuse of previous training computation, opening new avenues for improving model performance through rigorous, incremental data assessment and mixing.


[542] 2410.15665

Long Term Memory: The Foundation of AI Self-Evolution

Large language models (LLMs) like GPTs, trained on vast datasets, have demonstrated impressive capabilities in language understanding, reasoning, and planning, achieving human-level performance in various tasks. Most studies focus on enhancing these models by training on ever-larger datasets to build more powerful foundation models. While training stronger models is important, enabling models to evolve during inference is equally crucial, a process we refer to as AI self-evolution. Unlike large-scale training, self-evolution may rely on limited data or interactions. Inspired by the columnar organization of the human cerebral cortex, we hypothesize that AI models could develop cognitive abilities and build internal representations through iterative interactions with their environment. To achieve this, models need long-term memory (LTM) to store and manage processed interaction data. LTM supports self-evolution by representing diverse experiences across environments and agents. In this report, we explore AI self-evolution and its potential to enhance models during inference. We examine LTM's role in lifelong learning, allowing models to evolve based on accumulated interactions. We outline the structure of LTM and the systems needed for effective data retention and representation. We also classify approaches for building personalized models with LTM data and show how these models achieve self-evolution through interaction. Using LTM, our multi-agent framework OMNE achieved first place on the GAIA benchmark, demonstrating LTM's potential for AI self-evolution. Finally, we present a roadmap for future research, emphasizing the importance of LTM for advancing AI technology and its practical applications.


[543] 2410.15667

RAC: Efficient LLM Factuality Correction with Retrieval Augmentation

Large Language Models (LLMs) exhibit impressive results across a wide range of natural language processing (NLP) tasks, yet they can often produce factually incorrect outputs. This paper introduces a simple but effective low-latency post-correction method, \textbf{Retrieval Augmented Correction (RAC)}, aimed at enhancing the factual performance of LLMs without requiring additional fine-tuning. Our method is general and can be used with any instruction-tuned LLM, and has greatly reduced latency compared to prior approaches. RAC decomposes the LLM's output into atomic facts and applies a fine-grained verification and correction process with retrieved content to verify and correct the LLM-generated output. Our extensive experiments show that RAC yields up to 30\% improvements over state-of-the-art baselines across two popular factuality evaluation datasets, validating its efficacy and robustness in both with and without the integration of Retrieval-Augmented Generation (RAG) across different LLMs.\footnote{Our code is at \url{https://github.com/jlab-nlp/Retrieval-Augmented-Correction}}


[544] 2410.15669

Learning to Generate and Evaluate Fact-checking Explanations with Transformers

In an era increasingly dominated by digital platforms, the spread of misinformation poses a significant challenge, highlighting the need for solutions capable of assessing information veracity. Our research contributes to the field of Explainable Artificial Antelligence (XAI) by developing transformer-based fact-checking models that contextualise and justify their decisions by generating human-accessible explanations. Importantly, we also develop models for automatic evaluation of explanations for fact-checking verdicts across different dimensions such as \texttt{(self)-contradiction}, \texttt{hallucination}, \texttt{convincingness} and \texttt{overall quality}. By introducing human-centred evaluation methods and developing specialised datasets, we emphasise the need for aligning Artificial Intelligence (AI)-generated explanations with human judgements. This approach not only advances theoretical knowledge in XAI but also holds practical implications by enhancing the transparency, reliability and users' trust in AI-driven fact-checking systems. Furthermore, the development of our metric learning models is a first step towards potentially increasing efficiency and reducing reliance on extensive manual assessment. Based on experimental results, our best performing generative model \textsc{ROUGE-1} score of 47.77, demonstrating superior performance in generating fact-checking explanations, particularly when provided with high-quality evidence. Additionally, the best performing metric learning model showed a moderately strong correlation with human judgements on objective dimensions such as \texttt{(self)-contradiction and \texttt{hallucination}, achieving a Matthews Correlation Coefficient (MCC) of around 0.7.}


[545] 2410.15674

TALoS: Enhancing Semantic Scene Completion via Test-time Adaptation on the Line of Sight

Semantic Scene Completion (SSC) aims to perform geometric completion and semantic segmentation simultaneously. Despite the promising results achieved by existing studies, the inherently ill-posed nature of the task presents significant challenges in diverse driving scenarios. This paper introduces TALoS, a novel test-time adaptation approach for SSC that excavates the information available in driving environments. Specifically, we focus on that observations made at a certain moment can serve as Ground Truth (GT) for scene completion at another moment. Given the characteristics of the LiDAR sensor, an observation of an object at a certain location confirms both 1) the occupation of that location and 2) the absence of obstacles along the line of sight from the LiDAR to that point. TALoS utilizes these observations to obtain self-supervision about occupancy and emptiness, guiding the model to adapt to the scene in test time. In a similar manner, we aggregate reliable SSC predictions among multiple moments and leverage them as semantic pseudo-GT for adaptation. Further, to leverage future observations that are not accessible at the current time, we present a dual optimization scheme using the model in which the update is delayed until the future observation is available. Evaluations on the SemanticKITTI validation and test sets demonstrate that TALoS significantly improves the performance of the pre-trained SSC model. Our code is available at https://github.com/blue-531/TALoS.


[546] 2410.15678

Revealing and Mitigating the Local Pattern Shortcuts of Mamba

Large language models (LLMs) have advanced significantly due to the attention mechanism, but their quadratic complexity and linear memory demands limit their performance on long-context tasks. Recently, researchers introduced Mamba, an advanced model built upon State Space Models(SSMs) that offers linear complexity and constant memory. Although Mamba is reported to match or surpass the performance of attention-based models, our analysis reveals a performance gap: Mamba excels in tasks that involve localized key information but faces challenges with tasks that require handling distributed key information. Our controlled experiments suggest that this inconsistency arises from Mamba's reliance on local pattern shortcuts, which enable the model to remember local key information within its limited memory but hinder its ability to retain more dispersed information. Therefore, we introduce a global selection module into the Mamba model to address this issue. Experiments on both existing and proposed synthetic tasks, as well as real-world tasks, demonstrate the effectiveness of our method. Notably, with the introduction of only 4M extra parameters, our approach enables the Mamba model(130M) to achieve a significant improvement on tasks with distributed information, increasing its performance from 0 to 80.54 points.


[547] 2410.15681

Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification

Federated learning (FL) enables multiple devices to collaboratively train a global model while maintaining data on local servers. Each device trains the model on its local server and shares only the model updates (i.e., gradient weights) during the aggregation step. A significant challenge in FL is managing the feature distribution of novel, unbalanced data across devices. In this paper, we propose an FL approach using few-shot learning and aggregation of the model weights on a global server. We introduce a dynamic early stopping method to balance out-of-distribution classes based on representation learning, specifically utilizing the maximum mean discrepancy of feature embeddings between local and global models. An exemplary application of FL is orchestrating machine learning models along highways for interference classification based on snapshots from global navigation satellite system (GNSS) receivers. Extensive experiments on four GNSS datasets from two real-world highways and controlled environments demonstrate that our FL method surpasses state-of-the-art techniques in adapting to both novel interference classes and multipath scenarios.


[548] 2410.15682

RANSAC Back to SOTA: A Two-stage Consensus Filtering for Real-time 3D Registration

Correspondence-based point cloud registration (PCR) plays a key role in robotics and computer vision. However, challenges like sensor noises, object occlusions, and descriptor limitations inevitably result in numerous outliers. RANSAC family is the most popular outlier removal solution. However, the requisite iterations escalate exponentially with the outlier ratio, rendering it far inferior to existing methods (SC2PCR [1], MAC [2], etc.) in terms of accuracy or speed. Thus, we propose a two-stage consensus filtering (TCF) that elevates RANSAC to state-of-the-art (SOTA) speed and accuracy. Firstly, one-point RANSAC obtains a consensus set based on length consistency. Subsequently, two-point RANSAC refines the set via angle consistency. Then, three-point RANSAC computes a coarse pose and removes outliers based on transformed correspondence's distances. Drawing on optimizations from one-point and two-point RANSAC, three-point RANSAC requires only a few iterations. Eventually, an iterative reweighted least squares (IRLS) is applied to yield the optimal pose. Experiments on the large-scale KITTI and ETH datasets demonstrate our method achieves up to three-orders-of-magnitude speedup compared to MAC while maintaining registration accuracy and recall. Our code is available at https://github.com/ShiPC-AI/TCF.


[549] 2410.15684

A Machine Learning Approach to Detect Strategic Behavior from Large-Population Observational Data Applied to Game Mode Prediction on a Team-Based Video Game

Modeling the strategic behavior of agents in a real-world multi-agent system using existing state-of-the-art computational game-theoretic tools can be a daunting task, especially when only the actions taken by the agents can be observed. Before attempting such a task, it would be useful to gain insight into whether or not agents are in fact acting strategically at all, from a game-theoretic perspective. In this paper, we present an initial step toward addressing this problem by proposing a general approach based on machine learning fundamentals for detecting potentially strategic behavior. We instantiate the approach by applying state-of-the-art machine learning tools for model selection and performance evaluation of prediction models in the context of detecting the strategic behavior of players for game mode selection in the multiplayer online video game Heroes of the Storm. Specifically, as a baseline, we first train neural networks to predict players' game mode selections using only information about the state of the player themselves. Then, we train a new set of neural networks using the same architectures, this time incorporating "historical co-play" features that encode players' past interactions with other players. We find that including these new features led to statistically significant improvements in game mode prediction accuracy, providing a sufficiently strong signal that players indeed make decisions strategically, which justifies the development of more complex computational game-theoretic tools in the hope of improving modeling and predictive power. We discuss remaining research work about potential approaches to validate the effectiveness of this initial step to detect strategic behavior.


[550] 2410.15686

NetSafe: Exploring the Topological Safety of Multi-agent Networks

Large language models (LLMs) have empowered nodes within multi-agent networks with intelligence, showing growing applications in both academia and industry. However, how to prevent these networks from generating malicious information remains unexplored with previous research on single LLM's safety be challenging to transfer. In this paper, we focus on the safety of multi-agent networks from a topological perspective, investigating which topological properties contribute to safer networks. To this end, we propose a general framework, NetSafe along with an iterative RelCom interaction to unify existing diverse LLM-based agent frameworks, laying the foundation for generalized topological safety research. We identify several critical phenomena when multi-agent networks are exposed to attacks involving misinformation, bias, and harmful information, termed as Agent Hallucination and Aggregation Safety. Furthermore, we find that highly connected networks are more susceptible to the spread of adversarial attacks, with task performance in a Star Graph Topology decreasing by 29.7%. Besides, our proposed static metrics aligned more closely with real-world dynamic evaluations than traditional graph-theoretic metrics, indicating that networks with greater average distances from attackers exhibit enhanced safety. In conclusion, our work introduces a new topological perspective on the safety of LLM-based multi-agent networks and discovers several unreported phenomena, paving the way for future research to explore the safety of such networks.


[551] 2410.15687

DomainSum: A Hierarchical Benchmark for Fine-Grained Domain Shift in Abstractive Text Summarization

Most research on abstractive summarization focuses on single-domain applications, often neglecting how domain shifts between documents affect performance and the generalization ability of summarization models. To address this issue, we introduce DomainSum, a hierarchical benchmark designed to capture fine-grained domain shifts in abstractive summarization. We categorize these shifts into three levels: genre, style, and topic, and demonstrate through comprehensive benchmark analysis that they follow a hierarchical structure. Furthermore, we evaluate the domain generalization capabilities of commonly used pre-trained language models (PLMs) and large language models (LLMs) in in-domain and cross-domain settings.


[552] 2410.15688

MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering

The t-Distributed Stochastic Neighbor Embedding (t-SNE) has emerged as a popular dimensionality reduction technique for visualizing high-dimensional data. It computes pairwise similarities between data points by default using an RBF kernel and random initialization (in low-dimensional space), which successfully captures the overall structure but may struggle to preserve the local structure efficiently. This research proposes a novel approach called the Modified Isolation Kernel (MIK) as an alternative to the Gaussian kernel, which is built upon the concept of the Isolation Kernel. MIK uses adaptive density estimation to capture local structures more accurately and integrates robustness measures. It also assigns higher similarity values to nearby points and lower values to distant points. Comparative research using the normal Gaussian kernel, the isolation kernel, and several initialization techniques, including random, PCA, and random walk initializations, are used to assess the proposed approach (MIK). Additionally, we compare the computational efficiency of all $3$ kernels with $3$ different initialization methods. Our experimental results demonstrate several advantages of the proposed kernel (MIK) and initialization method selection. It exhibits improved preservation of the local and global structure and enables better visualization of clusters and subclusters in the embedded space. These findings contribute to advancing dimensionality reduction techniques and provide researchers and practitioners with an effective tool for data exploration, visualization, and analysis in various domains.


[553] 2410.15689

Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model

Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to Artificial Neural Networks (ANNs), high-quality benchmark datasets are of great importance to the advances of SNNs. However, our analysis indicates that many prevalent neuromorphic datasets lack strong temporal correlation, preventing SNNs from fully exploiting their spatio-temporal representation capabilities. Meanwhile, the integration of event and frame modalities offers more comprehensive visual spatio-temporal information. Yet, the SNN-based cross-modality fusion remains underexplored. In this work, we present a neuromorphic dataset called DVS-SLR that can better exploit the inherent spatio-temporal properties of SNNs. Compared to existing datasets, it offers advantages in terms of higher temporal correlation, larger scale, and more varied scenarios. In addition, our neuromorphic dataset contains corresponding frame data, which can be used for developing SNN-based fusion methods. By virtue of the dual-modal feature of the dataset, we propose a Cross-Modality Attention (CMA) based fusion method. The CMA model efficiently utilizes the unique advantages of each modality, allowing for SNNs to learn both temporal and spatial attention scores from the spatio-temporal features of event and frame modalities, subsequently allocating these scores across modalities to enhance their synergy. Experimental results demonstrate that our method not only improves recognition accuracy but also ensures robustness across diverse scenarios.


[554] 2410.15690

Efficient Terminology Integration for LLM-based Translation in Specialized Domains

Traditional machine translation methods typically involve training models directly on large parallel corpora, with limited emphasis on specialized terminology. However, In specialized fields such as patent, finance, or biomedical domains, terminology is crucial for translation, with many terms that needs to be translated following agreed-upon conventions. In this paper we introduce a methodology that efficiently trains models with a smaller amount of data while preserving the accuracy of terminology translation. We achieve this through a systematic process of term extraction and glossary creation using the Trie Tree algorithm, followed by data reconstruction to teach the LLM how to integrate these specialized terms. This methodology enhances the model's ability to handle specialized terminology and ensures high-quality translations, particularly in fields where term consistency is crucial. Our approach has demonstrated exceptional performance, achieving the highest translation score among participants in the WMT patent task to date, showcasing its effectiveness and broad applicability in specialized translation domains where general methods often fall short.


[555] 2410.15693

Geographical Node Clustering and Grouping to Guarantee Data IIDness in Federated Learning

Federated learning (FL) is a decentralized AI mechanism suitable for a large number of devices like in smart IoT. A major challenge of FL is the non-IID dataset problem, originating from the heterogeneous data collected by FL participants, leading to performance deterioration of the trained global model. There have been various attempts to rectify non-IID dataset, mostly focusing on manipulating the collected data. This paper, however, proposes a novel approach to ensure data IIDness by properly clustering and grouping mobile IoT nodes exploiting their geographical characteristics, so that each FL group can achieve IID dataset. We first provide an experimental evidence for the independence and identicalness features of IoT data according to the inter-device distance, and then propose Dynamic Clustering and Partial-Steady Grouping algorithms that partition FL participants to achieve near-IIDness in their dataset while considering device mobility. Our mechanism significantly outperforms benchmark grouping algorithms at least by 110 times in terms of the joint cost between the number of dropout devices and the evenness in per-group device count, with a mild increase in the number of groups only by up to 0.93 groups.


[556] 2410.15694

PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones

In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.


[557] 2410.15696

Tokenization as Finite-State Transduction

Tokenization is the first step in modern neural language model pipelines where an input text is converted to a sequence of subword tokens. We introduce from first principles a finite-state transduction framework which can efficiently encode all possible tokenizations of a regular language. We then constructively show that Byte-Pair Encoding (BPE) and MaxMatch (WordPiece), two popular tokenization schemes, fit within this framework. For BPE, this is particularly surprising given its resemblance to context-free grammar and the fact that it does not tokenize strings from left to right. An application of this is to guided generation, where the outputs of a language model are constrained to match some pattern. Here, patterns are encoded at the character level, which creates a mismatch between the constraints and the model's subword vocabulary. While past work has focused only on constraining outputs without regard to the underlying tokenization algorithm, our framework allows for simultaneously constraining the model outputs to match a specified pattern while also adhering to the underlying tokenizer's canonical tokenization.


[558] 2410.15698

Solving Continual Offline RL through Selective Weights Activation on Aligned Spaces

Continual offline reinforcement learning (CORL) has shown impressive ability in diffusion-based lifelong learning systems by modeling the joint distributions of trajectories. However, most research only focuses on limited continual task settings where the tasks have the same observation and action space, which deviates from the realistic demands of training agents in various environments. In view of this, we propose Vector-Quantized Continual Diffuser, named VQ-CD, to break the barrier of different spaces between various tasks. Specifically, our method contains two complementary sections, where the quantization spaces alignment provides a unified basis for the selective weights activation. In the quantized spaces alignment, we leverage vector quantization to align the different state and action spaces of various tasks, facilitating continual training in the same space. Then, we propose to leverage a unified diffusion model attached by the inverse dynamic model to master all tasks by selectively activating different weights according to the task-related sparse masks. Finally, we conduct extensive experiments on 15 continual learning (CL) tasks, including conventional CL task settings (identical state and action spaces) and general CL task settings (various state and action spaces). Compared with 16 baselines, our method reaches the SOTA performance.


[559] 2410.15700

InternLM2.5-StepProver: Advancing Automated Theorem Proving via Expert Iteration on Large-Scale LEAN Problems

Large Language Models (LLMs) have emerged as powerful tools in mathematical theorem proving, particularly when utilizing formal languages such as LEAN. The major learning paradigm is expert iteration, which necessitates a pre-defined dataset comprising numerous mathematical problems. In this process, LLMs attempt to prove problems within the dataset and iteratively refine their capabilities through self-training on the proofs they discover. We propose to use large scale LEAN problem datasets Lean-workbook for expert iteration with more than 20,000 CPU days. During expert iteration, we found log-linear trends between solved problem amount with proof length and CPU usage. We train a critic model to select relatively easy problems for policy models to make trials and guide the model to search for deeper proofs. InternLM2.5-StepProver achieves open-source state-of-the-art on MiniF2F, Lean-Workbook-Plus, ProofNet, and Putnam benchmarks. Specifically, it achieves a pass of 65.9% on the MiniF2F-test and proves (or disproves) 17.0% of problems in Lean-Workbook-Plus which shows a significant improvement compared to only 9.5% of problems proved when Lean-Workbook-Plus was released. We open-source our models and searched proofs at https://github.com/InternLM/InternLM-Math and https://huggingface.co/datasets/internlm/Lean-Workbook.


[560] 2410.15701

Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences

The capabilities of large language models (LLMs) have been applied in expert systems across various domains, providing new opportunities for AI in Education. Educational interactions involve a cyclical exchange between teachers and students. Current research predominantly focuses on using LLMs to simulate teachers, leveraging their expertise to enhance student learning outcomes. However, the simulation of students, which could improve teachers' instructional skills, has received insufficient attention due to the challenges of modeling and evaluating virtual students. This research asks: Can LLMs be utilized to develop virtual student agents that mimic human-like behavior and individual variability? Unlike expert systems focusing on knowledge delivery, virtual students must replicate learning difficulties, emotional responses, and linguistic uncertainties. These traits present significant challenges in both modeling and evaluation. To address these issues, this study focuses on language learning as a context for modeling virtual student agents. We propose a novel AI4Education framework, called SOE (Scene-Object-Evaluation), to systematically construct LVSA (LLM-based Virtual Student Agents). By curating a dataset of personalized teacher-student interactions with various personality traits, question types, and learning stages, and fine-tuning LLMs using LoRA, we conduct multi-dimensional evaluation experiments. Specifically, we: (1) develop a theoretical framework for generating LVSA; (2) integrate human subjective evaluation metrics into GPT-4 assessments, demonstrating a strong correlation between human evaluators and GPT-4 in judging LVSA authenticity; and (3) validate that LLMs can generate human-like, personalized virtual student agents in educational contexts, laying a foundation for future applications in pre-service teacher training and multi-agent simulation environments.


[561] 2410.15702

Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding

The impressive capabilities of large language models (LLMs) have attracted extensive interests of applying LLMs to medical field. However, the complex nature of clinical environments presents significant hallucination challenges for LLMs, hindering their widespread adoption. In this paper, we address these hallucination issues in the context of Medical Information Extraction (MIE) tasks by introducing ALternate Contrastive Decoding (ALCD). We begin by redefining MIE tasks as an identify-and-classify process. We then separate the identification and classification functions of LLMs by selectively masking the optimization of tokens during fine-tuning. During the inference stage, we alternately contrast output distributions derived from sub-task models. This approach aims to selectively enhance the identification and classification capabilities while minimizing the influence of other inherent abilities in LLMs. Additionally, we propose an alternate adaptive constraint strategy to more effectively adjust the scale and scope of contrastive tokens. Through comprehensive experiments on two different backbones and six diverse medical information extraction tasks, ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.


[562] 2410.15704

Residual vector quantization for KV cache compression in large language model

KV cache compression methods have mainly relied on scalar quantization techniques to reduce the memory requirements during decoding. In this work, we apply residual vector quantization, which has been widely used for high fidelity audio compression, to compress KV cache in large language models (LLM). We adapt the standard recipe with minimal changes to compress the output of any key or value projection matrix in a pretrained LLM: we scale the vector by its standard deviation, divide channels into groups and then quantize each group with the same residual vector quantizer. We learn the codebook using exponential moving average and there are no other learnable parameters including the input and output projections normally used in a vector quantization set up. We find that a residual depth of 8 recovers most of the performance of the unquantized model. We also find that grouping non-contiguous channels together works better than grouping contiguous channels for compressing key matrix and the method further benefits from a light weight finetuning of LLM together with the quantization. Overall, the proposed technique is competitive with existing quantization methods while being much simpler and results in 5.5x compression compared to half precision.


[563] 2410.15706

Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data

Estimating an individual's potential response to continuously varied treatments is crucial for addressing causal questions across diverse domains, from healthcare to social sciences. However, existing methods are limited either to estimating causal effects of binary treatments, or scenarios where all confounding variables are measurable. In this work, we present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves, considering the presence of unobserved confounders using observational data. Leveraging a variational auto-encoder with a Tilted Gaussian prior distribution, ContiVAE models the hidden confounders as latent variables, and is able to predict the potential outcome of any treatment level for each individual while effectively capture the heterogeneity among individuals. Experiments on semi-synthetic datasets show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility. Application on a real-world dataset illustrates its practical utility.


[564] 2410.15707

Changes in Sentiments and User Engagement for 2024 U.S. Presidential Candidates After Biden's Withdrawal: An Analysis of TikTok Videos

The 2024 U.S. presidential election has sparked widespread online discussions about the presidential candidates. Joe Biden's withdrawal from the race and Kamala Harris's subsequent entry as the Democratic candidate likely alter the dynamics of these online discussions; yet, this hypothesis requires evidence. Here, we study how sentiments and user engagement in social media posts mentioning presidential candidates change after Biden's withdrawal. Our analysis is based on N=680,609 TikTok videos that have accumulated over 4 billion views, with more than 23 million comments, 31 million shares, and 335 million likes from November 1, 2023, to October 6, 2024. We find that: (i) Before Biden's withdrawal, video posts mentioning the Republican candidate (Donald Trump) have higher positive sentiment and lower negative sentiment compared to those mentioning the Democratic candidate (Joe Biden). (ii) Following Biden's withdrawal, positive sentiment in video posts mentioning the Democratic candidate (Kamala Harris) increases by 46.8%, while negative sentiment decreases by 52.0%. (iii) Regarding user engagement, before Biden's withdrawal, video posts mentioning the Democratic candidate have 64.9% higher odds of being shared and 39.5% higher odds of receiving likes compared to posts mentioning the Republican candidate, with similar odds of receiving comments. (iv) After Biden's withdrawal, the odds of being shared increase by 53.3%, and the odds of receiving likes increase by 77.4% in both video posts mentioning the Democratic candidate and video posts mentioning the Republican candidate. Our findings offer insights into how sentiments and user engagement in online posts about the 2024 U.S. presidential candidates shift following Biden's dropping out from the presidential race.


[565] 2410.15710

Hierarchical Search-Based Cooperative Motion Planning

Cooperative path planning, a crucial aspect of multi-agent systems research, serves a variety of sectors, including military, agriculture, and industry. Many existing algorithms, however, come with certain limitations, such as simplified kinematic models and inadequate support for multiple group scenarios. Focusing on the planning problem associated with a nonholonomic Ackermann model for Unmanned Ground Vehicles (UGV), we propose a leaderless, hierarchical Search-Based Cooperative Motion Planning (SCMP) method. The high-level utilizes a binary conflict search tree to minimize runtime, while the low-level fabricates kinematically feasible, collision-free paths that are shape-constrained. Our algorithm can adapt to scenarios featuring multiple groups with different shapes, outlier agents, and elaborate obstacles. We conduct algorithm comparisons, performance testing, simulation, and real-world testing, verifying the effectiveness and applicability of our algorithm. The implementation of our method will be open-sourced at https://github.com/WYCUniverStar/SCMP.


[566] 2410.15714

Offline reinforcement learning for job-shop scheduling problems

Recent advances in deep learning have shown significant potential for solving combinatorial optimization problems in real-time. Unlike traditional methods, deep learning can generate high-quality solutions efficiently, which is crucial for applications like routing and scheduling. However, existing approaches like deep reinforcement learning (RL) and behavioral cloning have notable limitations, with deep RL suffering from slow learning and behavioral cloning relying solely on expert actions, which can lead to generalization issues and neglect of the optimization objective. This paper introduces a novel offline RL method designed for combinatorial optimization problems with complex constraints, where the state is represented as a heterogeneous graph and the action space is variable. Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions. We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks, achieving superior performance compared to state-of-the-art techniques.


[567] 2410.15715

Timetable Nodes for Public Transport Network

Faster pathfinding in time-dependent transport networks is an important and challenging problem in navigation systems. There are two main types of transport networks: road networks for car driving and public transport route network. The solutions that work well in road networks, such as Time-dependent Contraction Hierarchies and other graph-based approaches, do not usually apply in transport networks. In transport networks, non-graph solutions such as CSA and RAPTOR show the best results compared to graph-based techniques. In our work, we propose a method that advances graph-based approaches by using different optimization techniques from computational geometry to speed up the search process in transport networks. We apply a new pre-computation step, which we call timetable nodes (TTN). Our inspiration comes from an iterative search problem in computational geometry. We implement two versions of the TTN: one uses a Combined Search Tree (TTN-CST), and the second uses Fractional Cascading (TTN-FC). Both of these approaches decrease the asymptotic complexity of reaching new nodes from $O(k\times \log|C|)$ to $O(k + \log(k) + \log(|C|))$, where $k$ is the number of outgoing edges from a node and $|C|$ is the size of the timetable information (total outgoing edges). Our solution suits any other time-dependent networks and can be integrated into other pathfinding algorithms. Our experiments indicate that this pre-computation significantly enhances the performance on high-density graphs. This study showcases how leveraging computational geometry can enhance pathfinding in transport networks, enabling faster pathfinding in scenarios involving large numbers of outgoing edges.


[568] 2410.15716

Traffic Matrix Estimation based on Denoising Diffusion Probabilistic Model

The traffic matrix estimation (TME) problem has been widely researched for decades of years. Recent progresses in deep generative models offer new opportunities to tackle TME problems in a more advanced way. In this paper, we leverage the powerful ability of denoising diffusion probabilistic models (DDPMs) on distribution learning, and for the first time adopt DDPM to address the TME problem. To ensure a good performance of DDPM on learning the distributions of TMs, we design a preprocessing module to reduce the dimensions of TMs while keeping the data variety of each OD flow. To improve the estimation accuracy, we parameterize the noise factors in DDPM and transform the TME problem into a gradient-descent optimization problem. Finally, we compared our method with the state-of-the-art TME methods using two real-world TM datasets, the experimental results strongly demonstrate the superiority of our method on both TM synthesis and TM estimation.


[569] 2410.15717

What is an inductive mean?

An inductive mean is a mean defined as a limit of a convergence sequence of other means. Historically, this notion of inductive means obtained as limits of sequences was pioneered independently by Lagrange and Gauss for defining the arithmetic-geometric mean. In this note, we first explain several generalizations of the scalar geometric mean to symmetric positive-definite matrices, and then present several inductive mean mechanisms for sets of symmetric positive-definite matrices.


[570] 2410.15720

Efficient Non-Myopic Layered Bayesian Optimization For Large-Scale Bathymetric Informative Path Planning

Informative path planning (IPP) applied to bathymetric mapping allows AUVs to focus on feature-rich areas to quickly reduce uncertainty and increase mapping efficiency. Existing methods based on Bayesian optimization (BO) over Gaussian Process (GP) maps work well on small scenarios but they are short-sighted and computationally heavy when mapping larger areas, hindering deployment in real applications. To overcome this, we present a 2-layered BO IPP method that performs non-myopic, real-time planning in a tree search fashion over large Stochastic Variational GP maps, while respecting the AUV motion constraints and accounting for localization uncertainty. Our framework outperforms the standard industrial lawn-mowing pattern and a myopic baseline in a set of hardware in the loop (HIL) experiments in an embedded platform over real bathymetry.


[571] 2410.15723

S-CFE: Simple Counterfactual Explanations

We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.


[572] 2410.15724

Efficient and Universally Accessible Cross-Chain Options without Upfront Holder Collateral

Options are fundamental to blockchain-based financial markets, offering essential tools for risk management and price speculation, which enhance liquidity, flexibility, and market efficiency in decentralized finance (DeFi). Despite the growing interest in options for blockchain-resident assets, such as cryptocurrencies, current option mechanisms face significant challenges, including limited asset support, high trading delays, and the requirement for option holders to provide upfront collateral. In this paper, we present a protocol that addresses the aforementioned issues by facilitating efficient and universally accessible option trading without requiring holders to post collateral when establishing options. Our protocol's universality allows for cross-chain options involving nearly $\textit{any}$ assets on $\textit{any}$ two different blockchains, provided the chains' programming languages can enforce and execute the necessary contract logic. A key innovation in our approach is the use of Double-Authentication-Preventing Signatures (DAPS), which significantly reduces trading latency. Additionally, by introducing a guarantee from the option writer, our protocol removes the need of upfront collateral from holders. Our evaluation demonstrates that the proposed scheme reduces option transfer latency to less than half of that in existing methods. Rigorous security analysis proves that our protocol achieves secure option trading, even when facing adversarial behaviors.


[573] 2410.15726

Reducing annotator bias by belief elicitation

Crowdsourced annotations of data play a substantial role in the development of Artificial Intelligence (AI). It is broadly recognised that annotations of text data can contain annotator bias, where systematic disagreement in annotations can be traced back to differences in the annotators' backgrounds. Being unaware of such annotator bias can lead to representational bias against minority group perspectives and therefore several methods have been proposed for recognising bias or preserving perspectives. These methods typically require either a substantial number of annotators or annotations per data instance. In this study, we propose a simple method for handling bias in annotations without requirements on the number of annotators or instances. Instead, we ask annotators about their beliefs of other annotators' judgements of an instance, under the hypothesis that these beliefs may provide more representative and less biased labels than judgements. The method was examined in two controlled, survey-based experiments involving Democrats and Republicans (n=1,590) asked to judge statements as arguments and then report beliefs about others' judgements. The results indicate that bias, defined as systematic differences between the two groups of annotators, is consistently reduced when asking for beliefs instead of judgements. Our proposed method therefore has the potential to reduce the risk of annotator bias, thereby improving the generalisability of AI systems and preventing harm to unrepresented socio-demographic groups, and we highlight the need for further studies of this potential in other tasks and downstream applications.


[574] 2410.15728

Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases

Unsupervised object-centric learning from videos is a promising approach towards learning compositional representations that can be applied to various downstream tasks, such as prediction and reasoning. Recently, it was shown that pretrained Vision Transformers (ViTs) can be useful to learn object-centric representations on real-world video datasets. However, while these approaches succeed at extracting objects from the scenes, the slot-based representations fail to maintain temporal consistency across consecutive frames in a video, i.e. the mapping of objects to slots changes across the video. To address this, we introduce Conditional Autoregressive Slot Attention (CA-SA), a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks. Leveraging an autoregressive prior network to condition representations on previous timesteps and a novel consistency loss function, CA-SA predicts future slot representations and imposes consistency across frames. We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks, such as video prediction and visual question-answering tasks.


[575] 2410.15730

MSGField: A Unified Scene Representation Integrating Motion, Semantics, and Geometry for Robotic Manipulation

Combining accurate geometry with rich semantics has been proven to be highly effective for language-guided robotic manipulation. Existing methods for dynamic scenes either fail to update in real-time or rely on additional depth sensors for simple scene editing, limiting their applicability in real-world. In this paper, we introduce MSGField, a representation that uses a collection of 2D Gaussians for high-quality reconstruction, further enhanced with attributes to encode semantic and motion information. Specially, we represent the motion field compactly by decomposing each primitive's motion into a combination of a limited set of motion bases. Leveraging the differentiable real-time rendering of Gaussian splatting, we can quickly optimize object motion, even for complex non-rigid motions, with image supervision from only two camera views. Additionally, we designed a pipeline that utilizes object priors to efficiently obtain well-defined semantics. In our challenging dataset, which includes flexible and extremely small objects, our method achieve a success rate of 79.2% in static and 63.3% in dynamic environments for language-guided manipulation. For specified object grasping, we achieve a success rate of 90%, on par with point cloud-based methods. Code and dataset will be released at:https://shengyu724.github.io/MSGField.github.io.


[576] 2410.15732

ViMoE: An Empirical Study of Designing Vision Mixture-of-Experts

Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classification. However, we observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design. The underlying cause is that inappropriate MoE layers lead to unreliable routing and hinder experts from effectively acquiring helpful knowledge. To address this, we introduce a shared expert to learn and capture common information, serving as an effective way to construct stable ViMoE. Furthermore, we demonstrate how to analyze expert routing behavior, revealing which MoE layers are capable of specializing in handling specific information and which are not. This provides guidance for retaining the critical layers while removing redundancies, thereby advancing ViMoE to be more efficient without sacrificing accuracy. We aspire for this work to offer new insights into the design of vision MoE models and provide valuable empirical guidance for future research.


[577] 2410.15735

AutoTrain: No-code training for state-of-the-art models

With the advancements in open-source models, training (or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks. We introduce AutoTrain (aka AutoTrain Advanced) -- an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.


[578] 2410.15736

Design of a 64-bit SQRT-CSLA with Reduced Area and High-Speed Applications in Low Power VLSI Circuits

The main areas of research in VLSI system design include area, high speed, and power-efficient data route logic systems. The amount of time needed to send a carry through the adder limits the pace at which addition can occur in digital adders. One of the quickest adders, the Carry Select Adder (CSLA), is utilized by various data processing processors to carry out quick arithmetic operations. It is evident from the CSLA's structure that there is room to cut back on both the area and the delay. This work employs a straightforward and effective gate-level adjustment (in a regular structure) that significantly lowers the CSLA's area and delay. In light of this adjustment Square-Root Carry Select Adder (SQRT CSLA) designs with bit lengths of 8, 16, 32, and 64. When compared to the standard SQRT CSLA, the suggested design significantly reduces both area and latency. Xilinx ISE tool is used for Simulation and synthesis. The performance of the recommended designs in terms of delay is estimated in this study using the standard designs. The study of the findings indicates that the suggested CSLA structure outperforms the standard SQRT CSLA.


[579] 2410.15737

Who's Who: Large Language Models Meet Knowledge Conflicts in Practice

Retrieval-augmented generation (RAG) methods are viable solutions for addressing the static memory limits of pre-trained language models. Nevertheless, encountering conflicting sources of information within the retrieval context is an inevitable practical challenge. In such situations, the language models are recommended to transparently inform users about the conflicts rather than autonomously deciding what to present based on their inherent biases. To analyze how current large language models (LLMs) align with our recommendation, we introduce WhoQA, a public benchmark dataset to examine model's behavior in knowledge conflict situations. We induce conflicts by asking about a common property among entities having the same name, resulting in questions with up to 8 distinctive answers. WhoQA evaluation set includes 5K questions across 13 Wikidata property types and 150K Wikipedia entities. Our experiments show that despite the simplicity of WhoQA questions, knowledge conflicts significantly degrades LLMs' performance in RAG settings.


[580] 2410.15738

A Fair Allocation is Approximately Optimal for Indivisible Chores, or Is It?

In this paper, we study the allocation of indivisible chores and consider the problem of finding a fair allocation that is approximately efficient. We shift our attention from the multiplicative approximation to the additive one. Our results are twofold, with (1) bounding how the optimal social cost escalates resulting from fairness requirements and (2) presenting the hardness of approximation for the problems of finding fair allocations with the minimum social cost. To quantify the escalation, we introduce cost of fairness (CoF) $\unicode{x2014}$ an alternative to the price of fairness (PoF) $\unicode{x2014}$ to bound the difference (v.s. ratio for PoF) between the optimal social cost with and without fairness constraints in the worst-case instance. We find that CoF is more informative than PoF for chores in the sense that the PoF is infinity regarding all EQX (equitable up to any item), EQ1 (equitable up to one item) and EF1 (envy-free up to one item), while the CoF is $n$ regarding EQX and 1 regarding EQ1 and EF1, where $n$ is the number of agents. For inapproximability, we present a detailed picture of hardness of approximation. We prove that finding the optimal EQX allocation within an additive approximation factor of $n$ is NP-hard for any $n \geq 2$ where $n$ is the number of agents and the cost functions are normalized to 1. For EQ1 and EF1, the problem is NP-hard when the additive factor is a constant and $n \geq 3$. When $n = 2$, we design additive approximation schemes for EQ1 and EF1.


[581] 2410.15742

DeepVigor+: Scalable and Accurate Semi-Analytical Fault Resilience Analysis for Deep Neural Network

Growing exploitation of Machine Learning (ML) in safety-critical applications necessitates rigorous safety analysis. Hardware reliability assessment is a major concern with respect to measuring the level of safety. Quantifying the reliability of emerging ML models, including Deep Neural Networks (DNNs), is highly complex due to their enormous size in terms of the number of parameters and computations. Conventionally, Fault Injection (FI) is applied to perform a reliability measurement. However, performing FI on modern-day DNNs is prohibitively time-consuming if an acceptable confidence level is to be achieved. In order to speed up FI for large DNNs, statistical FI has been proposed. However, the run-time for the large DNN models is still considerably long. In this work, we introduce DeepVigor+, a scalable, fast and accurate semi-analytical method as an efficient alternative for reliability measurement in DNNs. DeepVigor+ implements a fault propagation analysis model and attempts to acquire Vulnerability Factors (VFs) as reliability metrics in an optimal way. The results indicate that DeepVigor+ obtains VFs for DNN models with an error less than 1\% and 14.9 up to 26.9 times fewer simulations than the best-known state-of-the-art statistical FI enabling an accurate reliability analysis for emerging DNNs within a few minutes.


[582] 2410.15743

Toeing the Party Line: Election Manifestos as a Key to Understand Political Discourse on Twitter

Political discourse on Twitter is a moving target: politicians continuously make statements about their positions. It is therefore crucial to track their discourse on social media to understand their ideological positions and goals. However, Twitter data is also challenging to work with since it is ambiguous and often dependent on social context, and consequently, recent work on political positioning has tended to focus strongly on manifestos (parties' electoral programs) rather than social media. In this paper, we extend recently proposed methods to predict pairwise positional similarities between parties from the manifesto case to the Twitter case, using hashtags as a signal to fine-tune text representations, without the need for manual annotation. We verify the efficacy of fine-tuning and conduct a series of experiments that assess the robustness of our method for low-resource scenarios. We find that our method yields stable positioning reflective of manifesto positioning, both in scenarios with all tweets of candidates across years available and when only smaller subsets from shorter time periods are available. This indicates that it is possible to reliably analyze the relative positioning of actors forgoing manual annotation, even in the noisier context of social media.


[583] 2410.15744

Unleashing the Potential of Vision-Language Pre-Training for 3D Zero-Shot Lesion Segmentation via Mask-Attribute Alignment

Recent advancements in medical vision-language pre-training models have driven significant progress in zero-shot disease recognition. However, transferring image-level knowledge to pixel-level tasks, such as lesion segmentation in 3D CT scans, remains a critical challenge. Due to the complexity and variability of pathological visual characteristics, existing methods struggle to align fine-grained lesion features not encountered during training with disease-related textual representations. In this paper, we present Malenia, a novel multi-scale lesion-level mask-attribute alignment framework, specifically designed for 3D zero-shot lesion segmentation. Malenia improves the compatibility between mask representations and their associated elemental attributes, explicitly linking the visual features of unseen lesions with the extensible knowledge learned from previously seen ones. Furthermore, we design a Cross-Modal Knowledge Injection module to enhance both visual and textual features with mutually beneficial information, effectively guiding the generation of segmentation results. Comprehensive experiments across three datasets and 12 lesion categories validate the superior performance of Malenia. Codes will be publicly available.


[584] 2410.15747

GIG: Graph Data Imputation With Graph Differential Dependencies

Data imputation addresses the challenge of imputing missing values in database instances, ensuring consistency with the overall semantics of the dataset. Although several heuristics which rely on statistical methods, and ad-hoc rules have been proposed. These do not generalise well and often lack data context. Consequently, they also lack explainability. The existing techniques also mostly focus on the relational data context making them unsuitable for wider application contexts such as in graph data. In this paper, we propose a graph data imputation approach called GIG which relies on graph differential dependencies (GDDs). GIG, learns the GDDs from a given knowledge graph, and uses these rules to train a transformer model which then predicts the value of missing data within the graph. By leveraging GDDs, GIG incoporates semantic knowledge into the data imputation process making it more reliable and explainable. Experimental results on seven real-world datasets highlight GIG's effectiveness compared to existing state-of-the-art approaches.


[585] 2410.15748

Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation

Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.


[586] 2410.15749

Optimizing Neural Speech Codec for Low-Bitrate Compression via Multi-Scale Encoding

Neural speech codecs have demonstrated their ability to compress high-quality speech and audio by converting them into discrete token representations. Most existing methods utilize Residual Vector Quantization (RVQ) to encode speech into multiple layers of discrete codes with uniform time scales. However, this strategy overlooks the differences in information density across various speech features, leading to redundant encoding of sparse information, which limits the performance of these methods at low bitrate. This paper proposes MsCodec, a novel multi-scale neural speech codec that encodes speech into multiple layers of discrete codes, each corresponding to a different time scale. This encourages the model to decouple speech features according to their diverse information densities, consequently enhancing the performance of speech compression. Furthermore, we incorporate mutual information loss to augment the diversity among speech codes across different layers. Experimental results indicate that our proposed method significantly improves codec performance at low bitrate.


[587] 2410.15751

Interdependence between Green Financial Instruments and Major Conventional Assets: A Wavelet-Based Network Analysis

This paper examines the interdependence between green financial instruments, represented by green bonds and green stocks, and a set of major conventional assets, such as Treasury, investment-grade and high-yield corporate bonds, general stocks, crude oil, and gold. To that end, a novel wavelet-based network approach that allows for assessing the degree of interconnection between green financial products and traditional asset classes across different investment horizons is applied. The~empirical results show that green bonds are tightly linked to Treasury and investment-grade corporate bonds, while green stocks are strongly tied to general stocks, regardless of the specific time period and investment horizon considered. However, despite their common climate-friendly nature, there is no a remarkable association between green bonds and green stocks. This means that these green investments constitute basically two independent asset classes, with a distinct risk-return profile and aimed at a different type of investor. Furthermore, green financial products have a weak connection with high-yield corporate bonds and crude oil. These findings can have important implications for investors and policy makers in terms of investment decision, hedging strategies, and sustainability and energy policies.


[588] 2410.15753

Natural Language Querying System Through Entity Enrichment

This paper focuses on a domain expert querying system over databases. It presents a solution designed for a French enterprise interested in offering a natural language interface for its clients. The approach, based on entity enrichment, aims at translating natural language queries into database queries. In this paper, the database is treated through a logical paradigm, suggesting the adaptability of our approach to different database models. The good precision of our method is shown through some preliminary experiments.


[589] 2410.15756

Automated Proof Generation for Rust Code via Self-Evolution

Ensuring correctness is crucial for code generation. Formal verification offers a definitive assurance of correctness, but demands substantial human effort in proof construction and hence raises a pressing need for automation. The primary obstacle lies in the severe lack of data - there is much less proof than code for LLMs to train upon. In this paper, we introduce SAFE, a novel framework that overcomes the lack of human-written proof to enable automated proof generation of Rust code. SAFE establishes a self-evolving cycle where data synthesis and fine-tuning collaborate to enhance the model capability, leveraging the definitive power of a symbolic verifier in telling correct proof from incorrect ones. SAFE also re-purposes the large number of synthesized incorrect proofs to train the self-debugging capability of the fine-tuned models, empowering them to fix incorrect proofs based on the verifier's feedback. SAFE demonstrates superior efficiency and precision compared to GPT-4o. Through tens of thousands of synthesized proofs and the self-debugging mechanism, we improve the capability of open-source models, initially unacquainted with formal verification, to automatically write proof for Rust code. This advancement leads to a significant improvement in performance, achieving a 70.50% accuracy rate in a benchmark crafted by human experts, a significant leap over GPT-4o's performance of 24.46%.


[590] 2410.15758

Digital Product Passport Management with Decentralised Identifiers and Verifiable Credentials

Digital product passports (DPP) have been proposed in the European Ecodesign for Sustainable Products Regulation (ESPR) as a means to keep and provide product information that facilitates product reusage, reparation, and recycling. Thus, DPPs should provide a positive effect on the environmental impact of future manufactured products, preventing waste and promoting a circular economy (CE) model. ESPR settles a set of requirements in collecting and administering product-related data. Decentralised identifiers (DID) and verifiable credentials (VC) are two self-sovereign-identity-related elements that may help in that DPP management since they introduce a decentralised administration of identity that may enhance the overall scalability of the resulting system, improving also its reliability. This paper analyses the ESPR requirements and describes how they may be achieved using DIDs and VCs, assessing their performance in some scenarios.


[591] 2410.15760

DeepIcon: A Hierarchical Network for Layer-wise Icon Vectorization

In contrast to the well-established technique of rasterization, vectorization of images poses a significant challenge in the field of computer graphics. Recent learning-based methods for converting raster images to vector formats frequently suffer from incomplete shapes, redundant path prediction, and a lack of accuracy in preserving the semantics of the original content. These shortcomings severely hinder the utility of these methods for further editing and manipulation of images. To address these challenges, we present DeepIcon, a novel hierarchical image vectorization network specifically tailored for generating variable-length icon vector graphics based on the raster image input. Our experimental results indicate that DeepIcon can efficiently produce Scalable Vector Graphics (SVGs) directly from raster images, bypassing the need for a differentiable rasterizer while also demonstrating a profound understanding of the image contents.


[592] 2410.15761

Learning-to-Defer for Extractive Question Answering

Pre-trained language models have profoundly impacted the field of extractive question-answering, leveraging large-scale textual corpora to enhance contextual language understanding. Despite their success, these models struggle in complex scenarios that demand nuanced interpretation or inferential reasoning beyond immediate textual cues. Furthermore, their size poses deployment challenges on resource-constrained devices. Addressing these limitations, we introduce an adapted two-stage Learning-to-Defer mechanism that enhances decision-making by enabling selective deference to human experts or larger models without retraining language models in the context of question-answering. This approach not only maintains computational efficiency but also significantly improves model reliability and accuracy in ambiguous contexts. We establish the theoretical soundness of our methodology by proving Bayes and $(\mathcal{H}, \mathcal{R})$--consistency of our surrogate loss function, guaranteeing the optimality of the final solution. Empirical evaluations on the SQuADv2 dataset illustrate performance gains from integrating human expertise and leveraging larger models. Our results further demonstrate that deferring a minimal number of queries allows the smaller model to achieve performance comparable to their larger counterparts while preserving computing efficiency, thus broadening the applicability of pre-trained language models in diverse operational environments.


