New articles on Computer Science


[1] 2506.01958

SubMIT: A Physics Analysis Facility at MIT

The recently completed SubMIT platform is a small set of servers that provide interactive access to substantial data samples at high speeds, enabling sophisticated data analyses with very fast turnaround times. Additionally, it seamlessly integrates massive processing resources for large-scale tasks by connecting to a set of powerful batch processing systems. It serves as an ideal prototype for an Analysis Facility tailored to meet the demanding data and computational requirements anticipated during the High-Luminosity phase of the Large Hadron Collider. The key features that make this facility so powerful include highly optimized data access with a minimum of 100Gbps networking per server, a large managed NVMe storage system, and a substantial spinning-disk Ceph file system. The platform integrates a diverse set of high multicore CPU machines for tasks benefiting from the multithreading and GPU resources for example for neural network training. SubMIT also provides and supports a flexible environment for users to manage their own software needs for example by using containers. This article describes the facility, its users, and a few complementary, generic and real-life analyses that are used to benchmark its various capabilities.


[2] 2506.01959

Ubiquitous Symmetry at Critical Points Across Diverse Optimization Landscapes

Symmetry plays a crucial role in understanding the properties of mathematical structures and optimization problems. Recent work has explored this phenomenon in the context of neural networks, where the loss function is invariant under column and row permutations of the network weights. It has been observed that local minima exhibit significant symmetry with respect to the network weights (invariance to row and column permutations). And moreover no critical point was found that lacked symmetry. We extend this line of inquiry by investigating symmetry phenomena in real-valued loss functions defined on a broader class of spaces. We will introduce four more cases: the projective case over a finite field, the octahedral graph case, the perfect matching case, and the particle attraction case. We show that as in the neural network case, all the critical points observed have non-trivial symmetry. Finally we introduce a new measure of symmetry in the system and show that it reveals additional symmetry structures not captured by the previous measure.


[3] 2506.01960

Mazzaroth: A High-Throughput DAG Consensus with State Root

Nakamoto Consensus achieves a decentralized ledger through a single-chain blockchain, assuming a maximum network delay, which limits block generation speed, resulting in low throughput. \cite{pg2018} (PG) enhances throughput using a blockDAG structure, but its probabilistic confirmation restricts smart contract applications. To address this, Mazzaroth proposes a Pow-based blockDAG consensus, employing a linear ordering algorithm to compute the \cite{eth} and achieve state finality, thereby supporting smart contracts. Its dynamic difficulty adjustment, independent of the assumption, adapts to network and hashrate fluctuations, ensuring state consistency via a head chain while maximizing throughput. Simulations validate Mazzaroth's efficient consensus performance. This paper presents the Mazzaroth ordering algorithm, the difficulty adjustment mechanism, and performance evaluation.


[4] 2506.01961

Research on Medical Named Entity Identification Based On Prompt-Biomrc Model and Its Application in Intelligent Consultation System

This study is dedicated to exploring the application of prompt learning methods to advance Named Entity Recognition (NER) within the medical domain. In recent years, the emergence of large-scale models has driven significant progress in NER tasks, particularly with the introduction of the BioBERT language model, which has greatly enhanced NER capabilities in medical texts. Our research introduces the Prompt-bioMRC model, which integrates both hard template and soft prompt designs aimed at refining the precision and efficiency of medical entity recognition. Through extensive experimentation across diverse medical datasets, our findings consistently demonstrate that our approach surpasses traditional models. This enhancement not only validates the efficacy of our methodology but also highlights its potential to provide reliable technological support for applications like intelligent diagnosis systems. By leveraging advanced NER techniques, this study contributes to advancing automated medical data processing, facilitating more accurate medical information extraction, and supporting efficient healthcare decision-making processes.


[5] 2506.01962

Graph-Based Adversarial Domain Generalization with Anatomical Correlation Knowledge for Cross-User Human Activity Recognition

Cross-user variability poses a significant challenge in sensor-based Human Activity Recognition (HAR) systems, as traditional models struggle to generalize across users due to differences in behavior, sensor placement, and data distribution. To address this, we propose GNN-ADG (Graph Neural Network with Adversarial Domain Generalization), a novel method that leverages both the strength from both the Graph Neural Networks (GNNs) and adversarial learning to achieve robust cross-user generalization. GNN-ADG models spatial relationships between sensors on different anatomical body parts, extracting three types of Anatomical Units: (1) Interconnected Units, capturing inter-relations between neighboring sensors; (2) Analogous Units, grouping sensors on symmetrical or functionally similar body parts; and (3) Lateral Units, connecting sensors based on their position to capture region-specific coordination. These units information are fused into an unified graph structure with a cyclic training strategy, dynamically integrating spatial, functional, and lateral correlations to facilitate a holistic, user-invariant representation. Information fusion mechanism of GNN-ADG occurs by iteratively cycling through edge topologies during training, allowing the model to refine its understanding of inter-sensor relationships across diverse perspectives. By representing the spatial configuration of sensors as an unified graph and incorporating adversarial learning, Information Fusion GNN-ADG effectively learns features that generalize well to unseen users without requiring target user data during training, making it practical for real-world applications.


[6] 2506.01963

Breaking Quadratic Barriers: A Non-Attention LLM for Ultra-Long Context Horizons

We present a novel non attention based architecture for large language models (LLMs) that efficiently handles very long context windows, on the order of hundreds of thousands to potentially millions of tokens. Unlike traditional Transformer designs, which suffer from quadratic memory and computation overload due to the nature of the self attention mechanism, our model avoids token to token attention entirely. Instead, it combines the following complementary components: State Space blocks (inspired by S4) that learn continuous time convolution kernels and scale near linearly with sequence length, Multi Resolution Convolution layers that capture local context at different dilation levels, a lightweight Recurrent Supervisor to maintain a global hidden state across sequential chunks, and Retrieval Augmented External Memory that stores and retrieves high-level chunk embeddings without reintroducing quadratic operations.


[7] 2506.01964

A Data-Driven Approach to Enhancing Gravity Models for Trip Demand Prediction

Accurate prediction of trips between zones is critical for transportation planning, as it supports resource allocation and infrastructure development across various modes of transport. Although the gravity model has been widely used due to its simplicity, it often inadequately represents the complex factors influencing modern travel behavior. This study introduces a data-driven approach to enhance the gravity model by integrating geographical, economic, social, and travel data from the counties in Tennessee and New York state. Using machine learning techniques, we extend the capabilities of the traditional model to handle more complex interactions between variables. Our experiments demonstrate that machine learning-enhanced models significantly outperform the traditional model. Our results show a 51.48% improvement in R-squared, indicating a substantial enhancement in the model's explanatory power. Also, a 63.59% reduction in Mean Absolute Error (MAE) reflects a significant increase in prediction accuracy. Furthermore, a 44.32% increase in Common Part of Commuters (CPC) demonstrates improved prediction reliability. These findings highlight the substantial benefits of integrating diverse datasets and advanced algorithms into transportation models. They provide urban planners and policymakers with more reliable forecasting and decision-making tools.


[8] 2506.01965

TaskVAE: Task-Specific Variational Autoencoders for Exemplar Generation in Continual Learning for Human Activity Recognition