[593] 2410.15762

Solving Sparse \& High-Dimensional-Output Regression via Compression

Multi-Output Regression (MOR) has been widely used in scientific data analysis for decision-making. Unlike traditional regression models, MOR aims to simultaneously predict multiple real-valued outputs given an input. However, the increasing dimensionality of the outputs poses significant challenges regarding interpretability and computational scalability for modern MOR applications. As a first step to address these challenges, this paper proposes a Sparse \& High-dimensional-Output REgression (SHORE) model by incorporating additional sparsity requirements to resolve the output interpretability, and then designs a computationally efficient two-stage optimization framework capable of solving SHORE with provable accuracy via compression on outputs. Theoretically, we show that the proposed framework is computationally scalable while maintaining the same order of training loss and prediction loss before-and-after compression under arbitrary or relatively weak sample set conditions. Empirically, numerical results further validate the theoretical findings, showcasing the efficiency and accuracy of the proposed framework.


[594] 2410.15766

How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit?

We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision, crucial for autonomous operations like on-orbit servicing. As the use of computer vision in space increases, challenges such as hostile illumination and low signal-to-noise ratios significantly hinder performance. While learning-based algorithms show promising results, their adoption is limited by the need for extensive annotated training data and the domain gap that arises from differences between synthesized and real-world imagery. This study explores domain generalization in terms of data augmentations -- classical color and geometric transformations, corruptions, and noise -- to enhance model performance across the domain gap. To this end, we conduct an large scale experiment using a hyperparameter optimization pipeline that samples hundreds of different configurations and searches for the best set to bridge the domain gap. As a reference task, we use 2D object detection and evaluate on the SPEED+ dataset that contains real hardware-in-the-loop satellite images in its test set. Moreover, we evaluate four popular object detectors, including Mask R-CNN, Faster R-CNN, YOLO-v7, and the open set detector GroundingDINO, and highlight their trade-offs between performance, inference speed, and training time. Our results underscore the vital role of data augmentations in bridging the domain gap, improving model performance, robustness, and reliability for critical space applications. As a result, we propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery. We conclude by recommending the most effective augmentations for advancing computer vision in challenging orbital environments. Code for training detectors and hyperparameter search will be made publicly available.


[595] 2410.15767

Improving Instance Optimization in Deformable Image Registration with Gradient Projection

Deformable image registration is inherently a multi-objective optimization (MOO) problem, requiring a delicate balance between image similarity and deformation regularity. These conflicting objectives often lead to poor optimization outcomes, such as being trapped in unsatisfactory local minima or experiencing slow convergence. Deep learning methods have recently gained popularity in this domain due to their efficiency in processing large datasets and achieving high accuracy. However, they often underperform during test time compared to traditional optimization techniques, which further explore iterative, instance-specific gradient-based optimization. This performance gap is more pronounced when a distribution shift between training and test data exists. To address this issue, we focus on the instance optimization (IO) paradigm, which involves additional optimization for test-time instances based on a pre-trained model. IO effectively combines the generalization capabilities of deep learning with the fine-tuning advantages of instance-specific optimization. Within this framework, we emphasize the use of gradient projection to mitigate conflicting updates in MOO. This technique projects conflicting gradients into a common space, better aligning the dual objectives and enhancing optimization stability. We validate our method using a state-of-the-art foundation model on the 3D Brain inter-subject registration task (LUMIR) from the Learn2Reg 2024 Challenge. Our results show significant improvements over standard gradient descent, leading to more accurate and reliable registration results.


[596] 2410.15768

Learning to Synthesize Graphics Programs for Geometric Artworks

Creating and understanding art has long been a hallmark of human ability. When presented with finished digital artwork, professional graphic artists can intuitively deconstruct and replicate it using various drawing tools, such as the line tool, paint bucket, and layer features, including opacity and blending modes. While most recent research in this field has focused on art generation, proposing a range of methods, these often rely on the concept of artwork being represented as a final image. To bridge the gap between pixel-level results and the actual drawing process, we present an approach that treats a set of drawing tools as executable programs. This method predicts a sequence of steps to achieve the final image, allowing for understandable and resolution-independent reproductions under the usage of a set of drawing commands. Our experiments demonstrate that our program synthesizer, Art2Prog, can comprehensively understand complex input images and reproduce them using high-quality executable programs. The experimental results evidence the potential of machines to grasp higher-level information from images and generate compact program-level descriptions.


[597] 2410.15770

A roadmap for generative mapping: unlocking the power of generative AI for map-making

Maps are broadly relevant across various fields, serving as valuable tools for presenting spatial phenomena and communicating spatial knowledge. However, map-making is still largely confined to those with expertise in GIS and cartography due to the specialized software and complex workflow involved, from data processing to visualization. While generative AI has recently demonstrated its remarkable capability in creating various types of content and its wide accessibility to the general public, its potential in generating maps is yet to be fully realized. This paper highlights the key applications of generative AI in map-making, summarizes recent advancements in generative AI, identifies the specific technologies required and the challenges of using current methods, and provides a roadmap for developing a generative mapping system (GMS) to make map-making more accessible.


[598] 2410.15772

Mislabeled examples detection viewed as probing machine learning models: concepts, survey and extensive benchmark

Mislabeled examples are ubiquitous in real-world machine learning datasets, advocating the development of techniques for automatic detection. We show that most mislabeled detection methods can be viewed as probing trained machine learning models using a few core principles. We formalize a modular framework that encompasses these methods, parameterized by only 4 building blocks, as well as a Python library that demonstrates that these principles can actually be implemented. The focus is on classifier-agnostic concepts, with an emphasis on adapting methods developed for deep learning models to non-deep classifiers for tabular data. We benchmark existing methods on (artificial) Completely At Random (NCAR) as well as (realistic) Not At Random (NNAR) labeling noise from a variety of tasks with imperfect labeling rules. This benchmark provides new insights as well as limitations of existing methods in this setup.


[599] 2410.15774

Generalizing Motion Planners with Mixture of Experts for Autonomous Driving

Large real-world driving datasets have sparked significant research into various aspects of data-driven motion planners for autonomous driving. These include data augmentation, model architecture, reward design, training strategies, and planner pipelines. These planners promise better generalizations on complicated and few-shot cases than previous methods. However, experiment results show that many of these approaches produce limited generalization abilities in planning performance due to overly complex designs or training paradigms. In this paper, we review and benchmark previous methods focusing on generalizations. The experimental results indicate that as models are appropriately scaled, many design elements become redundant. We introduce StateTransformer-2 (STR2), a scalable, decoder-only motion planner that uses a Vision Transformer (ViT) encoder and a mixture-of-experts (MoE) causal Transformer architecture. The MoE backbone addresses modality collapse and reward balancing by expert routing during training. Extensive experiments on the NuPlan dataset show that our method generalizes better than previous approaches across different test sets and closed-loop simulations. Furthermore, we assess its scalability on billions of real-world urban driving scenarios, demonstrating consistent accuracy improvements as both data and model size grow.


[600] 2410.15775

Enhancing Personalised Cybersecurity Guidance for Older Adults in Ireland

The term `Digital Divide' emerged in the mid-1990s, highlighting the gap between those with access to emerging information technologies and those without. This gap persists for older adults even in the 21st century. To address this, our study focused on how older adults in Ireland can feel safer online. We conducted a two-phase study. In Phase I, 58 participants used Dot Voting to identify top cyber-security priorities, including password management, privacy, and avoiding scams. This informed Phase II, where we held focus groups with 31 participants from rural and urban communities in Ireland. Researchers provided tailored advice through presentations and leaflets, followed by open discussions. Our findings show that, despite being highly aware of cyber-scams, older adults remain very concerned about them. Participants expressed hesitation about using online password managers and two-factor authentication but valued advice on privacy and tools that can help them feel more in control online.


[601] 2410.15777

High-Fidelity Transfer of Functional Priors for Wide Bayesian Neural Networks by Learning Activations

Function-space priors in Bayesian Neural Networks provide a more intuitive approach to embedding beliefs directly into the model's output, thereby enhancing regularization, uncertainty quantification, and risk-aware decision-making. However, imposing function-space priors on BNNs is challenging. We address this task through optimization techniques that explore how trainable activations can accommodate complex priors and match intricate target function distributions. We discuss critical learning challenges, including identifiability, loss construction, and symmetries that arise in this context. Furthermore, we enable evidence maximization to facilitate model selection by conditioning the functional priors on additional hyperparameters. Our empirical findings demonstrate that even BNNs with a single wide hidden layer, when equipped with these adaptive trainable activations and conditioning strategies, can effectively achieve high-fidelity function-space priors, providing a robust and flexible framework for enhancing Bayesian neural network performance.


[602] 2410.15778

Reducing Hallucinations in Vision-Language Models via Latent Space Steering

Hallucination poses a challenge to the deployment of large vision-language models (LVLMs) in applications. Unlike in large language models (LLMs), hallucination in LVLMs often arises from misalignments between visual inputs and textual outputs. This paper investigates the underlying mechanisms of hallucination, focusing on the unique structure of LVLMs that distinguishes them from large language models (LLMs). We identify that hallucinations often arise from the sensitivity of text decoders to vision inputs, a natural phenomenon when image encoders and text decoders are pre-trained separately. Inspired by this, we introduce Visual and Textual Intervention (VTI), a novel technique designed to reduce hallucinations by steering latent space representations during inference to enhance the stability of vision features. As a task-agnostic test-time intervention, VTI can be easily applied to any problem without additional cost. Extensive experiments demonstrate that it can effectively reduce hallucinations and outperform baseline methods across multiple metrics, highlighting the critical role of vision feature stability in LVLMs.


[603] 2410.15780

An Efficient System for Automatic Map Storytelling -- A Case Study on Historical Maps

Historical maps provide valuable information and knowledge about the past. However, as they often feature non-standard projections, hand-drawn styles, and artistic elements, it is challenging for non-experts to identify and interpret them. While existing image captioning methods have achieved remarkable success on natural images, their performance on maps is suboptimal as maps are underrepresented in their pre-training process. Despite the recent advance of GPT-4 in text recognition and map captioning, it still has a limited understanding of maps, as its performance wanes when texts (e.g., titles and legends) in maps are missing or inaccurate. Besides, it is inefficient or even impractical to fine-tune the model with users' own datasets. To address these problems, we propose a novel and lightweight map-captioning counterpart. Specifically, we fine-tune the state-of-the-art vision-language model CLIP to generate captions relevant to historical maps and enrich the captions with GPT-3.5 to tell a brief story regarding where, what, when and why of a given map. We propose a novel decision tree architecture to only generate captions relevant to the specified map type. Our system shows invariance to text alterations in maps. The system can be easily adapted and extended to other map types and scaled to a larger map captioning system. The code is open-sourced at https://github.com/claudaff/automatic-map-storytelling.


[604] 2410.15787

Arithmetic Transformers Can Length-Generalize in Both Operand Length and Count

Transformers often struggle with length generalization, meaning they fail to generalize to sequences longer than those encountered during training. While arithmetic tasks are commonly used to study length generalization, certain tasks are considered notoriously difficult, e.g., multi-operand addition (requiring generalization over both the number of operands and their lengths) and multiplication (requiring generalization over both operand lengths). In this work, we achieve approximately 2-3x length generalization on both tasks, which is the first such achievement in arithmetic Transformers. We design task-specific scratchpads enabling the model to focus on a fixed number of tokens per each next-token prediction step, and apply multi-level versions of Position Coupling (Cho et al., 2024; McLeish et al., 2024) to let Transformers know the right position to attend to. On the theory side, we prove that a 1-layer Transformer using our method can solve multi-operand addition, up to operand length and operand count that are exponential in embedding dimension.


[605] 2410.15792

WildOcc: A Benchmark for Off-Road 3D Semantic Occupancy Prediction

3D semantic occupancy prediction is an essential part of autonomous driving, focusing on capturing the geometric details of scenes. Off-road environments are rich in geometric information, therefore it is suitable for 3D semantic occupancy prediction tasks to reconstruct such scenes. However, most of researches concentrate on on-road environments, and few methods are designed for off-road 3D semantic occupancy prediction due to the lack of relevant datasets and benchmarks. In response to this gap, we introduce WildOcc, to our knowledge, the first benchmark to provide dense occupancy annotations for off-road 3D semantic occupancy prediction tasks. A ground truth generation pipeline is proposed in this paper, which employs a coarse-to-fine reconstruction to achieve a more realistic result. Moreover, we introduce a multi-modal 3D semantic occupancy prediction framework, which fuses spatio-temporal information from multi-frame images and point clouds at voxel level. In addition, a cross-modality distillation function is introduced, which transfers geometric knowledge from point clouds to image features.


[606] 2410.15794

Habaek: High-performance water segmentation through dataset expansion and inductive bias optimization

Water segmentation is critical to disaster response and water resource management. Authorities may employ high-resolution photography to monitor rivers, lakes, and reservoirs, allowing for more proactive management in agriculture, industry, and conservation. Deep learning has improved flood monitoring by allowing models like CNNs, U-Nets, and transformers to handle large volumes of satellite and aerial data. However, these models usually have significant processing requirements, limiting their usage in real-time applications. This research proposes upgrading the SegFormer model for water segmentation by data augmentation with datasets such as ADE20K and RIWA to boost generalization. We examine how inductive bias affects attention-based models and discover that SegFormer performs better on bigger datasets. To further demonstrate the function of data augmentation, Low-Rank Adaptation (LoRA) is used to lower processing complexity while preserving accuracy. We show that the suggested Habaek model outperforms current models in segmentation, with an Intersection over Union (IoU) ranging from 0.91986 to 0.94397. In terms of F1-score, recall, accuracy, and precision, Habaek performs better than rival models, indicating its potential for real-world applications. This study highlights the need to enhance structures and include datasets for effective water segmentation.


[607] 2410.15797

Design of a Flexible Robot Arm for Safe Aerial Physical Interaction

This paper introduces a novel compliant mechanism combining lightweight and energy dissipation for aerial physical interaction. Weighting 400~g at take-off, the mechanism is actuated in the forward body direction, enabling precise position control for force interaction and various other aerial manipulation tasks. The robotic arm, structured as a closed-loop kinematic chain, employs two deported servomotors. Each joint is actuated with a single tendon for active motion control in compression of the arm at the end-effector. Its elasto-mechanical design reduces weight and provides flexibility, allowing passive-compliant interactions without impacting the motors' integrity. Notably, the arm's damping can be adjusted based on the proposed inner frictional bulges. Experimental applications showcase the aerial system performance in both free-flight and physical interaction. The presented work may open safer applications for \ac{MAV} in real environments subject to perturbations during interaction.


[608] 2410.15799

Flying through Moving Gates without Full State Estimation

Autonomous drone racing requires powerful perception, planning, and control and has become a benchmark and test field for autonomous, agile flight. Existing work usually assumes static race tracks with known maps, which enables offline planning of time-optimal trajectories, performing localization to the gates to reduce the drift in visual-inertial odometry (VIO) for state estimation or training learning-based methods for the particular race track and operating environment. In contrast, many real-world tasks like disaster response or delivery need to be performed in unknown and dynamic environments. To close this gap and make drone racing more robust against unseen environments and moving gates, we propose a control algorithm that does not require a race track map or VIO and uses only monocular measurements of the line of sight (LOS) to the gates. For this purpose, we adopt the law of proportional navigation (PN) to accurately fly through the gates despite gate motions or wind. We formulate the PN-informed vision-based control problem for drone racing as a constrained optimization problem and derive a closed-form optimal solution. We demonstrate through extensive simulations and real-world experiments that our method can navigate through moving gates at high speeds while being robust to different gate movements, model errors, wind, and delays.


[609] 2410.15800

On the VC dimension of deep group convolutional neural networks

We study the generalization capabilities of Group Convolutional Neural Networks (GCNNs) with ReLU activation function by deriving upper and lower bounds for their Vapnik-Chervonenkis (VC) dimension. Specifically, we analyze how factors such as the number of layers, weights, and input dimension affect the VC dimension. We further compare the derived bounds to those known for other types of neural networks. Our findings extend previous results on the VC dimension of continuous GCNNs with two layers, thereby providing new insights into the generalization properties of GCNNs, particularly regarding the dependence on the input resolution of the data.


[610] 2410.15801

Improve Dense Passage Retrieval with Entailment Tuning

Retrieval module can be plugged into many downstream NLP tasks to improve their performance, such as open-domain question answering and retrieval-augmented generation. The key to a retrieval system is to calculate relevance scores to query and passage pairs. However, the definition of relevance is often ambiguous. We observed that a major class of relevance aligns with the concept of entailment in NLI tasks. Based on this observation, we designed a method called entailment tuning to improve the embedding of dense retrievers. Specifically, we unify the form of retrieval data and NLI data using existence claim as a bridge. Then, we train retrievers to predict the claims entailed in a passage with a variant task of masked prediction. Our method can be efficiently plugged into current dense retrieval methods, and experiments show the effectiveness of our method.


[611] 2410.15802

Assisted Physical Interaction: Autonomous Aerial Robots with Neural Network Detection, Navigation, and Safety Layers

The paper introduces a novel framework for safe and autonomous aerial physical interaction in industrial settings. It comprises two main components: a neural network-based target detection system enhanced with edge computing for reduced onboard computational load, and a control barrier function (CBF)-based controller for safe and precise maneuvering. The target detection system is trained on a dataset under challenging visual conditions and evaluated for accuracy across various unseen data with changing lighting conditions. Depth features are utilized for target pose estimation, with the entire detection framework offloaded into low-latency edge computing. The CBF-based controller enables the UAV to converge safely to the target for precise contact. Simulated evaluations of both the controller and target detection are presented, alongside an analysis of real-world detection performance.


[612] 2410.15804

Deep Learning and Data Augmentation for Detecting Self-Admitted Technical Debt

Self-Admitted Technical Debt (SATD) refers to circumstances where developers use textual artifacts to explain why the existing implementation is not optimal. Past research in detecting SATD has focused on either identifying SATD (classifying SATD items as SATD or not) or categorizing SATD (labeling instances as SATD that pertain to requirement, design, code, test debt, etc.). However, the performance of these approaches remains suboptimal, particularly for specific types of SATD, such as test and requirement debt, primarily due to extremely imbalanced datasets. To address these challenges, we build on earlier research by utilizing BiLSTM architecture for the binary identification of SATD and BERT architecture for categorizing different types of SATD. Despite their effectiveness, both architectures struggle with imbalanced data. Therefore, we employ a large language model data augmentation strategy to mitigate this issue. Furthermore, we introduce a two-step approach to identify and categorize SATD across various datasets derived from different artifacts. Our contributions include providing a balanced dataset for future SATD researchers and demonstrating that our approach significantly improves SATD identification and categorization performance compared to baseline methods.


[613] 2410.15805

RAG4ITOps: A Supervised Fine-Tunable and Comprehensive RAG Framework for IT Operations and Maintenance

With the ever-increasing demands on Question Answering (QA) systems for IT operations and maintenance, an efficient and supervised fine-tunable framework is necessary to ensure the data security, private deployment and continuous upgrading. Although Large Language Models (LLMs) have notably improved the open-domain QA's performance, how to efficiently handle enterprise-exclusive corpora and build domain-specific QA systems are still less-studied for industrial applications. In this paper, we propose a general and comprehensive framework based on Retrieval Augmented Generation (RAG) and facilitate the whole business process of establishing QA systems for IT operations and maintenance. In accordance with the prevailing RAG method, our proposed framework, named with RAG4ITOps, composes of two major stages: (1) Models Fine-tuning \& Data Vectorization, and (2) Online QA System Process. At the Stage 1, we leverage a contrastive learning method with two negative sampling strategies to fine-tune the embedding model, and design the instruction templates to fine-tune the LLM with a Retrieval Augmented Fine-Tuning method. At the Stage 2, an efficient process of QA system is built for serving. We collect enterprise-exclusive corpora from the domain of cloud computing, and the extensive experiments show that our method achieves superior results than counterparts on two kinds of QA tasks. Our experiment also provide a case for applying the RAG4ITOps to real-world enterprise-level applications.


[614] 2410.15806

Support-Guessing Decoding Algorithms in the Sum-Rank Metric

The sum-rank metric generalizes the Hamming and rank metric by partitioning vectors into blocks and defining the total weight as the sum of the rank weights of these blocks, based on their matrix representation. In this work, we explore support-guessing algorithms for decoding sum-rank-metric codes. Support-guessing involves randomly selecting candidate supports and attempting to decode the error under the assumption that it is confined to these supports. While previous works have focused on worst-case scenarios, we analyze the average case and derive an optimal support-guessing distribution in the asymptotic regime. We show that this distribution also performs well for finite code lengths. Our analysis provides exact complexity estimates for unique decoding scenarios and establishes tighter bounds beyond the unique decoding radius. Additionally, we introduce a randomized decoding algorithm for Linearized Reed--Solomon (LRS) codes. This algorithm extends decoding capabilities beyond the unique decoding radius by leveraging an efficient error-and-erasure decoder. Instead of requiring the entire error support to be confined to the guessed support, the algorithm succeeds as long as there is sufficient overlap between the guessed support and the actual error support. As a result, the proposed method improves the success probability and reduces computational complexity compared to generic decoding algorithms. Our contributions offer more accurate complexity estimates than previous works, which are essential for understanding the computational challenges involved in decoding sum-rank-metric codes. This improved complexity analysis, along with optimized support-guessing distributions, provides valuable insights for the design and evaluation of code-based cryptosystems using the sum-rank metric. This is particularly important in the context of quantum-resistant cryptography.


[615] 2410.15811

Data-Efficient CLIP-Powered Dual-Branch Networks for Source-Free Unsupervised Domain Adaptation

Source-Free Unsupervised Domain Adaptation (SF-UDA) aims to transfer a model's performance from a labeled source domain to an unlabeled target domain without direct access to source samples, addressing data privacy issues. However, most existing SF-UDA approaches assume the availability of abundant source domain samples, which is often impractical due to the high cost of data annotation. In this paper, we explore a more challenging scenario where direct access to source domain samples is restricted, and the source domain contains only a few samples. To tackle the dual challenges of limited source data and privacy concerns, we introduce a data-efficient, CLIP-powered dual-branch network (CDBN in short). We design a cross-modal dual-branch network that integrates source domain class semantics into the unsupervised fine-tuning of the target domain. It preserves the class information from the source domain while enhancing the model's generalization to the target domain. Additionally, we propose an unsupervised optimization strategy driven by accurate classification and diversity, which aims to retain the classification capability learned from the source domain while producing more confident and diverse predictions in the target domain. Extensive experiments across 31 transfer tasks on 7 public datasets demonstrate that our approach achieves state-of-the-art performance compared to existing methods.


[616] 2410.15813

Industry 4.0 Connectors -- A Performance Experiment with Modbus/TCP

For Industry 4.0 applications, communication protocols and data formats even for legacy devices are fundamental. In this paper, we focus on the Modbus/TCP protocol, which is, e.g., used in energy metering. Allowing Industry 4.0 applications to include data from such protocols without need for programming would increase flexibility and, in turn, improve development efficiency. As one particular approach, we discuss the automated generation of Modbus/TCP connectors for our Open Source oktoflow platform and compare the performance of handcrafted as well as generated connectors in different settings, including industrial energy metering devices.


[617] 2410.15814

Kaninfradet3D:A Road-side Camera-LiDAR Fusion 3D Perception Model based on Nonlinear Feature Extraction and Intrinsic Correlation

With the development of AI-assisted driving, numerous methods have emerged for ego-vehicle 3D perception tasks, but there has been limited research on roadside perception. With its ability to provide a global view and a broader sensing range, the roadside perspective is worth developing. LiDAR provides precise three-dimensional spatial information, while cameras offer semantic information. These two modalities are complementary in 3D detection. However, adding camera data does not increase accuracy in some studies since the information extraction and fusion procedure is not sufficiently reliable. Recently, Kolmogorov-Arnold Networks (KANs) have been proposed as replacements for MLPs, which are better suited for high-dimensional, complex data. Both the camera and the LiDAR provide high-dimensional information, and employing KANs should enhance the extraction of valuable features to produce better fusion outcomes. This paper proposes Kaninfradet3D, which optimizes the feature extraction and fusion modules. To extract features from complex high-dimensional data, the model's encoder and fuser modules were improved using KAN Layers. Cross-attention was applied to enhance feature fusion, and visual comparisons verified that camera features were more evenly integrated. This addressed the issue of camera features being abnormally concentrated, negatively impacting fusion. Compared to the benchmark, our approach shows improvements of +9.87 mAP and +10.64 mAP in the two viewpoints of the TUMTraf Intersection Dataset and an improvement of +1.40 mAP in the roadside end of the TUMTraf V2X Cooperative Perception Dataset. The results indicate that Kaninfradet3D can effectively fuse features, demonstrating the potential of applying KANs in roadside perception tasks.


[618] 2410.15816

Software Frugality in an Accelerating World: the Case of Continuous Integration

The acceleration of software development and delivery requires rigorous continuous testing and deployment of software systems, which are being deployed in increasingly diverse, complex, and dynamic environments. In recent years, the popularization of DevOps and integrated software forges like GitLab and GitHub has largely democratized Continuous Integration (CI) practices for a growing number of software. However, this trend intersects significantly with global energy consumption concerns and the growing demand for frugality in the Information and Communication Technology (ICT) sector. CI pipelines typically run in data centers which contribute significantly to the environmental footprint of ICT, yet there is little information available regarding their environmental impact. This article aims to bridge this gap by conducting the first large-scale analysis of the energy footprint of CI pipelines implemented with GitHub Actions and to provide a first overview of the energy impact of CI. We collect, instrument, and reproduce 838 workflows from 396 Java repositories hosted on GitHub to measure their energy consumption. We observe that the average unitary energy cost of a pipeline is relatively low, at 10 Wh. However, due to repeated invocations of these pipelines in real settings, the aggregated energy consumption cost per project is high, averaging 22 kWh. When evaluating CO2 emissions based on regional Wh-to-CO2 estimates, we observe that the average aggregated CO2 emissions are significant, averaging 10.5 kg. To put this into perspective, this is akin to the emissions produced by driving approximately 100 kilometers in a typical European car (110 gCO2/km). In light of our results, we advocate that developers should have the means to better anticipate and reflect on the environmental consequences of their CI choices when implementing DevOps practices.


[619] 2410.15817

Large Language Models Empower Personalized Valuation in Auction

Auctions, a fundamental economic mechanism, encompass the valuation of goods or services and the competitive bidding algorithms within a specific framework, serving to uncover the true market value. However, current research predominantly focuses on the bidding algorithms within a given auction mechanism, often overlooking the advantages of incorporating individual bidders' unique preferences and the semantic information related to the items into the valuation process. Our analysis, both theoretical and empirical, shows that imprecise or noisy valuations can significantly affect the overall utility for participants. To bridge this gap, we propose a personalized valuation framework, namely \textbf{S}emantic-enhanced \textbf{P}ersonalized \textbf{V}aluation in \textbf{A}uction (\ours), which integrates Large Language Models (LLMs) to incorporate semantic information into each bidder's unique valuation process. Specifically, SPVA employs a two-stage approach: it first fine-tunes LLMs to encode bidder preferences in personalized valuations, and then constructs a Vickrey auction environment integrated with a bidding algorithm to demonstrate that SPVA's more accurate valuations result in higher profits. Additionally, we have developed a semantic-enhanced dataset comprising over 23,000 samples and introduced new personalized evaluation metrics that reflect both bidder preferences and profit. Through simulations of various auction scenarios, our method demonstrates its ability to provide accurate valuations and capture bidder preferences, affirming the method's effectiveness in real-world auction settings.


[620] 2410.15819

LiMTR: Time Series Motion Prediction for Diverse Road Users through Multimodal Feature Integration

Predicting the behavior of road users accurately is crucial to enable the safe operation of autonomous vehicles in urban or densely populated areas. Therefore, there has been a growing interest in time series motion prediction research, leading to significant advancements in state-of-the-art techniques in recent years. However, the potential of using LiDAR data to capture more detailed local features, such as a person's gaze or posture, remains largely unexplored. To address this, we develop a novel multimodal approach for motion prediction based on the PointNet foundation model architecture, incorporating local LiDAR features. Evaluation on the Waymo Open Dataset shows a performance improvement of 6.20% and 1.58% in minADE and mAP respectively, when integrated and compared with the previous state-of-the-art MTR. We open-source the code of our LiMTR model.


[621] 2410.15820

MAC Revivo: Artificial Intelligence Paves the Way

The vast adoption of Wi-Fi and/or Bluetooth capabilities in Internet of Things (IoT) devices, along with the rapid growth of deployed smart devices, has caused significant interference and congestion in the industrial, scientific, and medical (ISM) bands. Traditional Wi-Fi Medium Access Control (MAC) design faces significant challenges in managing increasingly complex wireless environments while ensuring network Quality of Service (QoS) performance. This paper explores the potential integration of advanced Artificial Intelligence (AI) methods into the design of Wi-Fi MAC protocols. We propose AI-MAC, an innovative approach that employs machine learning algorithms to dynamically adapt to changing network conditions, optimize channel access, mitigate interference, and ensure deterministic latency. By intelligently predicting and managing interference, AI-MAC aims to provide a robust solution for next generation of Wi-Fi networks, enabling seamless connectivity and enhanced QoS. Our experimental results demonstrate that AI-MAC significantly reduces both interference and latency, paving the way for more reliable and efficient wireless communications in the increasingly crowded ISM band.


[622] 2410.15821

The effect of fine-tuning on language model toxicity

Fine-tuning language models has become increasingly popular following the proliferation of open models and improvements in cost-effective parameter efficient fine-tuning. However, fine-tuning can influence model properties such as safety. We assess how fine-tuning can impact different open models' propensity to output toxic content. We assess the impacts of fine-tuning Gemma, Llama, and Phi models on toxicity through three experiments. We compare how toxicity is reduced by model developers during instruction-tuning. We show that small amounts of parameter-efficient fine-tuning on developer-tuned models via low-rank adaptation on a non-adversarial dataset can significantly alter these results across models. Finally, we highlight the impact of this in the wild, demonstrating how toxicity rates of models fine-tuned by community contributors can deviate in hard-to-predict ways.


[623] 2410.15825

Did somebody say "Gest-IT"? A pilot exploration of multimodal data management

The paper presents a pilot exploration of the construction, management and analysis of a multimodal corpus. Through a three-layer annotation that provides orthographic, prosodic, and gestural transcriptions, the Gest-IT resource allows to investigate the variation of gesture-making patterns in conversations between sighted people and people with visual impairment. After discussing the transcription methods and technical procedures employed in our study, we propose a unified CoNLL-U corpus and indicate our future steps


[624] 2410.15827

Explainability of Highly Associated Fuzzy Churn Patterns in Binary Classification

Customer churn, particularly in the telecommunications sector, influences both costs and profits. As the explainability of models becomes increasingly important, this study emphasizes not only the explainability of customer churn through machine learning models, but also the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation. The main objective is to use a machine learning model and fuzzy-set theory with top-\textit{k} HUIM to identify highly associated patterns of customer churn with intuitive identification, referred to as Highly Associated Fuzzy Churn Patterns (HAFCP). Moreover, this method aids in uncovering association rules among multiple features across low, medium, and high distributions. Such discoveries are instrumental in enhancing the explainability of findings. Experiments show that when the top-5 HAFCPs are included in five datasets, a mixture of performance results is observed, with some showing notable improvements. It becomes clear that high importance features enhance explanatory power through their distribution and patterns associated with other features. As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.


[625] 2410.15828

LLM4GRN: Discovering Causal Gene Regulatory Networks with LLMs -- Evaluation through Synthetic Data Generation

Gene regulatory networks (GRNs) represent the causal relationships between transcription factors (TFs) and target genes in single-cell RNA sequencing (scRNA-seq) data. Understanding these networks is crucial for uncovering disease mechanisms and identifying therapeutic targets. In this work, we investigate the potential of large language models (LLMs) for GRN discovery, leveraging their learned biological knowledge alone or in combination with traditional statistical methods. We develop a task-based evaluation strategy to address the challenge of unavailable ground truth causal graphs. Specifically, we use the GRNs suggested by LLMs to guide causal synthetic data generation and compare the resulting data against the original dataset. Our statistical and biological assessments show that LLMs can support statistical modeling and data synthesis for biological research.


[626] 2410.15831

Rethinking State Management in Actor Systems for Cloud-Native Applications

The actor model has gained increasing popularity. However, it lacks support for complex state management tasks, such as enforcing foreign key constraints and ensuring data replication consistency across actors. These are crucial properties in partitioned application designs, such as microservices. To fill this gap, we start by analyzing the key impediments in state-of-the-art actor systems. We find it difficult for developers to express complex data relationships across actors and reason about the impact of state updates on performance due to opaque state management abstractions. To solve this conundrum, we develop SmSa, a novel data management layer for actor systems, allowing developers to declare data dependencies that cut across actors, including foreign keys, data replications, and other dependencies. SmSa can transparently enforce the declared dependencies, reducing the burden on developers. Furthermore, SmSa employs novel logging and concurrency control algorithms to support transactional maintenance of data dependencies. We demonstrate SmSa can support core data management tasks where dependencies across components appear frequently without jeopardizing application logic expressiveness and performance. Our experiments show SmSa significantly reduces the logging overhead and leads to increased concurrency level, improving by up to 2X the performance of state-of-the-art deterministic scheduling approaches. As a result, SmSa will make it easier to design and implement highly partitioned and distributed applications.


[627] 2410.15832

Nonlinear Bayesian Filtering with Natural Gradient Gaussian Approximation

Practical Bayes filters often assume the state distribution of each time step to be Gaussian for computational tractability, resulting in the so-called Gaussian filters. When facing nonlinear systems, Gaussian filters such as extended Kalman filter (EKF) or unscented Kalman filter (UKF) typically rely on certain linearization techniques, which can introduce large estimation errors. To address this issue, this paper reconstructs the prediction and update steps of Gaussian filtering as solutions to two distinct optimization problems, whose optimal conditions are found to have analytical forms from Stein's lemma. It is observed that the stationary point for the prediction step requires calculating the first two moments of the prior distribution, which is equivalent to that step in existing moment-matching filters. In the update step, instead of linearizing the model to approximate the stationary points, we propose an iterative approach to directly minimize the update step's objective to avoid linearization errors. For the purpose of performing the steepest descent on the Gaussian manifold, we derive its natural gradient that leverages Fisher information matrix to adjust the gradient direction, accounting for the curvature of the parameter space. Combining this update step with moment matching in the prediction step, we introduce a new iterative filter for nonlinear systems called Natural Gradient Gaussian Approximation filter, or NANO filter for short. We prove that NANO filter locally converges to the optimal Gaussian approximation at each time step. The estimation error is proven exponentially bounded for nearly linear measurement equation and low noise levels through constructing a supermartingale-like inequality across consecutive time steps.


[628] 2410.15833

LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training

In this paper, we propose LiOn-XA, an unsupervised domain adaptation (UDA) approach that combines LiDAR-Only Cross-Modal (X) learning with Adversarial training for 3D LiDAR point cloud semantic segmentation to bridge the domain gap arising from environmental and sensor setup changes. Unlike existing works that exploit multiple data modalities like point clouds and RGB image data, we address UDA in scenarios where RGB images might not be available and show that two distinct LiDAR data representations can learn from each other for UDA. More specifically, we leverage 3D voxelized point clouds to preserve important geometric structure in combination with 2D projection-based range images that provide information such as object orientations or surfaces. To further align the feature space between both domains, we apply adversarial training using both features and predictions of both 2D and 3D neural networks. Our experiments on 3 real-to-real adaptation scenarios demonstrate the effectiveness of our approach, achieving new state-of-the-art performance when compared to previous uni- and multi-model UDA methods. Our source code is publicly available at https://github.com/JensLe97/lion-xa.


[629] 2410.15837

Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning

Geomagnetic navigation has drawn increasing attention with its capacity in navigating through complex environments and its independence from external navigation services like global navigation satellite systems (GNSS). Existing studies on geomagnetic navigation, i.e., matching navigation and bionic navigation, rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas. To address the issues with geomagnetic navigation in areas where GNSS is unavailable, this paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation. The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches. Particularly, we integrate the geomagnetic gradient-based parallel approach into geomagnetic navigation. This integration mitigates the over-exploration of the learning agent by adjusting the geomagnetic gradient, such that the obtained gradient is aligned towards the destination. We explore the effectiveness of the proposed approach via detailed numerical simulations, where we implement twin delayed deep deterministic policy gradient (TD3) in realizing the proposed approach. The results demonstrate that our approach outperforms existing metaheuristic and bionic navigation methods in long-distance missions under diverse navigation conditions.


[630] 2410.15839

Covering Codes as Near-Optimal Quantizers for Distributed Testing Against Independence

We explore the problem of distributed Hypothesis Testing (DHT) against independence, focusing specifically on Binary Symmetric Sources (BSS). Our investigation aims to characterize the optimal quantizer among binary linear codes, with the objective of identifying optimal error probabilities under the Neyman-Pearson (NP) criterion for short code-length regime. We define optimality as the direct minimization of analytical expressions of error probabilities using an alternating optimization (AO) algorithm. Additionally, we provide lower and upper bounds on error probabilities, leading to the derivation of error exponents applicable to large code-length regime. Numerical results are presented to demonstrate that, with the proposed algorithm, binary linear codes with an optimal covering radius perform near-optimally for the independence test in DHT.


[631] 2410.15840

Private, Efficient and Scalable Kernel Learning for Medical Image Analysis

Medical imaging is key in modern medicine. From magnetic resonance imaging (MRI) to microscopic imaging for blood cell detection, diagnostic medical imaging reveals vital insights into patient health. To predict diseases or provide individualized therapies, machine learning techniques like kernel methods have been widely used. Nevertheless, there are multiple challenges for implementing kernel methods. Medical image data often originates from various hospitals and cannot be combined due to privacy concerns, and the high dimensionality of image data presents another significant obstacle. While randomised encoding offers a promising direction, existing methods often struggle with a trade-off between accuracy and efficiency. Addressing the need for efficient privacy-preserving methods on distributed image data, we introduce OKRA (Orthonormal K-fRAmes), a novel randomized encoding-based approach for kernel-based machine learning. This technique, tailored for widely used kernel functions, significantly enhances scalability and speed compared to current state-of-the-art solutions. Through experiments conducted on various clinical image datasets, we evaluated model quality, computational performance, and resource overhead. Additionally, our method outperforms comparable approaches


[632] 2410.15841

Towards Efficient Collaboration via Graph Modeling in Reinforcement Learning

In multi-agent reinforcement learning, a commonly considered paradigm is centralized training with decentralized execution. However, in this framework, decentralized execution restricts the development of coordinated policies due to the local observation limitation. In this paper, we consider the cooperation among neighboring agents during execution and formulate their interactions as a graph. Thus, we introduce a novel encoder-decoder architecture named Factor-based Multi-Agent Transformer ($f$-MAT) that utilizes a transformer to enable the communication between neighboring agents during both training and execution. By dividing agents into different overlapping groups and representing each group with a factor, $f$-MAT fulfills efficient message passing among agents through factor-based attention layers. Empirical results on networked systems such as traffic scheduling and power control demonstrate that $f$-MAT achieves superior performance compared to strong baselines, thereby paving the way for handling complex collaborative problems.


[633] 2410.15843

A New Method For Flushing of Subsea Production Systems Prior to Decommissioning or Component Disconnection

This paper outlines a novel subsea flushing system which uses a subsea tool to improve the performance of the flushing operation. The new method outlined in this paper uses a small-diameter, high-pressure supply line and a subsea deployed tool containing a pump which recirculates the cleaning fluid through the component or system to be retrieved. The main benefit of this method when compared against conventional practices is that it allows achieving higher fluid speeds inside the subsea equipment being flushed, while injecting smaller flow rates from the surface vessel. The high fluid speeds are achieved with the recirculation pump. The higher fluid speeds ensure efficient sweeping of hydrocarbons from complex paths. A reduced flow rate from the surface vessel also allows a small diameter high pressure supply line to be used, which allows for reduced weight and storage. The study is a numerical simulation of the method applied to a subsea jumper geometry. The injection flow rates required to achieve an efficient flushing were determined from previous experimental work. Calculations were made to estimate the pressure and power requirements for performing the flushing operation as well as the design requirements for the supply line concerning dimensions, material properties and the storage space needed on the support vessel. The performance of the proposed novel system was compared to that of conventional flushing systems. As environmental concerns increase, the presented method has the potential to make the flushing process more efficient while reducing costs associated with support vessels and the materials needed. The novel system may also be deployed using a low-cost Inspection Maintenance and Repair (IMR) vessel. The subsea tool is connected to the subsea production system, either through dedicated connection ports or using pipe clamp connectors with pipe wall penetrators.


[634] 2410.15846

Modelling Concurrent RTP Flows for End-to-end Predictions of QoS in Real Time Communications

The Real-time Transport Protocol (RTP)-based real-time communications (RTC) applications, exemplified by video conferencing, have experienced an unparalleled surge in popularity and development in recent years. In pursuit of optimizing their performance, the prediction of Quality of Service (QoS) metrics emerges as a pivotal endeavor, bolstering network monitoring and proactive solutions. However, contemporary approaches are confined to individual RTP flows and metrics, falling short in relationship capture and computational efficiency. To this end, we propose Packet-to-Prediction (P2P), a novel deep learning (DL) framework that hinges on raw packets to simultaneously process concurrent RTP flows and perform end-to-end prediction of multiple QoS metrics. Specifically, we implement a streamlined architecture, namely length-free Transformer with cross and neighbourhood attention, capable of handling an unlimited number of RTP flows, and employ a multi-task learning paradigm to forecast four key metrics in a single shot. Our work is based on extensive traffic collected during real video calls, and conclusively, P2P excels comparative models in both prediction performance and temporal efficiency.


[635] 2410.15847

Random Token Fusion for Multi-View Medical Diagnosis

In multi-view medical diagnosis, deep learning-based models often fuse information from different imaging perspectives to improve diagnostic performance. However, existing approaches are prone to overfitting and rely heavily on view-specific features, which can lead to trivial solutions. In this work, we introduce Random Token Fusion (RTF), a novel technique designed to enhance multi-view medical image analysis using vision transformers. By integrating randomness into the feature fusion process during training, RTF addresses the issue of overfitting and enhances the robustness and accuracy of diagnostic models without incurring any additional cost at inference. We validate our approach on standard mammography and chest X-ray benchmark datasets. Through extensive experiments, we demonstrate that RTF consistently improves the performance of existing fusion methods, paving the way for a new generation of multi-view medical foundation models.


[636] 2410.15848

Symmetries of Dependency Quantified Boolean Formulas

Symmetries have been exploited successfully within the realms of SAT and QBF to improve solver performance in practical applications and to devise more powerful proof systems. As a first step towards extending these advancements to the class of dependency quantified Boolean formulas (DQBFs), which generalize QBF by allowing more nuanced variable dependencies, this work develops a comprehensive theory to characterize symmetries for DQBFs. We also introduce the notion of symmetry breakers of DQBFs, along with a concrete construction, and discuss how to detect DQBF symmetries algorithmically using a graph-based approach.


[637] 2410.15849

Focus Where It Matters: Graph Selective State Focused Attention Networks

Traditional graph neural networks (GNNs) lack scalability and lose individual node characteristics due to over-smoothing, especially in the case of deeper networks. This results in sub-optimal feature representation, affecting the model's performance on tasks involving dynamically changing graphs. To address this issue, we present Graph Selective States Focused Attention Networks (GSANs) based neural network architecture for graph-structured data. The GSAN is enabled by multi-head masked self-attention (MHMSA) and selective state space modeling (S3M) layers to overcome the limitations of GNNs. In GSAN, the MHMSA allows GSAN to dynamically emphasize crucial node connections, particularly in evolving graph environments. The S3M layer enables the network to adjust dynamically in changing node states and improving predictions of node behavior in varying contexts without needing primary knowledge of the graph structure. Furthermore, the S3M layer enhances the generalization of unseen structures and interprets how node states influence link importance. With this, GSAN effectively outperforms inductive and transductive tasks and overcomes the issues that traditional GNNs experience. To analyze the performance behavior of GSAN, a set of state-of-the-art comparative experiments are conducted on graphs benchmark datasets, including $Cora$, $Citeseer$, $Pubmed$ network citation, and $protein-protein-interaction$ datasets, as an outcome, GSAN improved the classification accuracy by $1.56\%$, $8.94\%$, $0.37\%$, and $1.54\%$ on $F1-score$ respectively.


[638] 2410.15850

Solving elliptic PDEs in unbounded domains

An accurate approximation of solutions to elliptic problems in infinite domains is challenging from a computational point of view. This is due to the need to replace the infinite domain with a sufficiently large and bounded computational domain, and posing artificial boundary conditions on the boundary of the truncated computational geometry, which will then pollute the solution in an interior region of interest. For elliptic problems with periodically varying coefficients (with a possibly unknown period), a modelling strategy based on exponentially regularized elliptic problem was previously developed and analysed. The main idea was to replace the infinite domain periodic problem with a regularized elliptic problem posed over a finite domain, while retaining an accuracy decaying exponentially with respect to the size of the truncated domain. In this article, we extend the analysis to problems, where no structural assumptions on the coefficient are assumed. Moreover, the analysis here uncovers an interesting property of the right hand side in the Fourier domain for the method to converge fast for problems beyond periodicity.


[639] 2410.15853

ADS Performance Revisited

Real-time measurements are important for in-depth control of manufacturing processes, which, for modern AI methods, need integration with high-level languages. In our last SSP paper we investigated the performance of a Python and a Java-JNA based approach to integrate the Beckhoff ADS protocol for real-time edge communication into an Industry 4.0 platform. There, we have shown that while Java outperforms Python, both solutions do not meet the desired goal of 1-20kHz depending on the task. However, we are are still lacking an explanation for this result as well as an analysis of alternatives. For the first topic, we show in this paper that 1) exchanging Java-JNA with Java-JNI in this setting does not further improve the performance 2) a C++ program realizing the same behavior in a more direct integration does not perform better and 3) profiling shows that the majority of the execution is spend in ADS. For the second topic, we show that alternative uses of the ADS library allow for better performance.


[640] 2410.15854

TEXEL: A neuromorphic processor with on-chip learning for beyond-CMOS device integration

Recent advances in memory technologies, devices and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with CMOS circuitry. To address this, we introduce TEXEL, a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. TEXEL serves as an accessible platform to bridge the gap between CMOS-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of TEXEL for device integration through comprehensive chip measurements and simulations. TEXEL provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.


[641] 2410.15858

Towards Optimal Adapter Placement for Efficient Transfer Learning

Parameter-efficient transfer learning (PETL) aims to adapt pre-trained models to new downstream tasks while minimizing the number of fine-tuned parameters. Adapters, a popular approach in PETL, inject additional capacity into existing networks by incorporating low-rank projections, achieving performance comparable to full fine-tuning with significantly fewer parameters. This paper investigates the relationship between the placement of an adapter and its performance. We observe that adapter location within a network significantly impacts its effectiveness, and that the optimal placement is task-dependent. To exploit this observation, we introduce an extended search space of adapter connections, including long-range and recurrent adapters. We demonstrate that even randomly selected adapter placements from this expanded space yield improved results, and that high-performing placements often correlate with high gradient rank. Our findings reveal that a small number of strategically placed adapters can match or exceed the performance of the common baseline of adding adapters in every block, opening a new avenue for research into optimal adapter placement strategies.


[642] 2410.15859

Mesa-Extrapolation: A Weave Position Encoding Method for Enhanced Extrapolation in LLMs

Large language models (LLMs), although having revolutionized many fields, still suffer from the challenging extrapolation problem, where the inference ability of LLMs sharply declines beyond their max training lengths. In this work, we conduct a theoretical analysis to better understand why No Position Encoding (NoPE) fails outside its effective range, as well as examining the power of Position Encoding (PE) in this context. Our findings reveal that with meticulous weave position, PE can indeed be extended beyond effective range. Our theorems establish that LLMs equipped with weave PE can achieve improved extrapolation performance without additional cost. Furthermore, we introduce a novel weave PE method, Mesa-Extrapolation, which utilizes a chunk-based triangular attention matrix and applies Stair PE to manage the final chunk. This method not only retains competitive performance but also offers substantial benefits such as significantly reduced memory demand and faster inference speed. Extensive experiments validate the effectiveness of Mesa-Extrapolation, demonstrating its potential as a scalable solution to enhancing LLMs applicative reach.