As machine learning based systems become more integrated into daily life, they unlock new opportunities but face the challenge of adapting to dynamic data environments. Various forms of data shift-gradual, abrupt, or cyclic-threaten model accuracy, making continual adaptation essential. Continual Learning (CL) enables models to learn from evolving data streams while minimizing forgetting of prior knowledge. Among CL strategies, replay-based methods have proven effective, but their success relies on balancing memory constraints and retaining old class accuracy while learning new classes. This paper presents TaskVAE, a framework for replay-based CL in class-incremental settings. TaskVAE employs task-specific Variational Autoencoders (VAEs) to generate synthetic exemplars from previous tasks, which are then used to train the classifier alongside new task data. In contrast to traditional methods that require prior knowledge of the total class count or rely on a single VAE for all tasks, TaskVAE adapts flexibly to increasing tasks without such constraints. We focus on Human Activity Recognition (HAR) using IMU sensor-equipped devices. Unlike previous HAR studies that combine data across all users, our approach focuses on individual user data, better reflecting real-world scenarios where a person progressively learns new activities. Extensive experiments on 5 different HAR datasets show that TaskVAE outperforms experience replay methods, particularly with limited data, and exhibits robust performance as dataset size increases. Additionally, memory footprint of TaskVAE is minimal, being equivalent to only 60 samples per task, while still being able to generate an unlimited number of synthetic samples. The contributions lie in balancing memory constraints, task-specific generation, and long-term stability, making it a reliable solution for real-world applications in domains like HAR.


[9] 2506.01966

Matrix Is All You Need

Deep neural networks employ specialized architectures for vision, sequential and language tasks, yet this proliferation obscures their underlying commonalities. We introduce a unified matrix-order framework that casts convolutional, recurrent and self-attention operations as sparse matrix multiplications. Convolution is realized via an upper-triangular weight matrix performing first-order transformations; recurrence emerges from a lower-triangular matrix encoding stepwise updates; attention arises naturally as a third-order tensor factorization. We prove algebraic isomorphism with standard CNN, RNN and Transformer layers under mild assumptions. Empirical evaluations on image classification (MNIST, CIFAR-10/100, Tiny ImageNet), time-series forecasting (ETTh1, Electricity Load Diagrams) and language modeling/classification (AG News, WikiText-2, Penn Treebank) confirm that sparse-matrix formulations match or exceed native model performance while converging in comparable or fewer epochs. By reducing architecture design to sparse pattern selection, our matrix perspective aligns with GPU parallelism and leverages mature algebraic optimization tools. This work establishes a mathematically rigorous substrate for diverse neural architectures and opens avenues for principled, hardware-aware network design.


[10] 2506.01967

Turning LLM Activations Quantization-Friendly

Quantization effectively reduces the serving costs of Large Language Models (LLMs) by speeding up data movement through compressed parameters and enabling faster operations via integer arithmetic. However, activating integer arithmetic requires quantizing both weights and activations, which poses challenges due to the significant outliers in LLMs that increase quantization error. In this work, we investigate these outliers with an emphasis on their effect on layer-wise quantization error, then examine how smoothing and rotation transform the observed values. Our primary contributions include introducing a new metric to measure and visualize quantization difficulty based on channel magnitudes, as well as proposing a hybrid approach that applies channel-wise scaling before rotation, supported by a mathematical formulation of its benefits.


[11] 2506.01968

Efficient ANN-SNN Conversion with Error Compensation Learning

Artificial neural networks (ANNs) have demonstrated outstanding performance in numerous tasks, but deployment in resource-constrained environments remains a challenge due to their high computational and memory requirements. Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency, providing a bio-inspired alternative. However, current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors such as clipping, quantization, and uneven activation. This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning. We introduce a learnable threshold clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy to mitigate the conversion error. Together, these techniques address the clipping error through adaptive thresholds, dynamically reduce the quantization error through dual-threshold neurons, and minimize the non-uniformity error by effectively managing the membrane potential. Experimental results on CIFAR-10, CIFAR-100, ImageNet datasets show that our method achieves high-precision and ultra-low latency among existing conversion methods. Using only two time steps, our method significantly reduces the inference time while maintains competitive accuracy of 94.75% on CIFAR-10 dataset under ResNet-18 structure. This research promotes the practical application of SNNs on low-power hardware, making efficient real-time processing possible.


[12] 2506.01969

FlashMLA-ETAP: Efficient Transpose Attention Pipeline for Accelerating MLA Inference on NVIDIA H20 GPUs

Efficient inference of Multi-Head Latent Attention (MLA) is challenged by deploying the DeepSeek-R1 671B model on a single Multi-GPU server. This paper introduces FlashMLA-ETAP, a novel framework that enhances MLA inference for the single-instance deployment scenario on NVIDIA H20 GPUs. We propose the Efficient Transpose Attention Pipeline (ETAP), which reconfigures attention computation through transposition to align the KV context length with the \(M\)-dimension in WGMMA operations, significantly reducing redundant computations. FlashMLA-ETAP achieves a 2.78x speedup over FlashMLA at 64K sequence length (batch size 16), with 5.24x and 4.94x improvements over FlashAttention-3 and FlashInfer, respectively, while maintaining numerical stability with a 15.2x lower RMSE (\(1.25 \times 10^{-5}\)) than FlashAttention-3. Furthermore, ETAP's design enables seamless integration into frameworks like FlashAttention-3 and FlashInfer, supported by a detailed theoretical analysis. Our work addresses a critical gap in resource-constrained inference, offering a scalable solution for mid-tier GPUs and paving the way for broader adoption in hardware-aware optimization. Code is available at https://github.com/pengcuo/FlashMLA-ETAP.


[13] 2506.01970

Johnny: Structuring Representation Space to Enhance Machine Abstract Reasoning Ability

This paper thoroughly investigates the challenges of enhancing AI's abstract reasoning capabilities, with a particular focus on Raven's Progressive Matrices (RPM) tasks involving complex human-like concepts. Firstly, it dissects the empirical reality that traditional end-to-end RPM-solving models heavily rely on option pool configurations, highlighting that this dependency constrains the model's reasoning capabilities. To address this limitation, the paper proposes the Johnny architecture - a novel representation space-based framework for RPM-solving. Through the synergistic operation of its Representation Extraction Module and Reasoning Module, Johnny significantly enhances reasoning performance by supplementing primitive negative option configurations with a learned representation space. Furthermore, to strengthen the model's capacity for capturing positional relationships among local features, the paper introduces the Spin-Transformer network architecture, accompanied by a lightweight Straw Spin-Transformer variant that reduces computational overhead through parameter sharing and attention mechanism optimization. Experimental evaluations demonstrate that both Johnny and Spin-Transformer achieve superior performance on RPM tasks, offering innovative methodologies for advancing AI's abstract reasoning capabilities.


[14] 2506.01971

CityPulse: Real-Time Traffic Data Analytics and Congestion Prediction

CityPulse is a proof-of-concept big data pipeline designed to enable real-time urban mobility analytics using scalable, containerized components -- without reliance on physical sensor infrastructure. The system simulates the ingestion of 11 million traffic-related records representing urban phenomena such as vehicle congestion, GPS coordinates, and weather conditions. Data is ingested through a Dockerized Apache Kafka cluster, coordinated by ZooKeeper, and processed in real time using Apache Spark Structured Streaming. To ensure robustness under load, the architecture introduces a temporary data storage layer that buffers Spark output before committing it to a centralized data warehouse. This design improves write efficiency, fault tolerance, and enables batch processing of intermediate results. The refined data feeds into a lightweight machine learning module and is served through a Flask backend with a React-based frontend for visualization and interaction. Stress testing shows that the system maintains over 300,000 records per minute throughput with only a 10\% increase in latency under full load conditions. With its modular Docker-based deployment, CityPulse offers a cost-effective and reproducible analytics solution for traffic congestion monitoring in resource-constrained environments, particularly in developing regions like Cameroon.