[643] 2410.15863

Task-oriented Robotic Manipulation with Vision Language Models

Vision-Language Models (VLMs) play a crucial role in robotic manipulation by enabling robots to understand and interpret the visual properties of objects and their surroundings, allowing them to perform manipulation based on this multimodal understanding. However, understanding object attributes and spatial relationships is a non-trivial task but is critical in robotic manipulation tasks. In this work, we present a new dataset focused on spatial relationships and attribute assignment and a novel method to utilize VLMs to perform object manipulation with task-oriented, high-level input. In this dataset, the spatial relationships between objects are manually described as captions. Additionally, each object is labeled with multiple attributes, such as fragility, mass, material, and transparency, derived from a fine-tuned vision language model. The embedded object information from captions are automatically extracted and transformed into a data structure (in this case, tree, for demonstration purposes) that captures the spatial relationships among the objects within each image. The tree structures, along with the object attributes, are then fed into a language model to transform into a new tree structure that determines how these objects should be organized in order to accomplish a specific (high-level) task. We demonstrate that our method not only improves the comprehension of spatial relationships among objects in the visual environment but also enables robots to interact with these objects more effectively. As a result, this approach significantly enhances spatial reasoning in robotic manipulation tasks. To our knowledge, this is the first method of its kind in the literature, offering a novel solution that allows robots to more efficiently organize and utilize objects in their surroundings.


[644] 2410.15865

Principles of semantic and functional efficiency in grammatical patterning

Grammatical features such as number and gender serve two central functions in human languages. While they encode salient semantic attributes like numerosity and animacy, they also offload sentence processing cost by predictably linking words together via grammatical agreement. Grammars exhibit consistent organizational patterns across diverse languages, invariably rooted in a semantic foundation, a widely confirmed but still theoretically unexplained phenomenon. To explain the basis of universal grammatical patterns, we unify two fundamental properties of grammar, semantic encoding and agreement-based predictability, into a single information-theoretic objective under cognitive constraints. Our analyses reveal that grammatical organization provably inherits from perceptual attributes, but that grammars empirically prioritize functional goals, promoting efficient language processing over semantic encoding.


[645] 2410.15866

Visual Motif Identification: Elaboration of a Curated Comparative Dataset and Classification Methods

In cinema, visual motifs are recurrent iconographic compositions that carry artistic or aesthetic significance. Their use throughout the history of visual arts and media is interesting to researchers and filmmakers alike. Our goal in this work is to recognise and classify these motifs by proposing a new machine learning model that uses a custom dataset to that end. We show how features extracted from a CLIP model can be leveraged by using a shallow network and an appropriate loss to classify images into 20 different motifs, with surprisingly good results: an $F_1$-score of 0.91 on our test set. We also present several ablation studies justifying the input features, architecture and hyperparameters used.


[646] 2410.15868

Enabling Hexa-X 6G Vision: An End-to-End Architecture

The end-to-end (E2E) architecture for the 6th generation of mobile network (6G) necessitates a comprehensive design, considering emerging use cases (UCs), requirements, and key value Indicators (KVIs). These UCs collectively share stringent requirements of extreme connectivity, inclusivity, and flexibility imposed on the architecture and its enablers. Furthermore, the trustworthiness and security of the 6G architecture must be enhanced compared to previous generations, owning to the expected increase in security threats and more complex UCs that may expose new security vulnerabilities. Additionally, sustainability emerges as a critical design consideration in the 6G architecture. In light of these new set of values and requirements for 6G, this paper aims to describe an architecture proposed within the Hexa-X, the European 6G flagship project, capable of enabling the above-mentioned 6G vision for the 2030s and beyond.


[647] 2410.15869

Robust Loop Closure by Textual Cues in Challenging Environments

Loop closure is an important task in robot navigation. However, existing methods mostly rely on some implicit or heuristic features of the environment, which can still fail to work in common environments such as corridors, tunnels, and warehouses. Indeed, navigating in such featureless, degenerative, and repetitive (FDR) environments would also pose a significant challenge even for humans, but explicit text cues in the surroundings often provide the best assistance. This inspires us to propose a multi-modal loop closure method based on explicit human-readable textual cues in FDR environments. Specifically, our approach first extracts scene text entities based on Optical Character Recognition (OCR), then creates a local map of text cues based on accurate LiDAR odometry and finally identifies loop closure events by a graph-theoretic scheme. Experiment results demonstrate that this approach has superior performance over existing methods that rely solely on visual and LiDAR sensors. To benefit the community, we release the source code and datasets at \url{https://github.com/TongxingJin/TXTLCD}.


[648] 2410.15875

Enabling Asymmetric Knowledge Transfer in Multi-Task Learning with Self-Auxiliaries

Knowledge transfer in multi-task learning is typically viewed as a dichotomy; positive transfer, which improves the performance of all tasks, or negative transfer, which hinders the performance of all tasks. In this paper, we investigate the understudied problem of asymmetric task relationships, where knowledge transfer aids the learning of certain tasks while hindering the learning of others. We propose an optimisation strategy that includes additional cloned tasks named self-auxiliaries into the learning process to flexibly transfer knowledge between tasks asymmetrically. Our method can exploit asymmetric task relationships, benefiting from the positive transfer component while avoiding the negative transfer component. We demonstrate that asymmetric knowledge transfer provides substantial improvements in performance compared to existing multi-task optimisation strategies on benchmark computer vision problems.


[649] 2410.15876

FlickerFusion: Intra-trajectory Domain Generalizing Multi-Agent RL

Multi-agent reinforcement learning has demonstrated significant potential in addressing complex cooperative tasks across various real-world applications. However, existing MARL approaches often rely on the restrictive assumption that the number of entities (e.g., agents, obstacles) remains constant between training and inference. This overlooks scenarios where entities are dynamically removed or added during the inference trajectory -- a common occurrence in real-world environments like search and rescue missions and dynamic combat situations. In this paper, we tackle the challenge of intra-trajectory dynamic entity composition under zero-shot out-of-domain (OOD) generalization, where such dynamic changes cannot be anticipated beforehand. Our empirical studies reveal that existing MARL methods suffer significant performance degradation and increased uncertainty in these scenarios. In response, we propose FlickerFusion, a novel OOD generalization method that acts as a universally applicable augmentation technique for MARL backbone methods. Our results show that FlickerFusion not only achieves superior inference rewards but also uniquely reduces uncertainty vis-\`a-vis the backbone, compared to existing methods. For standardized evaluation, we introduce MPEv2, an enhanced version of Multi Particle Environments (MPE), consisting of 12 benchmarks. Benchmarks, implementations, and trained models are organized and open-sourced at flickerfusion305.github.io, accompanied by ample demo video renderings.


[650] 2410.15879

Triplane Grasping: Efficient 6-DoF Grasping with Single RGB Images

Reliable object grasping is one of the fundamental tasks in robotics. However, determining grasping pose based on single-image input has long been a challenge due to limited visual information and the complexity of real-world objects. In this paper, we propose Triplane Grasping, a fast grasping decision-making method that relies solely on a single RGB-only image as input. Triplane Grasping creates a hybrid Triplane-Gaussian 3D representation through a point decoder and a triplane decoder, which produce an efficient and high-quality reconstruction of the object to be grasped to meet real-time grasping requirements. We propose to use an end-to-end network to generate 6-DoF parallel-jaw grasp distributions directly from 3D points in the point cloud as potential grasp contacts and anchor the grasp pose in the observed data. Experiments demonstrate that our method achieves rapid modeling and grasping pose decision-making for daily objects, and exhibits a high grasping success rate in zero-shot scenarios.


[651] 2410.15880

Integer Polynomial Factorization by Recombination of Real Factors: Re-evaluating an Old Technique in Modern Era

Polynomial factorization over $ZZ$ is of great historical and practical importance. Currently, the standard technique is to factor the polynomial over finite fields first and then to lift to integers. Factorization over finite fields can be done in polynomial time using Berlekamp or Cantor-Zassenhaus algorithms. Lifting from the finite field to $ZZ$ requires a combinatorial algorithm. The van Hoeij algorithm casts the combinatorial problem as a knapsack-equivalent problem, which is then solved using lattice-reduction (the LLL algorithm) in polynomial time, which is implemented in many computer algebra systems (CAS). In this paper, we revisit the old idea of starting with factorization over $RR$ instead of a finite field, followed by recombination of the resulting linear and quadratic factors. We transform the problem into an integer subset sum problem, which is then solved using the Horowizt-Sinha algorithm. This algorithm can factor a random integer polynomial of degree $d$ in a time complexity of $O(2^(d slash 4))$. While the resulting algorithm is exponential, consistent with the integer subset sum problem being in NP, it has a few advantages. First, it is simple and easy to implement. Second, it is almost embarrassingly parallelizable. We demonstrate this by implementing the algorithm in a Graphic Processing Unit (GPU). The resulting code can factor a degree 100 polynomial is a few tenths of a second, comparable to some standard CAS. This shows that it is possible to use current hardware, especially massively parallel systems like GPU, to the benefit of symbolic algebra.


[652] 2410.15881

MI-VisionShot: Few-shot adaptation of vision-language models for slide-level classification of histopathological images

Vision-language supervision has made remarkable strides in learning visual representations from textual guidance. In digital pathology, vision-language models (VLM), pre-trained on curated datasets of histological image-captions, have been adapted to downstream tasks, such as region of interest classification. Zero-shot transfer for slide-level prediction has been formulated by MI-Zero, but it exhibits high variability depending on the textual prompts. Inspired by prototypical learning, we propose MI-VisionShot, a training-free adaptation method on top of VLMs to predict slide-level labels in few-shot learning scenarios. Our framework takes advantage of the excellent representation learning of VLM to create prototype-based classifiers under a multiple-instance setting by retrieving the most discriminative patches within each slide. Experimentation through different settings shows the ability of MI-VisionShot to surpass zero-shot transfer with lower variability, even in low-shot scenarios. Code coming soon at thttps://github.com/cvblab/MIVisionShot.


[653] 2410.15882

Distributed Learning for UAV Swarms

Unmanned Aerial Vehicle (UAV) swarms are increasingly deployed in dynamic, data-rich environments for applications such as environmental monitoring and surveillance. These scenarios demand efficient data processing while maintaining privacy and security, making Federated Learning (FL) a promising solution. FL allows UAVs to collaboratively train global models without sharing raw data, but challenges arise due to the non-Independent and Identically Distributed (non-IID) nature of the data collected by UAVs. In this study, we show an integration of the state-of-the-art FL methods to UAV Swarm application and invetigate the performance of multiple aggregation methods (namely FedAvg, FedProx, FedOpt, and MOON) with a particular focus on tackling non-IID on a variety of datasets, specifically MNIST for baseline performance, CIFAR10 for natural object classification, EuroSAT for environment monitoring, and CelebA for surveillance. These algorithms were selected to cover improved techniques on both client-side updates and global aggregation. Results show that while all algorithms perform comparably on IID data, their performance deteriorates significantly under non-IID conditions. FedProx demonstrated the most stable overall performance, emphasising the importance of regularising local updates in non-IID environments to mitigate drastic deviations in local models.


[654] 2410.15884

Using GPT Models for Qualitative and Quantitative News Analytics in the 2024 US Presidental Election Process

The paper considers an approach of using Google Search API and GPT-4o model for qualitative and quantitative analyses of news through retrieval-augmented generation (RAG). This approach was applied to analyze news about the 2024 US presidential election process. Different news sources for different time periods have been analyzed. Quantitative scores generated by GPT model have been analyzed using Bayesian regression to derive trend lines. The distributions found for the regression parameters allow for the analysis of uncertainty in the election process. The obtained results demonstrate that using the GPT models for news analysis, one can get informative analytics and provide key insights that can be applied in further analyses of election processes.


[655] 2410.15885

How to Build a Pre-trained Multimodal model for Simultaneously Chatting and Decision-making?

Existing large pre-trained models typically map text input to text output in an end-to-end manner, such as ChatGPT, or map a segment of text input to a hierarchy of action decisions, such as OpenVLA. However, humans can simultaneously generate text and actions when receiving specific input signals. For example, a driver can make precise driving decisions while conversing with a friend in the passenger seat. Motivated by this observation, we consider the following question in this work: is it possible to construct a pre-trained model that can provide both language interaction and precise decision-making capabilities in dynamic open scenarios. We provide a definitive answer to this question by developing a new model architecture termed Visual Language Action model for Chatting and Decision Making (VLA4CD), and further demonstrating its performance in challenging autonomous driving tasks. Specifically, we leverage LoRA to fine-tune a pre-trained LLM with data of multiple modalities covering language, visual, and action. Unlike the existing LoRA operations used for LLM fine-tuning, we have designed new computational modules and training cost functions for VLA4CD. These designs enable VLA4CD to provide continuous-valued action decisions while outputting text responses. In contrast, existing LLMs can only output text responses, and current VLA models can only output action decisions. Moreover, these VLA models handle action data by discretizing and then tokenizing the discretized actions, a method unsuitable for complex decision-making tasks involving high-dimensional continuous-valued action vectors, such as autonomous driving. The experimental results on CARLA validate that: (1) our proposed model construction method is effective; (2) compared to the SOTA VLA model, VLA4CD can provide more accurate real-time decision-making while retaining the text interaction capability inherent to LLMs.


[656] 2410.15886

Foundation Models for Slide-level Cancer Subtyping in Digital Pathology

Since the emergence of the ImageNet dataset, the pretraining and fine-tuning approach has become widely adopted in computer vision due to the ability of ImageNet-pretrained models to learn a wide variety of visual features. However, a significant challenge arises when adapting these models to domain-specific fields, such as digital pathology, due to substantial gaps between domains. To address this limitation, foundation models (FM) have been trained on large-scale in-domain datasets to learn the intricate features of histopathology images. In cancer diagnosis, whole-slide image (WSI) prediction is essential for patient prognosis, and multiple instance learning (MIL) has been implemented to handle the giga-pixel size of WSI. As MIL frameworks rely on patch-level feature aggregation, this work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework. Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes


[657] 2410.15887

Singular Detection in Noncoherent Communications

This paper proposes a general analysis of codeword detection in noncoherent communications. Motivated by the existence of error floors in various regimes, fundamental characteristics of signal design are investigated. In particular, the necessary and sufficient conditions for asymptotically singular detection (i.e. error-free in the limit) are derived from classical results in detection theory. By leveraging tools from linear algebra and the theory of Hilbert spaces, we are able to characterize asymptotic singularity in two main scenarios: the large array and high SNR regimes. The results generalize previous works and extend the notion of unique identification, as well as recontextualize the geometry of Grassmannian constellations from an alternative perspective.


[658] 2410.15889

Model Mimic Attack: Knowledge Distillation for Provably Transferable Adversarial Examples

The vulnerability of artificial neural networks to adversarial perturbations in the black-box setting is widely studied in the literature. The majority of attack methods to construct these perturbations suffer from an impractically large number of queries required to find an adversarial example. In this work, we focus on knowledge distillation as an approach to conduct transfer-based black-box adversarial attacks and propose an iterative training of the surrogate model on an expanding dataset. This work is the first, to our knowledge, to provide provable guarantees on the success of knowledge distillation-based attack on classification neural networks: we prove that if the student model has enough learning capabilities, the attack on the teacher model is guaranteed to be found within the finite number of distillation iterations.


[659] 2410.15891

TexPro: Text-guided PBR Texturing with Procedural Material Modeling

In this paper, we present TexPro, a novel method for high-fidelity material generation for input 3D meshes given text prompts. Unlike existing text-conditioned texture generation methods that typically generate RGB textures with baked lighting, TexPro is able to produce diverse texture maps via procedural material modeling, which enables physical-based rendering, relighting, and additional benefits inherent to procedural materials. Specifically, we first generate multi-view reference images given the input textual prompt by employing the latest text-to-image model. We then derive texture maps through a rendering-based optimization with recent differentiable procedural materials. To this end, we design several techniques to handle the misalignment between the generated multi-view images and 3D meshes, and introduce a novel material agent that enhances material classification and matching by exploring both part-level understanding and object-aware material reasoning. Experiments demonstrate the superiority of the proposed method over existing SOTAs and its capability of relighting.


[660] 2410.15893

ATOMIC: Automatic Tool for Memristive IMPLY-based Circuit-level Simulation and Validation

Since performance improvements of computers are stagnating, new technologies and computer paradigms are hot research topics. Memristor-based In-Memory Computing is one of the promising candidates for the post-CMOS era, which comes in many flavors. Processing In memory Array (PIA) or using memory, is on of them which is a relatively new approach, and substantially different than traditional CMOS-based logic design. Consequently, there is a lack of publicly available CAD tools for memristive PIA design and evaluation. Here, we present ATOMIC: an Automatic Tool for Memristive IMPLY-based Circuit-level Simulation and Validation. Using our tool, a large portion of the simulation, evaluation, and validation process can be performed automatically, drastically reducing the development time for memristive PIA systems, in particular those using IMPLY logic. The code is available at https://github.com/fabianseiler/ATOMIC.


[661] 2410.15894

Transparent and Efficient Live Migration across Heterogeneous Hosts with Wharf

Live migration allows a user to move a running application from one machine (a source) to another (a destination) without restarting it. The technique has proven useful for diverse tasks including load balancing, managing system updates, improving data locality, and improving system resilience. Unfortunately, current live migration solutions fail to meet today's computing needs. First, most techniques do not support heterogeneous source and destination hosts, as they require the two machines to have the same instruction set architecture (ISA) or use the same operating system (OS), which hampers numerous live migration usecases. Second, many techniques are not transparent, as they require that applications be written in a specific high-level language or call specific library functions, which imposes barriers to entry for many users. We present a new lightweight abstraction, called a vessel, that supports transparent heterogeneous live migration. A vessel maintains a machine-independent encoding of a process's state, using WebAssembly abstractions, allowing it to be executed on nearly-arbitrary ISAs. A vessel virtualizes all of its OS state, using the WebAssembly System Interface (WASI), allowing it to execute on nearly arbitrary OS. We introduce docks and software systems that execute and migrate vessels. Docks face two key challenges: First, maintaining a machine-independent encoding at all points in a process is extremely expensive. So, docks instead ensure that a vessel is guaranteed to eventually reach a machine-independent point and delay the initiation of vessel migration until the vessel reaches such a point. Second, a dock may receive a vessel migration that originates from a dock executing on a different OS.


[662] 2410.15897

IGMaxHS -- An Incremental MaxSAT Solver with Support for XOR Clauses

Recently, a novel, MaxSAT-based method for error correction in quantum computing has been proposed that requires both incremental MaxSAT solving capabilities and support for XOR constraints, but no dedicated MaxSAT solver fulfilling these criteria existed yet. We alleviate that and introduce IGMaxHS, which is based on the existing solvers iMaxHS and GaussMaxHS, but poses fewer restrictions on the XOR constraints than GaussMaxHS. IGMaxHS is fuzz tested with xwcnfuzz, an extension of wcnfuzz that can directly output XOR constraints. As a result, IGMaxHS is the only solver that reported neither incorrect unsatisfiability verdicts nor invalid models nor incoherent cost model combinations in a final fuzz testing comparison of all three solvers with 10000 instances. We detail the steps required for implementing Gaussian elimination on XOR constraints in CDCL SAT solvers, and extend the recently proposed re-entrant incremental MaxSAT solver application program interface to allow for incremental addition of XOR constraints. Finally, we show that IGMaxHS is capable of decoding quantum color codes through simulation with the Munich Quantum Toolkit.


[663] 2410.15908

Formalising CXL Cache Coherence

We report our experience formally modelling and verifying CXL.cache, the inter-device cache coherence protocol of the Compute Express Link standard. We have used the Isabelle proof assistant to create a formal model for CXL.cache based on the prose English specification. This led to us identifying and proposing fixes to several problems we identified as unclear, ambiguous or inaccurate, some of which could lead to incoherence if left unfixed. Nearly all our issues and proposed fixes have been confirmed and tentatively accepted by the CXL consortium for adoption, save for one which is still under discussion. To validate the faithfulness of our model we performed scenario verification of essential restrictions such as "Snoop-pushes-GO", and produced a fully mechanised proof of a coherence property of the model. The considerable size of this proof, comprising tens of thousands of lemmas, prompted us to develop new proof automation tools, which we have made available for other Isabelle users working with similarly cumbersome proofs.


[664] 2410.15909

Hybrid Architecture for Real-Time Video Anomaly Detection: Integrating Spatial and Temporal Analysis

We propose a new architecture for real-time anomaly detection in video data, inspired by human behavior by combining spatial and temporal analyses. This approach uses two distinct models: for temporal analysis, a recurrent convolutional network (CNN + RNN) is employed, associating VGG19 and a GRU to process video sequences. Regarding spatial analysis, it is performed using YOLOv7 to analyze individual images. These two analyses can be carried out either in parallel, with a final prediction that combines the results of both analyses, or in series, where the spatial analysis enriches the data before the temporal analysis. In this article, we will compare these two architectural configurations with each other, to evaluate the effectiveness of our hybrid approach in video anomaly detection.


[665] 2410.15910

Diverse Policies Recovering via Pointwise Mutual Information Weighted Imitation Learning

Recovering a spectrum of diverse policies from a set of expert trajectories is an important research topic in imitation learning. After determining a latent style for a trajectory, previous diverse policies recovering methods usually employ a vanilla behavioral cloning learning objective conditioned on the latent style, treating each state-action pair in the trajectory with equal importance. Based on an observation that in many scenarios, behavioral styles are often highly relevant with only a subset of state-action pairs, this paper presents a new principled method in diverse polices recovery. In particular, after inferring or assigning a latent style for a trajectory, we enhance the vanilla behavioral cloning by incorporating a weighting mechanism based on pointwise mutual information. This additional weighting reflects the significance of each state-action pair's contribution to learning the style, thus allowing our method to focus on state-action pairs most representative of that style. We provide theoretical justifications for our new objective, and extensive empirical evaluations confirm the effectiveness of our method in recovering diverse policies from expert data.


[666] 2410.15911

DefVerify: Do Hate Speech Models Reflect Their Dataset's Definition?

When building a predictive model, it is often difficult to ensure that domain-specific requirements are encoded by the model that will eventually be deployed. Consider researchers working on hate speech detection. They will have an idea of what is considered hate speech, but building a model that reflects their view accurately requires preserving those ideals throughout the workflow of data set construction and model training. Complications such as sampling bias, annotation bias, and model misspecification almost always arise, possibly resulting in a gap between the domain specification and the model's actual behavior upon deployment. To address this issue for hate speech detection, we propose DefVerify: a 3-step procedure that (i) encodes a user-specified definition of hate speech, (ii) quantifies to what extent the model reflects the intended definition, and (iii) tries to identify the point of failure in the workflow. We use DefVerify to find gaps between definition and model behavior when applied to six popular hate speech benchmark datasets.


[667] 2410.15912

Bench4Merge: A Comprehensive Benchmark for Merging in Realistic Dense Traffic with Micro-Interactive Vehicles

While the capabilities of autonomous driving have advanced rapidly, merging into dense traffic remains a significant challenge, many motion planning methods for this scenario have been proposed but it is hard to evaluate them. Most existing closed-loop simulators rely on rule-based controls for other vehicles, which results in a lack of diversity and randomness, thus failing to accurately assess the motion planning capabilities in highly interactive scenarios. Moreover, traditional evaluation metrics are insufficient for comprehensively evaluating the performance of merging in dense traffic. In response, we proposed a closed-loop evaluation benchmark for assessing motion planning capabilities in merging scenarios. Our approach involves other vehicles trained in large scale datasets with micro-behavioral characteristics that significantly enhance the complexity and diversity. Additionally, we have restructured the evaluation mechanism by leveraging large language models to assess each autonomous vehicle merging onto the main road. Extensive experiments have demonstrated the advanced nature of this evaluation benchmark. Through this benchmark, we have obtained an evaluation of existing methods and identified common issues. The environment and vehicle motion planning models we have designed can be accessed at https://anonymous.4open.science/r/Bench4Merge-EB5D


[668] 2410.15916

Leveraging CORAL-Correlation Consistency Network for Semi-Supervised Left Atrium MRI Segmentation

Semi-supervised learning (SSL) has been widely used to learn from both a few labeled images and many unlabeled images to overcome the scarcity of labeled samples in medical image segmentation. Most current SSL-based segmentation methods use pixel values directly to identify similar features in labeled and unlabeled data. They usually fail to accurately capture the intricate attachment structures in the left atrium, such as the areas of inconsistent density or exhibit outward curvatures, adding to the complexity of the task. In this paper, we delve into this issue and introduce an effective solution, CORAL(Correlation-Aligned)-Correlation Consistency Network (CORN), to capture the global structure shape and local details of Left Atrium. Diverging from previous methods focused on each local pixel value, the CORAL-Correlation Consistency Module (CCM) in the CORN leverages second-order statistical information to capture global structural features by minimizing the distribution discrepancy between labeled and unlabeled samples in feature space. Yet, direct construction of features from unlabeled data frequently results in ``Sample Selection Bias'', leading to flawed supervision. We thus further propose the Dynamic Feature Pool (DFP) for the CCM, which utilizes a confidence-based filtering strategy to remove incorrectly selected features and regularize both teacher and student models by constraining the similarity matrix to be consistent. Extensive experiments on the Left Atrium dataset have shown that the proposed CORN outperforms previous state-of-the-art semi-supervised learning methods.


[669] 2410.15919

Are Large-scale Soft Labels Necessary for Large-scale Dataset Distillation?

In ImageNet-condensation, the storage for auxiliary soft labels exceeds that of the condensed dataset by over 30 times. However, are large-scale soft labels necessary for large-scale dataset distillation? In this paper, we first discover that the high within-class similarity in condensed datasets necessitates the use of large-scale soft labels. This high within-class similarity can be attributed to the fact that previous methods use samples from different classes to construct a single batch for batch normalization (BN) matching. To reduce the within-class similarity, we introduce class-wise supervision during the image synthesizing process by batching the samples within classes, instead of across classes. As a result, we can increase within-class diversity and reduce the size of required soft labels. A key benefit of improved image diversity is that soft label compression can be achieved through simple random pruning, eliminating the need for complex rule-based strategies. Experiments validate our discoveries. For example, when condensing ImageNet-1K to 200 images per class, our approach compresses the required soft labels from 113 GB to 2.8 GB (40x compression) with a 2.6% performance gain. Code is available at: https://github.com/he-y/soft-label-pruning-for-dataset-distillation


[670] 2410.15920

A Simpler Approach for Monotone Parametric Minimum Cut: Finding the Breakpoints in Order

We present parametric breadth-first search (PBFS), a new algorithm for solving the parametric minimum cut problem in a network with source-sink-monotone capacities. The objective is to find the set of breakpoints, i.e., the points at which the minimum cut changes. It is well known that this problem can be solved in the same asymptotic runtime as the static minimum cut problem. However, existing algorithms that achieve this runtime bound involve fairly complicated steps that are inefficient in practice. PBFS uses a simpler approach that discovers the breakpoints in ascending order, which allows it to achieve the desired runtime bound while still performing well in practice. We evaluate our algorithm on benchmark instances from polygon aggregation and computer vision. Polygon aggregation was recently proposed as an application for parametric minimum cut, but the monotonicity property has not been exploited fully. PBFS outperforms the state of the art on most benchmark instances, usually by a factor of 2-3. It is particularly strong on instances with many breakpoints, which is the case for polygon aggregation. Compared to the existing min-cut-based approach for polygon aggregation, PBFS scales much better with the instance size. On large instances with millions of vertices, it is able to compute all breakpoints in a matter of seconds.


[671] 2410.15921

Fully distributed and resilient source seeking for robot swarms

We propose a self-contained, resilient and fully distributed solution for locating the maximum of an unknown 3D scalar field using a swarm of robots that travel at constant speeds. Unlike conventional reactive methods relying on gradient information, our methodology enables the swarm to determine an ascending direction so that it approaches the source with arbitrary precision. Our source-seeking solution consists of three algorithms. The first two algorithms run sequentially and distributively at a high frequency providing barycentric coordinates and the ascending direction respectively to the individual robots. The third algorithm is the individual control law for a robot to track the estimated ascending direction. We show that the two algorithms with higher frequency have an exponential convergence to their eventual values since they are based on the standard consensus protocol for first-order dynamical systems; their high frequency depends on how fast the robots travel through the scalar field. The robots are not constrained to any particular geometric formation, and we study both discrete and continuous distributions of robots within swarm shapes. The shape analysis reveals the resiliency of our approach as expected in robot swarms, i.e., by amassing robots we ensure the source-seeking functionality in the event of missing or misplaced individuals or even if the robot network splits into two or more disconnected subnetworks. In addition, we also enhance the robustness of the algorithm by presenting conditions for \emph{optimal} swarm shapes, in the sense that the ascending directions can be closely parallel to the field's gradient. We exploit such an analysis so that the swarm can adapt to unknown environments by morphing its shape and maneuvering while still following an ascending direction.


[672] 2410.15926

Mitigating Object Hallucination via Concentric Causal Attention

Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence. Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.


[673] 2410.15927

GReFEL: Geometry-Aware Reliable Facial Expression Learning under Bias and Imbalanced Data Distribution

Reliable facial expression learning (FEL) involves the effective learning of distinctive facial expression characteristics for more reliable, unbiased and accurate predictions in real-life settings. However, current systems struggle with FEL tasks because of the variance in people's facial expressions due to their unique facial structures, movements, tones, and demographics. Biased and imbalanced datasets compound this challenge, leading to wrong and biased prediction labels. To tackle these, we introduce GReFEL, leveraging Vision Transformers and a facial geometry-aware anchor-based reliability balancing module to combat imbalanced data distributions, bias, and uncertainty in facial expression learning. Integrating local and global data with anchors that learn different facial data points and structural features, our approach adjusts biased and mislabeled emotions caused by intra-class disparity, inter-class similarity, and scale sensitivity, resulting in comprehensive, accurate, and reliable facial expression predictions. Our model outperforms current state-of-the-art methodologies, as demonstrated by extensive experiments on various datasets.


[674] 2410.15929

Yeah, Un, Oh: Continuous and Real-time Backchannel Prediction with Fine-tuning of Voice Activity Projection

In human conversations, short backchannel utterances such as "yeah" and "oh" play a crucial role in facilitating smooth and engaging dialogue. These backchannels signal attentiveness and understanding without interrupting the speaker, making their accurate prediction essential for creating more natural conversational agents. This paper proposes a novel method for real-time, continuous backchannel prediction using a fine-tuned Voice Activity Projection (VAP) model. While existing approaches have relied on turn-based or artificially balanced datasets, our approach predicts both the timing and type of backchannels in a continuous and frame-wise manner on unbalanced, real-world datasets. We first pre-train the VAP model on a general dialogue corpus to capture conversational dynamics and then fine-tune it on a specialized dataset focused on backchannel behavior. Experimental results demonstrate that our model outperforms baseline methods in both timing and type prediction tasks, achieving robust performance in real-time environments. This research offers a promising step toward more responsive and human-like dialogue systems, with implications for interactive spoken dialogue applications such as virtual assistants and robots.


[675] 2410.15930

Centrality-aware Product Retrieval and Ranking

This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries. Ambiguity and complexity of user queries often lead to a mismatch between the user's intent and retrieved product titles or documents. Recent approaches have proposed the use of Transformer-based models, which need millions of annotated query-title pairs during the pre-training stage, and this data often does not take user intent into account. To tackle this, we curate samples from existing datasets at eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent. We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search. To that end, we propose a dual-loss based optimisation to handle hard negatives, i.e., product titles that are semantically relevant but do not reflect the user's intent. Our contributions include curating challenging evaluation sets and implementing UCO, resulting in significant product ranking efficiency improvements observed for different evaluation metrics. Our work aims to ensure that the most buyer-centric titles for a query are ranked higher, thereby, enhancing the user experience on e-commerce platforms.


[676] 2410.15932

Focus on BEV: Self-calibrated Cycle View Transformation for Monocular Birds-Eye-View Segmentation

Birds-Eye-View (BEV) segmentation aims to establish a spatial mapping from the perspective view to the top view and estimate the semantic maps from monocular images. Recent studies have encountered difficulties in view transformation due to the disruption of BEV-agnostic features in image space. To tackle this issue, we propose a novel FocusBEV framework consisting of $(i)$ a self-calibrated cross view transformation module to suppress the BEV-agnostic image areas and focus on the BEV-relevant areas in the view transformation stage, $(ii)$ a plug-and-play ego-motion-based temporal fusion module to exploit the spatiotemporal structure consistency in BEV space with a memory bank, and $(iii)$ an occupancy-agnostic IoU loss to mitigate both semantic and positional uncertainties. Experimental evidence demonstrates that our approach achieves new state-of-the-art on two popular benchmarks,\ie, 29.2\% mIoU on nuScenes and 35.2\% mIoU on Argoverse.


[677] 2410.15939

CausalGraph2LLM: Evaluating LLMs for Causal Queries

Causality is essential in scientific research, enabling researchers to interpret true relationships between variables. These causal relationships are often represented by causal graphs, which are directed acyclic graphs. With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning and their potential use to hypothesize causal graphs. These tasks necessitate the LLMs to encode the causal graph effectively for subsequent downstream tasks. In this paper, we propose a comprehensive benchmark, \emph{CausalGraph2LLM}, encompassing a variety of causal graph settings to assess the causal graph understanding capability of LLMs. We categorize the causal queries into two types: graph-level and node-level queries. We benchmark both open-sourced and closed models for our study. Our findings reveal that while LLMs show promise in this domain, they are highly sensitive to the encoding used. Even capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with deviations of about $60\%$. We further demonstrate this sensitivity for downstream causal intervention tasks. Moreover, we observe that LLMs can often display biases when presented with contextual information about a causal graph, potentially stemming from their parametric memory.


[678] 2410.15941

MBPU: A Plug-and-Play State Space Model for Point Cloud Upsamping with Fast Point Rendering

The task of point cloud upsampling (PCU) is to generate dense and uniform point clouds from sparse input captured by 3D sensors like LiDAR, holding potential applications in real yet is still a challenging task. Existing deep learning-based methods have shown significant achievements in this field. However, they still face limitations in effectively handling long sequences and addressing the issue of shrinkage artifacts around the surface of the point cloud. Inspired by the newly proposed Mamba, in this paper, we introduce a network named MBPU built on top of the Mamba architecture, which performs well in long sequence modeling, especially for large-scale point cloud upsampling, and achieves fast convergence speed. Moreover, MBPU is an arbitrary-scale upsampling framework as the predictor of point distance in the point refinement phase. At the same time, we simultaneously predict the 3D position shift and 1D point-to-point distance as regression quantities to constrain the global features while ensuring the accuracy of local details. We also introduce a fast differentiable renderer to further enhance the fidelity of the upsampled point cloud and reduce artifacts. It is noted that, by the merits of our fast point rendering, MBPU yields high-quality upsampled point clouds by effectively eliminating surface noise. Extensive experiments have demonstrated that our MBPU outperforms other off-the-shelf methods in terms of point cloud upsampling, especially for large-scale point clouds.


[679] 2410.15942

A Low-Cost Privacy-Preserving Digital Wallet for Humanitarian Aid Distribution

Humanitarian organizations distribute aid to people affected by armed conflicts or natural disasters. Digitalization has the potential to increase the efficiency and fairness of aid-distribution systems, and recent work by Wang et al. has shown that these benefits are possible without creating privacy harms for aid recipients. However, their work only provides a solution for one particular aid-distribution scenario in which aid recipients receive a pre-defined set of goods. Yet, in many situations it is desirable to enable recipients to decide which items they need at each moment to satisfy their specific needs. We formalize these needs into functional, deployment, security, and privacy requirements, and design a privacy-preserving digital wallet for aid distribution. Our smart-card-based solution enables aid recipients to spend a pre-defined budget at different vendors to obtain the items that they need. We prove our solution's security and privacy properties, and show it is practical at scale.


[680] 2410.15943

Molecular Signal Reception in Complex Vessel Networks: The Role of the Network Topology

The notion of synthetic molecular communication (MC) refers to the transmission of information via molecules and is largely foreseen for use within the human body, where traditional electromagnetic wave (EM)-based communication is impractical. MC is anticipated to enable innovative medical applications, such as early-stage tumor detection, targeted drug delivery, and holistic approaches like the Internet of Bio-Nano Things (IoBNT). Many of these applications involve parts of the human cardiovascular system (CVS), here referred to as networks, posing challenges for MC due to their complex, highly branched vessel structures. To gain a better understanding of how the topology of such branched vessel networks affects the reception of a molecular signal at a target location, e.g., the network outlet, we present a generic analytical end-to-end model that characterizes molecule propagation and reception in linear branched vessel networks (LBVNs). We specialize this generic model to any MC system employing superparamagnetic iron-oxide nanoparticles (SPIONs) as signaling molecules and a planar coil as receiver (RX). By considering components that have been previously established in testbeds, we effectively isolate the impact of the network topology and validate our theoretical model with testbed data. Additionally, we propose two metrics, namely the molecule delay and the multi-path spread, that relate the LBVN topology to the molecule dispersion induced by the network, thereby linking the network structure to the signal-to-noise ratio (SNR) at the target location. This allows the characterization of the SNR at any point in the network solely based on the network topology. Consequently, our framework can, e.g., be exploited for optimal sensor placement in the CVS or identification of suitable testbed topologies for given SNR requirements.


[681] 2410.15944

Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report

This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source. The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval. This approach has the potential to redefine how we interact with and augment both structured and unstructured knowledge in generative models to enhance transparency, accuracy, and contextuality of responses. The paper details the end-to-end pipeline, from data collection, preprocessing, to retrieval indexing and response generation, highlighting technical challenges and practical solutions. We aim to offer insights to researchers and practitioners developing similar systems using two distinct approaches: OpenAI's Assistant API with GPT Series and Llama's open-source models. The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors where domain-specific knowledge and real-time information retrieval is important. The Python code used in this work is also available at: https://github.com/GPT-Laboratory/RAG-LLM-Development-Guidebook-from-PDFs.


[682] 2410.15946

Neural Predictor for Flight Control with Payload

Aerial robotics for transporting suspended payloads as the form of freely-floating manipulator are growing great interest in recent years. However, the prior information of the payload, such as the mass, is always hard to obtain accurately in practice. The force/torque caused by payload and residual dynamics will introduce unmodeled perturbations to the system, which negatively affects the closed-loop performance. Different from estimation-like methods, this paper proposes Neural Predictor, a learning-based approach to model force/torque caused by payload and residual dynamics as a dynamical system. It results a hybrid model including both the first-principles dynamics and the learned dynamics. This hybrid model is then integrated into a MPC framework to improve closed-loop performance. Effectiveness of proposed framework is verified extensively in both numerical simulations and real-world flight experiments. The results indicate that our approach can capture force/torque caused by payload and residual dynamics accurately, respond quickly to the changes of them and improve the closed-loop performance significantly. In particular, Neural Predictor outperforms a state-of-the-art learning-based estimator and has reduced the force and torque estimation errors by up to 66.15% and 33.33% while using less samples.


[683] 2410.15949

Findings of the Third Shared Task on Multilingual Coreference Resolution

The paper presents an overview of the third edition of the shared task on multilingual coreference resolution, held as part of the CRAC 2024 workshop. Similarly to the previous two editions, the participants were challenged to develop systems capable of identifying mentions and clustering them based on identity coreference. This year's edition took another step towards real-world application by not providing participants with gold slots for zero anaphora, increasing the task's complexity and realism. In addition, the shared task was expanded to include a more diverse set of languages, with a particular focus on historical languages. The training and evaluation data were drawn from version 1.2 of the multilingual collection of harmonized coreference resources CorefUD, encompassing 21 datasets across 15 languages. 6 systems competed in this shared task.


[684] 2410.15951

Redefining Finance: The Influence of Artificial Intelligence (AI) and Machine Learning (ML)

With rapid transformation of technologies, the fusion of Artificial Intelligence (AI) and Machine Learning (ML) in finance is disrupting the entire ecosystem and operations which were followed for decades. The current landscape is where decisions are increasingly data-driven by financial institutions with an appetite for automation while mitigating risks. The segments of financial institutions which are getting heavily influenced are retail banking, wealth management, corporate banking & payment ecosystem. The solution ranges from onboarding the customers all the way fraud detection & prevention to enhancing the customer services. Financial Institutes are leap frogging with integration of Artificial Intelligence and Machine Learning in mainstream applications and enhancing operational efficiency through advanced predictive analytics, extending personalized customer experiences, and automation to minimize risk with fraud detection techniques. However, with Adoption of AI & ML, it is imperative that the financial institute also needs to address ethical and regulatory challenges, by putting in place robust governance frameworks and responsible AI practices.


[685] 2410.15952

User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study

This study is located in the Human-Centered Artificial Intelligence (HCAI) and focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms, specifically investigating how humans understand and interact with the explanations provided by these algorithms. To achieve this, we employed a multi-disciplinary approach that included state-of-the-art research methods from social sciences to measure the comprehensibility of explanations generated by a state-of-the-art lachine learning model, specifically the Gradient Boosting Classifier (XGBClassifier). We conducted an extensive empirical user study involving interviews with 39 participants from three different groups, each with varying expertise in data science, data visualization, and domain-specific knowledge related to the dataset used for training the machine learning model. Participants were asked a series of questions to assess their understanding of the model's explanations. To ensure replicability, we built the model using a publicly available dataset from the UC Irvine Machine Learning Repository, focusing on edible and non-edible mushrooms. Our findings reveal limitations in existing XAI methods and confirm the need for new design principles and evaluation techniques that address the specific information needs and user perspectives of different classes of AI stakeholders. We believe that the results of our research and the cross-disciplinary methodology we developed can be successfully adapted to various data types and user profiles, thus promoting dialogue and address opportunities in HCAI research. To support this, we are making the data resulting from our study publicly available.


[686] 2410.15954

TS-ACL: A Time Series Analytic Continual Learning Framework for Privacy-Preserving and Class-Incremental Pattern Recognition

Class-incremental Learning (CIL) in Time Series Classification (TSC) aims to incrementally train models using the streaming time series data that arrives continuously. The main problem in this scenario is catastrophic forgetting, i.e., training models with new samples inevitably leads to the forgetting of previously learned knowledge. Among existing methods, the replay-based methods achieve satisfactory performance but compromise privacy, while exemplar-free methods protect privacy but suffer from low accuracy. However, more critically, owing to their reliance on gradient-based update techniques, these existing methods fundamentally cannot solve the catastrophic forgetting problem. In TSC scenarios with continuously arriving data and temporally shifting distributions, these methods become even less practical. In this paper, we propose a Time Series Analytic Continual Learning framework, called TS-ACL. Inspired by analytical learning, TS-ACL transforms neural network updates into gradient-free linear regression problems, thereby fundamentally mitigating catastrophic forgetting. Specifically, employing a pre-trained and frozen feature extraction encoder, TS-ACL only needs to update its analytic classifier recursively in a lightweight manner that is highly suitable for real-time applications and large-scale data processing. Additionally, we theoretically demonstrate that the model obtained recursively through the TS-ACL is exactly equivalent to a model trained on the complete dataset in a centralized manner, thereby establishing the property of absolute knowledge memory. Extensive experiments validate the superior performance of our TS-ACL.


[687] 2410.15956

Do Large Language Models Have an English Accent? Evaluating and Improving the Naturalness of Multilingual LLMs

Current Large Language Models (LLMs) are predominantly designed with English as the primary language, and even the few that are multilingual tend to exhibit strong English-centric biases. Much like speakers who might produce awkward expressions when learning a second language, LLMs often generate unnatural outputs in non-English languages, reflecting English-centric patterns in both vocabulary and grammar. Despite the importance of this issue, the naturalness of multilingual LLM outputs has received limited attention. In this paper, we address this gap by introducing novel automatic corpus-level metrics to assess the lexical and syntactic naturalness of LLM outputs in a multilingual context. Using our new metrics, we evaluate state-of-the-art LLMs on a curated benchmark in French and Chinese, revealing a tendency towards English-influenced patterns. To mitigate this issue, we also propose a simple and effective alignment method to improve the naturalness of an LLM in a target language and domain, achieving consistent improvements in naturalness without compromising the performance on general-purpose benchmarks. Our work highlights the importance of developing multilingual metrics, resources and methods for the new wave of multilingual LLMs.


[688] 2410.15957

CamI2V: Camera-Controlled Image-to-Video Diffusion Model

Recently, camera pose, as a user-friendly and physics-related condition, has been introduced into text-to-video diffusion model for camera control. However, existing methods simply inject camera conditions through a side input. These approaches neglect the inherent physical knowledge of camera pose, resulting in imprecise camera control, inconsistencies, and also poor interpretability. In this paper, we emphasize the necessity of integrating explicit physical constraints into model design. Epipolar attention is proposed for modeling all cross-frame relationships from a novel perspective of noised condition. This ensures that features are aggregated from corresponding epipolar lines in all noised frames, overcoming the limitations of current attention mechanisms in tracking displaced features across frames, especially when features move significantly with the camera and become obscured by noise. Additionally, we introduce register tokens to handle cases without intersections between frames, commonly caused by rapid camera movements, dynamic objects, or occlusions. To support image-to-video, we propose the multiple guidance scale to allow for precise control for image, text, and camera, respectively. Furthermore, we establish a more robust and reproducible evaluation pipeline to solve the inaccuracy and instability of existing camera control measurement. We achieve a 25.5\% improvement in camera controllability on RealEstate10K while maintaining strong generalization to out-of-domain images. Only 24GB and 12GB are required for training and inference, respectively. We plan to release checkpoints, along with training and evaluation codes. Dynamic videos are best viewed at \url{https://zgctroy.github.io/CamI2V}.


[689] 2410.15958

Relating Left and Right Extensions of Maximal Repeats

The compact directed acyclic word graph (CDAWG) of a string $T$ is an index occupying $O(\mathsf{e})$ space, where $\mathsf{e}$ is the number of right extensions of maximal repeats in $T$. For highly repetitive datasets, the measure $\mathsf{e}$ typically is small compared to the length $n$ of $T$ and, thus, the CDAWG serves as a compressed index. Unlike other compressibility measures (as LZ77, string attractors, BWT runs, etc.), $\mathsf{e}$ is very unstable with respect to reversals: the CDAWG of the reversed string $\overset{{}_{\leftarrow}}{T} = T[n] \cdots T[2] T[1]$ has size $O(\overset{{}_{\leftarrow}}{\mathsf{e}})$, where $\overset{{}_{\leftarrow}}{\mathsf{e}}$ is the number of left extensions of maximal repeats in $T$, and there are strings $T$ with $\frac{\overset{{}_{\leftarrow}}{\mathsf{e}}}{\mathsf{e}} \in \Omega(\sqrt{n})$. In this note, we prove that this lower bound is tight: $\frac{\overset{{}_{\leftarrow}}{\mathsf{e}}}{\mathsf{e}} \in O(\sqrt{n})$. Furthermore, given the alphabet size $\sigma$, we establish the alphabet-dependent bound $\frac{\overset{{}_{\leftarrow}}{\mathsf{e}}}{\mathsf{e}} \le \min\{\frac{2n}{\sigma}, \sigma\}$ and we show that it is asymptotically tight.


[690] 2410.15959

Diffusion Transformer Policy

Recent large visual-language action models pretrained on diverse robot datasets have demonstrated the potential for generalizing to new environments with a few in-domain data. However, those approaches usually predict discretized or continuous actions by a small action head, which limits the ability in handling diverse action spaces. In contrast, we model the continuous action with a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which we directly denoise action chunks by a large transformer model rather than a small action head. By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets, and achieve better generalization performance. Extensive experiments demonstrate Diffusion Transformer Policy pretrained on diverse robot data can generalize to different embodiments, including simulation environments like Maniskill2 and Calvin, as well as the real-world Franka arm. Specifically, without bells and whistles, the proposed approach achieves state-of-the-art performance with only a single third-view camera stream in the Calvin novel task setting (ABC->D), improving the average number of tasks completed in a row of 5 to 3.6, and the pretraining stage significantly facilitates the success sequence length on the Calvin by over 1.2. The code will be publicly available.