[15] 2506.01972

Distributionally Robust Optimization for Aerial Multi-access Edge Computing via Cooperation of UAVs and HAPs

With an extensive increment of computation demands, the aerial multi-access edge computing (MEC), mainly based on unmanned aerial vehicles (UAVs) and high altitude platforms (HAPs), plays significant roles in future network scenarios. In detail, UAVs can be flexibly deployed, while HAPs are characterized with large capacity and stability. Hence, in this paper, we provide a hierarchical model composed of an HAP and multi-UAVs, to provide aerial MEC services. Moreover, considering the errors of channel state information from unpredictable environmental conditions, we formulate the problem to minimize the total energy cost with the chance constraint, which is a mixed-integer nonlinear problem with uncertain parameters and intractable to solve. To tackle this issue, we optimize the UAV deployment via the weighted K-means algorithm. Then, the chance constraint is reformulated via the distributionally robust optimization (DRO). Furthermore, based on the conditional value-at-risk mechanism, we transform the DRO problem into a mixed-integer second order cone programming, which is further decomposed into two subproblems via the primal decomposition. Moreover, to alleviate the complexity of the binary subproblem, we design a binary whale optimization algorithm. Finally, we conduct extensive simulations to verify the effectiveness and robustness of the proposed schemes by comparing with baseline mechanisms.


[16] 2506.01973

Multimodal Financial Foundation Models (MFFMs): Progress, Prospects, and Challenges

Financial Large Language Models (FinLLMs), such as open FinGPT and proprietary BloombergGPT, have demonstrated great potential in select areas of financial services. Beyond this earlier language-centric approach, Multimodal Financial Foundation Models (MFFMs) can digest interleaved multimodal financial data, including fundamental data, market data, data analytics, macroeconomic, and alternative data (e.g., natural language, audio, images, and video). In this position paper, presented at the MFFM Workshop joined with ACM International Conference on AI in Finance (ICAIF) 2024, we describe the progress, prospects, and challenges of MFFMs. This paper also highlights ongoing research on FinAgents in the \textbf{SecureFinAI Lab}\footnote{\https://openfin.engineering.columbia.edu/} at Columbia University. We believe that MFFMs will enable a deeper understanding of the underlying complexity associated with numerous financial tasks and data, streamlining the operation of financial services and investment processes. Github Repo https://github.com/Open-Finance-Lab/Awesome-MFFMs/.


[17] 2506.01974

Traffic and Mobility Optimization Using AI: Comparative Study between Dubai and Riyadh

Urban planning plays a very important role in development modern cities. It effects the economic growth, quality of life, and environmental sustainability. Modern cities face challenges in managing traffic congestion. These challenges arise to due to rapid urbanization. In this study we will explore how AI can be used to understand the traffic and mobility related issues and its effects on the residents sentiment. The approach combines real-time traffic data with geo-located sentiment analysis, offering a comprehensive and dynamic approach to urban mobility planning. AI models and exploratory data analysis was used to predict traffic congestion patterns, analyze commuter behaviors, and identify congestion hotspots and dissatisfaction zones. The findings offer actionable recommendations for optimizing traffic flow, enhancing commuter experiences, and addressing city specific mobility challenges in the Middle East and beyond.


[18] 2506.01975

An empirical study of task and feature correlations in the reuse of pre-trained models

Pre-trained neural networks are commonly used and reused in the machine learning community. Alice trains a model for a particular task, and a part of her neural network is reused by Bob for a different task, often to great effect. To what can we ascribe Bob's success? This paper introduces an experimental setup through which factors contributing to Bob's empirical success could be studied in silico. As a result, we demonstrate that Bob might just be lucky: his task accuracy increases monotonically with the correlation between his task and Alice's. Even when Bob has provably uncorrelated tasks and input features from Alice's pre-trained network, he can achieve significantly better than random performance due to Alice's choice of network and optimizer. When there is little correlation between tasks, only reusing lower pre-trained layers is preferable, and we hypothesize the converse: that the optimal number of retrained layers is indicative of task and feature correlation. Finally, we show in controlled real-world scenarios that Bob can effectively reuse Alice's pre-trained network if there are semantic correlations between his and Alice's task.


[19] 2506.01976

Crack Path Prediction with Operator Learning using Discrete Particle System data Generation

Accurately modeling crack propagation is critical for predicting failure in engineering materials and structures, where small cracks can rapidly evolve and cause catastrophic damage. The interaction of cracks with discontinuities, such as holes, significantly affects crack deflection and arrest. Recent developments in discrete particle systems with multibody interactions based on constitutive behavior have demonstrated the ability to capture crack nucleation and evolution without relying on continuum assumptions. In this work, we use data from Constitutively Informed Particle Dynamics (CPD) simulations to train operator learning models, specifically Deep Operator Networks (DeepONets), which learn mappings between function spaces instead of finite-dimensional vectors. We explore two DeepONet variants: vanilla and Fusion DeepONet, for predicting time-evolving crack propagation in specimens with varying geometries. Three representative cases are studied: (i) varying notch height without active fracture; and (ii) and (iii) combinations of notch height and hole radius where dynamic fracture occurs on irregular discrete meshes. The models are trained on 32 to 45 samples, using geometric inputs in the branch network and spatial-temporal coordinates in the trunk network. Results show that Fusion DeepONet consistently outperforms the vanilla variant, with more accurate predictions especially in non-fracturing cases. Fracture-driven scenarios involving displacement and crack evolution remain more challenging. These findings highlight the potential of Fusion DeepONet to generalize across complex, geometry-varying, and time-dependent crack propagation phenomena.


[20] 2506.01977

Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via Preference-aware GAN

Graph Edit Distance (GED) is a fundamental graph similarity metric widely used in various applications. However, computing GED is an NP-hard problem. Recent state-of-the-art hybrid GED solver has shown promising performance by formulating GED as a bipartite graph matching problem, then leveraging a generative diffusion model to predict node matching between two graphs, from which both the GED and its corresponding edit path can be extracted using a traditional algorithm. However, such methods typically rely heavily on ground-truth supervision, where the ground-truth labels are often costly to obtain in real-world scenarios. In this paper, we propose GEDRanker, a novel unsupervised GAN-based framework for GED computation. Specifically, GEDRanker consists of a matching-based GED solver and introduces an interpretable preference-aware discriminator with an effective training strategy to guide the matching-based GED solver toward generating high-quality node matching without the need for ground-truth labels. Extensive experiments on benchmark datasets demonstrate that our GEDRanker enables the matching-based GED solver to achieve near-optimal solution quality without any ground-truth supervision.


[21] 2506.01979

Speculative Decoding via Hybrid Drafting and Rollback-Aware Branch Parallelism

Recently, speculative decoding (SD) has emerged as a promising technique to accelerate LLM inference by employing a small draft model to propose draft tokens in advance, and validating them in parallel with the large target model. However, the existing SD methods still remain fundamentally constrained by their serialized execution, which causes the mutual waiting bubbles between the draft and target models. To address this challenge, we draw inspiration from branch prediction in modern processors and propose a novel framework \textbf{SpecBranch} to unlock branch parallelism in SD. Specifically, we first take an in-depth analysis of the potential of branch parallelism in SD, and recognize that the key challenge lies in the trade-offs between parallelization and token rollback. Based on the analysis, we strategically introduce parallel speculative branches to preemptively hedge against likely rejections. Meanwhile, to enhance parallelism, we jointly orchestrate adaptive draft lengths with a hybrid combination of the implicit draft model confidence and explicit reusing of target model features. Extensive experiments across various models and benchmarks show that SpecBranch achieves over \textbf{1.8}$\times \sim$ \textbf{4.5}$\times$ speedups against the auto-regressive decoding and reduces rollback tokens by $\textbf{50}$\% for poorly aligned models, realizing its applicability for real-world deployments.


[22] 2506.01982

Music interpretation and emotion perception: A computational and neurophysiological investigation

This study investigates emotional expression and perception in music performance using computational and neurophysiological methods. The influence of different performance settings, such as repertoire, diatonic modal etudes, and improvisation, as well as levels of expressiveness, on performers' emotional communication and listeners' reactions is explored. Professional musicians performed various tasks, and emotional annotations were provided by both performers and the audience. Audio analysis revealed that expressive and improvisational performances exhibited unique acoustic features, while emotion analysis showed stronger emotional responses. Neurophysiological measurements indicated greater relaxation in improvisational performances. This multimodal study highlights the significance of expressivity in enhancing emotional communication and audience engagement.