[691] 2410.15960

AI-Driven Innovations in Modern Cloud Computing

The world has witnessed rapid technological transformation, past couple of decades and with Advent of Cloud computing the landscape evolved exponentially leading to efficient and scalable application development. Now, the past couple of years the digital ecosystem has brought in numerous innovations with integration of Artificial Intelligence commonly known as AI. This paper explores how AI and cloud computing intersect to deliver transformative capabilities for modernizing applications by providing services and infrastructure. Harnessing the combined potential of both AI & Cloud technologies, technology providers can now exploit intelligent resource management, predictive analytics, automated deployment & scaling with enhanced security leading to offering innovative solutions to their customers. Furthermore, by leveraging such technologies of cloud & AI businesses can reap rich rewards in the form of reducing operational costs and improving service delivery. This paper further addresses challenges associated such as data privacy concerns and how it can be mitigated with robust AI governance frameworks.


[692] 2410.15961

A Paradigm Shift in Mouza Map Vectorization: A Human-Machine Collaboration Approach

Efficient vectorization of hand-drawn cadastral maps, such as Mouza maps in Bangladesh, poses a significant challenge due to their complex structures. Current manual digitization methods are time-consuming and labor-intensive. Our study proposes a semi-automated approach to streamline the digitization process, saving both time and human resources. Our methodology focuses on separating the plot boundaries and plot identifiers and applying our digitization methodology to convert both of them into vectorized format. To accomplish full vectorization, Convolutional Neural Network (CNN) models are utilized for pre-processing and plot number detection along with our smoothing algorithms based on the diversity of vector maps. The CNN models are trained with our own labeled dataset, generated from the maps, and smoothing algorithms are introduced from the various observations of the map's vector formats. Further human intervention remains essential for precision. We have evaluated our methods on several maps and provided both quantitative and qualitative results with user study. The result demonstrates that our methodology outperforms the existing map digitization processes significantly.


[693] 2410.15962

Systematic Exploration of Dialogue Summarization Approaches for Reproducibility, Comparative Assessment, and Methodological Innovations for Advancing Natural Language Processing in Abstractive Summarization

Reproducibility in scientific research, particularly within the realm of natural language processing (NLP), is essential for validating and verifying the robustness of experimental findings. This paper delves into the reproduction and evaluation of dialogue summarization models, focusing specifically on the discrepancies observed between original studies and our reproduction efforts. Dialogue summarization is a critical aspect of NLP, aiming to condense conversational content into concise and informative summaries, thus aiding in efficient information retrieval and decision-making processes. Our research involved a thorough examination of several dialogue summarization models using the AMI (Augmented Multi-party Interaction) dataset. The models assessed include Hierarchical Memory Networks (HMNet) and various versions of Pointer-Generator Networks (PGN), namely PGN(DKE), PGN(DRD), PGN(DTS), and PGN(DALL). The primary objective was to evaluate the informativeness and quality of the summaries generated by these models through human assessment, a method that introduces subjectivity and variability in the evaluation process. The analysis began with Dataset 1, where the sample standard deviation of 0.656 indicated a moderate dispersion of data points around the mean.


[694] 2410.15966

Self-Explained Keywords Empower Large Language Models for Code Generation

Large language models (LLMs) have achieved impressive performance in code generation. However, due to the long-tail distribution of LLMs' training data, low-frequency terms are typically underrepresented in the training process. Consequently, LLMs often misunderstand or overlook problem-specific, low-frequency keywords during code generation, compromising the accuracy of the generated code. To address this, we propose a novel technique named SEK(\textbf{S}elf-\textbf{E}xplained \textbf{K}eywords), which empowers an LLM for better code generation by extracting and explaining the key terms in the problem description with the LLM itself and ranking them based on frequency. Comprehensive experiments across three benchmarks, i.e., HumanEval(+), MBPP(+), and APPS, with five representative LLMs, show that SEK can significantly improve LLMs in code generation, yielding substantial and consistent gains. For instance, SEK improves the Pass@1 of DeepSeek-Coder-V2-Instruct from 85.4\% to 93.3\% on the Humaneval benchmark. Further analysis confirms that SEK enables the LLMs to shift their attention from low-frequency keywords to their corresponding high-frequency counterparts.


[695] 2410.15970

Policy-driven Knowledge Selection and Response Generation for Document-grounded Dialogue

Document-grounded dialogue (DGD) uses documents as external knowledge for dialogue generation. Correctly understanding the dialogue context is crucial for selecting knowledge from the document and generating proper responses. In this paper, we propose using a dialogue policy to help the dialogue understanding in DGD. Our dialogue policy consists of two kinds of guiding signals: utterance function and topic transfer intent. The utterance function reflects the purpose and style of an utterance, and the topic transfer intent reflects the topic and content of an utterance. We propose a novel framework exploiting our dialogue policy for two core tasks in DGD, namely knowledge selection (KS) and response generation (RG). The framework consists of two modules: the Policy planner leverages policy-aware dialogue representation to select knowledge and predict the policy of the response; the generator uses policy/knowledge-aware dialogue representation for response generation. Our policy-driven model gets state-of-the-art performance on three public benchmarks and we provide a detailed analysis of the experimental results. Our code/data will be released on GitHub.


[696] 2410.15971

Zero-Shot Scene Reconstruction from Single Images with Deep Prior Assembly

Large language and vision models have been leading a revolution in visual computing. By greatly scaling up sizes of data and model parameters, the large models learn deep priors which lead to remarkable performance in various tasks. In this work, we present deep prior assembly, a novel framework that assembles diverse deep priors from large models for scene reconstruction from single images in a zero-shot manner. We show that this challenging task can be done without extra knowledge but just simply generalizing one deep prior in one sub-task. To this end, we introduce novel methods related to poses, scales, and occlusion parsing which are keys to enable deep priors to work together in a robust way. Deep prior assembly does not require any 3D or 2D data-driven training in the task and demonstrates superior performance in generalizing priors to open-world scenes. We conduct evaluations on various datasets, and report analysis, numerical and visual comparisons with the latest methods to show our superiority. Project page: https://junshengzhou.github.io/DeepPriorAssembly.


[697] 2410.15973

Karush-Kuhn-Tucker Condition-Trained Neural Networks (KKT Nets)

This paper presents a novel approach to solving convex optimization problems by leveraging the fact that, under certain regularity conditions, any set of primal or dual variables satisfying the Karush-Kuhn-Tucker (KKT) conditions is necessary and sufficient for optimality. Similar to Theory-Trained Neural Networks (TTNNs), the parameters of the convex optimization problem are input to the neural network, and the expected outputs are the optimal primal and dual variables. A choice for the loss function in this case is a loss, which we refer to as the KKT Loss, that measures how well the network's outputs satisfy the KKT conditions. We demonstrate the effectiveness of this approach using a linear program as an example. For this problem, we observe that minimizing the KKT Loss alone outperforms training the network with a weighted sum of the KKT Loss and a Data Loss (the mean-squared error between the ground truth optimal solutions and the network's output). Moreover, minimizing only the Data Loss yields inferior results compared to those obtained by minimizing the KKT Loss. While the approach is promising, the obtained primal and dual solutions are not sufficiently close to the ground truth optimal solutions. In the future, we aim to develop improved models to obtain solutions closer to the ground truth and extend the approach to other problem classes.


[698] 2410.15974

Large Language Models for Cross-lingual Emotion Detection

This paper presents a detailed system description of our entry for the WASSA 2024 Task 2, focused on cross-lingual emotion detection. We utilized a combination of large language models (LLMs) and their ensembles to effectively understand and categorize emotions across different languages. Our approach not only outperformed other submissions with a large margin, but also demonstrated the strength of integrating multiple models to enhance performance. Additionally, We conducted a thorough comparison of the benefits and limitations of each model used. An error analysis is included along with suggested areas for future improvement. This paper aims to offer a clear and comprehensive understanding of advanced techniques in emotion detection, making it accessible even to those new to the field.


[699] 2410.15977

Enabling Energy-Efficient Deployment of Large Language Models on Memristor Crossbar: A Synergy of Large and Small

Large language models (LLMs) have garnered substantial attention due to their promising applications in diverse domains. Nevertheless, the increasing size of LLMs comes with a significant surge in the computational requirements for training and deployment. Memristor crossbars have emerged as a promising solution, which demonstrated a small footprint and remarkably high energy efficiency in computer vision (CV) models. Memristors possess higher density compared to conventional memory technologies, making them highly suitable for effectively managing the extreme model size associated with LLMs. However, deploying LLMs on memristor crossbars faces three major challenges. Firstly, the size of LLMs increases rapidly, already surpassing the capabilities of state-of-the-art memristor chips. Secondly, LLMs often incorporate multi-head attention blocks, which involve non-weight stationary multiplications that traditional memristor crossbars cannot support. Third, while memristor crossbars excel at performing linear operations, they are not capable of executing complex nonlinear operations in LLM such as softmax and layer normalization. To address these challenges, we present a novel architecture for the memristor crossbar that enables the deployment of state-of-the-art LLM on a single chip or package, eliminating the energy and time inefficiencies associated with off-chip communication. Our testing on BERT_Large showed negligible accuracy loss. Compared to traditional memristor crossbars, our architecture achieves enhancements of up to 39X in area overhead and 18X in energy consumption. Compared to modern TPU/GPU systems, our architecture demonstrates at least a 68X reduction in the area-delay product and a significant 69% energy consumption reduction.


[700] 2410.15978

PROMPTHEUS: A Human-Centered Pipeline to Streamline SLRs with LLMs

The growing volume of academic publications poses significant challenges for researchers conducting timely and accurate Systematic Literature Reviews, particularly in fast-evolving fields like artificial intelligence. This growth of academic literature also makes it increasingly difficult for lay people to access scientific knowledge effectively, meaning academic literature is often misrepresented in the popular press and, more broadly, in society. Traditional SLR methods are labor-intensive and error-prone, and they struggle to keep up with the rapid pace of new research. To address these issues, we developed \textit{PROMPTHEUS}: an AI-driven pipeline solution that automates the SLR process using Large Language Models. We aimed to enhance efficiency by reducing the manual workload while maintaining the precision and coherence required for comprehensive literature synthesis. PROMPTHEUS automates key stages of the SLR process, including systematic search, data extraction, topic modeling using BERTopic, and summarization with transformer models. Evaluations conducted across five research domains demonstrate that PROMPTHEUS reduces review time, achieves high precision, and provides coherent topic organization, offering a scalable and effective solution for conducting literature reviews in an increasingly crowded research landscape. In addition, such tools may reduce the increasing mistrust in science by making summarization more accessible to laypeople. The code for this project can be found on the GitHub repository at https://github.com/joaopftorres/PROMPTHEUS.git


[701] 2410.15979

Learning Quadrotor Control From Visual Features Using Differentiable Simulation

The sample inefficiency of reinforcement learning (RL) remains a significant challenge in robotics. RL requires large-scale simulation and, still, can cause long training times, slowing down research and innovation. This issue is particularly pronounced in vision-based control tasks where reliable state estimates are not accessible. Differentiable simulation offers an alternative by enabling gradient back-propagation through the dynamics model, providing low-variance analytical policy gradients and, hence, higher sample efficiency. However, its usage for real-world robotic tasks has yet been limited. This work demonstrates the great potential of differentiable simulation for learning quadrotor control. We show that training in differentiable simulation significantly outperforms model-free RL in terms of both sample efficiency and training time, allowing a policy to learn to recover a quadrotor in seconds when providing vehicle state and in minutes when relying solely on visual features. The key to our success is two-fold. First, the use of a simple surrogate model for gradient computation greatly accelerates training without sacrificing control performance. Second, combining state representation learning with policy learning enhances convergence speed in tasks where only visual features are observable. These findings highlight the potential of differentiable simulation for real-world robotics and offer a compelling alternative to conventional RL approaches.


[702] 2410.15980

Granularity Matters in Long-Tail Learning

Balancing training on long-tail data distributions remains a long-standing challenge in deep learning. While methods such as re-weighting and re-sampling help alleviate the imbalance issue, limited sample diversity continues to hinder models from learning robust and generalizable feature representations, particularly for tail classes. In contrast to existing methods, we offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance. In this paper, we investigate this phenomenon through both quantitative and qualitative studies, showing that increased granularity enhances the generalization of learned features in tail categories. Motivated by these findings, we propose a method to increase dataset granularity through category extrapolation. Specifically, we introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes. This forms the core contribution and insight of our approach. To automate the curation of auxiliary data, we leverage large language models (LLMs) as knowledge bases to search for auxiliary categories and retrieve relevant images through web crawling. To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss that encourages the model to focus on class discrimination within the target dataset. During inference, the classifier weights for auxiliary categories are masked out, leaving only the target class weights for use. Extensive experiments and ablation studies on three standard long-tail benchmarks demonstrate the effectiveness of our approach, notably outperforming strong baseline methods that use the same amount of data. The code will be made publicly available.


[703] 2410.15981

Visual Representation Learning Guided By Multi-modal Prior Knowledge

Despite the remarkable success of deep neural networks (DNNs) in computer vision, they fail to remain high-performing when facing distribution shifts between training and testing data. In this paper, we propose Knowledge-Guided Visual representation learning (KGV), a distribution-based learning approach leveraging multi-modal prior knowledge, to improve generalization under distribution shift. We use prior knowledge from two distinct modalities: 1) a knowledge graph (KG) with hierarchical and association relationships; and 2) generated synthetic images of visual elements semantically represented in the KG. The respective embeddings are generated from the given modalities in a common latent space, i.e., visual embeddings from original and synthetic images as well as knowledge graph embeddings (KGEs). These embeddings are aligned via a novel variant of translation-based KGE methods, where the node and relation embeddings of the KG are modeled as Gaussian distributions and translations respectively. We claim that incorporating multi-model prior knowledge enables more regularized learning of image representations. Thus, the models are able to better generalize across different data distributions. We evaluate KGV on different image classification tasks with major or minor distribution shifts, namely road sign classification across datasets from Germany, China, and Russia, image classification with the mini-ImageNet dataset and its variants, as well as the DVM-CAR dataset. The results demonstrate that KGV consistently exhibits higher accuracy and data efficiency than the baselines across all experiments.


[704] 2410.15984

Lossless optimal transient control for rigid bodies in 3D space

In this letter, we propose a control scheme for rigid bodies designed to optimise transient behaviors. The search space for the optimal control input is parameterized to yield a passive, specifically lossless, nonlinear feedback controller. As a result, it can be combined with other stabilizing controllers without compromising the stability of the closed-loop system. The controller commands torques generating fictitious gyroscopic effects characteristics of 3D rotational rigid body motions, and as such does not inject nor extract kinetic energy from the system. We validate the controller in simulation using a model predictive control (MPC) scheme, successfully combining stability and performance in a stabilization task with obstacle avoidance constraints.


[705] 2410.15985

ControlPULPlet: A Flexible Real-time Multi-core RISC-V Controller for 2.5D Systems-in-package

The increasing complexity of real-time control algorithms and the trend toward 2.5D technology necessitate the development of scalable controllers for managing the complex, integrated operation of chiplets within 2.5D systems-in-package. These controllers must provide real-time computing capabilities and have chiplet-compatible IO interfaces for communication with the controlled components. This work introduces ControlPULPlet, a chiplet-compatible, real-time multi-core RISC-V controller, which is available as an open-source release. It includes a 32-bit CV32RT core for efficient interrupt handling and a specialized direct memory access (DMA) engine to automate periodic sensor readouts. A tightly-coupled programmable multi-core accelerator is integrated via a dedicated AXI4 port. A flexible AXI4-compatible die-to-die (D2D) link supports inter-chiplet communication in 2.5D systems and enables high-bandwidth transfers in traditional 2D monolithic setups. We designed and fabricated ControlPULPlet as a silicon prototype called Kairos using TSMC's 65nm CMOS technology. Kairos executes predictive control algorithms at up to 290 MHz while consuming just 30 mW of power. The D2D link requires only 16.5 kGE in physical area per channel, adding just 2.9% to the total system area. It supports off-die access with an energy efficiency of 1.3 pJ/b and achieves a peak duplex transfer rate of 51 Gb/s per second at 200 MHz.


[706] 2410.15987

Analyzing Closed-loop Training Techniques for Realistic Traffic Agent Models in Autonomous Highway Driving Simulations

Simulation plays a crucial role in the rapid development and safe deployment of autonomous vehicles. Realistic traffic agent models are indispensable for bridging the gap between simulation and the real world. Many existing approaches for imitating human behavior are based on learning from demonstration. However, these approaches are often constrained by focusing on individual training strategies. Therefore, to foster a broader understanding of realistic traffic agent modeling, in this paper, we provide an extensive comparative analysis of different training principles, with a focus on closed-loop methods for highway driving simulation. We experimentally compare (i) open-loop vs. closed-loop multi-agent training, (ii) adversarial vs. deterministic supervised training, (iii) the impact of reinforcement losses, and (iv) the impact of training alongside log-replayed agents to identify suitable training techniques for realistic agent modeling. Furthermore, we identify promising combinations of different closed-loop training methods.


[707] 2410.15990

Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence

This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) \citep{hagag2024legallenssharedtask2024}. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.


[708] 2410.15994

ARCADE: Scalable Demonstration Collection and Generation via Augmented Reality for Imitation Learning

Robot Imitation Learning (IL) is a crucial technique in robot learning, where agents learn by mimicking human demonstrations. However, IL encounters scalability challenges stemming from both non-user-friendly demonstration collection methods and the extensive time required to amass a sufficient number of demonstrations for effective training. In response, we introduce the Augmented Reality for Collection and generAtion of DEmonstrations (ARCADE) framework, designed to scale up demonstration collection for robot manipulation tasks. Our framework combines two key capabilities: 1) it leverages AR to make demonstration collection as simple as users performing daily tasks using their hands, and 2) it enables the automatic generation of additional synthetic demonstrations from a single human-derived demonstration, significantly reducing user effort and time. We assess ARCADE's performance on a real Fetch robot across three robotics tasks: 3-Waypoints-Reach, Push, and Pick-And-Place. Using our framework, we were able to rapidly train a policy using vanilla Behavioral Cloning (BC), a classic IL algorithm, which excelled across these three tasks. We also deploy ARCADE on a real household task, Pouring-Water, achieving an 80% success rate.


[709] 2410.15996

Surprising Patterns in Musical Influence Networks

Analyzing musical influence networks, such as those formed by artist influence or sampling, has provided valuable insights into contemporary Western music. Here, computational methods like centrality rankings help identify influential artists. However, little attention has been given to how influence changes over time. In this paper, we apply Bayesian Surprise to track the evolution of musical influence networks. Using two networks -- one of artist influence and another of covers, remixes, and samples -- our results reveal significant periods of change in network structure. Additionally, we demonstrate that Bayesian Surprise is a flexible framework for testing various hypotheses on network evolution with real-world data.


[710] 2410.15997

MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast

Many methods have been proposed for unsupervised time series anomaly detection. Despite some progress, research on predicting future anomalies is still relatively scarce. Predicting anomalies is particularly challenging due to the diverse reaction time and the lack of labeled data. To address these challenges, we propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection, with multi-scale structure and adaptive dominant period mask to deal with the diverse reaction time. MultiRC also generates negative samples to provide essential training momentum for the anomaly prediction tasks and prevent model degradation. We evaluate seven benchmark datasets from different fields. For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.


[711] 2410.15998

1024m at SMM4H 2024: Tasks 3, 5 & 6 -- Ensembles of Transformers and Large Language Models for Medical Text Classification

Social media is a great source of data for users reporting information and regarding their health and how various things have had an effect on them. This paper presents various approaches using Transformers and Large Language Models and their ensembles, their performance along with advantages and drawbacks for various tasks of SMM4H'24 - Classifying texts on impact of nature and outdoor spaces on the author's mental health (Task 3), Binary classification of tweets reporting their children's health disorders like Asthma, Autism, ADHD and Speech disorder (task 5), Binary classification of users self-reporting their age (task 6).


[712] 2410.15999

Steering Knowledge Selection Behaviours in LLMs via SAE-Based Representation Engineering

Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context -- this phenomenon, known as \emph{context-memory knowledge conflicts}, can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. Analysing the internal activations of LLMs, we find that they can internally register the signals of knowledge conflict at mid-layers. Such signals allow us to detect whether a knowledge conflict occurs and use \emph{inference-time} intervention strategies to resolve it. In this work, we propose \textsc{SpARE}, a \emph{training-free} representation engineering method that uses pre-trained sparse auto-encoders (SAEs) to control the knowledge selection behaviour of LLMs. \textsc{SpARE} identifies the functional features that control the knowledge selection behaviours and applies them to edit the internal activations of LLMs at inference time. Our experimental results show that \textsc{SpARE} can effectively control the usage of either knowledge source to resolve knowledge conflict in open-domain question-answering tasks, surpassing existing representation engineering methods ($+10\%$) as well as contrastive decoding methods ($+15\%$).


[713] 2410.16006

Exploring Continual Fine-Tuning for Enhancing Language Ability in Large Language Model

A common challenge towards the adaptability of Large Language Models (LLMs) is their ability to learn new languages over time without hampering the model's performance on languages in which the model is already proficient (usually English). Continual fine-tuning (CFT) is the process of sequentially fine-tuning an LLM to enable the model to adapt to downstream tasks with varying data distributions and time shifts. This paper focuses on the language adaptability of LLMs through CFT. We study a two-phase CFT process in which an English-only end-to-end fine-tuned LLM from Phase 1 (predominantly Task Ability) is sequentially fine-tuned on a multilingual dataset -- comprising task data in new languages -- in Phase 2 (predominantly Language Ability). We observe that the ``similarity'' of Phase 2 tasks with Phase 1 determines the LLM's adaptability. For similar phase-wise datasets, the LLM after Phase 2 does not show deterioration in task ability. In contrast, when the phase-wise datasets are not similar, the LLM's task ability deteriorates. We test our hypothesis on the open-source \mis\ and \llm\ models with multiple phase-wise dataset pairs. To address the deterioration, we analyze tailored variants of two CFT methods: layer freezing and generative replay. Our findings demonstrate their effectiveness in enhancing the language ability of LLMs while preserving task performance, in comparison to relevant baselines.


[714] 2410.16007

Are Language Model Logits Calibrated?

Some information is factual (e.g., "Paris is in France"), whereas other information is probabilistic (e.g., "the coin flip will be a [Heads/Tails]."). We believe that good Language Models (LMs) should understand and reflect this nuance. Our work investigates this by testing if LMs' output probabilities are calibrated to their textual contexts. We define model "calibration" as the degree to which the output probabilities of candidate tokens are aligned with the relative likelihood that should be inferred from the given context. For example, if the context concerns two equally likely options (e.g., heads or tails for a fair coin), the output probabilities should reflect this. Likewise, context that concerns non-uniformly likely events (e.g., rolling a six with a die) should also be appropriately captured with proportionate output probabilities. We find that even in simple settings the best LMs (1) are poorly calibrated, and (2) have systematic biases (e.g., preferred colors and sensitivities to word orderings). For example, gpt-4o-mini often picks the first of two options presented in the prompt regardless of the options' implied likelihood, whereas Llama-3.1-8B picks the second. Our other consistent finding is mode-collapse: Instruction-tuned models often over-allocate probability mass on a single option. These systematic biases introduce non-intuitive model behavior, making models harder for users to understand.


[715] 2410.16009

3D-GANTex: 3D Face Reconstruction with StyleGAN3-based Multi-View Images and 3DDFA based Mesh Generation

Geometry and texture estimation from a single face image is an ill-posed problem since there is very little information to work with. The problem further escalates when the face is rotated at a different angle. This paper tries to tackle this problem by introducing a novel method for texture estimation from a single image by first using StyleGAN and 3D Morphable Models. The method begins by generating multi-view faces using the latent space of GAN. Then 3DDFA trained on 3DMM estimates a 3D face mesh as well as a high-resolution texture map that is consistent with the estimated face shape. The result shows that the generated mesh is of high quality with near to accurate texture representation.


[716] 2410.16011

CA*: Addressing Evaluation Pitfalls in Computation-Aware Latency for Simultaneous Speech Translation

Simultaneous speech translation (SimulST) systems must balance translation quality with response time, making latency measurement crucial for evaluating their real-world performance. However, there has been a longstanding belief that current metrics yield unrealistically high latency measurements in unsegmented streaming settings. In this paper, we investigate this phenomenon, revealing its root cause in a fundamental misconception underlying existing latency evaluation approaches. We demonstrate that this issue affects not only streaming but also segment-level latency evaluation across different metrics. Furthermore, we propose a modification to correctly measure computation-aware latency for SimulST systems, addressing the limitations present in existing metrics.


[717] 2410.16012

Massimo: Public Queue Monitoring and Management using Mass-Spring Model

An efficient system of a queue control and regulation in public spaces is very important in order to avoid the traffic jams and to improve the customer satisfaction. This article offers a detailed road map based on a merger of intelligent systems and creating an efficient systems of queues in public places. Through the utilization of different technologies i.e. computer vision, machine learning algorithms, deep learning our system provide accurate information about the place is crowded or not and the necessary efforts to be taken.


[718] 2410.16013

Information-Theoretic Minimax Regret Bounds for Reinforcement Learning based on Duality

We study agents acting in an unknown environment where the agent's goal is to find a robust policy. We consider robust policies as policies that achieve high cumulative rewards for all possible environments. To this end, we consider agents minimizing the maximum regret over different environment parameters, leading to the study of minimax regret. This research focuses on deriving information-theoretic bounds for minimax regret in Markov Decision Processes (MDPs) with a finite time horizon. Building on concepts from supervised learning, such as minimum excess risk (MER) and minimax excess risk, we use recent bounds on the Bayesian regret to derive minimax regret bounds. Specifically, we establish minimax theorems and use bounds on the Bayesian regret to perform minimax regret analysis using these minimax theorems. Our contributions include defining a suitable minimax regret in the context of MDPs, finding information-theoretic bounds for it, and applying these bounds in various scenarios.


[719] 2410.16016

Proactive security defense: cyber threat intelligence modeling for connected autonomous vehicles

Cybersecurity has become a crucial concern in the field of connected autonomous vehicles. Cyber threat intelligence (CTI), as the collection of cyber threat information, offers an ideal way for responding to emerging cyber threats and realizing proactive security defense. However, instant analysis and modeling of vehicle cybersecurity data is a fundamental challenge since its complex and professional context. In this paper, we suggest an automotive CTI modeling framework, Actim, to extract and analyse the interrelated relationships among cyber threat elements. Specifically, we first design a vehicle security-safety conceptual ontology model to depict various threat entity classes and their relations. Then, we manually annotate the first automobile CTI corpus by using real cybersecurity data, which comprises 908 threat intelligence texts, including 8195 entities and 4852 relationships. To effectively extract cyber threat entities and their relations, we propose an automotive CTI mining model based on cross-sentence context. Experiment results show that the proposed BERT-DocHiatt-BiLSTM-LSTM model exceeds the performance of existing methods. Finally, we define entity-relation matching rules and create a CTI knowledge graph that structurally fuses various elements of cyber threats. The Actim framework enables mining the intrinsic connections among threat entities, providing valuable insight on the evolving cyber threat landscape.


[720] 2410.16019

Multispectral Texture Synthesis using RGB Convolutional Neural Networks

State-of-the-art RGB texture synthesis algorithms rely on style distances that are computed through statistics of deep features. These deep features are extracted by classification neural networks that have been trained on large datasets of RGB images. Extending such synthesis methods to multispectral images is not straightforward, since the pre-trained networks are designed for and have been trained on RGB images. In this work, we propose two solutions to extend these methods to multispectral imaging. Neither of them require additional training of the neural network from which the second order neural statistics are extracted. The first one consists in optimizing over batches of random triplets of spectral bands throughout training. The second one projects multispectral pixels onto a 3 dimensional space. We further explore the benefit of a color transfer operation upstream of the projection to avoid the potentially abnormal color distributions induced by the projection. Our experiments compare the performances of the various methods through different metrics. We demonstrate that they can be used to perform exemplar-based texture synthesis, achieve good visual quality and comes close to state-of-the art methods on RGB bands.


[721] 2410.16020

START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation

Domain Generalization (DG) aims to enable models to generalize to unseen target domains by learning from multiple source domains. Existing DG methods primarily rely on convolutional neural networks (CNNs), which inherently learn texture biases due to their limited receptive fields, making them prone to overfitting source domains. While some works have introduced transformer-based methods (ViTs) for DG to leverage the global receptive field, these methods incur high computational costs due to the quadratic complexity of self-attention. Recently, advanced state space models (SSMs), represented by Mamba, have shown promising results in supervised learning tasks by achieving linear complexity in sequence length during training and fast RNN-like computation during inference. Inspired by this, we investigate the generalization ability of the Mamba model under domain shifts and find that input-dependent matrices within SSMs could accumulate and amplify domain-specific features, thus hindering model generalization. To address this issue, we propose a novel SSM-based architecture with saliency-based token-aware transformation (namely START), which achieves state-of-the-art (SOTA) performances and offers a competitive alternative to CNNs and ViTs. Our START can selectively perturb and suppress domain-specific features in salient tokens within the input-dependent matrices of SSMs, thus effectively reducing the discrepancy between different domains. Extensive experiments on five benchmarks demonstrate that START outperforms existing SOTA DG methods with efficient linear complexity. Our code is available at https://github.com/lingeringlight/START.


[722] 2410.16023

Effects of graph operations on star pairwise compatibility graphs

A graph $G=(V,E)$ is defined as a star-$k$-PCG when it is possible to assign a positive real number weight $w$ to each vertex $V$, and define $k$ distinct intervals $I_1, I_2, \ldots I_k$, in such a way that there is an edge $uv$ in $E$ if and only if the sum of the weights of vertices $u$ and $v$ falls within the union of these intervals. The star-$k$-PCG class is connected to two significant categories of graphs, namely PCGs and multithreshold graphs. The star number of a graph $G$, is the smallest $k$ for which $G$ is a star-$k$-PCG. In this paper, we study the effects of various graph operations, such as the addition of twins, pendant vertices, universal vertices, or isolated vertices, on the star number of the graph resulting from these operations. As a direct application of our results, we determine the star number of lobster graphs and provide an upper bound for the star number of acyclic graphs.


[723] 2410.16024

A New Approach to Solving SMAC Task: Generating Decision Tree Code from Large Language Models

StarCraft Multi-Agent Challenge (SMAC) is one of the most commonly used experimental environments in multi-agent reinforcement learning (MARL), where the specific task is to control a set number of allied units to defeat enemy forces. Traditional MARL algorithms often require interacting with the environment for up to 1 million steps to train a model, and the resulting policies are typically non-interpretable with weak transferability. In this paper, we propose a novel approach to solving SMAC tasks called LLM-SMAC. In our framework, agents leverage large language models (LLMs) to generate decision tree code by providing task descriptions. The model is further self-reflection using feedback from the rewards provided by the environment. We conduct experiments in the SMAC and demonstrate that our method can produce high-quality, interpretable decision trees with minimal environmental exploration. Moreover, these models exhibit strong transferability, successfully applying to similar SMAC environments without modification. We believe this approach offers a new direction for solving decision-making tasks in the future.


[724] 2410.16025

Continuum Robot Shape Estimation Using Magnetic Ball Chains

Shape sensing of medical continuum robots is important both for closed-loop control as well as for enabling the clinician to visualize the robot inside the body. There is a need for inexpensive, but accurate shape sensing technologies. This paper proposes the use of magnetic ball chains as a means of generating shape-specific magnetic fields that can be detected by an external array of Hall effect sensors. Such a ball chain, encased in a flexible polymer sleeve, could be inserted inside the lumen of any continuum robot to provide real-time shape feedback. The sleeve could be removed, as needed, during the procedure to enable use of the entire lumen. To investigate this approach, a shape-sensing model for a steerable catheter tip is derived and an observability and sensitivity analysis are presented. Experiments show maximum estimation errors of 7.1% and mean of 2.9% of the tip position with respect to total length.


[725] 2410.16026

HyperDrive: Scheduling Serverless Functions in the Edge-Cloud-Space 3D Continuum

The number of Low Earth Orbit~(LEO) satellites has grown enormously in the past years. Their abundance and low orbits allow for low latency communication with a satellite almost anywhere on Earth, and high-speed inter-satellite laser links~(ISLs) enable a quick exchange of large amounts of data among satellites. As the computational capabilities of LEO satellites grow, they are becoming eligible as general-purpose compute nodes. In the 3D continuum, which combines Cloud and Edge nodes on Earth and satellites in space into a seamless computing fabric, workloads can be executed on any of the aforementioned compute nodes, depending on where it is most beneficial. However, scheduling on LEO satellites moving at approx. 27,000 km/h requires picking the satellite with the lowest latency to all data sources (ground and, possibly, earth observation satellites). Dissipating heat from onboard hardware is challenging when facing the sun and workloads must not drain the satellite's batteries. These factors make meeting SLOs more challenging than in the Edge-Cloud continuum, i.e., on Earth alone. We present HyperDrive, an SLO-aware scheduler for serverless functions specifically designed for the 3D continuum. It places functions on Cloud, Edge, or Space compute nodes, based on their availability and ability to meet the SLO requirements of the workflow. We evaluate HyperDrive using a wildfire disaster response use case with high Earth Observation data processing requirements and stringent SLOs, showing that it enables the design and execution of such next-generation 3D scenarios with 71% lower network latency than the best baseline scheduler.


[726] 2410.16027

ComPO: Community Preferences for Language Model Personalization

Conventional algorithms for training language models (LMs) with human feedback rely on preferences that are assumed to account for an "average" user, disregarding subjectivity and finer-grained variations. Recent studies have raised concerns that aggregating such diverse and often contradictory human feedback to finetune models results in generic models that generate outputs not preferred by many user groups, as they tend to average out styles and norms. To address this issue, we draw inspiration from recommendation systems and propose ComPO, a method to personalize preference optimization in LMs by contextualizing the probability distribution of model outputs with the preference provider. Focusing on group-level preferences rather than individuals, we collect and release ComPRed, a question answering dataset with community-level preferences from Reddit. This dataset facilitates studying diversity in preferences without incurring privacy concerns associated with individual feedback. Our experiments reveal that conditioning language models on a community identifier (i.e., subreddit name) during preference tuning substantially enhances model performance. Conversely, replacing this context with random subreddit identifiers significantly diminishes performance, highlighting the effectiveness of our approach in tailoring responses to communities' preferences.


[727] 2410.16028

Few-shot target-driven instance detection based on open-vocabulary object detection models

Current large open vision models could be useful for one and few-shot object recognition. Nevertheless, gradient-based re-training solutions are costly. On the other hand, open-vocabulary object detection models bring closer visual and textual concepts in the same latent space, allowing zero-shot detection via prompting at small computational cost. We propose a lightweight method to turn the latter into a one-shot or few-shot object recognition models without requiring textual descriptions. Our experiments on the TEgO dataset using the YOLO-World model as a base show that performance increases with the model size, the number of examples and the use of image augmentation.


[728] 2410.16029

Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning

Training LLMs presents significant memory challenges due to growing size of data, weights, and optimizer states. Techniques such as data and model parallelism, gradient checkpointing, and offloading strategies address this issue but are often infeasible due to hardware constraints. To mitigate memory usage, alternative methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approximate weights or optimizer states. PEFT methods, such as LoRA, have gained popularity for fine-tuning LLMs, though they require a full-rank warm start. In contrast, GaLore allows full-parameter learning while being more memory-efficient. This work introduces Natural GaLore, a simple drop in replacement for AdamW, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients using Woodbury's Identity. We demonstrate that incorporating second-order information speeds up optimization significantly, especially when the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and 1.1B parameter Llama models on C4 data demonstrate significantly lower perplexity over GaLore without additional memory overhead. By fine-tuning RoBERTa on the GLUE benchmark using Natural GaLore, we demonstrate significant reduction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning the TinyLlama 1.1B model for function calling using the TinyAgent framework shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset, significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo by 4%, all while using 30% less memory. All code to reproduce the results are available at: https://github.com/selfsupervised-ai/Natural-GaLore.git


[729] 2410.16032

TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis

Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.


[730] 2410.16033

TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search and Best-of-N Sampling

Inference-time alignment enhances the performance of large language models without requiring additional training or fine-tuning but presents challenges due to balancing computational efficiency with high-quality output. Best-of-N (BoN) sampling, as a simple yet powerful approach, generates multiple responses and selects the best one, achieving improved performance but with a high computational cost. We propose TreeBoN, a novel framework that integrates a speculative tree-search strategy into Best-of-N (BoN) Sampling. TreeBoN maintains a set of parent nodes, iteratively branching and pruning low-quality responses, thereby reducing computational overhead while maintaining high output quality. Our approach also leverages token-level rewards from Direct Preference Optimization (DPO) to guide tree expansion and prune low-quality paths. We evaluate TreeBoN using AlpacaFarm, UltraFeedback, GSM8K, HH-RLHF, and TutorEval datasets, demonstrating consistent improvements. Specifically, TreeBoN achieves a 65% win rate at maximum lengths of 192 and 384 tokens, outperforming standard BoN with the same computational cost. Furthermore, TreeBoN achieves around a 60% win rate across longer responses, showcasing its scalability and alignment efficacy.


[731] 2410.16037

Improving the Multi-label Atomic Activity Recognition by Robust Visual Feature and Advanced Attention @ ROAD++ Atomic Activity Recognition 2024

Road++ Track3 proposes a multi-label atomic activity recognition task in traffic scenarios, which can be standardized as a 64-class multi-label video action recognition task. In the multi-label atomic activity recognition task, the robustness of visual feature extraction remains a key challenge, which directly affects the model performance and generalization ability. To cope with these issues, our team optimized three aspects: data processing, model and post-processing. Firstly, the appropriate resolution and video sampling strategy are selected, and a fixed sampling strategy is set on the validation and test sets. Secondly, in terms of model training, the team selects a variety of visual backbone networks for feature extraction, and then introduces the action-slot model, which is trained on the training and validation sets, and reasoned on the test set. Finally, for post-processing, the team combined the strengths and weaknesses of different models for weighted fusion, and the final mAP on the test set was 58%, which is 4% higher than the challenge baseline.


[732] 2410.16038

Benchmarking Pathology Foundation Models: Adaptation Strategies and Scenarios

In computational pathology, several foundation models have recently emerged and demonstrated enhanced learning capability for analyzing pathology images. However, adapting these models to various downstream tasks remains challenging, particularly when faced with datasets from different sources and acquisition conditions, as well as limited data availability. In this study, we benchmark four pathology-specific foundation models across 14 datasets and two scenarios-consistency assessment and flexibility assessment-addressing diverse adaptation scenarios and downstream tasks. In the consistency assessment scenario, involving five fine-tuning methods, we found that the parameter-efficient fine-tuning approach was both efficient and effective for adapting pathology-specific foundation models to diverse datasets within the same downstream task. In the flexibility assessment scenario under data-limited environments, utilizing five few-shot learning methods, we observed that the foundation models benefited more from the few-shot learning methods that involve modification during the testing phase only. These findings provide insights that could guide the deployment of pathology-specific foundation models in real clinical settings, potentially improving the accuracy and reliability of pathology image analysis. The code for this study is available at: https://github.com/QuIIL/BenchmarkingPathologyFoundationModels.


[733] 2410.16044

Large Language Models Know What To Say But Not When To Speak

Turn-taking is a fundamental mechanism in human communication that ensures smooth and coherent verbal interactions. Recent advances in Large Language Models (LLMs) have motivated their use in improving the turn-taking capabilities of Spoken Dialogue Systems (SDS), such as their ability to respond at appropriate times. However, existing models often struggle to predict opportunities for speaking -- called Transition Relevance Places (TRPs) -- in natural, unscripted conversations, focusing only on turn-final TRPs and not within-turn TRPs. To address these limitations, we introduce a novel dataset of participant-labeled within-turn TRPs and use it to evaluate the performance of state-of-the-art LLMs in predicting opportunities for speaking. Our experiments reveal the current limitations of LLMs in modeling unscripted spoken interactions, highlighting areas for improvement and paving the way for more naturalistic dialogue systems.


[734] 2410.16049

Dirty-Waters: Detecting Software Supply Chain Smells

Using open-source dependencies is essential in modern software development. However, this practice implies significant trust in third-party code, while there is little support for developers to assess this trust. As a consequence, attacks have been increasingly occurring through third-party dependencies. These are called software supply chain attacks. In this paper, we target the problem of projects that use dependencies while unaware of the potential risks posed by their software supply chain. We define the novel concept of software supply chain smell and present Dirty-Waters, a novel tool for detecting software supply chain smells. We evaluate Dirty-Waters on three JavaScript projects across nine versions and demonstrate the prevalence of all proposed software supply chain smells. Not only are there smells in all projects, but there are many of them, which immediately reveal potential risks and provide clear indicators for developers to act on the security of their supply chain.


[735] 2410.16050

Optimization of an eigenvalue arising in optimal insulation with a lower bound

An eigenvalue problem arising in optimal insulation related to the minimization of the heat decay rate of an insulated body is adapted to enforce a positive lower bound imposed on the distribution of insulating material. We prove the existence of optimal domains among a class of convex shapes and propose a numerical scheme to approximate the eigenvalue. The stability of the shape optimization among convex, bounded domains in $\mathbb{R}^3$ is proven for an approximation with polyhedral domains under a non-conformal convexity constraint. We prove that on the ball, symmetry breaking of the optimal insulation can be expected in general. To observe how the lower bound affects the breaking of symmetry in the optimal insulation and the shape optimization, the eigenvalue and optimal domains are approximated for several values of mass $m$ and lower bounds $\ell_{\min}\ge0$. The numerical experiments suggest, that in general symmetry breaking still arises, unless $m$ is close to a critical value $m_0$, and $\ell_{\min}$ large enough such that almost all of the mass $m$ is fixed through the lower bound. For $\ell_{\min}=0$, the numerical results are consistent with previous numerical experiments on shape optimization restricted to rotationally symmetric, convex domains.


[736] 2410.16052

Near-Optimal Algorithm for Non-Stationary Kernelized Bandits

This paper studies a non-stationary kernelized bandit (KB) problem, also called time-varying Bayesian optimization, where one seeks to minimize the regret under an unknown reward function that varies over time. In particular, we focus on a near-optimal algorithm whose regret upper bound matches the regret lower bound. For this goal, we show the first algorithm-independent regret lower bound for non-stationary KB with squared exponential and Mat\'ern kernels, which reveals that an existing optimization-based KB algorithm with slight modification is near-optimal. However, this existing algorithm suffers from feasibility issues due to its huge computational cost. Therefore, we propose a novel near-optimal algorithm called restarting phased elimination with random permutation (R-PERP), which bypasses the huge computational cost. A technical key point is the simple permutation procedures of query candidates, which enable us to derive a novel tighter confidence bound tailored to the non-stationary problems.


[737] 2410.16057

Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations

The success of medical image segmentation usually requires a large number of high-quality labels. But since the labeling process is usually affected by the raters' varying skill levels and characteristics, the estimated masks provided by different raters usually suffer from high inter-rater variability. In this paper, we propose a simple yet effective Label Filling framework, termed as LF-Net, predicting the groundtruth segmentation label given only noisy annotations during training. The fundamental idea of label filling is to supervise the segmentation model by a subset of pixels with trustworthy labels, meanwhile filling labels of other pixels by mixed supervision. More concretely, we propose a qualified majority voting strategy, i.e., a threshold voting scheme is designed to model agreement among raters and the majority-voted labels of the selected subset of pixels are regarded as supervision. To fill labels of other pixels, two types of mixed auxiliary supervision are proposed: a soft label learned from intrinsic structures of noisy annotations, and raters' characteristics labels which propagate individual rater's characteristics information. LF-Net has two main advantages. 1) Training with trustworthy pixels incorporates training with confident supervision, guiding the direction of groundtruth label learning. 2) Two types of mixed supervision prevent over-fitting issues when the network is supervised by a subset of pixels, and guarantee high fidelity with the true label. Results on five datasets of diverse imaging modalities show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods, with even a 7% improvement in DSC for MS lesion segmentation.


[738] 2410.16058

Shorter Is Different: Characterizing the Dynamics of Short-Form Video Platforms

The emerging short-form video platforms have been growing tremendously and become one of the leading social media recently. Although the expanded popularity of these platforms has attracted increasing research attention, there has been a lack of understanding of whether and how they deviate from traditional long-form video-sharing platforms such as YouTube and Bilibili. To address this, we conduct a large-scale data-driven analysis of Kuaishou, one of the largest short-form video platforms in China. Based on 248 million videos uploaded to the platform across all categories, we identify their notable differences from long-form video platforms through a comparison study with Bilibili, a leading long-form video platform in China. We find that videos are shortened by multiples on Kuaishou, with distinctive categorical distributions over-represented by life-related rather than interest-based videos. Users interact with videos less per view, but top videos can even more effectively acquire users' collective attention. More importantly, ordinary content creators have higher probabilities of producing hit videos. Our results shed light on the uniqueness of short-form video platforms and pave the way for future research and design for better short-form video ecology.


[739] 2410.16061

Virtual Reality Games: Extending Unity Learn Games to VR

Research involving virtual reality (VR) has dramatically increased since the introduction of consumer VR systems. In turn, research on VR games has gained popularity within several fields. However, most VR games are closed source, which limits research opportunities. Some VR games are open source, but most of them are either very basic or too complex to be easily used in research. In this paper, we present two source-available VR games developed from freely available Unity Learn games: a kart racing game and a 3D adventure game. Our hope is that other researchers find them easy to use for VR studies, as Unity Technologies developed the games for beginners and has provided tutorials on using them.


[740] 2410.16062

Surprise! Uniform Information Density Isn't the Whole Story: Predicting Surprisal Contours in Long-form Discourse

The Uniform Information Density (UID) hypothesis posits that speakers tend to distribute information evenly across linguistic units to achieve efficient communication. Of course, information rate in texts and discourses is not perfectly uniform. While these fluctuations can be viewed as theoretically uninteresting noise on top of a uniform target, another explanation is that UID is not the only functional pressure regulating information content in a language. Speakers may also seek to maintain interest, adhere to writing conventions, and build compelling arguments. In this paper, we propose one such functional pressure; namely that speakers modulate information rate based on location within a hierarchically-structured model of discourse. We term this the Structured Context Hypothesis and test it by predicting the surprisal contours of naturally occurring discourses extracted from large language models using predictors derived from discourse structure. We find that hierarchical predictors are significant predictors of a discourse's information contour and that deeply nested hierarchical predictors are more predictive than shallow ones. This work takes an initial step beyond UID to propose testable hypotheses for why the information rate fluctuates in predictable ways


[741] 2410.16063

Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation

Small sample instance segmentation is a very challenging task, and many existing methods follow the training strategy of meta-learning which pre-train models on support set and fine-tune on query set. The pre-training phase, which is highly task related, requires a significant amount of additional training time and the selection of datasets with close proximity to ensure effectiveness. The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information without increasing annotation burden and training costs. The proposed method designs two modules to address the problems encountered in small sample instance segmentation. First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples. Second, by integrating the features of text and image, more accurate classification results can be obtained. These two modules are suitable for box-free and box-dependent frameworks. In the way, the proposed method not only improves the performance of small sample instance segmentation, but also greatly reduce reliance on pre-training. We have conducted experiments in three datasets from different scenes: on land, underwater and under microscope. As evidenced by our experiments, integrated image-text corrects the confidence of classification, and pseudo labels help the model obtain preciser masks. All the results demonstrate the effectiveness and superiority of our method.


[742] 2410.16069

Rolling the DICE on Idiomaticity: How LLMs Fail to Grasp Context

Human processing of idioms relies on understanding the contextual sentences in which idioms occur, as well as language-intrinsic features such as frequency and speaker-intrinsic factors like familiarity. While LLMs have shown high performance on idiomaticity detection tasks, this success may be attributed to reasoning shortcuts in existing datasets. To this end, we construct a novel, controlled contrastive dataset designed to test whether LLMs can effectively use context to disambiguate idiomatic meaning. Additionally, we explore how collocational frequency and sentence probability influence model performance. Our findings reveal that LLMs often fail to resolve idiomaticity when it is required to attend to the surrounding context, and that models perform better on sentences that have higher likelihood. The collocational frequency of expressions also impacts performance. We make our code and dataset publicly available.


[743] 2410.16070

On-Device LLMs for SMEs: Challenges and Opportunities

This paper presents a systematic review of the infrastructure requirements for deploying Large Language Models (LLMs) on-device within the context of small and medium-sized enterprises (SMEs), focusing on both hardware and software perspectives. From the hardware viewpoint, we discuss the utilization of processing units like GPUs and TPUs, efficient memory and storage solutions, and strategies for effective deployment, addressing the challenges of limited computational resources typical in SME settings. From the software perspective, we explore framework compatibility, operating system optimization, and the use of specialized libraries tailored for resource-constrained environments. The review is structured to first identify the unique challenges faced by SMEs in deploying LLMs on-device, followed by an exploration of the opportunities that both hardware innovations and software adaptations offer to overcome these obstacles. Such a structured review provides practical insights, contributing significantly to the community by enhancing the technological resilience of SMEs in integrating LLMs.


[744] 2410.16077

CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts

Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top $K$ routed experts in an ``addition'' manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a ``multiplication'' manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness.


[745] 2410.16079

SAIM: Scalable Analog Ising Machine for Solving Quadratic Binary Optimization Problems

This paper presents a CMOS-compatible Lechner-Hauke-Zoller (LHZ)--based analog tile structure as a fundamental unit for developing scalable analog Ising machines (IMs). In the designed LHZ tile, the voltage-controlled oscillators are employed as the physical Ising spins, while for the ancillary spins, we introduce an oscillator-based circuit to emulate the constraint needed to ensure the correct functionality of the tile. We implement the proposed LHZ tile in 12nm FinFET technology using the Cadence Virtuoso. Simulation results show the proposed tile could converge to the results in about 31~ns. Also, the designed spins could operate at approximately 13~GHz.


[746] 2410.16080

Unleashing the Potential of Multi-Channel Fusion in Retrieval for Personalized Recommendations

Recommender systems (RS) are pivotal in managing information overload in modern digital services. A key challenge in RS is efficiently processing vast item pools to deliver highly personalized recommendations under strict latency constraints. Multi-stage cascade ranking addresses this by employing computationally efficient retrieval methods to cover diverse user interests, followed by more precise ranking models to refine the results. In the retrieval stage, multi-channel retrieval is often used to generate distinct item subsets from different candidate generators, leveraging the complementary strengths of these methods to maximize coverage. However, forwarding all retrieved items overwhelms downstream rankers, necessitating truncation. Despite advancements in individual retrieval methods, multi-channel fusion, the process of efficiently merging multi-channel retrieval results, remains underexplored. We are the first to identify and systematically investigate multi-channel fusion in the retrieval stage. Current industry practices often rely on heuristic approaches and manual designs, which often lead to suboptimal performance. Moreover, traditional gradient-based methods like SGD are unsuitable for this task due to the non-differentiable nature of the selection process. In this paper, we explore advanced channel fusion strategies by assigning systematically optimized weights to each channel. We utilize black-box optimization techniques, including the Cross Entropy Method and Bayesian Optimization for global weight optimization, alongside policy gradient-based approaches for personalized merging. Our methods enhance both personalization and flexibility, achieving significant performance improvements across multiple datasets and yielding substantial gains in real-world deployments, offering a scalable solution for optimizing multi-channel fusion in retrieval.


[747] 2410.16083

Critical Example Mining for Vehicle Trajectory Prediction using Flow-based Generative Models

Precise trajectory prediction in complex driving scenarios is essential for autonomous vehicles. In practice, different driving scenarios present varying levels of difficulty for trajectory prediction models. However, most existing research focuses on the average precision of prediction results, while ignoring the underlying distribution of the input scenarios. This paper proposes a critical example mining method that utilizes a data-driven approach to estimate the rareness of the trajectories. By combining the rareness estimation of observations with whole trajectories, the proposed method effectively identifies a subset of data that is relatively hard to predict BEFORE feeding them to a specific prediction model. The experimental results show that the mined subset has higher prediction error when applied to different downstream prediction models, which reaches +108.1% error (greater than two times compared to the average on dataset) when mining 5% samples. Further analysis indicates that the mined critical examples include uncommon cases such as sudden brake and cancelled lane-change, which helps to better understand and improve the performance of prediction models.


[748] 2410.16088

Fine-Tuning LLMs for Reliable Medical Question-Answering Services

We present an advanced approach to medical question-answering (QA) services, using fine-tuned Large Language Models (LLMs) to improve the accuracy and reliability of healthcare information. Our study focuses on optimizing models like LLaMA-2 and Mistral, which have shown great promise in delivering precise, reliable medical answers. By leveraging comprehensive datasets, we applied fine-tuning techniques such as rsDoRA+ and ReRAG. rsDoRA+ enhances model performance through a combination of decomposed model weights, varied learning rates for low-rank matrices, and rank stabilization, leading to improved efficiency. ReRAG, which integrates retrieval on demand and question rewriting, further refines the accuracy of the responses. This approach enables healthcare providers to access fast, dependable information, aiding in more efficient decision-making and fostering greater patient trust. Our work highlights the potential of fine-tuned LLMs to significantly improve the quality and accessibility of medical information services, ultimately contributing to better healthcare outcomes for all.


[749] 2410.16089

Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data

The unique cost, flexibility, speed, and efficiency of modern UAVs make them an attractive choice in many applications in contemporary society. This, however, causes an ever-increasing number of reported malicious or accidental incidents, rendering the need for the development of UAV detection and classification mechanisms essential. We propose a methodology for developing a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection. The DNN model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data. Additionally, emphasis is given to the model's Convolutional Neural Network (CNN) based architecture that combines the features of the three sensor modalities by stacking the extracted image features of the thermal and optronic sensor achieving higher classification accuracy than each sensor alone.


[750] 2410.16090

Analysing the Residual Stream of Language Models Under Knowledge Conflicts

Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context. Such conflicts can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. In this work, we investigate whether LLMs can identify knowledge conflicts and whether it is possible to know which source of knowledge the model will rely on by analysing the residual stream of the LLM. Through probing tasks, we find that LLMs can internally register the signal of knowledge conflict in the residual stream, which can be accurately detected by probing the intermediate model activations. This allows us to detect conflicts within the residual stream before generating the answers without modifying the input or model parameters. Moreover, we find that the residual stream shows significantly different patterns when the model relies on contextual knowledge versus parametric knowledge to resolve conflicts. This pattern can be employed to estimate the behaviour of LLMs when conflict happens and prevent unexpected answers before producing the answers. Our analysis offers insights into how LLMs internally manage knowledge conflicts and provides a foundation for developing methods to control the knowledge selection processes.


[751] 2410.16092

ChangeGuard: Validating Code Changes via Pairwise Learning-Guided Execution

Code changes are an integral part of the software development process. Many code changes are meant to improve the code without changing its functional behavior, e.g., refactorings and performance improvements. Unfortunately, validating whether a code change preserves the behavior is non-trivial, particularly when the code change is performed deep inside a complex project. This paper presents ChangeGuard, an approach that uses learning-guided execution to compare the runtime behavior of a modified function. The approach is enabled by the novel concept of pairwise learning-guided execution and by a set of techniques that improve the robustness and coverage of the state-of-the-art learning-guided execution technique. Our evaluation applies ChangeGuard to a dataset of 224 manually annotated code changes from popular Python open-source projects and to three datasets of code changes obtained by applying automated code transformations. Our results show that the approach identifies semantics-changing code changes with a precision of 77.1% and a recall of 69.5%, and that it detects unexpected behavioral changes introduced by automatic code refactoring tools. In contrast, the existing regression tests of the analyzed projects miss the vast majority of semantics-changing code changes, with a recall of only 7.6%. We envision our approach being useful for detecting unintended behavioral changes early in the development process and for improving the quality of automated code transformations.


[752] 2410.16093

Final Report for CHESS: Cloud, High-Performance Computing, and Edge for Science and Security

Automating the theory-experiment cycle requires effective distributed workflows that utilize a computing continuum spanning lab instruments, edge sensors, computing resources at multiple facilities, data sets distributed across multiple information sources, and potentially cloud. Unfortunately, the obvious methods for constructing continuum platforms, orchestrating workflow tasks, and curating datasets over time fail to achieve scientific requirements for performance, energy, security, and reliability. Furthermore, achieving the best use of continuum resources depends upon the efficient composition and execution of workflow tasks, i.e., combinations of numerical solvers, data analytics, and machine learning. Pacific Northwest National Laboratory's LDRD "Cloud, High-Performance Computing (HPC), and Edge for Science and Security" (CHESS) has developed a set of interrelated capabilities for enabling distributed scientific workflows and curating datasets. This report describes the results and successes of CHESS from the perspective of open science.


[753] 2410.16094

Streaming and Communication Complexity of Load-Balancing via Matching Contractors

In the load-balancing problem, we have an $n$-vertex bipartite graph $G=(L, R, E)$ between a set of clients and servers. The goal is to find an assignment of all clients to the servers, while minimizing the maximum load on each server, where load of a server is the number of clients assigned to it. We study load-balancing in the one-way communication model: the edges of the input graph are partitioned between Alice and Bob, and Alice needs to send a message to Bob for him to output the solution. We show that settling the one-way communication complexity of load-balancing is equivalent to a natural sparsification problem for load-balancing. We then prove a dual interpretation of this sparsifier, showing that the minimum density of a sparsifier is effectively the same as the maximum density one can achieve for an extremal graph family that is new to this paper, called Matching-Contractors; these graphs are intimately connected to the well-known Ruzsa-Szemeredi graphs and generalize them in certain aspects. Our chain of equivalences thus shows that the one-way communication complexity of load-balancing can be reduced to a purely graph theoretic question: what is the maximum density of a Matching-Contractor on $n$ vertices? Finally, we present a novel combinatorial construction of some-what dense Matching-Contractors, which implies a strong one-way communication lower bound for load-balancing: any one-way protocol (even randomized) with $\tilde{O}(n)$ communication cannot achieve a better than $n^{\frac14-o(1)}$-approximation. Previously, no non-trivial lower bounds were known for protocols with even $O(n\log{n})$ bits of communication. Our result also implies the first non-trivial lower bounds for semi-streaming load-balancing in the edge-arrival model, ruling out $n^{\frac14-o(1)}$-approximation in a single-pass.


[754] 2410.16095

LMHaze: Intensity-aware Image Dehazing with a Large-scale Multi-intensity Real Haze Dataset

Image dehazing has drawn a significant attention in recent years. Learning-based methods usually require paired hazy and corresponding ground truth (haze-free) images for training. However, it is difficult to collect real-world image pairs, which prevents developments of existing methods. Although several works partially alleviate this issue by using synthetic datasets or small-scale real datasets. The haze intensity distribution bias and scene homogeneity in existing datasets limit the generalization ability of these methods, particularly when encountering images with previously unseen haze intensities. In this work, we present LMHaze, a large-scale, high-quality real-world dataset. LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments, spanning multiple scenarios and haze intensities. It contains over 5K high-resolution image pairs, surpassing the size of the biggest existing real-world dehazing dataset by over 25 times. Meanwhile, to better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba (MoE-Mamba) for dehazing, which dynamically adjusts the model parameters according to the haze intensity. Moreover, with our proposed dataset, we conduct a new large multimodal model (LMM)-based benchmark study to simulate human perception for evaluating dehazed images. Experiments demonstrate that LMHaze dataset improves the dehazing performance in real scenarios and our dehazing method provides better results compared to state-of-the-art methods.


[755] 2410.16098

Defending Against Attack on the Cloned: In-Band Active Man-in-the-Middle Detection for the Signal Protocol

With Signal's position as one of the most popular secure messaging protocols in use today, the threat of government coercion and mass surveillance, i.e., active Man-in-the-Middle (MitM) attacks, are more relevant than ever. On the other hand, studies [29, 33, 37, 38] have shown that user awareness is very poor when it comes to authenticating keys in instant messaging applications, e.g., comparing key fingerprints out-of-band. The ideal solution to this problem should not require the active participation of the users. Our solution to active MitM attacks builds directly on Signal. We automate the process of key confirmation without relying on the intervention of users, and without using an out-of-band communication channel, at the cost of slightly altered trust assumptions on the server. We consider a powerful active MitM that not only controls the communication channel, but also has (one time) access to all secrets on one of the clients, i.e., can perform a key compromise attack. Our solution utilises the server to keep track of the changes in the clients key fingerprint as ratcheting is performed. Given that the server can keep a message log already, we find that any impact on deniability is minimal in practice. We present our detailed modifications to Signal, and document the new security guarantees while preserving the existing security guarantees of Signal. Our proof-of-concept implementation, which is based on the open-source Signal library used in real-world instant messaging applications, shows that our solution is practical and integrates well with the library. Our experimental results further show that our solution only has a tiny performance overhead when compared to Signal.


[756] 2410.16100

ExDBN: Exact learning of Dynamic Bayesian Networks

Causal learning from data has received much attention in recent years. One way of capturing causal relationships is by utilizing Bayesian networks. There, one recovers a weighted directed acyclic graph, in which random variables are represented by vertices, and the weights associated with each edge represent the strengths of the causal relationships between them. This concept is extended to capture dynamic effects by introducing a dependency on past data, which may be captured by the structural equation model, which is utilized in the present contribution to formulate a score-based learning approach. A mixed-integer quadratic program is formulated and an algorithmic solution proposed, in which the pre-generation of exponentially many acyclicity constraints is avoided by utilizing the so-called branch-and-cut ("lazy constraint") method. Comparing the novel approach to the state of the art, we show that the proposed approach turns out to produce excellent results when applied to small and medium-sized synthetic instances of up to 25 time-series. Lastly, two interesting applications in bio-science and finance, to which the method is directly applied, further stress the opportunities in developing highly accurate, globally convergent solvers that can handle modest instances.


[757] 2410.16102

Semantics of Sets of Programs

Applications like program synthesis sometimes require proving that a property holds for all of the infinitely many programs described by a grammar - i.e., an inductively defined set of programs. Current verification frameworks overapproximate programs' behavior when sets of programs contain loops, including two Hoare-style logics that fail to be relatively complete when loops are allowed. In this work, we prove that compositionally verifying simple properties for infinite sets of programs requires tracking distinct program behaviors over unboundedly many executions. Tracking this information is both necessary and sufficient for verification. We prove this fact in a general, reusable theory of denotational semantics that can model the expressivity and compositionality of verification techniques over infinite sets of programs. We construct the minimal compositional semantics that captures simple properties of sets of programs and use it to derive the first sound and relatively complete Hoare-style logic for infinite sets of programs. Thus, our methods can be used to design minimally complex, compositional verification techniques for sets of programs.


[758] 2410.16103

LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics

We introduce LDAdam, a memory-efficient optimizer for training large models, that performs adaptive optimization steps within lower dimensional subspaces, while consistently exploring the full parameter space during training. This strategy keeps the optimizer's memory footprint to a fraction of the model size. LDAdam relies on a new projection-aware update rule for the optimizer states that allows for transitioning between subspaces, i.e., estimation of the statistics of the projected gradients. To mitigate the errors due to low-rank projection, LDAdam integrates a new generalized error feedback mechanism, which explicitly accounts for both gradient and optimizer state compression. We prove the convergence of LDAdam under standard assumptions, and show that LDAdam allows for accurate and efficient fine-tuning and pre-training of language models.


[759] 2410.16104

A Deep Unfolding-Based Scalarization Approach for Power Control in D2D Networks

Optimizing network utility in device-to-device networks is typically formulated as a non-convex optimization problem. This paper addresses the scenario where the optimization variables are from a bounded but continuous set, allowing each device to perform power control. The power at each link is optimized to maximize a desired network utility. Specifically, we consider the weighted-sum-rate. The state of the art benchmark for this problem is fractional programming with quadratic transform, known as FPLinQ. We propose a scalarization approach to transform the weighted-sum-rate, developing an iterative algorithm that depends on step sizes, a reference, and a direction vector. By employing the deep unfolding approach, we optimize these parameters by presenting the iterative algorithm as a finite sequence of steps, enabling it to be trained as a deep neural network. Numerical experiments demonstrate that the unfolded algorithm performs comparably to the benchmark in most cases while exhibiting lower complexity. Furthermore, the unfolded algorithm shows strong generalizability in terms of varying the number of users, the signal-to-noise ratio and arbitrary weights. The weighted-sum-rate maximizer can be integrated into a low-complexity fairness scheduler, updating priority weights via virtual queues and Lyapunov Drift Plus Penalty. This is demonstrated through experiments using proportional and max-min fairness.


[760] 2410.16105

Addressing Spectral Bias of Deep Neural Networks by Multi-Grade Deep Learning

Deep neural networks (DNNs) suffer from the spectral bias, wherein DNNs typically exhibit a tendency to prioritize the learning of lower-frequency components of a function, struggling to capture its high-frequency features. This paper is to address this issue. Notice that a function having only low frequency components may be well-represented by a shallow neural network (SNN), a network having only a few layers. By observing that composition of low frequency functions can effectively approximate a high-frequency function, we propose to learn a function containing high-frequency components by composing several SNNs, each of which learns certain low-frequency information from the given data. We implement the proposed idea by exploiting the multi-grade deep learning (MGDL) model, a recently introduced model that trains a DNN incrementally, grade by grade, a current grade learning from the residue of the previous grade only an SNN composed with the SNNs trained in the preceding grades as features. We apply MGDL to synthetic, manifold, colored images, and MNIST datasets, all characterized by presence of high-frequency features. Our study reveals that MGDL excels at representing functions containing high-frequency information. Specifically, the neural networks learned in each grade adeptly capture some low-frequency information, allowing their compositions with SNNs learned in the previous grades effectively representing the high-frequency features. Our experimental results underscore the efficacy of MGDL in addressing the spectral bias inherent in DNNs. By leveraging MGDL, we offer insights into overcoming spectral bias limitation of DNNs, thereby enhancing the performance and applicability of deep learning models in tasks requiring the representation of high-frequency information. This study confirms that the proposed method offers a promising solution to address the spectral bias of DNNs.


[761] 2410.16107

Do LLMs write like humans? Variation in grammatical and rhetorical styles

Large language models (LLMs) are capable of writing grammatical text that follows instructions, answers questions, and solves problems. As they have advanced, it has become difficult to distinguish their output from human-written text. While past research has found some differences in surface features such as word choice and punctuation, and developed classifiers to detect LLM output, none has studied the rhetorical styles of LLMs. Using several variants of Llama 3 and GPT-4o, we construct two parallel corpora of human- and LLM-written texts from common prompts. Using Douglas Biber's set of lexical, grammatical, and rhetorical features, we identify systematic differences between LLMs and humans and between different LLMs. These differences persist when moving from smaller models to larger ones, and are larger for instruction-tuned models than base models. This demonstrates that despite their advanced abilities, LLMs struggle to match human styles, and hence more advanced linguistic features can detect patterns in their behavior not previously recognized.


[762] 2410.16109

Interpreting Microbiome Relative Abundance Data Using Symbolic Regression

Understanding the complex interactions within the microbiome is crucial for developing effective diagnostic and therapeutic strategies. Traditional machine learning models often lack interpretability, which is essential for clinical and biological insights. This paper explores the application of symbolic regression (SR) to microbiome relative abundance data, with a focus on colorectal cancer (CRC). SR, known for its high interpretability, is compared against traditional machine learning models, e.g., random forest, gradient boosting decision trees. These models are evaluated based on performance metrics such as F1 score and accuracy. We utilize 71 studies encompassing, from various cohorts, over 10,000 samples across 749 species features. Our results indicate that SR not only competes reasonably well in terms of predictive performance, but also excels in model interpretability. SR provides explicit mathematical expressions that offer insights into the biological relationships within the microbiome, a crucial advantage for clinical and biological interpretation. Our experiments also show that SR can help understand complex models like XGBoost via knowledge distillation. To aid in reproducibility and further research, we have made the code openly available at https://github.com/swag2198/microbiome-symbolic-regression .


[763] 2410.16110

DUMBO: Making durable read-only transactions fly on hardware transactional memory

Despite the recent improvements in supporting Persistent Hardware Transactions (PHTs) on emerging persistent memories (PM), the poor performance of Read-Only (RO) transactions remains largely overlooked. We propose DUMBO, a new design for PHT that eliminates the two most crucial bottlenecks that hinder RO transactions in state-of-the-art PHT. At its core, DUMBO exploits advanced instructions that some contemporary HTMs provide to suspend (and resume) transactional access tracking. Our experimental evaluation with an IBM POWER9 system using the TPC-C benchmark shows that DUMBO can outperform the state of the art designs for persistent hardware (SPHT) and software memory transactions (Pisces), by up to 4.0x.


[764] 2410.16115

Increasing Interpretability of Neural Networks By Approximating Human Visual Saliency

Understanding specifically where a model focuses on within an image is critical for human interpretability of the decision-making process. Deep learning-based solutions are prone to learning coincidental correlations in training datasets, causing over-fitting and reducing the explainability. Recent advances have shown that guiding models to human-defined regions of saliency within individual images significantly increases performance and interpretability. Human-guided models also exhibit greater generalization capabilities, as coincidental dataset features are avoided. Results show that models trained with saliency incorporation display an increase in interpretability of up to 30% over models trained without saliency information. The collection of this saliency information, however, can be costly, laborious and in some cases infeasible. To address this limitation, we propose a combination strategy of saliency incorporation and active learning to reduce the human annotation data required by 80% while maintaining the interpretability and performance increase from human saliency. Extensive experimentation outlines the effectiveness of the proposed approach across five public datasets and six active learning criteria.


[765] 2410.16119

SeaDAG: Semi-autoregressive Diffusion for Conditional Directed Acyclic Graph Generation

We introduce SeaDAG, a semi-autoregressive diffusion model for conditional generation of Directed Acyclic Graphs (DAGs). Considering their inherent layer-wise structure, we simulate layer-wise autoregressive generation by designing different denoising speed for different layers. Unlike conventional autoregressive generation that lacks a global graph structure view, our method maintains a complete graph structure at each diffusion step, enabling operations such as property control that require the full graph structure. Leveraging this capability, we evaluate the DAG properties during training by employing a graph property decoder. We explicitly train the model to learn graph conditioning with a condition loss, which enhances the diffusion model's capacity to generate graphs that are both realistic and aligned with specified properties. We evaluate our method on two representative conditional DAG generation tasks: (1) circuit generation from truth tables, where precise DAG structures are crucial for realizing circuit functionality, and (2) molecule generation based on quantum properties. Our approach demonstrates promising results, generating high-quality and realistic DAGs that closely align with given conditions.


[766] 2410.16120

Learning SQL from within: integrating database exercises into the database itself

SQL adventure builder (SQLab) is an open-source framework for creating SQL games that are embedded within the very database they query. Students' answers are evaluated using query fingerprinting, a novel technique that allows for better feedback than traditional SQL online judge systems. Fingerprints act as tokens that are used to unlock messages encrypted in an isolated auxiliary table. These messages may include hints, answer keys, examples, explanations, or narrative elements. They can also contain the problem statement of the next task, which turns them into nodes in a virtual DAG with queries as edges. This makes it possible to design a coherent adventure with a storyline of arbitrary complexity. This paper describes the theoretical underpinnings of SQLab's query fingerprinting model, its implementation challenges, and its potential to improve SQL education through game-based learning. The underlying concepts are fully cross-vendor, and support for SQLite, PostgreSQL and MySQL is already available. As a proof of concept, two games, 30 exercises and one mock exam were tested over a three-year period with about 300 students.


[767] 2410.16121

Extracting Spatiotemporal Data from Gradients with Large Language Models

Recent works show that sensitive user data can be reconstructed from gradient updates, breaking the key privacy promise of federated learning. While success was demonstrated primarily on image data, these methods do not directly transfer to other domains, such as spatiotemporal data. To understand privacy risks in spatiotemporal federated learning, we first propose Spatiotemporal Gradient Inversion Attack (ST-GIA), a gradient attack algorithm tailored to spatiotemporal data that successfully reconstructs the original location from gradients. Furthermore, the absence of priors in attacks on spatiotemporal data has hindered the accurate reconstruction of real client data. To address this limitation, we propose ST-GIA+, which utilizes an auxiliary language model to guide the search for potential locations, thereby successfully reconstructing the original data from gradients. In addition, we design an adaptive defense strategy to mitigate gradient inversion attacks in spatiotemporal federated learning. By dynamically adjusting the perturbation levels, we can offer tailored protection for varying rounds of training data, thereby achieving a better trade-off between privacy and utility than current state-of-the-art methods. Through intensive experimental analysis on three real-world datasets, we reveal that the proposed defense strategy can well preserve the utility of spatiotemporal federated learning with effective security protection.


[768] 2410.16124

MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions

Driven by advances in recording technology, large-scale high-dimensional datasets have emerged across many scientific disciplines. Especially in biology, clustering is often used to gain insights into the structure of such datasets, for instance to understand the organization of different cell types. However, clustering is known to scale poorly to high dimensions, even though the exact impact of dimensionality is unclear as current benchmark datasets are mostly two-dimensional. Here we propose MNIST-Nd, a set of synthetic datasets that share a key property of real-world datasets, namely that individual samples are noisy and clusters do not perfectly separate. MNIST-Nd is obtained by training mixture variational autoencoders with 2 to 64 latent dimensions on MNIST, resulting in six datasets with comparable structure but varying dimensionality. It thus offers the chance to disentangle the impact of dimensionality on clustering. Preliminary common clustering algorithm benchmarks on MNIST-Nd suggest that Leiden is the most robust for growing dimensions.


[769] 2410.16128

SMART: Self-learning Meta-strategy Agent for Reasoning Tasks

Tasks requiring deductive reasoning, especially those involving multiple steps, often demand adaptive strategies such as intermediate generation of rationales or programs, as no single approach is universally optimal. While Language Models (LMs) can enhance their outputs through iterative self-refinement and strategy adjustments, they frequently fail to apply the most effective strategy in their first attempt. This inefficiency raises the question: Can LMs learn to select the optimal strategy in the first attempt, without a need for refinement? To address this challenge, we introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to autonomously learn and select the most effective strategies for various reasoning tasks. We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement to allow the model to find the suitable strategy to solve a given task. Unlike traditional self-refinement methods that rely on multiple inference passes or external feedback, SMART allows an LM to internalize the outcomes of its own reasoning processes and adjust its strategy accordingly, aiming for correct solutions on the first attempt. Our experiments across various reasoning datasets and with different model architectures demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance (+15 points on the GSM8K dataset). By achieving higher accuracy with a single inference pass, SMART not only improves performance but also reduces computational costs for refinement-based strategies, paving the way for more efficient and intelligent reasoning in LMs.


[770] 2410.16131

Constrained Truthful Obnoxious Two-Facility Location with Optional Preferences

We consider a truthful facility location problem with agents that have private positions on the line of real numbers and known optional preferences over two obnoxious facilities that must be placed at locations chosen from a given set of candidate ones. Each agent wants to be as far away as possible from the facilities that affect her, and our goal is to design mechanisms that decide where to place the facilities so as to maximize the total happiness of the agents as well as provide the right incentives to them to truthfully report their positions. We consider separately the setting in which all agents are affected by both facilities (i.e., they have non-optional preferences) and the general optional setting. We show tight bounds on the approximation ratio of deterministic strategyproof mechanisms for both settings, and almost tight bounds for randomized mechanisms.


[771] 2410.16132

A Data-driven Crowd Simulation Framework Integrating Physics-informed Machine Learning with Navigation Potential Fields

Traditional rule-based physical models are limited by their reliance on singular physical formulas and parameters, making it difficult to effectively tackle the intricate tasks associated with crowd simulation. Recent research has introduced deep learning methods to tackle these issues, but most current approaches focus primarily on generating pedestrian trajectories, often lacking interpretability and failing to provide real-time dynamic simulations.To address the aforementioned issues, we propose a novel data-driven crowd simulation framework that integrates Physics-informed Machine Learning (PIML) with navigation potential fields. Our approach leverages the strengths of both physical models and PIML. Specifically, we design an innovative Physics-informed Spatio-temporal Graph Convolutional Network (PI-STGCN) as a data-driven module to predict pedestrian movement trends based on crowd spatio-temporal data. Additionally, we construct a physical model of navigation potential fields based on flow field theory to guide pedestrian movements, thereby reinforcing physical constraints during the simulation. In our framework, navigation potential fields are dynamically computed and updated based on the movement trends predicted by the PI-STGCN, while the updated crowd dynamics, guided by these fields, subsequently feed back into the PI-STGCN. Comparative experiments on two publicly available large-scale real-world datasets across five scenes demonstrate that our proposed framework outperforms existing rule-based methods in accuracy and fidelity. The similarity between simulated and actual pedestrian trajectories increases by 10.8%, while the average error is reduced by 4%. Moreover, our framework exhibits greater adaptability and better interpretability compared to methods that rely solely on deep learning for trajectory generation.


[772] 2410.16135

Beyond 2:4: exploring V:N:M sparsity for efficient transformer inference on GPUs

To date, 2:4 sparsity has stood as the only sparse pattern that can be accelerated using sparse tensor cores on GPUs. In practice, 2:4 sparsity often possesses low actual speedups ($\leq 1.3$) and requires fixed sparse ratios, meaning that other ratios, such as 4:8, 8:16, or those exceeding 50% sparsity, do not incur any speedups on GPUs. Recent studies suggest that V:N:M sparsity is promising in addressing these limitations of 2:4 sparsity. However, regarding accuracy, the effects of V:N:M sparsity on broader Transformer models, such as vision Transformers and large language models (LLMs), are largely unexamined. Moreover, Some specific issues related to V:N:M sparsity, such as how to select appropriate V and M values, remain unresolved. In this study, we thoroughly investigate the application of V:N:M sparsity in vision models and LLMs across multiple tasks, from pertaining to downstream tasks. We propose three key approaches to enhance the applicability and accuracy of V:N:M-sparse Transformers, including heuristic V and M selection, V:N:M-specific channel permutation, and three-staged LoRA training techniques. Experimental results show that, with our methods, the DeiT-small achieves lossless accuracy at 64:2:5 sparsity, while the DeiT-base maintains accuracy even at 64:2:8 sparsity. In addition, the fine-tuned LLama2-7B at 64:2:5 sparsity performs comparably or better than training-free 2:4 sparse alternatives on downstream tasks. More importantly, V:N:M-sparse Transformers offer a wider range of speedup-accuracy trade-offs compared to 2:4 sparsity. Overall, our exploration largely facilitates the V:N:M sparsity to act as a truly effective acceleration solution for Transformers in cost-sensitive inference scenarios.


[773] 2410.16137

Privacy as Social Norm: Systematically Reducing Dysfunctional Privacy Concerns on Social Media

Privacy is essential to fully enjoying the benefits of social media. While fear around privacy risks can sometimes motivate privacy management, the negative impact of such fear, particularly when it is perceived as unaddressable (i.e., "dysfunctional" fear), can significantly harm teen well-being. In a co-design study with 136 participants aged 13-18, we explored how teens can protect their privacy without experiencing heightened fear. We identified seven different sources of dysfunctional fear, such as `fear of a hostile environment' and `fear of overstepping privacy norms.' We also evaluated ten designs, co-created with teen participants, that address these fears. Our findings suggest that social media platforms can mitigate dysfunctional fear without compromising privacy by creating a culture where privacy protection is the norm through default privacy-protective features. However, we also found that even the most effective privacy features are not likely to be adopted unless they balance the multifaceted and diverse needs of teens. Individual teens have different needs -- for example, public and private account users have different needs -- and teens often want to enjoy the benefits they get from slightly reducing privacy and widening their social reach. Given these considerations, augmenting default privacy features by allowing them to be toggled on and off will allow individual users to choose their own balance while still maintaining a privacy-focused norm.


[774] 2410.16138

Theoretical Insights into Line Graph Transformation on Graph Learning

Line graph transformation has been widely studied in graph theory, where each node in a line graph corresponds to an edge in the original graph. This has inspired a series of graph neural networks (GNNs) applied to transformed line graphs, which have proven effective in various graph representation learning tasks. However, there is limited theoretical study on how line graph transformation affects the expressivity of GNN models. In this study, we focus on two types of graphs known to be challenging to the Weisfeiler-Leman (WL) tests: Cai-F\"urer-Immerman (CFI) graphs and strongly regular graphs, and show that applying line graph transformation helps exclude these challenging graph properties, thus potentially assist WL tests in distinguishing these graphs. We empirically validate our findings by conducting a series of experiments that compare the accuracy and efficiency of graph isomorphism tests and GNNs on both line-transformed and original graphs across these graph structure types.


[775] 2410.16139

A Psycholinguistic Evaluation of Language Models' Sensitivity to Argument Roles

We present a systematic evaluation of large language models' sensitivity to argument roles, i.e., who did what to whom, by replicating psycholinguistic studies on human argument role processing. In three experiments, we find that language models are able to distinguish verbs that appear in plausible and implausible contexts, where plausibility is determined through the relation between the verb and its preceding arguments. However, none of the models capture the same selective patterns that human comprehenders exhibit during real-time verb prediction. This indicates that language models' capacity to detect verb plausibility does not arise from the same mechanism that underlies human real-time sentence processing.


[776] 2410.16140

Cooperative Multistatic Target Detection in Cell-Free Communication Networks

In this work, we consider the target detection problem in a multistatic integrated sensing and communication (ISAC) scenario characterized by the cell-free MIMO communication network deployment, where multiple radio units (RUs) in the network cooperate with each other for the sensing task. By exploiting the angle resolution from multiple arrays deployed in the network and the delay resolution from the communication signals, i.e., orthogonal frequency division multiplexing (OFDM) signals, we formulate a cooperative sensing problem with coherent data fusion of multiple RUs' observations and propose a sparse Bayesian learning (SBL)-based method, where the global coordinates of target locations are directly detected. Intensive numerical results indicate promising target detection performance of the proposed SBL-based method. Additionally, a theoretical analysis of the considered cooperative multistatic sensing task is provided using the pairwise error probability (PEP) analysis, which can be used to provide design insights, e.g., illumination and beam patterns, for the considered problem.


[777] 2410.16141

AdChain: Decentralized Header Bidding

Due to the involvement of multiple intermediaries without trusted parties, lack of proper regulations, and a complicated supply chain, ad impression discrepancy affects online advertising. This issue causes up to $82 billion annual revenue loss for honest parties. The loss can be significantly reduced with a precise and trusted decentralized mechanism. This paper presents AdChain, a decentralized, distributed, and verifiable solution that detects and minimizes online advertisement impression discrepancies. AdChain establishes trust by employing multiple independent agents to receive and record log-level data, along with a consensus protocol to validate each ad data. AdChain is scalable, efficient, and compatible with the current infrastructure. Our experimental evaluation, using over half a million ad data points, identifies system parameters that achieve 98% accuracy, reducing the ad discrepancy rate from 20% to 2%. Our cost analysis shows that active nodes on AdChain can generate profits comparable to miners on major blockchain networks like Bitcoin.


[778] 2410.16144

1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs

Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1.58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption. These developments also enable local LLM deployment across a broad range of devices. In this work, we introduce bitnet.cpp, a tailored software stack designed to unlock the full potential of 1-bit LLMs. Specifically, we develop a set of kernels to support fast and lossless inference of ternary BitNet b1.58 LLMs on CPUs. Extensive experiments demonstrate that bitnet.cpp achieves significant speedups, ranging from 2.37x to 6.17x on x86 CPUs and from 1.37x to 5.07x on ARM CPUs, across various model sizes. The code is available at https://github.com/microsoft/BitNet.


[779] 2410.16146

Towards Combating Frequency Simplicity-biased Learning for Domain Generalization

Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement. In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a data-driven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts. To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving as a strategy to mitigate shortcut learning. Code is available at AdvFrequency (https://github.com/C0notSilly/AdvFrequency).


[780] 2410.16148

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.


[781] 2410.16149

Denoising Hyperbolic-Valued Data by Relaxed Regularizations

We introduce a novel relaxation strategy for denoising hyperbolic-valued data. The main challenge is here the non-convexity of the hyperbolic sheet. Instead of considering the denoising problem directly on the hyperbolic space, we exploit the Euclidean embedding and encode the hyperbolic sheet using a novel matrix representation. For denoising, we employ the Euclidean Tikhonov and total variation (TV) model, where we incorporate our matrix representation. The major contribution is then a convex relaxation of the variational ans\"atze allowing the utilization of well-established convex optimization procedures like the alternating directions method of multipliers (ADMM). The resulting denoisers are applied to a real-world Gaussian image processing task, where we simultaneously restore the pixelwise mean and standard deviation of a retina scan series.


[782] 2410.16150

Modelling Structured Data Learning with Restricted Boltzmann Machines in the Teacher-Student Setting

Restricted Boltzmann machines (RBM) are generative models capable to learn data with a rich underlying structure. We study the teacher-student setting where a student RBM learns structured data generated by a teacher RBM. The amount of structure in the data is controlled by adjusting the number of hidden units of the teacher and the correlations in the rows of the weights, a.k.a. patterns. In the absence of correlations, we validate the conjecture that the performance is independent of the number of teacher patters and hidden units of the student RBMs, and we argue that the teacher-student setting can be used as a toy model for studying the lottery ticket hypothesis. Beyond this regime, we find that the critical amount of data required to learn the teacher patterns decreases with both their number and correlations. In both regimes, we find that, even with an relatively large dataset, it becomes impossible to learn the teacher patterns if the inference temperature used for regularization is kept too low. In our framework, the student can learn teacher patterns one-to-one or many-to-one, generalizing previous findings about the teacher-student setting with two hidden units to any arbitrary finite number of hidden units.


[783] 2410.16151

Small Contributions, Small Networks: Efficient Neural Network Pruning Based on Relative Importance

Recent advancements have scaled neural networks to unprecedented sizes, achieving remarkable performance across a wide range of tasks. However, deploying these large-scale models on resource-constrained devices poses significant challenges due to substantial storage and computational requirements. Neural network pruning has emerged as an effective technique to mitigate these limitations by reducing model size and complexity. In this paper, we introduce an intuitive and interpretable pruning method based on activation statistics, rooted in information theory and statistical analysis. Our approach leverages the statistical properties of neuron activations to identify and remove weights with minimal contributions to neuron outputs. Specifically, we build a distribution of weight contributions across the dataset and utilize its parameters to guide the pruning process. Furthermore, we propose a Pruning-aware Training strategy that incorporates an additional regularization term to enhance the effectiveness of our pruning method. Extensive experiments on multiple datasets and network architectures demonstrate that our method consistently outperforms several baseline and state-of-the-art pruning techniques.


[784] 2410.16152

Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models

Using image models naively for solving inverse video problems often suffers from flickering, texture-sticking, and temporal inconsistency in generated videos. To tackle these problems, in this paper, we view frames as continuous functions in the 2D space, and videos as a sequence of continuous warping transformations between different frames. This perspective allows us to train function space diffusion models only on images and utilize them to solve temporally correlated inverse problems. The function space diffusion models need to be equivariant with respect to the underlying spatial transformations. To ensure temporal consistency, we introduce a simple post-hoc test-time guidance towards (self)-equivariant solutions. Our method allows us to deploy state-of-the-art latent diffusion models such as Stable Diffusion XL to solve video inverse problems. We demonstrate the effectiveness of our method for video inpainting and $8\times$ video super-resolution, outperforming existing techniques based on noise transformations. We provide generated video results: https://giannisdaras.github.io/warped\_diffusion.github.io/.


[785] 2410.16153

Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages

Despite recent advances in multimodal large language models (MLLMs), their development has predominantly focused on English- and western-centric datasets and tasks, leaving most of the world's languages and diverse cultural contexts underrepresented. This paper introduces Pangea, a multilingual multimodal LLM trained on PangeaIns, a diverse 6M instruction dataset spanning 39 languages. PangeaIns features: 1) high-quality English instructions, 2) carefully machine-translated instructions, and 3) culturally relevant multimodal tasks to ensure cross-cultural coverage. To rigorously assess models' capabilities, we introduce PangeaBench, a holistic evaluation suite encompassing 14 datasets covering 47 languages. Results show that Pangea significantly outperforms existing open-source models in multilingual settings and diverse cultural contexts. Ablation studies further reveal the importance of English data proportions, language popularity, and the number of multimodal training samples on overall performance. We fully open-source our data, code, and trained checkpoints, to facilitate the development of inclusive and robust multilingual MLLMs, promoting equity and accessibility across a broader linguistic and cultural spectrum.


[786] 2410.16154

Unsupervised Replay Strategies for Continual Learning with Limited Data

Artificial neural networks (ANNs) show limited performance with scarce or imbalanced training data and face challenges with continuous learning, such as forgetting previously learned data after new tasks training. In contrast, the human brain can learn continuously and from just a few examples. This research explores the impact of 'sleep', an unsupervised phase incorporating stochastic activation with local Hebbian learning rules, on ANNs trained incrementally with limited and imbalanced datasets, specifically MNIST and Fashion MNIST. We discovered that introducing a sleep phase significantly enhanced accuracy in models trained with limited data. When a few tasks were trained sequentially, sleep replay not only rescued previously learned information that had been catastrophically forgetting following new task training but often enhanced performance in prior tasks, especially those trained with limited data. This study highlights the multifaceted role of sleep replay in augmenting learning efficiency and facilitating continual learning in ANNs.


[787] 2410.16155

A Troublemaker with Contagious Jailbreak Makes Chaos in Honest Towns

With the development of large language models, they are widely used as agents in various fields. A key component of agents is memory, which stores vital information but is susceptible to jailbreak attacks. Existing research mainly focuses on single-agent attacks and shared memory attacks. However, real-world scenarios often involve independent memory. In this paper, we propose the Troublemaker Makes Chaos in Honest Town (TMCHT) task, a large-scale, multi-agent, multi-topology text-based attack evaluation framework. TMCHT involves one attacker agent attempting to mislead an entire society of agents. We identify two major challenges in multi-agent attacks: (1) Non-complete graph structure, (2) Large-scale systems. We attribute these challenges to a phenomenon we term toxicity disappearing. To address these issues, we propose an Adversarial Replication Contagious Jailbreak (ARCJ) method, which optimizes the retrieval suffix to make poisoned samples more easily retrieved and optimizes the replication suffix to make poisoned samples have contagious ability. We demonstrate the superiority of our approach in TMCHT, with 23.51%, 18.95%, and 52.93% improvements in line topology, star topology, and 100-agent settings. Encourage community attention to the security of multi-agent systems.


[788] 2410.16156

Limpeh ga li gong: Challenges in Singlish Annotations

Singlish, or Colloquial Singapore English, is a language formed from oral and social communication within multicultural Singapore. In this work, we work on a fundamental Natural Language Processing (NLP) task: Parts-Of-Speech (POS) tagging of Singlish sentences. For our analysis, we build a parallel Singlish dataset containing direct English translations and POS tags, with translation and POS annotation done by native Singlish speakers. Our experiments show that automatic transition- and transformer- based taggers perform with only $\sim 80\%$ accuracy when evaluated against human-annotated POS labels, suggesting that there is indeed room for improvement on computation analysis of the language. We provide an exposition of challenges in Singlish annotation: its inconsistencies in form and semantics, the highly context-dependent particles of the language, its structural unique expressions, and the variation of the language on different mediums. Our task definition, resultant labels and results reflects the challenges in analysing colloquial languages formulated from a variety of dialects, and paves the way for future studies beyond POS tagging.


[789] 2410.16159

Metric as Transform: Exploring beyond Affine Transform for Interpretable Neural Network

Artificial Neural Networks of varying architectures are generally paired with affine transformation at the core. However, we find dot product neurons with global influence less interpretable as compared to local influence of euclidean distance (as used in Radial Basis Function Network). In this work, we explore the generalization of dot product neurons to $l^p$-norm, metrics, and beyond. We find that metrics as transform performs similarly to affine transform when used in MultiLayer Perceptron or Convolutional Neural Network. Moreover, we explore various properties of Metrics, compare it with Affine, and present multiple cases where metrics seem to provide better interpretability. We develop an interpretable local dictionary based Neural Networks and use it to understand and reject adversarial examples.


[790] 2410.16161

DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing

Federated Learning (FL) has gained lots of traction recently, both in industry and academia. In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds. Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model. Differential Privacy (DP) has become the main measure of privacy in the FL setting. DP comes in two flavors: central and local. In the former, a centralized server is trusted to receive the users' raw gradients from a training step, and then perturb their aggregation with some noise before releasing the next version of the model. In the latter (more private) setting, noise is applied on users' local devices, and only the aggregation of users' noisy gradients is revealed even to the server. Great strides have been made in increasing the privacy-utility trade-off in the central DP setting, by utilizing the so-called matrix mechanism. However, progress has been mostly stalled in the local DP setting. In this work, we introduce the distributed matrix mechanism to achieve the best-of-both-worlds; local DP and also better privacy-utility trade-off from the matrix mechanism. We accomplish this by proposing a cryptographic protocol that securely transfers sensitive values across rounds, which makes use of packed secret sharing. This protocol accommodates the dynamic participation of users per training round required by FL, including those that may drop out from the computation. We provide experiments which show that our mechanism indeed significantly improves the privacy-utility trade-off of FL models compared to previous local DP mechanisms, with little added overhead.


[791] 2410.16162

Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning

Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, much of the spatial reasoning in these tasks occurs in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks (e.g., improving from 13.5% to 40.0% on the shortest path problem). These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights for improving VLMs' spatial reasoning capabilities.


[792] 2410.16163

Griffon-G: Bridging Vision-Language and Vision-Centric Tasks via Large Multimodal Models

Large Multimodal Models (LMMs) have achieved significant breakthroughs in various vision-language and vision-centric tasks based on auto-regressive modeling. However, these models typically focus on either vision-centric tasks, such as visual grounding and region description, or vision-language tasks, like image caption and multi-scenario VQAs. None of the LMMs have yet comprehensively unified both types of tasks within a single model, as seen in Large Language Models in the natural language processing field. Furthermore, even with abundant multi-task instruction-following data, directly stacking these data for universal capabilities extension remains challenging. To address these issues, we introduce a novel multi-dimension curated and consolidated multimodal dataset, named CCMD-8M, which overcomes the data barriers of unifying vision-centric and vision-language tasks through multi-level data curation and multi-task consolidation. More importantly, we present Griffon-G, a general large multimodal model that addresses both vision-centric and vision-language tasks within a single end-to-end paradigm. Griffon-G resolves the training collapse issue encountered during the joint optimization of these tasks, achieving better training efficiency. Evaluations across multimodal benchmarks, general Visual Question Answering (VQA) tasks, scene text-centric VQA tasks, document-related VQA tasks, Referring Expression Comprehension, and object detection demonstrate that Griffon-G surpasses the advanced LMMs and achieves expert-level performance in complicated vision-centric tasks.


[793] 2410.16164

GenAI Assisting Medical Training

Medical procedures such as venipuncture and cannulation are essential for nurses and require precise skills. Learning this skill, in turn, is a challenge for educators due to the number of teachers per class and the complexity of the task. The study aims to help students with skill acquisition and alleviate the educator's workload by integrating generative AI methods to provide real-time feedback on medical procedures such as venipuncture and cannulation.


[794] 2410.16165

From Tokens to Materials: Leveraging Language Models for Scientific Discovery

Exploring the predictive capabilities of language models in material science is an ongoing interest. This study investigates the application of language model embeddings to enhance material property prediction in materials science. By evaluating various contextual embedding methods and pre-trained models, including Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained Transformers (GPT), we demonstrate that domain-specific models, particularly MatBERT significantly outperform general-purpose models in extracting implicit knowledge from compound names and material properties. Our findings reveal that information-dense embeddings from the third layer of MatBERT, combined with a context-averaging approach, offer the most effective method for capturing material-property relationships from the scientific literature. We also identify a crucial "tokenizer effect," highlighting the importance of specialized text processing techniques that preserve complete compound names while maintaining consistent token counts. These insights underscore the value of domain-specific training and tokenization in materials science applications and offer a promising pathway for accelerating the discovery and development of new materials through AI-driven approaches.


[795] 2410.16166

Beyond Filtering: Adaptive Image-Text Quality Enhancement for MLLM Pretraining

Multimodal large language models (MLLMs) have made significant strides by integrating visual and textual modalities. A critical factor in training MLLMs is the quality of image-text pairs within multimodal pretraining datasets. However, $\textit {de facto}$ filter-based data quality enhancement paradigms often discard a substantial portion of high-quality image data due to inadequate semantic alignment between images and texts, leading to inefficiencies in data utilization and scalability. In this paper, we propose the Adaptive Image-Text Quality Enhancer (AITQE), a model that dynamically assesses and enhances the quality of image-text pairs. AITQE employs a text rewriting mechanism for low-quality pairs and incorporates a negative sample learning strategy to improve evaluative capabilities by integrating deliberately selected low-quality samples during training. Unlike prior approaches that significantly alter text distributions, our method minimally adjusts text to preserve data volume while enhancing quality. Experimental results demonstrate that AITQE surpasses existing methods on various benchmark, effectively leveraging raw data and scaling efficiently with increasing data volumes. We hope our work will inspire future works. The code and model are available at: https://github.com/hanhuang22/AITQE.


[796] 2410.16168

Exploring Pretraining via Active Forgetting for Improving Cross Lingual Transfer for Decoder Language Models

Large Language Models (LLMs) demonstrate exceptional capabilities in a multitude of NLP tasks. However, the efficacy of such models to languages other than English is often limited. Prior works have shown that encoder-only models such as BERT or XLM-RoBERTa show impressive cross lingual transfer of their capabilities from English to other languages. In this work, we propose a pretraining strategy that uses active forgetting to achieve similar cross lingual transfer in decoder-only LLMs. We show that LLMs pretrained with active forgetting are highly effective when adapting to new and unseen languages. Through extensive experimentation, we find that LLMs pretrained with active forgetting are able to learn better multilingual representations which translates to better performance in many downstream tasks.


[797] 2410.16170

Learning How to Vote With Principles: Axiomatic Insights Into the Collective Decisions of Neural Networks

Can neural networks be applied in voting theory, while satisfying the need for transparency in collective decisions? We propose axiomatic deep voting: a framework to build and evaluate neural networks that aggregate preferences, using the well-established axiomatic method of voting theory. Our findings are: (1) Neural networks, despite being highly accurate, often fail to align with the core axioms of voting rules, revealing a disconnect between mimicking outcomes and reasoning. (2) Training with axiom-specific data does not enhance alignment with those axioms. (3) By solely optimizing axiom satisfaction, neural networks can synthesize new voting rules that often surpass and substantially differ from existing ones. This offers insights for both fields: For AI, important concepts like bias and value-alignment are studied in a mathematically rigorous way; for voting theory, new areas of the space of voting rules are explored.


[798] 2410.16173

Fast Physics-Informed Model Predictive Control Approximation for Lyapunov Stability

At the forefront of control techniques is Model Predictive Control (MPC). While MPCs are effective, their requisite to recompute an optimal control given a new state leads to sparse response to the system and may make their implementation infeasible in small systems with low computational resources. To address these limitations in stability control, this research presents a small deterministic Physics-Informed MPC Surrogate model (PI-MPCS). PI-MPCS was developed to approximate the control by an MPC while encouraging stability and robustness through the integration of the system dynamics and the formation of a Lyapunov stability profile. Empirical results are presented on the task of 2D quadcopter landing. They demonstrate a rapid and precise MPC approximation on a non-linear system along with an estimated two times speed up on the computational requirements when compared against an MPC. PI-MPCS, in addition, displays a level of stable control for in- and out-of-distribution states as encouraged by the discrete dynamics residual and Lyapunov stability loss functions. PI-MPCS is meant to serve as a surrogate to MPC on situations in which the computational resources are limited.


[799] 2410.16175

Spiking Neural Networks as a Controller for Emergent Swarm Agents

Drones which can swarm and loiter in a certain area cost hundreds of dollars, but mosquitos can do the same and are essentially worthless. To control swarms of low-cost robots, researchers may end up spending countless hours brainstorming robot configurations and policies to ``organically" create behaviors which do not need expensive sensors and perception. Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure. Even agents in this highly limited sensing, actuation, and computational capability class can exhibit relatively complex global behaviors such as aggregation, milling, and dispersal, but finding the local interaction rules that enable more collective behaviors remains a significant challenge. This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors. In this paper, we focus on simulating a specific milling behavior already known to be producible using very simple binary sensing and acting agents. To do this, we use evolutionary algorithms to evolve not only the parameters (the weights, biases, and delays) of a spiking neural network, but also its structure. To create a baseline, we also show an evolutionary search strategy over the parameters for the incumbent hand-picked binary controller structure. Our simulations show that spiking neural networks can be evolved in binary sensing agents to form a mill.


[800] 2410.16177

A Framework for Evaluating Predictive Models Using Synthetic Image Covariates and Longitudinal Data

We present a novel framework for synthesizing patient data with complex covariates (e.g., eye scans) paired with longitudinal observations (e.g., visual acuity over time), addressing privacy concerns in healthcare research. Our approach introduces controlled association in latent spaces generating each data modality, enabling the creation of complex covariate-longitudinal observation pairs. This framework facilitates the development of predictive models and provides openly available benchmarking datasets for healthcare research. We demonstrate our framework using optical coherence tomography (OCT) scans, though it is applicable across domains. Using 109,309 2D OCT scan slices, we trained an image generative model combining a variational autoencoder and a diffusion model. Longitudinal observations were simulated using a nonlinear mixed effect (NLME) model from a low-dimensional space of random effects. We generated 1.1M OCT scan slices paired with five sets of longitudinal observations at controlled association levels (100%, 50%, 10%, 5.26%, and 2% of between-subject variability). To assess the framework, we modeled synthetic longitudinal observations with another NLME model, computed empirical Bayes estimates of random effects, and trained a ResNet to predict these estimates from synthetic OCT scans. We then incorporated ResNet predictions into the NLME model for patient-individualized predictions. Prediction accuracy on withheld data declined as intended with reduced association between images and longitudinal measurements. Notably, in all but the 2% case, we achieved within 50% of the theoretical best possible prediction on withheld data, demonstrating our ability to detect even weak signals. This confirms the effectiveness of our framework in generating synthetic data with controlled levels of association, providing a valuable tool for healthcare research.


[801] 2410.16178

Computing Inverses of Stieltjes Transforms of Probability Measures

The Stieltjes (or sometimes called the Cauchy) transform is a fundamental object associated with probability measures, corresponding to the generating function of the moments. In certain applications such as free probability it is essential to compute the inverses of the Stieltjes transform, which might be multivalued. This paper establishes conditions bounding the number of inverses based on properties of the measure which can be combined with contour integral-based root finding algorithms to rigorously compute all inverses.


[802] 2410.16179

MagicPIG: LSH Sampling for Efficient LLM Generation

Large language models (LLMs) with long context windows have gained significant attention. However, the KV cache, stored to avoid re-computation, becomes a bottleneck. Various dynamic sparse or TopK-based attention approximation methods have been proposed to leverage the common insight that attention is sparse. In this paper, we first show that TopK attention itself suffers from quality degradation in certain downstream tasks because attention is not always as sparse as expected. Rather than selecting the keys and values with the highest attention scores, sampling with theoretical guarantees can provide a better estimation for attention output. To make the sampling-based approximation practical in LLM generation, we propose MagicPIG, a heterogeneous system based on Locality Sensitive Hashing (LSH). MagicPIG significantly reduces the workload of attention computation while preserving high accuracy for diverse tasks. MagicPIG stores the LSH hash tables and runs the attention computation on the CPU, which allows it to serve longer contexts and larger batch sizes with high approximation accuracy. MagicPIG can improve decoding throughput by $1.9\sim3.9\times$ across various GPU hardware and achieve 110ms decoding latency on a single RTX 4090 for Llama-3.1-8B-Instruct model with a context of 96k tokens. The code is available at \url{https://github.com/Infini-AI-Lab/MagicPIG}.


[803] 2410.16184

RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style

Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.


[804] 2410.16186

Contamination Report for Multilingual Benchmarks

Benchmark contamination refers to the presence of test datasets in Large Language Model (LLM) pre-training or post-training data. Contamination can lead to inflated scores on benchmarks, compromising evaluation results and making it difficult to determine the capabilities of models. In this work, we study the contamination of popular multilingual benchmarks in LLMs that support multiple languages. We use the Black Box test to determine whether $7$ frequently used multilingual benchmarks are contaminated in $7$ popular open and closed LLMs and find that almost all models show signs of being contaminated with almost all the benchmarks we test. Our findings can help the community determine the best set of benchmarks to use for multilingual evaluation.


[805] 2410.16190

Training Better Deep Learning Models Using Human Saliency

This work explores how human judgement about salient regions of an image can be introduced into deep convolutional neural network (DCNN) training. Traditionally, training of DCNNs is purely data-driven. This often results in learning features of the data that are only coincidentally correlated with class labels. Human saliency can guide network training using our proposed new component of the loss function that ConveYs Brain Oversight to Raise Generalization (CYBORG) and penalizes the model for using non-salient regions. This mechanism produces DCNNs achieving higher accuracy and generalization compared to using the same training data without human salience. Experimental results demonstrate that CYBORG applies across multiple network architectures and problem domains (detection of synthetic faces, iris presentation attacks and anomalies in chest X-rays), while requiring significantly less data than training without human saliency guidance. Visualizations show that CYBORG-trained models' saliency is more consistent across independent training runs than traditionally-trained models, and also in better agreement with humans. To lower the cost of collecting human annotations, we also explore using deep learning to provide automated annotations. CYBORG training of CNNs addresses important issues such as reducing the appetite for large training sets, increasing interpretability, and reducing fragility by generalizing better to new types of data.


[806] 2410.16195

A Trust-Region Method for Graphical Stein Variational Inference

Stein variational inference (SVI) is a sample-based approximate Bayesian inference technique that generates a sample set by jointly optimizing the samples' locations to minimize an information-theoretic measure of discrepancy with the target probability distribution. SVI thus provides a fast and significantly more sample-efficient approach to Bayesian inference than traditional (random-sampling-based) alternatives. However, the optimization techniques employed in existing SVI methods struggle to address problems in which the target distribution is high-dimensional, poorly-conditioned, or non-convex, which severely limits the range of their practical applicability. In this paper, we propose a novel trust-region optimization approach for SVI that successfully addresses each of these challenges. Our method builds upon prior work in SVI by leveraging conditional independences in the target distribution (to achieve high-dimensional scaling) and second-order information (to address poor conditioning), while additionally providing an effective adaptive step control procedure, which is essential for ensuring convergence on challenging non-convex optimization problems. Experimental results show our method achieves superior numerical performance, both in convergence rate and sample accuracy, and scales better in high-dimensional distributions, than previous SVI techniques.


[807] 2410.16196

Information for Conversation Generation: Proposals Utilising Knowledge Graphs

LLMs are frequently used tools for conversational generation. Without additional information LLMs can generate lower quality responses due to lacking relevant content and hallucinations, as well as the perception of poor emotional capability, and an inability to maintain a consistent character. Knowledge graphs are commonly used forms of external knowledge and may provide solutions to these challenges. This paper introduces three proposals, utilizing knowledge graphs to enhance LLM generation. Firstly, dynamic knowledge graph embeddings and recommendation could allow for the integration of new information and the selection of relevant knowledge for response generation. Secondly, storing entities with emotional values as additional features may provide knowledge that is better emotionally aligned with the user input. Thirdly, integrating character information through narrative bubbles would maintain character consistency, as well as introducing a structure that would readily incorporate new information.


[808] 2410.16197

LASER: Script Execution by Autonomous Agents for On-demand Traffic Simulation

Autonomous Driving Systems (ADS) require diverse and safety-critical traffic scenarios for effective training and testing, but the existing data generation methods struggle to provide flexibility and scalability. We propose LASER, a novel frame-work that leverage large language models (LLMs) to conduct traffic simulations based on natural language inputs. The framework operates in two stages: it first generates scripts from user-provided descriptions and then executes them using autonomous agents in real time. Validated in the CARLA simulator, LASER successfully generates complex, on-demand driving scenarios, significantly improving ADS training and testing data generation.


[809] 2410.16198

Improve Vision Language Model Chain-of-thought Reasoning

Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.


[810] 2410.16202

Musinger: Communication of Music over a Distance with Wearable Haptic Display and Touch Sensitive Surface

This study explores the integration of auditory and tactile experiences in musical haptics, focusing on enhancing sensory dimensions of music through touch. Addressing the gap in translating auditory signals to meaningful tactile feedback, our research introduces a novel method involving a touch-sensitive recorder and a wearable haptic display that captures musical interactions via force sensors and converts these into tactile sensations. Previous studies have shown the potential of haptic feedback to enhance musical expressivity, yet challenges remain in conveying complex musical nuances. Our method aims to expand music accessibility for individuals with hearing impairments and deepen digital musical interactions. Experimental results reveal high accuracy ($98\%$ without noise, 93% with white noise) in melody recognition through tactile feedback, demonstrating effective transmission and perception of musical information. The findings highlight the potential of haptic technology to bridge sensory gaps, offering significant implications for music therapy, education, and remote musical collaboration, advancing the field of musical haptics and multi-sensory technology applications.


[811] 2410.16204

Systematic Review: Text Processing Algorithms in Machine Learning and Deep Learning for Mental Health Detection on Social Media

The global rise in depression necessitates innovative detection methods for early intervention. Social media provides a unique opportunity to identify depression through user-generated posts. This systematic review evaluates machine learning (ML) models for depression detection on social media, focusing on biases and methodological challenges throughout the ML lifecycle. A search of PubMed, IEEE Xplore, and Google Scholar identified 47 relevant studies published after 2010. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was utilized to assess methodological quality and risk of bias. Significant biases impacting model reliability and generalizability were found. There is a predominant reliance on Twitter (63.8%) and English-language content (over 90%), with most studies focusing on users from the United States and Europe. Non-probability sampling methods (approximately 80%) limit representativeness. Only 23% of studies explicitly addressed linguistic nuances like negations, crucial for accurate sentiment analysis. Inconsistent hyperparameter tuning was observed, with only 27.7% properly tuning models. About 17% did not adequately partition data into training, validation, and test sets, risking overfitting. While 74.5% used appropriate evaluation metrics for imbalanced data, others relied on accuracy without addressing class imbalance, potentially skewing results. Reporting transparency varied, often lacking critical methodological details. These findings highlight the need to diversify data sources, standardize preprocessing protocols, ensure consistent model development practices, address class imbalance, and enhance reporting transparency. By overcoming these challenges, future research can develop more robust and generalizable ML models for depression detection on social media, contributing to improved mental health outcomes globally.


[812] 2410.16205

Comparative analysis of 3D-CNN models, GARCH-ANN, and VAR models for determining equity prices

Financial models have increasingly become popular in recent times, and the focus of researchers has been to find the perfect model which fits all circumstances; however, this has not been thoroughly achieved, and as a result, many financial models have been created. Artificial Intelligence modelling has increasingly become more popular in the financial space as an answer to the weakness of the advanced mathematical models studied in Economics. This paper introduces three commonly used models and tests them on the S&P500 to give a strong projection as to the future values of the prices. It then introduces various error metrics like the root mean square error (RMSE) to ascertain the viability of the models. The results show that a longer-term forecast indeed has more arduous consequences as there is a veer between the actual and the forecasted readings. The models can produce a strong growth estimate for businesses and policymakers to plan more appropriately in the short term. Overall, the GARCH-LSTM model produced the least RMSE which also shows that complex models tend to perform better than simpler models


[813] 2410.16207

CoT-TL: Low-Resource Temporal Knowledge Representation of Planning Instructions Using Chain-of-Thought Reasoning

Autonomous agents often face the challenge of interpreting uncertain natural language instructions for planning tasks. Representing these instructions as Linear Temporal Logic (LTL) enables planners to synthesize actionable plans. We introduce CoT-TL, a data-efficient in-context learning framework for translating natural language specifications into LTL representations. CoT-TL addresses the limitations of large language models, which typically rely on extensive fine-tuning data, by extending chain-of-thought reasoning and semantic roles to align with the requirements of formal logic creation. This approach enhances the transparency and rationale behind LTL generation, fostering user trust. CoT-TL achieves state-of-the-art accuracy across three diverse datasets in low-data scenarios, outperforming existing methods without fine-tuning or intermediate translations. To improve reliability and minimize hallucinations, we incorporate model checking to validate the syntax of the generated LTL output. We further demonstrate CoT-TL's effectiveness through ablation studies and evaluations on unseen LTL structures and formulas in a new dataset. Finally, we validate CoT-TL's practicality by integrating it into a QuadCopter for multi-step drone planning based on natural language instructions.


[814] 2410.16208

Compute-Constrained Data Selection

Data selection can reduce the amount of training data needed to finetune LLMs; however, the efficacy of data selection scales directly with its compute. Motivated by the practical challenge of compute-constrained finetuning, we consider the setting in which both the cost of selecting data and training are budgeted for. We first formalize the problem of data selection with a cost-aware utility function, and model the data selection problem as trading off initial-selection cost for training gain. We run a comprehensive sweep of experiments across multiple tasks, varying compute budget by scaling finetuning tokens, model sizes, and data selection compute. These experiments show the validity of this model in real-world experiments. Interestingly we find that many powerful data selection methods are almost never compute-optimal, and that cheaper data selection alternatives dominate both from a theoretical and empirical perspective.


[815] 2410.16211

CiteClick: A Browser Extension for Real-Time Scholar Citation Tracking

This technical report presents CiteClick, a browser extension designed to monitor and track Google Scholar citation counts for multiple researchers in real-time. We discuss the motivation behind the tool, its key features, implementation details, and potential impact on the academic community. The report covers installation procedures, usage guidelines, and customization options, concluding with a discussion on future work and potential improvements. By automating the process of citation tracking, CiteClick aims to enhance research evaluation processes and facilitate more informed decision-making in academic contexts.


[816] 2410.16212

Comprehensive benchmarking of large language models for RNA secondary structure prediction

Inspired by the success of large language models (LLM) for DNA and proteins, several LLM for RNA have been developed recently. RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector. This is done under the hypothesis that obtaining high-quality RNA representations can enhance data-costly downstream tasks. Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms. In this work we present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in an unified deep learning framework. The RNA-LLM were assessed with increasing generalization difficulty on benchmark datasets. Results showed that two LLM clearly outperform the other models, and revealed significant challenges for generalization in low-homology scenarios.


[817] 2410.16215

Pre-training Distillation for Large Language Models: A Design Space Exploration

Knowledge distillation (KD) aims to transfer knowledge from a large teacher model to a smaller student model. Previous work applying KD in the field of large language models (LLMs) typically focused on the post-training phase, where the student LLM learns directly from instructions and corresponding responses generated by the teacher model. In this paper, we extend KD to the pre-training phase of LLMs, named pre-training distillation (PD). We first conduct a preliminary experiment using GLM-4-9B as the teacher LLM to distill a 1.9B parameter student LLM, validating the effectiveness of PD. Considering the key impact factors of distillation, we systematically explore the design space of pre-training distillation across four aspects: logits processing, loss selection, scaling law, and offline or online logits. We conduct extensive experiments to explore the design space of pre-training distillation and find better configurations and interesting conclusions, such as larger student LLMs generally benefiting more from pre-training distillation, while a larger teacher LLM does not necessarily guarantee better results. We hope our exploration of the design space will inform future practices in pre-training distillation.


[818] 2410.16221

On Creating an English-Thai Code-switched Machine Translation in Medical Domain

Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge. Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies. Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English within the translated text through code-switched (CS) translation. We developed a method to produce CS medical translation data, fine-tuned a CS translation model with this data, and evaluated its performance against strong baselines, such as Google Neural Machine Translation (NMT) and GPT-3.5/GPT-4. Our model demonstrated competitive performance in automatic metrics and was highly favored in human preference evaluations. Our evaluation result also shows that medical professionals significantly prefer CS translations that maintain critical English terms accurately, even if it slightly compromises fluency. Our code and test set are publicly available https://github.com/preceptorai-org/NLLB_CS_EM_NLP2024.


[819] 2410.16222

A Realistic Threat Model for Large Language Model Jailbreaks

A plethora of jailbreaking attacks have been proposed to obtain harmful responses from safety-tuned LLMs. In their original settings, these methods all largely succeed in coercing the target output, but their attacks vary substantially in fluency and computational effort. In this work, we propose a unified threat model for the principled comparison of these methods. Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text, and computational budget, in total FLOPs. For the former, we build an N-gram model on 1T tokens, which, in contrast to model-based perplexity, allows for an LLM-agnostic and inherently interpretable evaluation. We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing. After a rigorous comparison, we not only find attack success rates against safety-tuned modern models to be lower than previously presented but also find that attacks based on discrete optimization significantly outperform recent LLM-based attacks. Being inherently interpretable, our threat model allows for a comprehensive analysis and comparison of jailbreak attacks. We find that effective attacks exploit and abuse infrequent N-grams, either selecting N-grams absent from real-world text or rare ones, e.g. specific to code datasets.


[820] 2410.16227

Managing Bandwidth: The Key to Cloud-Assisted Autonomous Driving

Prevailing wisdom asserts that one cannot rely on the cloud for critical real-time control systems like self-driving cars. We argue that we can, and must. Following the trends of increasing model sizes, improvements in hardware, and evolving mobile networks, we identify an opportunity to offload parts of time-sensitive and latency-critical compute to the cloud. Doing so requires carefully allocating bandwidth to meet strict latency SLOs, while maximizing benefit to the car.


[821] 2410.16229

Building A Coding Assistant via the Retrieval-Augmented Language Model

Pretrained language models have shown strong effectiveness in code-related tasks, such as code retrieval, code generation, code summarization, and code completion tasks. In this paper, we propose COde assistaNt viA retrieval-augmeNted language model (CONAN), which aims to build a code assistant by mimicking the knowledge-seeking behaviors of humans during coding. Specifically, it consists of a code structure aware retriever (CONAN-R) and a dual-view code representation-based retrieval-augmented generation model (CONAN-G). CONAN-R pretrains CodeT5 using Code-Documentation Alignment and Masked Entity Prediction tasks to make language models code structure-aware and learn effective representations for code snippets and documentation. Then CONAN-G designs a dual-view code representation mechanism for implementing a retrieval-augmented code generation model. CONAN-G regards the code documentation descriptions as prompts, which help language models better understand the code semantics. Our experiments show that CONAN achieves convincing performance on different code generation tasks and significantly outperforms previous retrieval augmented code generation models. Our further analyses show that CONAN learns tailored representations for both code snippets and documentation by aligning code-documentation data pairs and capturing structural semantics by masking and predicting entities in the code data. Additionally, the retrieved code snippets and documentation provide necessary information from both program language and natural language to assist the code generation process. CONAN can also be used as an assistant for Large Language Models (LLMs), providing LLMs with external knowledge in shorter code document lengths to improve their effectiveness on various code tasks. It shows the ability of CONAN to extract necessary information and help filter out the noise from retrieved code documents.


[822] 2410.16232

Sketch2Code: Evaluating Vision-Language Models for Interactive Web Design Prototyping

Sketches are a natural and accessible medium for UI designers to conceptualize early-stage ideas. However, existing research on UI/UX automation often requires high-fidelity inputs like Figma designs or detailed screenshots, limiting accessibility and impeding efficient design iteration. To bridge this gap, we introduce Sketch2Code, a benchmark that evaluates state-of-the-art Vision Language Models (VLMs) on automating the conversion of rudimentary sketches into webpage prototypes. Beyond end-to-end benchmarking, Sketch2Code supports interactive agent evaluation that mimics real-world design workflows, where a VLM-based agent iteratively refines its generations by communicating with a simulated user, either passively receiving feedback instructions or proactively asking clarification questions. We comprehensively analyze ten commercial and open-source models, showing that Sketch2Code is challenging for existing VLMs; even the most capable models struggle to accurately interpret sketches and formulate effective questions that lead to steady improvement. Nevertheless, a user study with UI/UX experts reveals a significant preference for proactive question-asking over passive feedback reception, highlighting the need to develop more effective paradigms for multi-turn conversational agents.


[823] 2410.16235

ToW: Thoughts of Words Improve Reasoning in Large Language Models

We introduce thoughts of words (ToW), a novel training-time data-augmentation method for next-word prediction. ToW views next-word prediction as a core reasoning task and injects fine-grained thoughts explaining what the next word should be and how it is related to the previous contexts in pre-training texts. Our formulation addresses two fundamental drawbacks of existing next-word prediction learning schemes: they induce factual hallucination and are inefficient for models to learn the implicit reasoning processes in raw texts. While there are many ways to acquire such thoughts of words, we explore the first step of acquiring ToW annotations through distilling from larger models. After continual pre-training with only 70K ToW annotations, we effectively improve models' reasoning performances by 7% to 9% on average and reduce model hallucination by up to 10%. At the same time, ToW is entirely agnostic to tasks and applications, introducing no additional biases on labels or semantics.


[824] 2410.16236

LLaVA-KD: A Framework of Distilling Multimodal Large Language Models

The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.


[825] 2410.16237

IBGP: Imperfect Byzantine Generals Problem for Zero-Shot Robustness in Communicative Multi-Agent Systems

As large language model (LLM) agents increasingly integrate into our infrastructure, their robust coordination and message synchronization become vital. The Byzantine Generals Problem (BGP) is a critical model for constructing resilient multi-agent systems (MAS) under adversarial attacks. It describes a scenario where malicious agents with unknown identities exist in the system-situations that, in our context, could result from LLM agents' hallucinations or external attacks. In BGP, the objective of the entire system is to reach a consensus on the action to be taken. Traditional BGP requires global consensus among all agents; however, in practical scenarios, global consensus is not always necessary and can even be inefficient. Therefore, there is a pressing need to explore a refined version of BGP that aligns with the local coordination patterns observed in MAS. We refer to this refined version as Imperfect BGP (IBGP) in our research, aiming to address this discrepancy. To tackle this issue, we propose a framework that leverages consensus protocols within general MAS settings, providing provable resilience against communication attacks and adaptability to changing environments, as validated by empirical results. Additionally, we present a case study in a sensor network environment to illustrate the practical application of our protocol.


[826] 2410.16239

MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report

In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.


[827] 2410.16240

Nonlinear Magnetics Model for Permanent Magnet Synchronous Machines Capturing Saturation and Temperature Effects

This paper proposes a nonlinear magnetics model for Permanent Magnet Synchronous Machines (PMSMs) that accurately captures the effects of magnetic saturation in the machine iron and variations in rotor temperature on the permanent magnet excitation. The proposed model considers the permanent magnet as a current source rather than the more commonly used flux-linkage source. A comparison of the two modelling approaches is conducted using Finite Element Analysis (FEA) for different machine designs as well as experimental validation, where it is shown that the proposed model has substantially better accuracy. The proposed model decouples magnetic saturation and rotor temperature effects in the current/flux-linkage relationship, allowing for adaptive estimation of the PM excitation.


[828] 2410.16246

Analyzing Context Contributions in LLM-based Machine Translation

Large language models (LLMs) have achieved state-of-the-art performance in machine translation (MT) and demonstrated the ability to leverage in-context learning through few-shot examples. However, the mechanisms by which LLMs use different parts of the input context remain largely unexplored. In this work, we provide a comprehensive analysis of context utilization in MT, studying how LLMs use various context parts, such as few-shot examples and the source text, when generating translations. We highlight several key findings: (1) the source part of few-shot examples appears to contribute more than its corresponding targets, irrespective of translation direction; (2) finetuning LLMs with parallel data alters the contribution patterns of different context parts; and (3) there is a positional bias where earlier few-shot examples have higher contributions to the translated sequence. Finally, we demonstrate that inspecting anomalous context contributions can potentially uncover pathological translations, such as hallucinations. Our findings shed light on the internal workings of LLM-based MT which go beyond those known for standard encoder-decoder MT models.


[829] 2410.16247

Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent

We provide a rigorous analysis of implicit regularization in an overparametrized tensor factorization problem beyond the lazy training regime. For matrix factorization problems, this phenomenon has been studied in a number of works. A particular challenge has been to design universal initialization strategies which provably lead to implicit regularization in gradient-descent methods. At the same time, it has been argued by Cohen et. al. 2016 that more general classes of neural networks can be captured by considering tensor factorizations. However, in the tensor case, implicit regularization has only been rigorously established for gradient flow or in the lazy training regime. In this paper, we prove the first tensor result of its kind for gradient descent rather than gradient flow. We focus on the tubal tensor product and the associated notion of low tubal rank, encouraged by the relevance of this model for image data. We establish that gradient descent in an overparametrized tensor factorization model with a small random initialization exhibits an implicit bias towards solutions of low tubal rank. Our theoretical findings are illustrated in an extensive set of numerical simulations show-casing the dynamics predicted by our theory as well as the crucial role of using a small random initialization.


[830] 2410.16251

Can Knowledge Editing Really Correct Hallucinations?

Large Language Models (LLMs) suffer from hallucinations, referring to the non-factual information in generated content, despite their superior capacities across tasks. Meanwhile, knowledge editing has been developed as a new popular paradigm to correct the erroneous factual knowledge encoded in LLMs with the advantage of avoiding retraining from scratch. However, one common issue of existing evaluation datasets for knowledge editing is that they do not ensure LLMs actually generate hallucinated answers to the evaluation questions before editing. When LLMs are evaluated on such datasets after being edited by different techniques, it is hard to directly adopt the performance to assess the effectiveness of different knowledge editing methods in correcting hallucinations. Thus, the fundamental question remains insufficiently validated: Can knowledge editing really correct hallucinations in LLMs? We proposed HalluEditBench to holistically benchmark knowledge editing methods in correcting real-world hallucinations. First, we rigorously construct a massive hallucination dataset with 9 domains, 26 topics and more than 6,000 hallucinations. Then, we assess the performance of knowledge editing methods in a holistic way on five dimensions including Efficacy, Generalization, Portability, Locality, and Robustness. Through HalluEditBench, we have provided new insights into the potentials and limitations of different knowledge editing methods in correcting hallucinations, which could inspire future improvements and facilitate the progress in the field of knowledge editing.


[831] 2410.16253

Distribution Learning with Valid Outputs Beyond the Worst-Case

Generative models at times produce "invalid" outputs, such as images with generation artifacts and unnatural sounds. Validity-constrained distribution learning attempts to address this problem by requiring that the learned distribution have a provably small fraction of its mass in invalid parts of space -- something which standard loss minimization does not always ensure. To this end, a learner in this model can guide the learning via "validity queries", which allow it to ascertain the validity of individual examples. Prior work on this problem takes a worst-case stance, showing that proper learning requires an exponential number of validity queries, and demonstrating an improper algorithm which -- while generating guarantees in a wide-range of settings -- makes an atypical polynomial number of validity queries. In this work, we take a first step towards characterizing regimes where guaranteeing validity is easier than in the worst-case. We show that when the data distribution lies in the model class and the log-loss is minimized, the number of samples required to ensure validity has a weak dependence on the validity requirement. Additionally, we show that when the validity region belongs to a VC-class, a limited number of validity queries are often sufficient.


[832] 2410.16255

Revisiting Deep Feature Reconstruction for Logical and Structural Industrial Anomaly Detection

Industrial anomaly detection is crucial for quality control and predictive maintenance, but it presents challenges due to limited training data, diverse anomaly types, and external factors that alter object appearances. Existing methods commonly detect structural anomalies, such as dents and scratches, by leveraging multi-scale features from image patches extracted through deep pre-trained networks. However, significant memory and computational demands often limit their practical application. Additionally, detecting logical anomalies-such as images with missing or excess elements-requires an understanding of spatial relationships that traditional patch-based methods fail to capture. In this work, we address these limitations by focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach for detecting structural anomalies. We further enhance DFR into a unified framework, called ULSAD, which is capable of detecting both structural and logical anomalies. Specifically, we refine the DFR training objective to improve performance in structural anomaly detection, while introducing an attention-based loss mechanism using a global autoencoder-like network to handle logical anomaly detection. Our empirical evaluation across five benchmark datasets demonstrates the performance of ULSAD in detecting and localizing both structural and logical anomalies, outperforming eight state-of-the-art methods. An extensive ablation study further highlights the contribution of each component to the overall performance improvement. Our code is available at https://github.com/sukanyapatra1997/ULSAD-2024.git


[833] 2410.16256

CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution

Efficient and accurate evaluation is crucial for the continuous improvement of large language models (LLMs). Among various assessment methods, subjective evaluation has garnered significant attention due to its superior alignment with real-world usage scenarios and human preferences. However, human-based evaluations are costly and lack reproducibility, making precise automated evaluators (judgers) vital in this process. In this report, we introduce \textbf{CompassJudger-1}, the first open-source \textbf{all-in-one} judge LLM. CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility. It is capable of: 1. Performing unitary scoring and two-model comparisons as a reward model; 2. Conducting evaluations according to specified formats; 3. Generating critiques; 4. Executing diverse tasks like a general LLM. To assess the evaluation capabilities of different judge models under a unified setting, we have also established \textbf{JudgerBench}, a new benchmark that encompasses various subjective evaluation tasks and covers a wide range of topics. CompassJudger-1 offers a comprehensive solution for various evaluation tasks while maintaining the flexibility to adapt to diverse requirements. Both CompassJudger and JudgerBench are released and available to the research community athttps://github.com/open-compass/CompassJudger. We believe that by open-sourcing these tools, we can foster collaboration and accelerate progress in LLM evaluation methodologies.


[834] 2410.16257

Elucidating the design space of language models for image generation

The success of autoregressive (AR) language models in text generation has inspired the computer vision community to adopt Large Language Models (LLMs) for image generation. However, considering the essential differences between text and image modalities, the design space of language models for image generation remains underexplored. We observe that image tokens exhibit greater randomness compared to text tokens, which presents challenges when training with token prediction. Nevertheless, AR models demonstrate their potential by effectively learning patterns even from a seemingly suboptimal optimization problem. Our analysis also reveals that while all models successfully grasp the importance of local information in image generation, smaller models struggle to capture the global context. In contrast, larger models showcase improved capabilities in this area, helping to explain the performance gains achieved when scaling up model size. We further elucidate the design space of language models for vision generation, including tokenizer choice, model choice, model scalability, vocabulary design, and sampling strategy through extensive comparative experiments. Our work is the first to analyze the optimization behavior of language models in vision generation, and we believe it can inspire more effective designs when applying LMs to other domains. Finally, our elucidated language model for image generation, termed as ELM, achieves state-of-the-art performance on the ImageNet 256*256 benchmark. The code is available at https://github.com/Pepperlll/LMforImageGeneration.git.


[835] 2410.16259

Agent-to-Sim: Learning Interactive Behavior Models from Casual Longitudinal Videos

We present Agent-to-Sim (ATS), a framework for learning interactive behavior models of 3D agents from casual longitudinal video collections. Different from prior works that rely on marker-based tracking and multiview cameras, ATS learns natural behaviors of animal and human agents non-invasively through video observations recorded over a long time-span (e.g., a month) in a single environment. Modeling 3D behavior of an agent requires persistent 3D tracking (e.g., knowing which point corresponds to which) over a long time period. To obtain such data, we develop a coarse-to-fine registration method that tracks the agent and the camera over time through a canonical 3D space, resulting in a complete and persistent spacetime 4D representation. We then train a generative model of agent behaviors using paired data of perception and motion of an agent queried from the 4D reconstruction. ATS enables real-to-sim transfer from video recordings of an agent to an interactive behavior simulator. We demonstrate results on pets (e.g., cat, dog, bunny) and human given monocular RGBD videos captured by a smartphone.


[836] 2410.16261

Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance

Multimodal large language models (MLLMs) have demonstrated impressive performance in vision-language tasks across a broad spectrum of domains. However, the large model scale and associated high computational costs pose significant challenges for training and deploying MLLMs on consumer-grade GPUs or edge devices, thereby hindering their widespread application. In this work, we introduce Mini-InternVL, a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters. This significant improvement in efficiency and effectiveness makes our models more accessible and applicable in various real-world scenarios. To further promote the adoption of our models, we develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks, including autonomous driving, medical images, and remote sensing. We believe that our study can provide valuable insights and resources to advance the development of efficient and effective MLLMs. Code is available at https://github.com/OpenGVLab/InternVL.


[837] 2410.16266

3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors

Novel-view synthesis aims to generate novel views of a scene from multiple input images or videos, and recent advancements like 3D Gaussian splatting (3DGS) have achieved notable success in producing photorealistic renderings with efficient pipelines. However, generating high-quality novel views under challenging settings, such as sparse input views, remains difficult due to insufficient information in under-sampled areas, often resulting in noticeable artifacts. This paper presents 3DGS-Enhancer, a novel pipeline for enhancing the representation quality of 3DGS representations. We leverage 2D video diffusion priors to address the challenging 3D view consistency problem, reformulating it as achieving temporal consistency within a video generation process. 3DGS-Enhancer restores view-consistent latent features of rendered novel views and integrates them with the input views through a spatial-temporal decoder. The enhanced views are then used to fine-tune the initial 3DGS model, significantly improving its rendering performance. Extensive experiments on large-scale datasets of unbounded scenes demonstrate that 3DGS-Enhancer yields superior reconstruction performance and high-fidelity rendering results compared to state-of-the-art methods. The project webpage is https://xiliu8006.github.io/3DGS-Enhancer-project .


[838] 2410.16267

xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs

We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for videos, particularly designed to efficiently capture temporal information over multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in addition to the conventional visual tokenizer, which maps a sequence of tokens over multiple frames into a compact set of visual tokens. This enables BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32 vs. 4608 tokens). We explore different types of temporal encoders, including learnable spatio-temporal pooling as well as sequential models like Token Turing Machines. We experimentally confirm that BLIP-3-Video obtains video question-answering accuracies comparable to much larger state-of-the-art models (e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using fewer visual tokens. The project website is at https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html


[839] 2410.16268

SAM2Long: Enhancing SAM 2 for Long Video Segmentation with a Training-Free Memory Tree

The Segment Anything Model 2 (SAM 2) has emerged as a powerful foundation model for object segmentation in both images and videos, paving the way for various downstream video applications. The crucial design of SAM 2 for video segmentation is its memory module, which prompts object-aware memories from previous frames for current frame prediction. However, its greedy-selection memory design suffers from the "error accumulation" problem, where an errored or missed mask will cascade and influence the segmentation of the subsequent frames, which limits the performance of SAM 2 toward complex long-term videos. To this end, we introduce SAM2Long, an improved training-free video object segmentation strategy, which considers the segmentation uncertainty within each frame and chooses the video-level optimal results from multiple segmentation pathways in a constrained tree search manner. In practice, we maintain a fixed number of segmentation pathways throughout the video. For each frame, multiple masks are proposed based on the existing pathways, creating various candidate branches. We then select the same fixed number of branches with higher cumulative scores as the new pathways for the next frame. After processing the final frame, the pathway with the highest cumulative score is chosen as the final segmentation result. Benefiting from its heuristic search design, SAM2Long is robust toward occlusions and object reappearances, and can effectively segment and track objects for complex long-term videos. Notably, SAM2Long achieves an average improvement of 3.0 points across all 24 head-to-head comparisons, with gains of up to 5.3 points in J&F on long-term video object segmentation benchmarks such as SA-V and LVOS. The code is released at https://github.com/Mark12Ding/SAM2Long.


[840] 2410.16270

Reflection-Bench: probing AI intelligence with reflection

The ability to adapt beliefs or behaviors in response to unexpected outcomes, reflection, is fundamental to intelligent systems' interaction with the world. From a cognitive science perspective, this serves as a core principle of intelligence applicable to both human and AI systems. To address the debate on the intelligence of large language models (LLMs), we propose Reflection-Bench, a comprehensive benchmark comprising 7 tasks spanning core cognitive functions crucial for reflection, including perception, memory, belief updating, decision-making, prediction, counterfactual thinking, and meta-reflection. We evaluate the performances of 13 prominent LLMs such as OpenAI o1, GPT-4, Claude 3.5 Sonnet, etc. The results indicate that current LLMs still lack satisfactory reflection ability. We discuss the underlying causes of these results and suggest potential avenues for future research. In conclusion, Reflection-Bench offers both evaluation tools and inspiration for developing AI capable of reliably interacting with the environment. Our data and code are available at https://github.com/YabYum/ReflectionBench.


[841] 2410.16271

FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors

Neural Radiance Fields (NeRF) face significant challenges in few-shot scenarios, primarily due to overfitting and long training times for high-fidelity rendering. Existing methods, such as FreeNeRF and SparseNeRF, use frequency regularization or pre-trained priors but struggle with complex scheduling and bias. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details. Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales. This guides training without relying on externally learned priors, enabling full utilization of the training data. It can also integrate pre-trained priors, enhancing quality without slowing convergence. Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time, making it a practical solution for efficient and accurate 3D scene reconstruction.


[842] 2410.16272

MvDrag3D: Drag-based Creative 3D Editing via Multi-view Generation-Reconstruction Priors

Drag-based editing has become popular in 2D content creation, driven by the capabilities of image generative models. However, extending this technique to 3D remains a challenge. Existing 3D drag-based editing methods, whether employing explicit spatial transformations or relying on implicit latent optimization within limited-capacity 3D generative models, fall short in handling significant topology changes or generating new textures across diverse object categories. To overcome these limitations, we introduce MVDrag3D, a novel framework for more flexible and creative drag-based 3D editing that leverages multi-view generation and reconstruction priors. At the core of our approach is the usage of a multi-view diffusion model as a strong generative prior to perform consistent drag editing over multiple rendered views, which is followed by a reconstruction model that reconstructs 3D Gaussians of the edited object. While the initial 3D Gaussians may suffer from misalignment between different views, we address this via view-specific deformation networks that adjust the position of Gaussians to be well aligned. In addition, we propose a multi-view score function that distills generative priors from multiple views to further enhance the view consistency and visual quality. Extensive experiments demonstrate that MVDrag3D provides a precise, generative, and flexible solution for 3D drag-based editing, supporting more versatile editing effects across various object categories and 3D representations.


[843] 2410.07061

Unique-neighbor Expanders with Better Expansion for Polynomial-sized Sets

A $(d_1,d_2)$-biregular bipartite graph $G=(L\cup R,E)$ is called left-$(m,\delta)$ unique-neighbor expander iff each subset $S$ of the left vertices with $|S|\leq m$ has at least $\delta d_1|S|$ unique-neighbors, where unique-neighbors mean vertices with exactly one neighbor in $S$. We can also define right/two-sided expanders similarly. In this paper, we give the following three strongly explicit constructions of unique-neighbor expanders with better unique-neighbor expansion for polynomial-sized sets, while sufficient expansion for linear-sized sets is also preserved: (1) Two-sided $(n^{1/3-\epsilon},1-\epsilon)$ lossless expanders for arbitrary $\epsilon>0$ and aspect ratio. (2) Left-$(\Omega(n),1-\epsilon)$ lossless expanders with right-$(n^{1/3-\epsilon},\delta)$ expansion for some $\delta>0$. (3) Two-sided-$(\Omega(n),\delta)$ unique-neighbor expanders with two-sided-$(n^{\Omega(1)},1/2-\epsilon)$ expansion. The second construction exhibits the first explicit family of one-sided lossless expanders with unique-neighbor expansion for polynomial-sized sets from the other side and constant aspect ratio. The third construction gives two-sided unique-neighbor expanders with additional $(1/2-\epsilon)$ unique-neighbor expansion for two-sided polynomial-sized sets, which approaches the $1/2$ requirement in Lin and Hsieh (arXiv:2203.03581). Our techniques involve tripartite product recently introduced by Hsieh et al (STOC 2024), combined with a generalized existence argument of biregular graph with optimal two-sided unique-neighbor expansion for almost all degrees. We also use a new reduction from large girth/bicycle-freeness to vertex expansion, which might be of independent interest.


[844] 2410.13938

Photonic Simulation of Localization Phenomena Using Boson Sampling

Quantum simulation in its current state faces experimental overhead in terms of physical space and cooling. We propose boson sampling as an alternative compact synthetic platform performing at room temperature. Identifying the capability of estimating matrix permanents, we explore the applicability of boson sampling for tackling the dynamics of quantum systems without having access to information about the full state vector. By mapping the time-evolution unitary of a Hamiltonian onto an interferometer via continuous-variable gate decompositions, we present proof-of-principle results of localization characteristics of a single particle. We study the dynamics of one-dimensional tight-binding systems in the clean and quasiperiodic-disordered limits to observe Bloch oscillations and dynamical localization, and the delocalization-to-localization phase transition in the Aubry- Andre-Harper model respectively. Our computational results obtained using boson sampling are in complete agreement with the dynamical and static results of non-interacting tight-binding systems obtained using conventional numerical calculations. Additionally, our study highlights the role of number of sampling measurements or shots for simulation accuracy.


[845] 2410.14683

Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive decline, affecting millions worldwide. Diagnosing AD is challenging due to its heterogeneous nature and variable progression. This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs), designed to improve interpretability and predictive accuracy in neuroimaging for early AD diagnosis. By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics. We analyzed neuroimaging data from 383 participants, including both cognitively normal and preclinical AD individuals, using T1-weighted MRI, resting-state fMRI, and FBB-PET to construct brain graphs. Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score, demonstrating higher robustness and stability. The adaptive BA readout layer also offers enhanced interpretability by highlighting task-specific brain regions critical to cognitive functions impacted by AD. These findings suggest that our approach provides a valuable tool for the early diagnosis and analysis of Alzheimer's disease.


[846] 2410.14686

Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling

The accuracy of global navigation satellite system (GNSS) receivers is significantly compromised by interference from jamming devices. Consequently, the detection of these jammers are crucial to mitigating such interference signals. However, robust classification of interference using machine learning (ML) models is challenging due to the lack of labeled data in real-world environments. In this paper, we propose an ML approach that achieves high generalization in classifying interference through orchestrated monitoring stations deployed along highways. We present a semi-supervised approach coupled with an uncertainty-based voting mechanism by combining Monte Carlo and Deep Ensembles that effectively minimizes the requirement for labeled training samples to less than 5% of the dataset while improving adaptability across varying environments. Our method demonstrates strong performance when adapted from indoor environments to real-world scenarios.


[847] 2410.14696

REBIND: Enhancing ground-state molecular conformation via force-based graph rewiring

Predicting the ground-state 3D molecular conformations from 2D molecular graphs is critical in computational chemistry due to its profound impact on molecular properties. Deep learning (DL) approaches have recently emerged as promising alternatives to computationally-heavy classical methods such as density functional theory (DFT). However, we discover that existing DL methods inadequately model inter-atomic forces, particularly for non-bonded atomic pairs, due to their naive usage of bonds and pairwise distances. Consequently, significant prediction errors occur for atoms with low degree (i.e., low coordination numbers) whose conformations are primarily influenced by non-bonded interactions. To address this, we propose REBIND, a novel framework that rewires molecular graphs by adding edges based on the Lennard-Jones potential to capture non-bonded interactions for low-degree atoms. Experimental results demonstrate that REBIND significantly outperforms state-of-the-art methods across various molecular sizes, achieving up to a 20\% reduction in prediction error.


[848] 2410.14697

Learning Cortico-Muscular Dependence through Orthonormal Decomposition of Density Ratios

The cortico-spinal neural pathway is fundamental for motor control and movement execution, and in humans it is typically studied using concurrent electroencephalography (EEG) and electromyography (EMG) recordings. However, current approaches for capturing high-level and contextual connectivity between these recordings have important limitations. Here, we present a novel application of statistical dependence estimators based on orthonormal decomposition of density ratios to model the relationship between cortical and muscle oscillations. Our method extends from traditional scalar-valued measures by learning eigenvalues, eigenfunctions, and projection spaces of density ratios from realizations of the signal, addressing the interpretability, scalability, and local temporal dependence of cortico-muscular connectivity. We experimentally demonstrate that eigenfunctions learned from cortico-muscular connectivity can accurately classify movements and subjects. Moreover, they reveal channel and temporal dependencies that confirm the activation of specific EEG channels during movement.


[849] 2410.14719

A Transformer Based Generative Chemical Language AI Model for Structural Elucidation of Organic Compounds

For over half a century, computer-aided structural elucidation systems (CASE) for organic compounds have relied on complex expert systems with explicitly programmed algorithms. These systems are often computationally inefficient for complex compounds due to the vast chemical structural space that must be explored and filtered. In this study, we present a transformer based generative chemical language artificial intelligence (AI) model, an innovative end-to-end architecture designed to replace the logic and workflow of the classic CASE framework for ultra-fast and accurate spectroscopic-based structural elucidation. Our model employs an encoder-decoder architecture and self-attention mechanisms, similar to those in large language models, to directly generate the most probable chemical structures that match the input spectroscopic data. This approach demonstrates the potential of transformer based generative AI to accelerate traditional scientific problem-solving processes. The model's ability to iterate quickly based on new data highlights its potential for rapid advancements in structural elucidation.


[850] 2410.14747

Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals

Our research introduces a groundbreaking approach to stress classification through Photoplethysmogram (PPG) signals. By combining Continuous Wavelet Transformation (CWT) with the proven VGG16 classifier, our method enhances stress assessment accuracy and reliability. Previous studies highlighted the importance of physiological signal analysis, yet precise stress classification remains a challenge. Our approach addresses this by incorporating robust data preprocessing with a Kalman filter and a sophisticated neural network architecture. Experimental results showcase exceptional performance, achieving a maximum training accuracy of 98% and maintaining an impressive average training accuracy of 96% across diverse stress scenarios. These results demonstrate the practicality and promise of our method in advancing stress monitoring systems and stress alarm sensors, contributing significantly to stress classification.


[851] 2410.14754

On the Sparsity of the Strong Lottery Ticket Hypothesis

Considerable research efforts have recently been made to show that a random neural network $N$ contains subnetworks capable of accurately approximating any given neural network that is sufficiently smaller than $N$, without any training. This line of research, known as the Strong Lottery Ticket Hypothesis (SLTH), was originally motivated by the weaker Lottery Ticket Hypothesis, which states that a sufficiently large random neural network $N$ contains \emph{sparse} subnetworks that can be trained efficiently to achieve performance comparable to that of training the entire network $N$. Despite its original motivation, results on the SLTH have so far not provided any guarantee on the size of subnetworks. Such limitation is due to the nature of the main technical tool leveraged by these results, the Random Subset Sum (RSS) Problem. Informally, the RSS Problem asks how large a random i.i.d. sample $\Omega$ should be so that we are able to approximate any number in $[-1,1]$, up to an error of $ \epsilon$, as the sum of a suitable subset of $\Omega$. We provide the first proof of the SLTH in classical settings, such as dense and equivariant networks, with guarantees on the sparsity of the subnetworks. Central to our results, is the proof of an essentially tight bound on the Random Fixed-Size Subset Sum Problem (RFSS), a variant of the RSS Problem in which we only ask for subsets of a given size, which is of independent interest.


[852] 2410.14759

Universal approximation results for neural networks with non-polynomial activation function over non-compact domains

In this paper, we generalize the universal approximation property of single-hidden-layer feed-forward neural networks beyond the classical formulation over compact domains. More precisely, by assuming that the activation function is non-polynomial, we derive universal approximation results for neural networks within function spaces over non-compact subsets of a Euclidean space, e.g., weighted spaces, $L^p$-spaces, and (weighted) Sobolev spaces over unbounded domains, where the latter includes the approximation of the (weak) derivatives. Furthermore, we provide some dimension-independent rates for approximating a function with sufficiently regular and integrable Fourier transform by neural networks with non-polynomial activation function.


[853] 2410.14760

Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks

In an era increasingly focused on green computing and explainable AI, revisiting traditional approaches in theoretical and phenomenological particle physics is paramount. This project evaluates various machine learning (ML) algorithms-including Nearest Neighbors, Decision Trees, Random Forest, AdaBoost, Naive Bayes, Quadratic Discriminant Analysis (QDA), and XGBoost-alongside standard neural networks and a novel Physics-Informed Neural Network (PINN) for physics data analysis. We apply these techniques to a binary classification task that distinguishes the experimental viability of simulated scenarios based on Higgs observables and essential parameters. Through this comprehensive analysis, we aim to showcase the capabilities and computational efficiency of each model in binary classification tasks, thereby contributing to the ongoing discourse on integrating ML and Deep Neural Networks (DNNs) into physics research. In this study, XGBoost emerged as the preferred choice among the evaluated machine learning algorithms for its speed and effectiveness, especially in the initial stages of computation with limited datasets. However, while standard Neural Networks and Physics-Informed Neural Networks (PINNs) demonstrated superior performance in terms of accuracy and adherence to physical laws, they require more computational time. These findings underscore the trade-offs between computational efficiency and model sophistication.


[854] 2410.14767

Machine Learning Aided Modeling of Granular Materials: A Review

Artificial intelligence (AI) has become a buzz word since Google's AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work.


[855] 2410.14769

Medical AI for Early Detection of Lung Cancer: A Survey

Lung cancer remains one of the leading causes of morbidity and mortality worldwide, making early diagnosis critical for improving therapeutic outcomes and patient prognosis. Computer-aided diagnosis (CAD) systems, which analyze CT images, have proven effective in detecting and classifying pulmonary nodules, significantly enhancing the detection rate of early-stage lung cancer. Although traditional machine learning algorithms have been valuable, they exhibit limitations in handling complex sample data. The recent emergence of deep learning has revolutionized medical image analysis, driving substantial advancements in this field. This review focuses on recent progress in deep learning for pulmonary nodule detection, segmentation, and classification. Traditional machine learning methods, such as SVM and KNN, have shown limitations, paving the way for advanced approaches like Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Generative Adversarial Networks (GAN). The integration of ensemble models and novel techniques is also discussed, emphasizing the latest developments in lung cancer diagnosis. Deep learning algorithms, combined with various analytical techniques, have markedly improved the accuracy and efficiency of pulmonary nodule analysis, surpassing traditional methods, particularly in nodule classification. Although challenges remain, continuous technological advancements are expected to further strengthen the role of deep learning in medical diagnostics, especially for early lung cancer detection and diagnosis. A comprehensive list of lung cancer detection models reviewed in this work is available at https://github.com/CaiGuoHui123/Awesome-Lung-Cancer-Detection


[856] 2410.14783

High-Dimensional Tensor Discriminant Analysis with Incomplete Tensors

Tensor classification has gained prominence across various fields, yet the challenge of handling partially observed tensor data in real-world applications remains largely unaddressed. This paper introduces a novel approach to tensor classification with incomplete data, framed within the tensor high-dimensional linear discriminant analysis. Specifically, we consider a high-dimensional tensor predictor with missing observations under the Missing Completely at Random (MCR) assumption and employ the Tensor Gaussian Mixture Model to capture the relationship between the tensor predictor and class label. We propose the Tensor LDA-MD algorithm, which manages high-dimensional tensor predictors with missing entries by leveraging the low-rank structure of the discriminant tensor. A key feature of our approach is a novel covariance estimation method under the tensor-based MCR model, supported by theoretical results that allow for correlated entries under mild conditions. Our work establishes the convergence rate of the estimation error of the discriminant tensor with incomplete data and minimax optimal bounds for the misclassification rate, addressing key gaps in the literature. Additionally, we derive large deviation results for the generalized mode-wise (separable) sample covariance matrix and its inverse, which are crucial tools in our analysis and hold independent interest. Our method demonstrates excellent performance in simulations and real data analysis, even with significant proportions of missing data. This research advances high-dimensional LDA and tensor learning, providing practical tools for applications with incomplete data and a solid theoretical foundation for classification accuracy in complex settings.


[857] 2410.14787

Privacy for Free in the Over-Parameterized Regime

Differentially private gradient descent (DP-GD) is a popular algorithm to train deep learning models with provable guarantees on the privacy of the training data. In the last decade, the problem of understanding its performance cost with respect to standard GD has received remarkable attention from the research community, which formally derived upper bounds on the excess population risk $R_{P}$ in different learning settings. However, existing bounds typically degrade with over-parameterization, i.e., as the number of parameters $p$ gets larger than the number of training samples $n$ -- a regime which is ubiquitous in current deep-learning practice. As a result, the lack of theoretical insights leaves practitioners without clear guidance, leading some to reduce the effective number of trainable parameters to improve performance, while others use larger models to achieve better results through scale. In this work, we show that in the popular random features model with quadratic loss, for any sufficiently large $p$, privacy can be obtained for free, i.e., $\left|R_{P} \right| = o(1)$, not only when the privacy parameter $\varepsilon$ has constant order, but also in the strongly private setting $\varepsilon = o(1)$. This challenges the common wisdom that over-parameterization inherently hinders performance in private learning.


[858] 2410.14788

Simultaneously Solving FBSDEs with Neural Operators of Logarithmic Depth, Constant Width, and Sub-Linear Rank

Forward-backwards stochastic differential equations (FBSDEs) are central in optimal control, game theory, economics, and mathematical finance. Unfortunately, the available FBSDE solvers operate on \textit{individual} FBSDEs, meaning that they cannot provide a computationally feasible strategy for solving large families of FBSDEs as these solvers must be re-run several times. \textit{Neural operators} (NOs) offer an alternative approach for \textit{simultaneously solving} large families of FBSDEs by directly approximating the solution operator mapping \textit{inputs:} terminal conditions and dynamics of the backwards process to \textit{outputs:} solutions to the associated FBSDE. Though universal approximation theorems (UATs) guarantee the existence of such NOs, these NOs are unrealistically large. We confirm that ``small'' NOs can uniformly approximate the solution operator to structured families of FBSDEs with random terminal time, uniformly on suitable compact sets determined by Sobolev norms, to any prescribed error $\varepsilon>0$ using a depth of $\mathcal{O}(\log(1/\varepsilon))$, a width of $\mathcal{O}(1)$, and a sub-linear rank; i.e. $\mathcal{O}(1/\varepsilon^r)$ for some $r<1$. This result is rooted in our second main contribution, which shows that convolutional NOs of similar depth, width, and rank can approximate the solution operator to a broad class of Elliptic PDEs. A key insight here is that the convolutional layers of our NO can efficiently encode the Green's function associated to the Elliptic PDEs linked to our FBSDEs. A byproduct of our analysis is the first theoretical justification for the benefit of lifting channels in NOs: they exponentially decelerate the growth rate of the NO's rank.


[859] 2410.14789

Differentially Private Covariate Balancing Causal Inference

Differential privacy is the leading mathematical framework for privacy protection, providing a probabilistic guarantee that safeguards individuals' private information when publishing statistics from a dataset. This guarantee is achieved by applying a randomized algorithm to the original data, which introduces unique challenges in data analysis by distorting inherent patterns. In particular, causal inference using observational data in privacy-sensitive contexts is challenging because it requires covariate balance between treatment groups, yet checking the true covariates is prohibited to prevent leakage of sensitive information. In this article, we present a differentially private two-stage covariate balancing weighting estimator to infer causal effects from observational data. Our algorithm produces both point and interval estimators with statistical guarantees, such as consistency and rate optimality, under a given privacy budget.


[860] 2410.14792

CountCrypt: Quantum Cryptography between QCMA and PP

We construct a quantum oracle relative to which BQP = QCMA but quantum-computation-classical-communication (QCCC) key exchange, QCCC commitments, and two-round quantum key distribution exist. We also construct an oracle relative to which BQP = QMA, but quantum lightning (a stronger variant of quantum money) exists. This extends previous work by Kretschmer [Kretschmer, TQC22], which showed that there is a quantum oracle relative to which BQP = QMA but pseudorandom state generators (a quantum variant of pseudorandom generators) exist. We also show that QCCC key exchange, QCCC commitments, and two-round quantum key distribution can all be used to build one-way puzzles. One-way puzzles are a version of "quantum samplable" one-wayness and are an intermediate primitive between pseudorandom state generators and EFI pairs, the minimal quantum primitive. In particular, one-way puzzles cannot exist if BQP = PP. Our results together imply that aside from pseudorandom state generators, there is a large class of quantum cryptographic primitives which can exist even if BQP = QCMA, but are broken if BQP = PP. Furthermore, one-way puzzles are a minimal primitive for this class. We denote this class "CountCrypt".


[861] 2410.14800

Unlocking the Full Potential of High-Density Surface EMG: Novel Non-Invasive High-Yield Motor Unit Decomposition

The decomposition of high-density surface electromyography (HD-sEMG) signals into motor unit discharge patterns has become a powerful tool for investigating the neural control of movement, providing insights into motor neuron recruitment and discharge behavior. However, current algorithms, while very effective under certain conditions, face significant challenges in complex scenarios, as their accuracy and motor unit yield are highly dependent on anatomical differences among individuals. This can limit the number of decomposed motor units, particularly in challenging conditions. To address this issue, we recently introduced Swarm-Contrastive Decomposition (SCD), which dynamically adjusts the separation function based on the distribution of the data and prevents convergence to the same source. Initially applied to intramuscular EMG signals, SCD is here adapted for HD-sEMG signals. We demonstrated its ability to address key challenges faced by existing methods, particularly in identifying low-amplitude motor unit action potentials and effectively handling complex decomposition scenarios, like high-interference signals. We extensively validated SCD using simulated and experimental HD-sEMG recordings and compared it with current state-of-the-art decomposition methods under varying conditions, including different excitation levels, noise intensities, force profiles, sexes, and muscle groups. The proposed method consistently outperformed existing techniques in both the quantity of decoded motor units and the precision of their firing time identification. For instance, under certain experimental conditions, SCD detected more than three times as many motor units compared to previous methods, while also significantly improving accuracy. These advancements represent a major step forward in non-invasive EMG technology for studying motor unit activity in complex scenarios.


[862] 2410.14833

A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning

Computer-aided diagnosis (CAD) is today considered a vital tool in the field of biological image categorization, segmentation, and other related tasks. The current breakthrough in computer vision algorithms and deep learning approaches has substantially enhanced the effectiveness and precision of apps built to recognize and locate regions of interest inside medical photographs. Among the different disciplines of medical image analysis, bone fracture detection, and classification have exhibited exceptional potential. Although numerous imaging modalities are applied in medical diagnostics, X-rays are particularly significant in this sector due to their broad availability, ease of use, and extensive information extraction capabilities. This research studies bone fracture categorization using the FracAtlas dataset, which comprises 4,083 musculoskeletal radiography pictures. Given the transformational development in transfer learning, particularly its efficacy in medical image processing, we deploy an attention-based transfer learning model to detect bone fractures in X-ray scans. Though the popular InceptionV3 and DenseNet121 deep learning models have been widely used, they still have the potential to be employed in crucial jobs. In this research, alongside transfer learning, a separate attention mechanism is also applied to boost the capabilities of transfer learning techniques. Through rigorous optimization, our model achieves a state-of-the-art accuracy of more than 90\% in fracture classification. This work contributes to the expanding corpus of research focused on the application of transfer learning to medical imaging, notably in the context of X-ray processing, and emphasizes the promise for additional exploration in this domain.


[863] 2410.14839

Multi-Task Dynamic Pricing in Credit Market with Contextual Information

We study the dynamic pricing problem faced by a broker that buys and sells a large number of financial securities in the credit market, such as corporate bonds, government bonds, loans, and other credit-related securities. One challenge in pricing these securities is their infrequent trading, which leads to insufficient data for individual pricing. However, many of these securities share structural features that can be utilized. Building on this, we propose a multi-task dynamic pricing framework that leverages these shared structures across securities, enhancing pricing accuracy through learning. In our framework, a security is fully characterized by a $d$ dimensional contextual/feature vector. The customer will buy (sell) the security from the broker if the broker quotes a price lower (higher) than that of the competitors. We assume a linear contextual model for the competitor's pricing, with unknown parameters a prior. The parameters for pricing different securities may or may not be similar to each other. The firm's objective is to minimize the expected regret, namely, the expected revenue loss against a clairvoyant policy which has the knowledge of the parameters of the competitor's pricing model. We show that the regret of our policy is better than both a policy that treats each security individually and a policy that treats all securities as the same. Moreover, the regret is bounded by $\tilde{O} ( \delta_{\max} \sqrt{T M d} + M d ) $, where $M$ is the number of securities and $\delta_{\max}$ characterizes the overall dissimilarity across securities in the basket.


[864] 2410.14843

Predictive variational inference: Learn the predictively optimal posterior distribution

Vanilla variational inference finds an optimal approximation to the Bayesian posterior distribution, but even the exact Bayesian posterior is often not meaningful under model misspecification. We propose predictive variational inference (PVI): a general inference framework that seeks and samples from an optimal posterior density such that the resulting posterior predictive distribution is as close to the true data generating process as possible, while this this closeness is measured by multiple scoring rules. By optimizing the objective, the predictive variational inference is generally not the same as, or even attempting to approximate, the Bayesian posterior, even asymptotically. Rather, we interpret it as implicit hierarchical expansion. Further, the learned posterior uncertainty detects heterogeneity of parameters among the population, enabling automatic model diagnosis. This framework applies to both likelihood-exact and likelihood-free models. We demonstrate its application in real data examples.


[865] 2410.14905

Finite matrix multiplication algorithms from infinite groups

The Cohn-Umans (FOCS '03) group-theoretic framework for matrix multiplication produces fast matrix multiplication algorithms from three subsets of a finite group $G$ satisfying a simple combinatorial condition (the Triple Product Property). The complexity of such an algorithm then depends on the representation theory of $G$. In this paper we extend the group-theoretic framework to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups, with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn, Grochow, Pratt, and Umans, ITCS '23). Previously the Lie group setting was investigated purely as an analogue of the finite group case; a key contribution in this paper is a fully developed framework for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions.


[866] 2410.14910

AC-Mix: Self-Supervised Adaptation for Low-Resource Automatic Speech Recognition using Agnostic Contrastive Mixup

Self-supervised learning (SSL) leverages large amounts of unlabelled data to learn rich speech representations, fostering improvements in automatic speech recognition (ASR), even when only a small amount of labelled data is available for fine-tuning. Despite the advances in SSL, a significant challenge remains when the data used for pre-training (source domain) mismatches the fine-tuning data (target domain). To tackle this domain mismatch challenge, we propose a new domain adaptation method for low-resource ASR focused on contrastive mixup for joint-embedding architectures named AC-Mix (agnostic contrastive mixup). In this approach, the SSL model is adapted through additional pre-training using mixed data views created by interpolating samples from the source and the target domains. Our proposed adaptation method consistently outperforms the baseline system, using approximately 11 hours of adaptation data and requiring only 1 hour of adaptation time on a single GPU with WavLM-Large.


[867] 2410.14918

A Scalable Interior-Point Gauss-Newton Method for PDE-Constrained Optimization with Bound Constraints

We present a scalable approach to solve a class of elliptic partial differential equation (PDE)-constrained optimization problems with bound constraints. This approach utilizes a robust full-space interior-point (IP)-Gauss-Newton optimization method. To cope with the poorly-conditioned IP-Gauss-Newton saddle-point linear systems that need to be solved, once per optimization step, we propose two spectrally related preconditioners. These preconditioners leverage the limited informativeness of data in regularized PDE-constrained optimization problems. A block Gauss-Seidel preconditioner is proposed for the GMRES-based solution of the IP-Gauss-Newton linear systems. It is shown, for a large-class of PDE- and bound-constrained optimization problems, that the spectrum of the block Gauss-Seidel preconditioned IP-Gauss-Newton matrix is asymptotically independent of discretization and is not impacted by the ill-conditioning that notoriously plagues interior-point methods. We propose a regularization and log-barrier Hessian preconditioner for the preconditioned conjugate gradient (PCG)-based solution of the related IP-Gauss-Newton-Schur complement linear systems. The scalability of the approach is demonstrated on an example problem with bound and nonlinear elliptic PDE constraints. The numerical solution of the optimization problem is shown to require a discretization independent number of IP-Gauss-Newton linear solves. Furthermore, the linear systems are solved in a discretization and IP ill-conditioning independent number of preconditioned Krylov subspace iterations. The parallel scalability of preconditioner and linear system matrix applies, achieved with algebraic multigrid based solvers, and the aforementioned algorithmic scalability permits a parallel scalable means to compute solutions of a large class of PDE- and bound-constrained problems.


[868] 2410.14927

Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution

Leveraging Deep Reinforcement Learning (DRL) in automated stock trading has shown promising results, yet its application faces significant challenges, including the curse of dimensionality, inertia in trading actions, and insufficient portfolio diversification. Addressing these challenges, we introduce the Hierarchical Reinforced Trader (HRT), a novel trading strategy employing a bi-level Hierarchical Reinforcement Learning framework. The HRT integrates a Proximal Policy Optimization (PPO)-based High-Level Controller (HLC) for strategic stock selection with a Deep Deterministic Policy Gradient (DDPG)-based Low-Level Controller (LLC) tasked with optimizing trade executions to enhance portfolio value. In our empirical analysis, comparing the HRT agent with standalone DRL models and the S&P 500 benchmark during both bullish and bearish market conditions, we achieve a positive and higher Sharpe ratio. This advancement not only underscores the efficacy of incorporating hierarchical structures into DRL strategies but also mitigates the aforementioned challenges, paving the way for designing more profitable and robust trading algorithms in complex markets.


[869] 2410.14932

Can AI weather models predict out-of-distribution gray swan tropical cyclones?

Predicting gray swan weather extremes, which are possible but so rare that they are absent from the training dataset, is a major concern for AI weather/climate models. An important open question is whether AI models can extrapolate from weaker weather events present in the training set to stronger, unseen weather extremes. To test this, we train independent versions of the AI model FourCastNet on the 1979-2015 ERA5 dataset with all data, or with Category 3-5 tropical cyclones (TCs) removed, either globally or only over the North Atlantic or Western Pacific basin. We then test these versions of FourCastNet on 2018-2023 Category 5 TCs (gray swans). All versions yield similar accuracy for global weather, but the one trained without Category 3-5 TCs cannot accurately forecast Category 5 TCs, indicating that these models cannot extrapolate from weaker storms. The versions trained without Category 3-5 TCs in one basin show some skill forecasting Category 5 TCs in that basin, suggesting that FourCastNet can generalize across tropical basins. This is encouraging and surprising because regional information is implicitly encoded in inputs. No version satisfies gradient-wind balance, implying that enforcing such physical constraints may not improve generalizability to gray swans. Given that current state-of-the-art AI weather/climate models have similar learning strategies, we expect our findings to apply to other models and extreme events. Our work demonstrates that novel learning strategies are needed for AI weather/climate models to provide early warning or estimated statistics for the rarest, most impactful weather extremes.


[870] 2410.14942

2D Basement Relief Inversion using Sparse Regularization

Basement relief gravimetry is crucial in geophysics, especially for oil exploration and mineral prospecting. It involves solving an inverse problem to infer geological model parameters from observed data. The model represents basement relief with constant-density prisms, and the data reflect gravitational anomalies from these prisms. Inverse problems are often ill-posed, meaning small data changes can lead to large solution variations. To mitigate this, regularization techniques like Tikhonov's are used to stabilize solutions. This study compares regularization methods applied to gravimetric inversion, including Smoothness Constraints, Total Variation, Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT) using Daubechies D4 wavelets. Optimization, particularly with Genetic Algorithms (GA), is used to find prism depths that best match observed anomalies. GA, inspired by natural selection, selects the best solutions to minimize the objective function. The results, evaluated through fit metrics and error analysis, show the effectiveness of all regularization methods and GA, with the Smoothness constraint performing best in synthetic models. For the real data model, all methods performed similarly.


[871] 2410.14965

Non-Invasive to Invasive: Enhancing FFA Synthesis from CFP with a Benchmark Dataset and a Novel Network

Fundus imaging is a pivotal tool in ophthalmology, and different imaging modalities are characterized by their specific advantages. For example, Fundus Fluorescein Angiography (FFA) uniquely provides detailed insights into retinal vascular dynamics and pathology, surpassing Color Fundus Photographs (CFP) in detecting microvascular abnormalities and perfusion status. However, the conventional invasive FFA involves discomfort and risks due to fluorescein dye injection, and it is meaningful but challenging to synthesize FFA images from non-invasive CFP. Previous studies primarily focused on FFA synthesis in a single disease category. In this work, we explore FFA synthesis in multiple diseases by devising a Diffusion-guided generative adversarial network, which introduces an adaptive and dynamic diffusion forward process into the discriminator and adds a category-aware representation enhancer. Moreover, to facilitate this research, we collect the first multi-disease CFP and FFA paired dataset, named the Multi-disease Paired Ocular Synthesis (MPOS) dataset, with four different fundus diseases. Experimental results show that our FFA synthesis network can generate better FFA images compared to state-of-the-art methods. Furthermore, we introduce a paired-modal diagnostic network to validate the effectiveness of synthetic FFA images in the diagnosis of multiple fundus diseases, and the results show that our synthesized FFA images with the real CFP images have higher diagnosis accuracy than that of the compared FFA synthesizing methods. Our research bridges the gap between non-invasive imaging and FFA, thereby offering promising prospects to enhance ophthalmic diagnosis and patient care, with a focus on reducing harm to patients through non-invasive procedures. Our dataset and code will be released to support further research in this field (https://github.com/whq-xxh/FFA-Synthesis).


[872] 2410.14988

Wave (from) Polarized Light Learning (WPLL) method: high resolution spatio-temporal measurements of water surface waves in laboratory setups

Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are crucial for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limitations in wavenumber/frequency response. To address these challenges, we propose Wave (from) Polarized Light Learning (WPLL), a learning based remote sensing method for laboratory implementation, capable of inferring surface elevation and slope maps in high resolution. The method uses the polarization properties of light reflected from the water surface. The WPLL uses a deep neural network (DNN) model that approximates the water surface slopes from the polarized light intensities. Once trained on simple monochromatic wave trains, the WPLL is capable of producing high-resolution and accurate 2D reconstruction of the water surface slopes and elevation in a variety of irregular wave fields. The method's robustness is demonstrated by showcasing its high wavenumber/frequency response, its ability to reconstruct wave fields propagating at arbitrary angles relative to the camera optical axis, and its computational efficiency. This developed methodology is an accurate and cost-effective near-real time remote sensing tool for laboratory water surface waves measurements, setting the path for upscaling to open sea application for research, monitoring, and short-time forecasting.


[873] 2410.14994

Quanta Video Restoration

The proliferation of single-photon image sensors has opened the door to a plethora of high-speed and low-light imaging applications. However, data collected by these sensors are often 1-bit or few-bit, and corrupted by noise and strong motion. Conventional video restoration methods are not designed to handle this situation, while specialized quanta burst algorithms have limited performance when the number of input frames is low. In this paper, we introduce Quanta Video Restoration (QUIVER), an end-to-end trainable network built on the core ideas of classical quanta restoration methods, i.e., pre-filtering, flow estimation, fusion, and refinement. We also collect and publish I2-2000FPS, a high-speed video dataset with the highest temporal resolution of 2000 frames-per-second, for training and testing. On simulated and real data, QUIVER outperforms existing quanta restoration methods by a significant margin. Code and dataset available at https://github.com/chennuriprateek/Quanta_Video_Restoration-QUIVER-


[874] 2410.15003

Achieving O(1/N) Optimality Gap in Restless Bandits through Diffusion Approximation

We study the finite horizon Restless Multi-Armed Bandit (RMAB) problem with $N$ homogeneous arms, focusing on the challenges posed by degenerate RMABs, which are prevalent in practical applications. While previous work has shown that Linear Programming (LP)-based policies achieve exponentially fast convergence relative to the LP upper bound in non-degenerate models, applying these LP-based policies to degenerate RMABs results in slower convergence rates of $O(1/\sqrt{N})$. We construct a diffusion system that incorporates both the mean and variance of the stochastic processes, in contrast to the fluid system from the LP, which only accounts for the mean, thereby providing a more accurate representation of RMAB dynamics. Consequently, our novel diffusion-resolving policy achieves an optimality gap of $O(1/N)$ relative to the true optimal value, rather than the LP upper bound, revealing that the fluid approximation and the LP upper bound are too loose in degenerate settings. These insights pave the way for constructing policies that surpass the $O(1/\sqrt{N})$ optimality gap for any RMAB, whether degenerate or not.


[875] 2410.15009

Time-Varying Convex Optimization with O(n) Computational Complexity

In this article, we consider the problem of unconstrained time-varying convex optimization, where the cost function changes with time. We provide an in-depth technical analysis of the problem and argue why freezing the cost at each time step and taking finite steps toward the minimizer is not the best tracking solution for this problem. We propose a set of algorithms that by taking into account the temporal variation of the cost aim to reduce the tracking error of the time-varying minimizer of the problem. The main contribution of our work is that our proposed algorithms only require the first-order derivatives of the cost function with respect to the decision variable. This approach significantly reduces computational cost compared to the existing algorithms, which use the inverse of the Hessian of the cost. Specifically, the proposed algorithms reduce the computational cost from $O(n^3)$ to $O(n)$ per timestep, where $n$ is the size of the decision variable. Avoiding the inverse of the Hessian also makes our algorithms applicable to non-convex optimization problems. We refer to these algorithms as $O(n)$-algorithms. These $O(n)$-algorithms are designed to solve the problem for different scenarios based on the available temporal information about the cost. We illustrate our results through various examples, including the solution of a model predictive control problem framed as a convex optimization problem with a streaming time-varying cost function.


[876] 2410.15012

Pathologist-like explainable AI for interpretable Gleason grading in prostate cancer

The aggressiveness of prostate cancer, the most common cancer in men worldwide, is primarily assessed based on histopathological data using the Gleason scoring system. While artificial intelligence (AI) has shown promise in accurately predicting Gleason scores, these predictions often lack inherent explainability, potentially leading to distrust in human-machine interactions. To address this issue, we introduce a novel dataset of 1,015 tissue microarray core images, annotated by an international group of 54 pathologists. The annotations provide detailed localized pattern descriptions for Gleason grading in line with international guidelines. Utilizing this dataset, we develop an inherently explainable AI system based on a U-Net architecture that provides predictions leveraging pathologists' terminology. This approach circumvents post-hoc explainability methods while maintaining or exceeding the performance of methods trained directly for Gleason pattern segmentation (Dice score: 0.713 $\pm$ 0.003 trained on explanations vs. 0.691 $\pm$ 0.010 trained on Gleason patterns). By employing soft labels during training, we capture the intrinsic uncertainty in the data, yielding strong results in Gleason pattern segmentation even in the context of high interobserver variability. With the release of this dataset, we aim to encourage further research into segmentation in medical tasks with high levels of subjectivity and to advance the understanding of pathologists' reasoning processes.


[877] 2410.15022

Statistical Inference for Feature Selection after Optimal Transport-based Domain Adaptation

Feature Selection (FS) under domain adaptation (DA) is a critical task in machine learning, especially when dealing with limited target data. However, existing methods lack the capability to guarantee the reliability of FS under DA. In this paper, we introduce a novel statistical method to statistically test FS reliability under DA, named SFS-DA (statistical FS-DA). The key strength of SFS-DA lies in its ability to control the false positive rate (FPR) below a pre-specified level $\alpha$ (e.g., 0.05) while maximizing the true positive rate. Compared to the literature on statistical FS, SFS-DA presents a unique challenge in addressing the effect of DA to ensure the validity of the inference on FS results. We overcome this challenge by leveraging the Selective Inference (SI) framework. Specifically, by carefully examining the FS process under DA whose operations can be characterized by linear and quadratic inequalities, we prove that achieving FPR control in SFS-DA is indeed possible. Furthermore, we enhance the true detection rate by introducing a more strategic approach. Experiments conducted on both synthetic and real-world datasets robustly support our theoretical results, showcasing the superior performance of the proposed SFS-DA method.


[878] 2410.15036

EViT-Unet: U-Net Like Efficient Vision Transformer for Medical Image Segmentation on Mobile and Edge Devices

With the rapid development of deep learning, CNN-based U-shaped networks have succeeded in medical image segmentation and are widely applied for various tasks. However, their limitations in capturing global features hinder their performance in complex segmentation tasks. The rise of Vision Transformer (ViT) has effectively compensated for this deficiency of CNNs and promoted the application of ViT-based U-networks in medical image segmentation. However, the high computational demands of ViT make it unsuitable for many medical devices and mobile platforms with limited resources, restricting its deployment on resource-constrained and edge devices. To address this, we propose EViT-UNet, an efficient ViT-based segmentation network that reduces computational complexity while maintaining accuracy, making it ideal for resource-constrained medical devices. EViT-UNet is built on a U-shaped architecture, comprising an encoder, decoder, bottleneck layer, and skip connections, combining convolutional operations with self-attention mechanisms to optimize efficiency. Experimental results demonstrate that EViT-UNet achieves high accuracy in medical image segmentation while significantly reducing computational complexity.


[879] 2410.15057

Asymptotic Time-Uniform Inference for Parameters in Averaged Stochastic Approximation

We study time-uniform statistical inference for parameters in stochastic approximation (SA), which encompasses a bunch of applications in optimization and machine learning. To that end, we analyze the almost-sure convergence rates of the averaged iterates to a scaled sum of Gaussians in both linear and nonlinear SA problems. We then construct three types of asymptotic confidence sequences that are valid uniformly across all times with coverage guarantees, in an asymptotic sense that the starting time is sufficiently large. These coverage guarantees remain valid if the unknown covariance matrix is replaced by its plug-in estimator, and we conduct experiments to validate our methodology.


[880] 2410.15083

Numerical optimal control for distributed delay differential equations: A simultaneous approach based on linearization of the delayed variables

Time delays are ubiquitous in industrial processes, and they must be accounted for when designing control algorithms because they have a significant effect on the process dynamics. Therefore, in this work, we propose a simultaneous approach for numerical optimal control of delay differential equations with distributed time delays. Specifically, we linearize the delayed variables around the current time, and we discretize the resulting implicit differential equations using Euler's implicit method. Furthermore, we transcribe the infinite-dimensional optimal control problem into a finite-dimensional nonlinear program, which we solve using Matlab's fmincon. Finally, we demonstrate the efficacy of the approach using a numerical example involving a molten salt nuclear fission reactor.


[881] 2410.15108

The shape of the brain's connections is predictive of cognitive performance: an explainable machine learning study

The shape of the brain's white matter connections is relatively unexplored in diffusion MRI tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement machine learning models to predict individual cognitive performance scores. We study a large-scale database from the HCP-YA study. We apply an atlas-based fiber cluster parcellation to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHAP, to assess the importance of each fiber cluster for prediction. Our results demonstrate that shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are as effective for prediction as microstructure and connectivity measures. The overall best-performing feature is a shape feature, irregularity, which describes how different a cluster's shape is from an idealized cylinder. Further interpretation using SHAP values suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.


[882] 2410.15133

Controllable RANSAC-based Anomaly Detection via Hypothesis Testing

Detecting the presence of anomalies in regression models is a crucial task in machine learning, as anomalies can significantly impact the accuracy and reliability of predictions. Random Sample Consensus (RANSAC) is one of the most popular robust regression methods for addressing this challenge. However, this method lacks the capability to guarantee the reliability of the anomaly detection (AD) results. In this paper, we propose a novel statistical method for testing the AD results obtained by RANSAC, named CTRL-RANSAC (controllable RANSAC). The key strength of the proposed method lies in its ability to control the probability of misidentifying anomalies below a pre-specified level $\alpha$ (e.g., $\alpha = 0.05$). By examining the selection strategy of RANSAC and leveraging the Selective Inference (SI) framework, we prove that achieving controllable RANSAC is indeed feasible. Furthermore, we introduce a more strategic and computationally efficient approach to enhance the true detection rate and overall performance of the CTRL-RANSAC. Experiments conducted on synthetic and real-world datasets robustly support our theoretical results, showcasing the superior performance of the proposed method.


[883] 2410.15139

The discrete charm of iterated function systems. A computer scientist's perspective on approximation of IFS invariant sets and measures

We study invariant sets and measures generated by iterated function systems defined on countable discrete spaces that are uniform grids of a finite dimension. The discrete spaces of this type can be considered as models of spaces in which actual numerical computation takes place. In this context, we investigate the possibility of the application of the random iteration algorithm to approximate these discrete IFS invariant sets and measures. The problems concerning a discretization of hyperbolic IFSs are considered as special cases of this more general setting.


[884] 2410.15158

Automated Segmentation and Analysis of Cone Photoreceptors in Multimodal Adaptive Optics Imaging

Accurate detection and segmentation of cone cells in the retina are essential for diagnosing and managing retinal diseases. In this study, we used advanced imaging techniques, including confocal and non-confocal split detector images from adaptive optics scanning light ophthalmoscopy (AOSLO), to analyze photoreceptors for improved accuracy. Precise segmentation is crucial for understanding each cone cell's shape, area, and distribution. It helps to estimate the surrounding areas occupied by rods, which allows the calculation of the density of cone photoreceptors in the area of interest. In turn, density is critical for evaluating overall retinal health and functionality. We explored two U-Net-based segmentation models: StarDist for confocal and Cellpose for calculated modalities. Analyzing cone cells in images from two modalities and achieving consistent results demonstrates the study's reliability and potential for clinical application.


[885] 2410.15175

Implicit neural representation for free-breathing MR fingerprinting (INR-MRF): co-registered 3D whole-liver water T1, water T2, proton density fat fraction, and R2* mapping

Purpose: To develop an MRI technique for free-breathing 3D whole-liver quantification of water T1, water T2, proton density fat fraction (PDFF), R2*. Methods: An Eight-echo spoiled gradient echo pulse sequence with spiral readout was developed by interleaving inversion recovery and T2 magnetization preparation. We propose a neural network based on a 4D and a 3D implicit neural representation (INR) which simultaneously learns the motion deformation fields and the static reference frame MRI subspace images respectively. Water and fat singular images were separated during network training, with no need of performing retrospective water-fat separation. T1, T2, R2* and proton density fat fraction (PDFF) produced by the proposed method were validated in vivo on 10 healthy subjects, using quantitative maps generated from conventional scans as reference. Results: Our results showed minimal bias and narrow 95% limits of agreement on T1, T2, R2* and PDFF values in the liver compared to conventional breath-holding scans. Conclusions: INR-MRF enabled co-registered 3D whole liver T1, T2, R2* and PDFF mapping in a single free-breathing scan.


[886] 2410.15180

HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks

In survival analysis, subjects often face competing risks; for example, individuals with cancer may also suffer from heart disease or other illnesses, which can jointly influence the prognosis of risks and censoring. Traditional survival analysis methods often treat competing risks as independent and fail to accommodate the dependencies between different conditions. In this paper, we introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures and cause-specific survival functions from data with competing risks. HACSurv employs a flexible dependency structure using hierarchical Archimedean copulas to represent the relationships between competing risks and censoring. By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions and offers insights into risk interactions. Experiments on synthetic datasets demonstrate that our method can accurately identify the complex dependency structure and precisely predict survival distributions, whereas the compared methods exhibit significant deviations between their predictions and the true distributions. Experiments on multiple real-world datasets also demonstrate that our method achieves better survival prediction compared to previous state-of-the-art methods.


[887] 2410.15201

Learning the Rolling Penny Dynamics

We consider learning the dynamics of a typical nonholonomic system -- the rolling penny. A nonholonomic system is a system subject to nonholonomic constraints. Unlike holonomic constraints, a nonholonomic constraint does not define a submanifold on the configuration space. Therefore, the inverse problem of finding the constraints has to involve the tangent space. This paper discuss how to learn the dynamics, as well as the constraints for such a system given the data set of discrete trajectories on the tangent bundle $TQ$.


[888] 2410.15224

Robust Low-rank Tensor Train Recovery

Tensor train (TT) decomposition represents an $N$-order tensor using $O(N)$ matrices (i.e., factors) of small dimensions, achieved through products among these factors. Due to its compact representation, TT decomposition has found wide applications, including various tensor recovery problems in signal processing and quantum information. In this paper, we study the problem of reconstructing a TT format tensor from measurements that are contaminated by outliers with arbitrary values. Given the vulnerability of smooth formulations to corruptions, we use an $\ell_1$ loss function to enhance robustness against outliers. We first establish the $\ell_1/\ell_2$-restricted isometry property (RIP) for Gaussian measurement operators, demonstrating that the information in the TT format tensor can be preserved using a number of measurements that grows linearly with $N$. We also prove the sharpness property for the $\ell_1$ loss function optimized over TT format tensors. Building on the $\ell_1/\ell_2$-RIP and sharpness property, we then propose two complementary methods to recover the TT format tensor from the corrupted measurements: the projected subgradient method (PSubGM), which optimizes over the entire tensor, and the factorized Riemannian subgradient method (FRSubGM), which optimizes directly over the factors. Compared to PSubGM, the factorized approach FRSubGM significantly reduces the memory cost at the expense of a slightly slower convergence rate. Nevertheless, we show that both methods, with diminishing step sizes, converge linearly to the ground-truth tensor given an appropriate initialization, which can be obtained by a truncated spectral method.


[889] 2410.15244

Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity

The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Lo\`eve transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.


[890] 2410.15274

Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models

The global demand for unconventional energy sources such as geothermal energy and white hydrogen requires new exploration techniques for precise subsurface structure characterization and potential reservoir identification. Magnetotelluric (MT) inversion is crucial for these tasks, providing critical information on the distribution of subsurface electrical resistivity at depths ranging from hundreds to thousands of meters. However, traditional iterative algorithm-based inversion methods require the adjustment of multiple parameters, demanding time-consuming and exhaustive tuning processes to achieve proper cost function minimization. Although recent advances have incorporated deep learning algorithms for MT inversion, these have been primarily based on supervised learning, which needs large labeled datasets for training. Therefore, it causes issues in generalization and model characteristics that are restricted to the neural network's features. This work utilizes TensorFlow operations to create a differentiable forward MT operator, leveraging its automatic differentiation capability. Moreover, instead of solving for the subsurface model directly, as classical algorithms perform, this paper presents a new deep unsupervised inversion algorithm guided by physics to estimate 1D MT models. Instead of using datasets with the observed data and their respective model as labels during training, our method employs a differentiable modeling operator that physically guides the cost function minimization, making the proposed method solely dependent on observed data. Therefore, the optimization problem is updating the network weights to minimize the data misfit. We test the proposed method with field and synthetic data at different acquisition frequencies, demonstrating that the resistivity models are more accurate than other results using state-of-the-art techniques.


[891] 2410.15320

Amortized Probabilistic Conditioning for Optimization, Simulation and Inference

Amortized meta-learning methods based on pre-training have propelled fields like natural language processing and vision. Transformer-based neural processes and their variants are leading models for probabilistic meta-learning with a tractable objective. Often trained on synthetic data, these models implicitly capture essential latent information in the data-generation process. However, existing methods do not allow users to flexibly inject (condition on) and extract (predict) this probabilistic latent information at runtime, which is key to many tasks. We introduce the Amortized Conditioning Engine (ACE), a new transformer-based meta-learning model that explicitly represents latent variables of interest. ACE affords conditioning on both observed data and interpretable latent variables, the inclusion of priors at runtime, and outputs predictive distributions for discrete and continuous data and latents. We show ACE's modeling flexibility and performance in diverse tasks such as image completion and classification, Bayesian optimization, and simulation-based inference.


[892] 2410.15329

All In: Give me your money!

We present a computer assisted proof for a result concerning a three player betting game, introduced by Angel and Holmes. The three players start with initial capital $x, y, z > 0$ respectively. At each step of this game two players are selected at random to bet on the outcome of a fair coin toss, with the size of the bet being the largest possible, namely the total capital held by the poorer of the two players at that time. The main quantity of interest is the probability of player 1 being eliminated (reaching 0 capital) first. Angel and Holmes have shown that this probability is not monotone decreasing as a function of the initial capital $x$ of player 1. They conjecture that if $x < y < z$ then player 1 would be better off (less likely to be eliminated first) by swapping their capital with another player. In this paper we present a computer-assisted proof of this conjecture. To achieve this, we introduce the theoretical framework MeshItUp, and then perform a two-stage reduction to make MeshItUp computationally feasible, through the use of mixed-integer programming.


[893] 2410.15336

Diffusion-PINN Sampler

Recent success of diffusion models has inspired a surge of interest in developing sampling techniques using reverse diffusion processes. However, accurately estimating the drift term in the reverse stochastic differential equation (SDE) solely from the unnormalized target density poses significant challenges, hindering existing methods from achieving state-of-the-art performance. In this paper, we introduce the Diffusion-PINN Sampler (DPS), a novel diffusion-based sampling algorithm that estimates the drift term by solving the governing partial differential equation of the log-density of the underlying SDE marginals via physics-informed neural networks (PINN). We prove that the error of log-density approximation can be controlled by the PINN residual loss, enabling us to establish convergence guarantees of DPS. Experiments on a variety of sampling tasks demonstrate the effectiveness of our approach, particularly in accurately identifying mixing proportions when the target contains isolated components.


[894] 2410.15358

A New Adaptive Balanced Augmented Lagrangian Method with Application to ISAC Beamforming Design

In this paper, we consider a class of convex programming problems with linear equality constraints, which finds broad applications in machine learning and signal processing. We propose a new adaptive balanced augmented Lagrangian (ABAL) method for solving these problems. The proposed ABAL method adaptively selects the stepsize parameter and enjoys a low per-iteration complexity, involving only the computation of a proximal mapping of the objective function and the solution of a linear equation. These features make the proposed method well-suited to large-scale problems. We then custom-apply the ABAL method to solve the ISAC beamforming design problem, which is formulated as a nonlinear semidefinite program in a previous work. This customized application requires careful exploitation of the problem's special structure such as the property that all of its signal-to-interference-and-noise-ratio (SINR) constraints hold with equality at the solution and an efficient computation of the proximal mapping of the objective function. Simulation results demonstrate the efficiency of the proposed ABAL method.


[895] 2410.15360

Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing

Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision. In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for volumetric 3D medical image segmentation. The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric MLP-mixer to capture the global dependencies at low-resolution feature representations, respectively. The proposed volumetric MLP-mixer learns better associations among volumetric feature representations. These explicit local and global feature representations contribute to better learning of the shape-boundary characteristics of the organs. Extensive experiments on three different datasets reveal that the proposed method achieves favorable performance compared to state-of-the-art approaches. On the challenging Synapse Multi-organ dataset, the proposed method achieves an absolute 3.82\% gain over the state-of-the-art approaches in terms of HD95 evaluation metrics {while a similar improvement pattern is exhibited in MSD Liver and Pancreas tumor datasets}. We also provide a detailed comparison between recent architectural design choices in the 2D computer vision literature by adapting them for the problem of 3D medical image segmentation. Finally, our experiments on the ZebraFish 3D cell membrane dataset having limited training data demonstrate the superior transfer learning capabilities of the proposed vMixer model on the challenging 3D cell instance segmentation task, where accurate boundary prediction plays a vital role in distinguishing individual cell instances.


[896] 2410.15361

A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators

The selective classifier (SC) has garnered increasing interest in areas such as medical diagnostics, autonomous driving, and the justice system. The Area Under the Risk-Coverage Curve (AURC) has emerged as the foremost evaluation metric for assessing the performance of SC systems. In this work, we introduce a more straightforward representation of the population AURC, interpretable as a weighted risk function, and propose a Monte Carlo plug-in estimator applicable to finite sample scenarios. We demonstrate that our estimator is consistent and offers a low-bias estimation of the actual weights, with a tightly bounded mean squared error (MSE). We empirically show the effectiveness of this estimator on a comprehensive benchmark across multiple datasets, model architectures, and Confidence Score Functions (CSFs).


[897] 2410.15368

Tighter Performance Theory of FedExProx

We revisit FedExProx - a recently proposed distributed optimization method designed to enhance convergence properties of parallel proximal algorithms via extrapolation. In the process, we uncover a surprising flaw: its known theoretical guarantees on quadratic optimization tasks are no better than those offered by the vanilla Gradient Descent (GD) method. Motivated by this observation, we develop a novel analysis framework, establishing a tighter linear convergence rate for non-strongly convex quadratic problems. By incorporating both computation and communication costs, we demonstrate that FedExProx can indeed provably outperform GD, in stark contrast to the original analysis. Furthermore, we consider partial participation scenarios and analyze two adaptive extrapolation strategies - based on gradient diversity and Polyak stepsizes - again significantly outperforming previous results. Moving beyond quadratics, we extend the applicability of our analysis to general functions satisfying the Polyak-Lojasiewicz condition, outperforming the previous strongly convex analysis while operating under weaker assumptions. Backed by empirical results, our findings point to a new and stronger potential of FedExProx, paving the way for further exploration of the benefits of extrapolation in federated learning.


[898] 2410.15417

A hybrid quantum solver for the Lorenz system

We develop a hybrid classical-quantum method for solving the Lorenz system. We use the forward Euler method to discretize the system in time, transforming it into a system of equations. This set of equations is solved using the Variational Quantum Linear Solver (VQLS) algorithm. We present numerical results comparing the hybrid method with the classical approach for solving the Lorenz system. The simulation results demonstrate that the VQLS method can effectively compute solutions comparable to classical methods. The method is easily extended to solving similar nonlinear differential equations.


[899] 2410.15433

Discriminating image representations with principal distortions

Image representations (artificial or biological) are often compared in terms of their global geometry; however, representations with similar global structure can have strikingly different local geometries. Here, we propose a framework for comparing a set of image representations in terms of their local geometries. We quantify the local geometry of a representation using the Fisher information matrix, a standard statistical tool for characterizing the sensitivity to local stimulus distortions, and use this as a substrate for a metric on the local geometry in the vicinity of a base image. This metric may then be used to optimally differentiate a set of models, by finding a pair of "principal distortions" that maximize the variance of the models under this metric. We use this framework to compare a set of simple models of the early visual system, identifying a novel set of image distortions that allow immediate comparison of the models by visual inspection. In a second example, we apply our method to a set of deep neural network models and reveal differences in the local geometry that arise due to architecture and training types. These examples highlight how our framework can be used to probe for informative differences in local sensitivities between complex computational models, and suggest how it could be used to compare model representations with human perception.


[900] 2410.15437

AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images

Chest X-rays (X-ray images) have been proven to be effective for the diagnosis of chest diseases, including Pneumonia, Lung Opacity, and COVID-19. However, relying on traditional medical methods for diagnosis from X-ray images is prone to delays and inaccuracies because the medical personnel who evaluate the X-ray images may have preconceived biases. For this reason, researchers have proposed the use of deep learning-based techniques to facilitate the diagnosis process. The preeminent method is the use of sophisticated Convolutional Neural Networks (CNNs). In this paper, we propose a novel detection model named \textbf{AttCDCNet} for the task of X-ray image diagnosis, enhancing the popular DenseNet121 model by adding an attention block to help the model focus on the most relevant regions, using focal loss as a loss function to overcome the imbalance of the dataset problem, and utilizing depth-wise convolution to reduce the parameters to make the model lighter. Through extensive experimental evaluations, the proposed model demonstrates exceptional performance, showing better results than the original DenseNet121. The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography Dataset.


[901] 2410.15501

Predicting adaptively chosen observables in quantum systems

Recent advances have demonstrated that $\mathcal{O}(\log M)$ measurements suffice to predict $M$ properties of arbitrarily large quantum many-body systems. However, these remarkable findings assume that the properties to be predicted are chosen independently of the data. This assumption can be violated in practice, where scientists adaptively select properties after looking at previous predictions. This work investigates the adaptive setting for three classes of observables: local, Pauli, and bounded-Frobenius-norm observables. We prove that $\Omega(\sqrt{M})$ samples of an arbitrarily large unknown quantum state are necessary to predict expectation values of $M$ adaptively chosen local and Pauli observables. We also present computationally-efficient algorithms that achieve this information-theoretic lower bound. In contrast, for bounded-Frobenius-norm observables, we devise an algorithm requiring only $\mathcal{O}(\log M)$ samples, independent of system size. Our results highlight the potential pitfalls of adaptivity in analyzing data from quantum experiments and provide new algorithmic tools to safeguard against erroneous predictions in quantum experiments.


[902] 2410.15502

Attempting the impossible: enumerating extremal submodular functions for n=6

Enumerating the extremal submodular functions defined on subsets of a fixed base set has only been done for base sets up to five elements. This paper reports the results of attempting to generate all such functions on a six-element base set. Using improved tools from polyhedral geometry, we have computed 360 billion of them, and provide the first reasonable estimate of their total number, which is expected to be between 1,000 and 10,000 times this number. The applied Double Description and Adjacency Decomposition methods require an insertion order of the defining inequalities. We introduce two novel orders, which speed up the computations significantly, and provide additional insight into the highly symmetric structure of submodular functions. We also present an improvement to the combinatorial test used as part of the Double Description method, and use statistical analyses to estimate the degeneracy of the polyhedral cone used to describe these functions. The statistical results also highlight the limitations of the applied methods.


[903] 2410.15521

Lying mirror

We introduce an all-optical system, termed the "lying mirror", to hide input information by transforming it into misleading, ordinary-looking patterns that effectively camouflage the underlying image data and deceive the observers. This misleading transformation is achieved through passive light-matter interactions of the incident light with an optimized structured diffractive surface, enabling the optical concealment of any form of secret input data without any digital computing. These lying mirror designs were shown to camouflage different types of input image data, exhibiting robustness against a range of adversarial manipulations, including random image noise as well as unknown, random rotations, shifts, and scaling of the object features. The feasibility of the lying mirror concept was also validated experimentally using a structured micro-mirror array along with multi-wavelength illumination at 480, 550 and 600 nm, covering the blue, green and red image channels. This framework showcases the power of structured diffractive surfaces for visual information processing and might find various applications in defense, security and entertainment.


[904] 2410.15541

A Proper Definition of Higher Order Rigidity

[Connelly and Servatius, 1994] shows the difficulty of properly defining n-th order rigidity and flexiblity of a bar-and-joint framework for higher order (n >= 3) through the introduction of a cusp mechanism. The author proposes a "proper" definition of the order of rigidity by the order of elongation of the bars with respect to the arclength along the path in the configuration space. We show that the classic definition using formal n-th derivative of the length constraint is a sufficient condition for the n-th flexiblity in the proposed definition and also a necessary condition only for n = 1, 2.


[905] 2410.15563

Solovay reducibility via translation functions on rationals and on reals

Solovay reducibility $\redsolovay$ was introduced by Robert M. Solovay in 1975 via translation functions on rationals. In 2022, its totalized version $\redsolovaytotal$ (i.e., Solovay reducibility via a total function on rationals) has been examined by Merkle and Titov (arXiv:2407.14869). In 2020, Kumabe, Miyabe, Mizusawa and Suzuki (arXiv:1903.08625) have discovered that Solovay reducibility can be characterized on left-c.e.\ reals using the notion of a translation function on reals. In 2024, Kumabe, Miyabe, and Suzuki (DOI: 10.3233/COM-230486) have introduced a new reducibility $\redclopen$ on all reals, that uses the notion of a translation function on reals, and its totalized version $\redcllocal$. %They have also shown that $\redcllocal$ implies $\redclopen$, wherein the converse is not true even for left-c.e. reals. In this work, we show that $\redsolovayreal$ implies $\redclopen$ and $\redsolovaytotal$ implies $\redcllocal$ on all reals.


[906] 2410.15565

Does quantum lattice sieving require quantum RAM?

In this paper, we study the requirement for quantum random access memory (QRAM) in quantum lattice sieving, a fundamental algorithm for lattice-based cryptanalysis. First, we obtain a lower bound on the cost of quantum lattice sieving with a bounded size QRAM. We do so in a new query model encompassing a wide range of lattice sieving algorithms similar to those in the classical sieving lower bound by Kirshanova and Laarhoven [CRYPTO 21]. This implies that, under reasonable assumptions, quantum speedups in lattice sieving require the use of QRAM. In particular, no quantum speedup is possible without QRAM. Second, we investigate the trade-off between the size of QRAM and the quantum speedup. We obtain a new interpolation between classical and quantum lattice sieving. Moreover, we show that further improvements require a novel way to use the QRAM by proving the optimality of some subroutines. An important caveat is that this trade-off requires a strong assumption on the efficient replacement of QRAM data, indicating that even speedups with a small QRAM are already challenging. Finally, we provide a circuit for quantum lattice sieving without using QRAM. Our circuit has a better depth complexity than the best classical algorithms but requires an exponential amount of qubits. To the best of our knowledge, this is the first quantum speedup for lattice sieving without QRAM in the standard quantum circuit model. We explain why this circuit does not contradict our lower bound, which considers the query complexity.


[907] 2410.15592

CPE-Pro: A Structure-Sensitive Deep Learning Model for Protein Representation and Origin Evaluation

Protein structures are important for understanding their functions and interactions. Currently, many protein structure prediction methods are enriching the structure database. Discriminating the origin of structures is crucial for distinguishing between experimentally resolved and computationally predicted structures, evaluating the reliability of prediction methods, and guiding downstream biological studies. Building on works in structure prediction, We developed a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro), to represent and discriminate the origin of protein structures. CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes, and is expected to be extended to more. Simultaneously, we utilized Foldseek to encode protein structures into "structure-sequence" and trained a protein Structural Sequence Language Model, SSLM. Preliminary experiments demonstrated that, compared to large-scale protein language models pre-trained on vast amounts of amino acid sequences, the "structure-sequences" enable the language model to learn more informative protein features, enhancing and optimizing structural representations. We have provided the code, model weights, and all related materials on https://github.com/GouWenrui/CPE-Pro-main.git.


[908] 2410.15603

Trace-Distance based End-to-End Entanglement Fidelity with Information Preservation in Quantum Networks

Quantum networks hold the potential to revolutionize a variety of fields by surpassing the capabilities of their classical counterparts. Many of these applications necessitate the sharing of high-fidelity entangled pairs among communicating parties. However, the inherent nature of entanglement leads to an exponential decrease in fidelity as the distance between quantum nodes increases. This phenomenon makes it challenging to generate high-fidelity entangled pairs and preserve information in quantum networks. To tackle this problem, we utilized two strategies to ensure high-fidelity entangled pairs and information preservation within a quantum network. First, we use closeness centrality as a metric to identify the closest nodes in the network. Second, we introduced the trace-distance based path purification (TDPP) algorithm, specifically designed to enable information preservation and path purification entanglement routing. This algorithm identifies the shortest path within quantum networks using closeness centrality and integrates trace-distance computations for distinguishing quantum states and maintaining end-to-end (E2E) entanglement fidelity. Simulation results demonstrate that the proposed algorithm improves network throughput and E2E fidelity while preserving information compared to existing methods.


[909] 2410.15614

Topology-Aware Exploration of Circle of Willis for CTA and MRA: Segmentation, Detection, and Classification

The Circle of Willis (CoW) vessels is critical to connecting major circulations of the brain. The topology of the vascular structure is clinical significance to evaluate the risk, severity of the neuro-vascular diseases. The CoW has two representative angiographic imaging modalities, computed tomography angiography (CTA) and magnetic resonance angiography (MRA). TopCow24 provided 125 paired CTA-MRA dataset for the analysis of CoW. To explore both CTA and MRA images in a unified framework to learn the inherent topology of Cow, we construct the universal dataset via independent intensity preprocess, followed by joint resampling and normarlization. Then, we utilize the topology-aware loss to enhance the topology completeness of the CoW and the discrimination between different classes. A complementary topology-aware refinement is further conducted to enhance the connectivity within the same class. Our method was evaluated on all the three tasks and two modalities, achieving competitive results. In the final test phase of TopCow24 Challenge, we achieved the second place in the CTA-Seg-Task, the third palce in the CTA-Box-Task, the first place in the CTA-Edg-Task, the second place in the MRA-Seg-Task, the third palce in the MRA-Box-Task, the second place in the MRA-Edg-Task.


[910] 2410.15626

Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms

This research explores the integration of the Quantum Approximate Optimization Algorithm (QAOA) into Hybrid Quantum-HPC systems for solving the Max-Cut problem, comparing its performance with classical algorithms like brute-force search and greedy heuristics. We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems. Using simulations, we evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization. The study also investigates the scalability of QAOA with increasing problem size, offering insights into its potential advantages over classical methods for large-scale combinatorial optimization problems, with implications for future Quantum computing applications in HPC environments.


[911] 2410.15628

Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling

Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data, capturing fine-scale spatial patterns and variability. Downscaling is any method to derive high-resolution data from low-resolution variables, often to provide more detailed and local predictions and analyses. This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change. The challenge arises from spatial heterogeneity and the need to recover finer-scale features while ensuring model generalization. Most downscaling methods \cite{Li2020} fail to capture the spatial dependencies at finer scales and underperform on real-world climate datasets, such as sea-level rise. We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features. Experimental results on climate data show that our proposed method is more accurate than state-of-the-art downscaling techniques.


[912] 2410.15654

Design and Optimization of a Metamaterial Absorber for Solar Energy Harvesting in the THz Frequency Range

This paper introduces the design and comprehensive characterization of a novel three-layer metamaterial absorber, engineered to exploit the unique optical properties of gold, vanadium dioxide, and silicon dioxide. At the core of this design, silicon dioxide serves as a robust substrate that supports an intricately structured layer of gold and a top layer of vanadium dioxide. This configuration is optimized to harness and enhance absorption capabilities effectively across a broadband terahertz (THz) spectrum. The absorber demonstrates an extensive absorption bandwidth of 3.00 THz, spanning frequencies from 2.414 THz to 5.417 THz. Remarkably, throughout this range, the device maintains a consistently high absorption efficiency, exceeding 90%. This efficiency is characterized by two sharp absorption peaks located at 2.638 THz and 5.158 THz, which signify the precise tuning of the metamaterial structure to interact optimally with specific THz frequencies. The absorbance of the proposed model is almost equal to 99%. This absorber is polarization insensitive. The development of this absorber involved a series of theoretical simulations backed by experimental validations, which helped refine the metamaterial's geometry and material composition. This process illuminated the critical role of the dielectric properties of silicon dioxide and the plasmonic effects induced by gold and vanadium dioxide layers, which collectively contribute to the high-performance metrics observed.


[913] 2410.15670

Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study

Efficient detection and classification of blood cells are vital for accurate diagnosis and effective treatment of blood disorders. This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs. The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification. The YOLOv10 model outperforms MobileNetV2, ShuffleNetV2, and DarkNet in real-time performance, though MobileNetV2 and ShuffleNetV2 are more computationally efficient, and DarkNet excels in feature extraction for blood cell classification. This research highlights the potential of integrating deep learning models like YOLOv10, MobileNetV2, ShuffleNetV2, and DarkNet into clinical workflows, promising improvements in diagnostic accuracy and efficiency. Additionally, a new, well-annotated blood cell dataset was created and will be open-sourced to support further advancements in automatic blood cell detection and classification. The findings demonstrate the transformative impact of these models in revolutionizing medical diagnostics and enhancing blood disorder management


[914] 2410.15721

Learning signals defined on graphs with optimal transport and Gaussian process regression

In computational physics, machine learning has now emerged as a powerful complementary tool to explore efficiently candidate designs in engineering studies. Outputs in such supervised problems are signals defined on meshes, and a natural question is the extension of general scalar output regression models to such complex outputs. Changes between input geometries in terms of both size and adjacency structure in particular make this transition non-trivial. In this work, we propose an innovative strategy for Gaussian process regression where inputs are large and sparse graphs with continuous node attributes and outputs are signals defined on the nodes of the associated inputs. The methodology relies on the combination of regularized optimal transport, dimension reduction techniques, and the use of Gaussian processes indexed by graphs. In addition to enabling signal prediction, the main point of our proposal is to come with confidence intervals on node values, which is crucial for uncertainty quantification and active learning. Numerical experiments highlight the efficiency of the method to solve real problems in fluid dynamics and solid mechanics.


[915] 2410.15729

Two-stage Learning-to-Defer for Multi-Task Learning

The Learning-to-Defer approach has been explored for classification and, more recently, regression tasks separately. Many contemporary learning tasks, however, involves both classification and regression components. In this paper, we introduce a Learning-to-Defer approach for multi-task learning that encompasses both classification and regression tasks. Our two-stage approach utilizes a rejector that defers decisions to the most accurate agent among a pre-trained joint classifier-regressor models and one or more external experts. We show that our surrogate loss is $(\mathcal{H}, \mathcal{F}, \mathcal{R})$ and Bayes--consistent, ensuring an effective approximation of the optimal solution. Additionally, we derive learning bounds that demonstrate the benefits of employing multiple confident experts along a rich model in a two-stage learning framework. Empirical experiments conducted on electronic health record analysis tasks underscore the performance enhancements achieved through our method.


[916] 2410.15764

LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec

Although discrete speech tokens have exhibited strong potential for language model-based speech generation, their high bitrates and redundant timbre information restrict the development of such models. In this work, we propose LSCodec, a discrete speech codec that has both low bitrate and speaker decoupling ability. LSCodec adopts a three-stage unsupervised training framework with a speaker perturbation technique. A continuous information bottleneck is first established, followed by vector quantization that produces a discrete speaker-decoupled space. A discrete token vocoder finally refines acoustic details from LSCodec. By reconstruction experiments, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines. The 25Hz version of LSCodec also achieves the lowest bitrate (0.25kbps) of codecs so far with decent quality. Voice conversion evaluations prove the satisfactory speaker disentanglement of LSCodec, and ablation study further verifies the effectiveness of the proposed training framework.


[917] 2410.15765

SeisLM: a Foundation Model for Seismic Waveforms

We introduce the Seismic Language Model (SeisLM), a foundational model designed to analyze seismic waveforms -- signals generated by Earth's vibrations such as the ones originating from earthquakes. SeisLM is pretrained on a large collection of open-source seismic datasets using a self-supervised contrastive loss, akin to BERT in language modeling. This approach allows the model to learn general seismic waveform patterns from unlabeled data without being tied to specific downstream tasks. When fine-tuned, SeisLM excels in seismological tasks like event detection, phase-picking, onset time regression, and foreshock-aftershock classification. The code has been made publicly available on https://github.com/liutianlin0121/seisLM.


[918] 2410.15795

The Arithmetical Hierarchy: A Realizability-Theoretic Perspective

In this article, we investigate the arithmetical hierarchy from the perspective of realizability theory. An experimental observation in classical computability theory is that the notion of degrees of unsolvability for natural arithmetical decision problems only plays a role in counting the number of quantifiers, jumps, or mind-changes. In contrast, we reveal that when the realizability interpretation is combined with many-one reducibility, it becomes possible to classify natural arithmetical problems in a very nontrivial way.


[919] 2410.15808

Mean-Field Simulation-Based Inference for Cosmological Initial Conditions

Reconstructing cosmological initial conditions (ICs) from late-time observations is a difficult task, which relies on the use of computationally expensive simulators alongside sophisticated statistical methods to navigate multi-million dimensional parameter spaces. We present a simple method for Bayesian field reconstruction based on modeling the posterior distribution of the initial matter density field to be diagonal Gaussian in Fourier space, with its covariance and the mean estimator being the trainable parts of the algorithm. Training and sampling are extremely fast (training: $\sim 1 \, \mathrm{h}$ on a GPU, sampling: $\lesssim 3 \, \mathrm{s}$ for 1000 samples at resolution $128^3$), and our method supports industry-standard (non-differentiable) $N$-body simulators. We verify the fidelity of the obtained IC samples in terms of summary statistics.


[920] 2410.15812

FusionLungNet: Multi-scale Fusion Convolution with Refinement Network for Lung CT Image Segmentation

Early detection of lung cancer is crucial as it increases the chances of successful treatment. Automatic lung image segmentation assists doctors in identifying diseases such as lung cancer, COVID-19, and respiratory disorders. However, lung segmentation is challenging due to overlapping features like vascular and bronchial structures, along with pixel-level fusion of brightness, color, and texture. New lung segmentation methods face difficulties in identifying long-range relationships between image components, reliance on convolution operations that may not capture all critical features, and the complex structures of the lungs. Furthermore, semantic gaps between feature maps can hinder the integration of relevant information, reducing model accuracy. Skip connections can also limit the decoder's access to complete information, resulting in partial information loss during encoding. To overcome these challenges, we propose a hybrid approach using the FusionLungNet network, which has a multi-level structure with key components, including the ResNet-50 encoder, Channel-wise Aggregation Attention (CAA) module, Multi-scale Feature Fusion (MFF) block, self refinement (SR) module, and multiple decoders. The refinement sub-network uses convolutional neural networks for image post-processing to improve quality. Our method employs a combination of loss functions, including SSIM, IOU, and focal loss, to optimize image reconstruction quality. We created and publicly released a new dataset for lung segmentation called LungSegDB, including 1800 CT images from the LIDC-IDRI dataset (dataset version 1) and 700 images from the Chest CT Cancer Images from Kaggle dataset (dataset version 2). Our method achieved an IOU score of 98.04, outperforming existing methods and demonstrating significant improvements in segmentation accuracy. https://github.com/sadjadrz/FusionLungNet


[921] 2410.15815

Solvation Free Energies from Neural Thermodynamic Integration

We propose to compute solvation free energies via thermodynamic integration along a neural-network potential interpolating between two target Hamiltonians. We use a stochastic interpolant to define an interpolation between the distributions at the level of samples and optimize a neural network potential to match the corresponding equilibrium potential at every intermediate time-step. Once the alignment between the interpolating samples and the interpolating potentials is sufficiently accurate, the free-energy difference between the two Hamiltonians can be estimated using (neural) thermodynamic integration. We validate our method to compute solvation free energies on several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution.


[922] 2410.15822

Learning junta distributions and quantum junta states, and QAC$^0$ circuits

In this work we consider the problems of learning junta distributions, their quantum counter-part, quantum junta states, and QAC$^0$ circuits, which we show to be juntas. $\mathbf{Junta\ distributions.\ }$A probability distribution $p:\{-1,1\}^n\to \mathbb [0,1]$ is a $k$-junta if it only depends on $k$ variables. We show that they can be learned with to error $\varepsilon$ in total variation distance from $O(2^k\log(n)/\varepsilon^2)$ samples, which quadratically improves the upper bound of Aliakbarpour et al. (COLT'16) and matches their lower bound in every parameter. $\mathbf{Junta\ states.\ }$We initiate the study of $n$-qubit states that are $k$-juntas, those that are the tensor product of a $k$-qubit state and an $(n-k)$-qubit maximally mixed state. We show that these states can be learned with error $\varepsilon$ in trace distance with $O(12^{k}\log(n)/\varepsilon^2)$ single copies. We also prove a lower bound of $\Omega((4^k+\log (n))/\varepsilon^2)$ copies. Along the way, we give a new proof of the optimal performance of Classical Shadows based on Pauli analysis. $\mathbf{QAC^0\ circuits.\ }$Nadimpalli et al. (STOC'24) recently showed that the Pauli spectrum of QAC$^0$ circuits (with not too many auxiliary qubits) is concentrated on low-degree. We remark that they showed something stronger, namely that the Choi states of those circuits are close to be juntas. As a consequence, we show that $n$-qubit QAC$^0$ circuits with size $s$, depth $d$ and $a$ auxiliary qubits can be learned from $2^{O(\log(s^22^a)^d)}\log (n)$ copies of the Choi state, improving the $n^{O(\log(s^22^a)^d)}$ by Nadimpalli et al. In addition, we use this remark to improve on the lower bounds against QAC$^0$ circuits to compute the address function.


[923] 2410.15851

R2I-rPPG: A Robust Region of Interest Selection Method for Remote Photoplethysmography to Extract Heart Rate

The COVID-19 pandemic has underscored the need for low-cost, scalable approaches to measuring contactless vital signs, either during initial triage at a healthcare facility or virtual telemedicine visits. Remote photoplethysmography (rPPG) can accurately estimate heart rate (HR) when applied to close-up videos of healthy volunteers in well-lit laboratory settings. However, results from such highly optimized laboratory studies may not be readily translated to healthcare settings. One significant barrier to the practical application of rPPG in health care is the accurate localization of the region of interest (ROI). Clinical or telemedicine visits may involve sub-optimal lighting, movement artifacts, variable camera angle, and subject distance. This paper presents an rPPG ROI selection method based on 3D facial landmarks and patient head yaw angle. We then demonstrate the robustness of this ROI selection method when coupled to the Plane-Orthogonal-to-Skin (POS) rPPG method when applied to videos of patients presenting to an Emergency Department for respiratory complaints. Our results demonstrate the effectiveness of our proposed approach in improving the accuracy and robustness of rPPG in a challenging clinical environment.


[924] 2410.15862

Integration of Cobalt Ferromagnetic Control Gates for Electrical and Magnetic Manipulation of Semiconductor Quantum Dots

The rise of electron spin qubit architectures for quantum computing processors has led to a strong interest in designing and integrating ferromagnets to induce stray magnetic fields for electron dipole spin resonance (EDSR). The integration of nanomagnets imposes however strict layout and processing constraints, challenging the arrangement of different gating layers and the control of neighboring qubit frequencies. This work reports a successful integration of nano-sized cobalt control gates into a multi-gate FD-SOI nanowire with nanometer-scale dot-to-magnet pitch, simultaneously exploiting electrical and ferromagnetic properties of the gate stack at nanoscale. The electrical characterization of the multi-gate nanowire exhibits full field effect functionality of all ferromagnetic gates from room temperature to 10 mK, proving quantum dot formation when ferromagnets are operated as barrier gates. The front-end-of-line (FEOL) compatible gate-first integration of cobalt is examined by energy dispersive X-ray spectroscopy and high/low frequency capacitance characterization, confirming the quality of interfaces and control over material diffusion. Insights into the magnetic properties of thin films and patterned control-gates are provided by vibrating sample magnetometry and electron holography measurements. Micromagnetic simulations anticipate that this structure fulfills the requirements for EDSR driving for magnetic fields higher than 1 T, where a homogeneous magnetization along the hard magnetic axis of the Co gates is expected. The FDSOI architecture showcased in this study provides a scalable alternative to micromagnets deposited in the back-end-of-line (BEOL) and middle-of-line (MOL) processes, while bringing technological insights for the FEOL-compatible integration of Co nanostructures in spin qubit devices.


[925] 2410.15877

Safety-critical Control with Control Barrier Functions: A Hierarchical Optimization Framework

The control barrier function (CBF) has become a fundamental tool in safety-critical systems design since its invention. Typically, the quadratic optimization framework is employed to accommodate CBFs, control Lyapunov functions (CLFs), other constraints and nominal control design. However, the constrained optimization framework involves hyper-parameters to tradeoff different objectives and constraints, which, if not well-tuned beforehand, impact system performance and even lead to infeasibility. In this paper, we propose a hierarchical optimization framework that decomposes the multi-objective optimization problem into nested optimization sub-problems in a safety-first approach. The new framework addresses potential infeasibility on the premise of ensuring safety and performance as much as possible and applies easily in multi-certificate cases. With vivid visualization aids, we systematically analyze the advantages of our proposed method over existing QP-based ones in terms of safety, feasibility and convergence rates. Moreover, two numerical examples are provided that verify our analysis and show the superiority of our proposed method.


[926] 2410.15888

Conditional Dependence via U-Statistics Pruning

The problem of measuring conditional dependence between two random phenomena arises when a third one (a confounder) has a potential influence on the amount of information shared by the original pair. A typical issue in this challenging problem is the inversion of ill-conditioned autocorrelation matrices. This paper presents a novel measure of conditional dependence based on the use of incomplete unbiased statistics of degree two, which allows to re-interpret independence as uncorrelatedness on a finite-dimensional feature space. This formulation enables to prune data according to the observations of the confounder itself, thus avoiding matrix inversions altogether. Moreover, the proposed approach is articulated as an extension of the Hilbert-Schmidt independence criterion, which becomes expressible through kernels that operate on 4-tuples of data.


[927] 2410.15895

Cryogenic Control and Readout Integrated Circuits for Solid-State Quantum Computing

In the pursuit of quantum computing, solid-state quantum systems, particularly superconducting ones, have made remarkable advancements over the past two decades. However, achieving fault-tolerant quantum computing for next-generation applications necessitates the integration of several million qubits, which presents significant challenges in terms of interconnection complexity and latency that are currently unsolvable with state-of-the-art room-temperature control and readout electronics. Recently, cryogenic integrated circuits (ICs), including CMOS radio-frequency ICs and rapid-single-flux-quantum-logic ICs, have emerged as potential alternatives to room-temperature electronics. Unlike their room-temperature counterparts, these ICs are deployed within cryostats to enhance scalability by reducing the number and length of transmission lines. Additionally, operating at cryogenic temperatures can suppress electronic noise and improve qubit control fidelity. However, for CMOS ICs specifically, circuit design uncertainties arise due to a lack of reliable models for cryogenic field effect transistors as well as issues related to severe fickle noises and power dissipation at cryogenic temperatures. This paper provides a comprehensive review of recent research on both types of cryogenic control and readout ICs but primarily focuses on the more mature CMOS technology. The discussion encompasses principles underlying control and readout techniques employed in cryogenic CMOS ICs along with their architectural designs; characterization and modeling approaches for field effect transistors under cryogenic conditions; as well as fundamental concepts pertaining to rapid single flux quantum circuits.


[928] 2410.15899

On the Design and Performance of Machine Learning Based Error Correcting Decoders

This paper analyzes the design and competitiveness of four neural network (NN) architectures recently proposed as decoders for forward error correction (FEC) codes. We first consider the so-called single-label neural network (SLNN) and the multi-label neural network (MLNN) decoders which have been reported to achieve near maximum likelihood (ML) performance. Here, we show analytically that SLNN and MLNN decoders can always achieve ML performance, regardless of the code dimensions -- although at the cost of computational complexity -- and no training is in fact required. We then turn our attention to two transformer-based decoders: the error correction code transformer (ECCT) and the cross-attention message passing transformer (CrossMPT). We compare their performance against traditional decoders, and show that ordered statistics decoding outperforms these transformer-based decoders. The results in this paper cast serious doubts on the application of NN-based FEC decoders in the short and medium block length regime.


[929] 2410.15907

Seismic Phase Picking

Seismic phase picking, which aims to determine the arrival time of P- and S-waves according to seismic waveforms, is fundamental to earthquake monitoring. Generally, manual phase picking is trustworthy, but with the increasing number of worldwide stations and seismic monitors, it becomes more challenging for human to complete the task comprehensively. In this work, we explore multiple ways to do automatic phase picking, including traditional and learning-based methods.


[930] 2410.15922

Rectangular finite elements for modeling the mechanical behavior of auxetic materials

This study explores the application of rectangular finite elements to model the stress-strain behavior of isotropic and orthotropic materials exhibiting negative Poisson's ratio, known as auxetic materials, under static shear conditions within linear elasticity. By employing the classical compatible shape functions for linear interpolation and the incompatible shape functions for quadratic interpolation within a displacement-based finite element framework, the research assesses the effectiveness of these approaches in capturing the mechanical response of auxetic materials. Additionally, the analytical expression for an incompatible rectangular finite element applicable to orthotropic materials is proposed. Hexachiral and re-entrant honeycomb structures, known for their auxetic behavior, are modeled as continuous media with homogenized properties using analytical expressions for their effective material constants. The findings reveal that while the classical shape functions may suffice for displacement modeling, they fall short in accurately predicting stress distributions in auxetic materials. In contrast, the incompatible shape functions demonstrate superior performance in providing appropriate stress and displacement predictions. This work underscores the relevance of using the incompatible rectangular finite elements in the modeling of advanced materials with a negative Poisson's ratio. It provides computationally efficient approaches for calculating auxetic honeycomb structures and their derived multilayer composites.


[931] 2410.15923

Automatic Differentiation of Optimization Algorithms with Time-Varying Updates

Numerous Optimization Algorithms have a time-varying update rule thanks to, for instance, a changing step size, momentum parameter or, Hessian approximation. In this paper, we apply unrolled or automatic differentiation to a time-varying iterative process and provide convergence (rate) guarantees for the resulting derivative iterates. We adapt these convergence results and apply them to proximal gradient descent with variable step size and FISTA when solving partly smooth problems. We confirm our findings numerically by solving $\ell_1$ and $\ell_2$-regularized linear and logisitc regression respectively. Our theoretical and numerical results show that the convergence rate of the algorithm is reflected in its derivative iterates.


[932] 2410.15947

AI-Driven Approaches for Glaucoma Detection -- A Comprehensive Review

The diagnosis of glaucoma plays a critical role in the management and treatment of this vision-threatening disease. Glaucoma is a group of eye diseases that cause blindness by damaging the optic nerve at the back of the eye. Often called "silent thief of sight", it exhibits no symptoms during the early stages. Therefore, early detection is crucial to prevent vision loss. With the rise of Artificial Intelligence (AI), particularly Deep Learning (DL) techniques, Computer-Aided Diagnosis (CADx) systems have emerged as promising tools to assist clinicians in accurately diagnosing glaucoma early. This paper aims to provide a comprehensive overview of AI techniques utilized in CADx systems for glaucoma diagnosis. Through a detailed analysis of current literature, we identify key gaps and challenges in these systems, emphasizing the need for improved safety, reliability, interpretability, and explainability. By identifying research gaps, we aim to advance the field of CADx systems especially for the early diagnosis of glaucoma, in order to prevent any potential loss of vision.


[933] 2410.15963

An Efficient Local Optimizer-Tracking Solver for Differential-Algebriac Equations with Optimization Criteria

A sequential solver for differential-algebraic equations with embedded optimization criteria (DAEOs) was developed to take advantage of the theoretical work done by Deussen et al. Solvers of this type separate the optimization problem from the differential equation and solve each individually. The new solver relies on the reduction of a DAEO to a sequence of differential inclusions separated by jump events. These jump events occur when the global solution to the optimization problem jumps to a new value. Without explicit treatment, these events will reduce the order of convergence of the integration step to one. The solver implements a "local optimizer tracking" procedure to detect and correct these jump events. Local optimizer tracking is much less expensive than running a deterministic global optimizer at every time step. This preserves the order of convergence of the integrator component without sacrificing performance to perform deterministic global optimization at every time step. The newly developed solver produces correct solutions to DAEOs and runs much faster than sequential DAEO solvers that rely only on global optimization.


[934] 2410.15982

State Estimation Using Sparse DEIM and Recurrent Neural Networks

Discrete Empirical Interpolation Method (DEIM) estimates a function from its pointwise incomplete observations. In particular, this method can be used to estimate the state of a dynamical system from observational data gathered by sensors. However, when the number of observations are limited, DEIM returns large estimation errors. Sparse DEIM (S-DEIM) was recently developed to address this problem by introducing a kernel vector which previous DEIM-based methods had ignored. Unfortunately, estimating the optimal kernel vector in S-DEIM is a difficult task. Here, we introduce a data-driven method to estimate this kernel vector from sparse observational time series using recurrent neural networks. Using numerical examples, we demonstrate that this machine learning approach together with S-DEIM leads to nearly optimal state estimations.


[935] 2410.15986

A quantitative Robbins-Siegmund theorem

The Robbins-Siegmund theorem is one of the most important results in stochastic optimization, where it is widely used to prove the convergence of stochastic algorithms. We provide a quantitative version of the theorem, establishing a bound on how far one needs to look in order to locate a region of metastability in the sense of Tao. Our proof involves a metastable analogue of Doob's theorem for $L_1$-supermartingales along with a series of technical lemmas that make precise how quantitative information propagates through sums and products of stochastic processes. In this way, our paper establishes a general methodology for finding metastable bounds for stochastic processes that can be reduced to supermartingales, and therefore for obtaining quantitative convergence information across a broad class of stochastic algorithms whose convergence proof relies on some variation of the Robbins-Siegmund theorem. We conclude by discussing how our general quantitative result might be used in practice.


[936] 2410.16008

Resilient Temporal GCN for Smart Grid State Estimation Under Topology Inaccuracies

State Estimation is a crucial task in power systems. Graph Neural Networks have demonstrated significant potential in state estimation for power systems by effectively analyzing measurement data and capturing the complex interactions and interrelations among the measurements through the system's graph structure. However, the information about the system's graph structure may be inaccurate due to noise, attack or lack of accurate information about the topology of the system. This paper studies these scenarios under topology uncertainties and evaluates the impact of the topology uncertainties on the performance of a Temporal Graph Convolutional Network (TGCN) for state estimation in power systems. In order to make the model resilient to topology uncertainties, modifications in the TGCN model are proposed to incorporate a knowledge graph, generated based on the measurement data. This knowledge graph supports the assumed uncertain system graph. Two variations of the TGCN architecture are introduced to integrate the knowledge graph, and their performances are evaluated and compared to demonstrate improved resilience against topology uncertainties. The evaluation results indicate that while the two proposed architecture show different performance, they both improve the performance of the TGCN state estimation under topology uncertainties.


[937] 2410.16041

GFlowNets for Hamiltonian decomposition in groups of compatible operators

Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical problems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design.


[938] 2410.16059

Multi-Level Speaker Representation for Target Speaker Extraction

Target speaker extraction (TSE) relies on a reference cue of the target to extract the target speech from a speech mixture. While a speaker embedding is commonly used as the reference cue, such embedding pre-trained with a large number of speakers may suffer from confusion of speaker identity. In this work, we propose a multi-level speaker representation approach, from raw features to neural embeddings, to serve as the speaker reference cue. We generate a spectral-level representation from the enrollment magnitude spectrogram as a raw, low-level feature, which significantly improves the model's generalization capability. Additionally, we propose a contextual embedding feature based on cross-attention mechanisms that integrate frame-level embeddings from a pre-trained speaker encoder. By incorporating speaker features across multiple levels, we significantly enhance the performance of the TSE model. Our approach achieves a 2.74 dB improvement and a 4.94% increase in extraction accuracy on Libri2mix test set over the baseline.


[939] 2410.16073

On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds

Regularization, whether explicit in terms of a penalty in the loss or implicit in the choice of algorithm, is a cornerstone of modern machine learning. Indeed, controlling the complexity of the model class is particularly important when data is scarce, noisy or contaminated, as it translates a statistical belief on the underlying structure of the data. This work investigates the question of how to choose the regularization norm $\lVert \cdot \rVert$ in the context of high-dimensional adversarial training for binary classification. To this end, we first derive an exact asymptotic description of the robust, regularized empirical risk minimizer for various types of adversarial attacks and regularization norms (including non-$\ell_p$ norms). We complement this analysis with a uniform convergence analysis, deriving bounds on the Rademacher Complexity for this class of problems. Leveraging our theoretical results, we quantitatively characterize the relationship between perturbation size and the optimal choice of $\lVert \cdot \rVert$, confirming the intuition that, in the data scarce regime, the type of regularization becomes increasingly important for adversarial training as perturbations grow in size.


[940] 2410.16091

Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics

Describing the dynamics of strong-laser driven open quantum systems is a very challenging task that requires the solution of highly involved equations of motion. While machine learning techniques are being applied with some success to simulate the time evolution of individual quantum states, their use to approximate time-dependent operators (that can evolve various states) remains largely unexplored. In this work, we develop driven neural quantum propagators (NQP), a universal neural network framework that solves driven-dissipative quantum dynamics by approximating propagators rather than wavefunctions or density matrices. NQP can handle arbitrary initial quantum states, adapt to various external fields, and simulate long-time dynamics, even when trained on far shorter time windows. Furthermore, by appropriately configuring the external fields, our trained NQP can be transferred to systems governed by different Hamiltonians. We demonstrate the effectiveness of our approach by studying the spin-boson and the three-state transition Gamma models.


[941] 2410.16106

Statistical Inference for Temporal Difference Learning with Linear Function Approximation

Statistical inference with finite-sample validity for the value function of a given policy in Markov decision processes (MDPs) is crucial for ensuring the reliability of reinforcement learning. Temporal Difference (TD) learning, arguably the most widely used algorithm for policy evaluation, serves as a natural framework for this purpose.In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results. First, we derive a novel sharp high-dimensional probability convergence guarantee that depends explicitly on the asymptotic variance and holds under weak conditions. We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature. Finally, we propose a plug-in estimator for the asymptotic covariance matrix, designed for efficient online computation. These results enable the construction of confidence regions and simultaneous confidence intervals for the linear parameters of the value function, with guaranteed finite-sample coverage. We demonstrate the applicability of our theoretical findings through numerical experiments.


[942] 2410.16116

Multimodal Flare Forecasting with Deep Learning

Solar flare forecasting mainly relies on photospheric magnetograms and associated physical features to predict forthcoming flares. However, it is believed that flare initiation mechanisms often originate in the chromosphere and the lower corona. In this study, we employ deep learning as a purely data-driven approach to compare the predictive capabilities of chromospheric and coronal UV and EUV emissions across different wavelengths with those of photospheric line-of-sight magnetograms. Our findings indicate that individual EUV wavelengths can provide discriminatory power comparable or better to that of line-of-sight magnetograms. Moreover, we identify simple multimodal neural network architectures that consistently outperform single-input models, showing complementarity between the flare precursors that can be extracted from the distinct layers of the solar atmosphere. To mitigate potential biases from known misattributions in Active Region flare catalogs, our models are trained and evaluated using full-disk images and a comprehensive flare event catalog at the full-disk level. We introduce a deep-learning architecture suited for extracting temporal features from full-disk videos.


[943] 2410.16122

Integer linear programming for unsupervised training set selection in molecular machine learning

Integer linear programming (ILP) is an elegant approach to solve linear optimization problems, naturally described using integer decision variables. Within the context of physics-inspired machine learning applied to chemistry, we demonstrate the relevance of an ILP formulation to select molecular training sets for predictions of size-extensive properties. We show that our algorithm outperforms existing unsupervised training set selection approaches, especially when predicting properties of molecules larger than those present in the training set. We argue that the reason for the improved performance is due to the selection that is based on the notion of local similarity (i.e., per-atom) and a unique ILP approach that finds optimal solutions efficiently. Altogether, this work provides a practical algorithm to improve the performance of physics-inspired machine learning models and offers insights into the conceptual differences with existing training set selection approaches.


[944] 2410.16130

Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning

Recent advancements in large audio-language models (LALMs) have shown impressive capabilities in understanding and reasoning about audio and speech information. However, these models still face challenges, including hallucinating non-existent sound events, misidentifying the order of sound events, and incorrectly attributing sound sources, which undermine their reliability and real-world application. To systematically evaluate these issues, we propose three distinct tasks: object existence, temporal order, and object attribute within audio. These tasks assess the models' comprehension of critical audio information aspects. Our experimental results reveal limitations in these fundamental tasks, underscoring the need for better models in recognizing specific sound events, determining event sequences, and identifying sound sources. To improve performance in these areas, we introduce a multi-turn chain-of-thought approach, which demonstrates significantly improved model performance across the proposed tasks.


[945] 2410.16136

Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors

Understanding how the brain processes dynamic natural stimuli remains a fundamental challenge in neuroscience. Current dynamic neural encoding models either take stimuli as input but ignore shared variability in neural responses, or they model this variability by deriving latent embeddings from neural responses or behavior while ignoring the visual input. To address this gap, we propose a probabilistic model that incorporates video inputs along with stimulus-independent latent factors to capture variability in neuronal responses, predicting a joint distribution for the entire population. After training and testing our model on mouse V1 neuronal responses, we found that it outperforms video-only models in terms of log-likelihood and achieves further improvements when conditioned on responses from other neurons. Furthermore, we find that the learned latent factors strongly correlate with mouse behavior, although the model was trained without behavior data.


[946] 2410.16143

An Explainable Contrastive-based Dilated Convolutional Network with Transformer for Pediatric Pneumonia Detection

Pediatric pneumonia remains a significant global threat, posing a larger mortality risk than any other communicable disease. According to UNICEF, it is a leading cause of mortality in children under five and requires prompt diagnosis. Early diagnosis using chest radiographs is the prevalent standard, but limitations include low radiation levels in unprocessed images and data imbalance issues. This necessitates the development of efficient, computer-aided diagnosis techniques. To this end, we propose a novel EXplainable Contrastive-based Dilated Convolutional Network with Transformer (XCCNet) for pediatric pneumonia detection. XCCNet harnesses the spatial power of dilated convolutions and the global insights from contrastive-based transformers for effective feature refinement. A robust chest X-ray processing module tackles low-intensity radiographs, while adversarial-based data augmentation mitigates the skewed distribution of chest X-rays in the dataset. Furthermore, we actively integrate an explainability approach through feature visualization, directly aligning it with the attention region that pinpoints the presence of pneumonia or normality in radiographs. The efficacy of XCCNet is comprehensively assessed on four publicly available datasets. Extensive performance evaluation demonstrates the superiority of XCCNet compared to state-of-the-art methods.


[947] 2410.16172

A family of lattices with an unbounded number of unit vectors

A family of 4-dimensional lattices $L_k \subset \mathbb{R}^2$ is defined. Each lattice is defined by 2 quadratic extensions and has a \emph{finite} number of unit vectors, but the number of unit vectors in the family is \emph{unbounded}. $L_3$ is the Moser lattice.


[948] 2410.16201

Theoretical Limitations of Ensembles in the Age of Overparameterization

Classic tree-based ensembles generalize better than any single decision tree. In contrast, recent empirical studies find that modern ensembles of (overparameterized) neural networks may not provide any inherent generalization advantage over single but larger neural networks. This paper clarifies how modern overparameterized ensembles differ from their classic underparameterized counterparts, using ensembles of random feature (RF) regressors as a basis for developing theory. In contrast to the underparameterized regime, where ensembling typically induces regularization and increases generalization, we prove that infinite ensembles of overparameterized RF regressors become pointwise equivalent to (single) infinite-width RF regressors. This equivalence, which is exact for ridgeless models and approximate for small ridge penalties, implies that overparameterized ensembles and single large models exhibit nearly identical generalization. As a consequence, we can characterize the predictive variance amongst ensemble members, and demonstrate that it quantifies the expected effects of increasing capacity rather than capturing any conventional notion of uncertainty. Our results challenge common assumptions about the advantages of ensembles in overparameterized settings, prompting a reconsideration of how well intuitions from underparameterized ensembles transfer to deep ensembles and the overparameterized regime.


[949] 2410.16238

Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment

Objective: To develop and evaluate a deep radiomics model for clinically significant prostate cancer (csPCa, grade group >= 2) detection and compare its performance to Prostate Imaging Reporting and Data System (PI-RADS) assessment in a multicenter cohort. Materials and Methods: This retrospective study analyzed biparametric (T2W and DW) prostate MRI sequences of 615 patients (mean age, 63.1 +/- 7 years) from four datasets acquired between 2010 and 2020: PROSTATEx challenge, Prostate158 challenge, PCaMAP trial, and an in-house (NTNU/St. Olavs Hospital) dataset. With expert annotations as ground truth, a deep radiomics model was trained, including nnU-Net segmentation of the prostate gland, voxel-wise radiomic feature extraction, extreme gradient boost classification, and post-processing of tumor probability maps into csPCa detection maps. Training involved 5-fold cross-validation using the PROSTATEx (n=199), Prostate158 (n=138), and PCaMAP (n=78) datasets, and testing on the in-house (n=200) dataset. Patient- and lesion-level performance were compared to PI-RADS using area under ROC curve (AUROC [95% CI]), sensitivity, and specificity analysis. Results: On the test data, the radiologist achieved a patient-level AUROC of 0.94 [0.91-0.98] with 94% (75/80) sensitivity and 77% (92/120) specificity at PI-RADS >= 3. The deep radiomics model at a tumor probability cut-off >= 0.76 achieved 0.91 [0.86-0.95] AUROC with 90% (72/80) sensitivity and 73% (87/120) specificity, not significantly different (p = 0.068) from PI-RADS. On the lesion level, PI-RADS cut-off >= 3 had 84% (91/108) sensitivity at 0.2 (40/200) false positives per patient, while deep radiomics attained 68% (73/108) sensitivity at the same false positive rate. Conclusion: Deep radiomics machine learning model achieved comparable performance to PI-RADS assessment in csPCa detection at the patient-level but not at the lesion-level.


[950] 2410.16245

Separations in query complexity for total search problems

We study the query complexity analogue of the class TFNP of total search problems. We give a way to convert partial functions to total search problems under certain settings; we also give a way to convert search problems back into partial functions. As an application, we give new separations for degree-like measures. We give an exponential separation between quantum query complexity and approximate degree for a total search problem. We also give an exponential separation between approximate degree and the positive quantum adversary for a total search problem. We then strengthen the former separation to upper bound a larger measure: the two-sided approximate non-negative degree, also called the conical junta degree. This measure is often larger than quantum query complexity and even a separation from randomized query complexity was not known. We extend our results to communication complexity, and obtain an exponential separation between quantum information complexity and the relaxed partition bound for a total search problem. Even a weaker separation between randomized communication complexity and the relaxed partition bound was not known for total search problems (or even for partial functions). Most of our separations for total search problems can be converted to separations for partial functions. Using this, we reprove the recent exponential separation between quantum query complexity and approximate degree for a partial function by Ambainis and Belovs (2023), among other new results.


[951] 2410.16258

The microscale organization of directed hypergraphs

Many real-world complex systems are characterized by non-pairwise -- higher-order -- interactions among system's units, and can be effectively modeled as hypergraphs. Directed hypergraphs distinguish between source and target sets within each hyperedge, and allow to account for the directional flow of information between nodes. Here, we provide a framework to characterize the structural organization of directed higher-order networks at their microscale. First, we extract the fingerprint of a directed hypergraph, capturing the frequency of hyperedges with a certain source and target sizes, and use this information to compute differences in higher-order connectivity patterns among real-world systems. Then, we formulate reciprocity in hypergraphs, including exact, strong, and weak definitions, to measure to which extent hyperedges are reciprocated. Finally, we extend motif analysis to identify recurring interaction patterns and extract the building blocks of directed hypergraphs. We validate our framework on empirical datasets, including Bitcoin transactions, metabolic networks, and citation data, revealing structural principles behind the organization of real-world systems.