[23] 2506.01983

Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification

Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.


[24] 2506.01984

Bridging Global Frameworks: Governance Strategies Behind Cisco Common Control Framework v4.0 for Scalable Cloud Compliance

CCF v4.0 provides a standard way to ensure that Cisco's cloud products comply with the many quickly evolving requirements worldwide. To cope with increasing demands brought by ISO 27001, SOC 2, NIST, FedRAMP, EU CRA, DORA, and NIS2, CCF v4.0 introduces reliable governance by grouping controls using modules mapped across many frameworks. In this document, I discuss the governance structure controlling the framework's progress, noting how the CAB helped and the relevant steps for mapping and validating controls. Because of this, Cisco now uses the same scalable and audit-ready compliance model in all $ 10 B+ of their cloud offerings.


[25] 2506.01986

SpecMemo: Speculative Decoding is in Your Pocket

Recent advancements in speculative decoding have demonstrated considerable speedup across a wide array of large language model (LLM) tasks. Speculative decoding inherently relies on sacrificing extra memory allocations to generate several candidate tokens, of which acceptance rate drives the speedup. However, deploying speculative decoding on memory-constrained devices, such as mobile GPUs, remains as a significant challenge in real-world scenarios. In this work, we present a device-aware inference engine named SpecMemo that can smartly control memory allocations at finer levels to enable multi-turn chatbots with speculative decoding on such limited memory devices. Our methodology stems from theoretically modeling memory footprint of speculative decoding to determine a lower bound on the required memory budget while retaining speedup. SpecMemo empirically acquires a careful balance between minimizing redundant memory allocations for rejected candidate tokens and maintaining competitive performance gains from speculation. Notably, with SpecMemo's memory management, we maintain 96% of overall throughput from speculative decoding on MT-Bench, with reduced generation-memory by 65% on single Nvidia Titan RTX. Given multiple constrained GPUs, we build on top of previous speculative decoding architectures to facilitate big-model inference by distributing Llama-2-70B-Chat model, on which we provide novel batched speculative decoding to increase usability of multiple small server GPUs. This novel framework demonstrates 2x speedup over distributed and batched vanilla decoding with the base model on eight AMD MI250 GPUs. Moreover, inference throughput increases remarkably 8x with batch size 10. Our work contributes to democratized LLM applications in resource-constrained environments, providing a pathway for faster and cheaper deployment of real-world LLM applications with robust performance.


[26] 2506.01987

Equally Critical: Samples, Targets, and Their Mappings in Datasets

Data inherently possesses dual attributes: samples and targets. For targets, knowledge distillation has been widely employed to accelerate model convergence, primarily relying on teacher-generated soft target supervision. Conversely, recent advancements in data-efficient learning have emphasized sample optimization techniques, such as dataset distillation, while neglected the critical role of target. This dichotomy motivates our investigation into understanding how both sample and target collectively influence training dynamic. To address this gap, we first establish a taxonomy of existing paradigms through the lens of sample-target interactions, categorizing them into distinct sample-to-target mapping strategies. Building upon this foundation, we then propose a novel unified loss framework to assess their impact on training efficiency. Through extensive empirical studies on our proposed strategies, we comprehensively analyze how variations in target and sample types, quantities, and qualities influence model training, providing six key insights to enhance training efficacy.


[27] 2506.01988

Surrogate Interpretable Graph for Random Decision Forests

The field of health informatics has been profoundly influenced by the development of random forest models, which have led to significant advances in the interpretability of feature interactions. These models are characterized by their robustness to overfitting and parallelization, making them particularly useful in this domain. However, the increasing number of features and estimators in random forests can prevent domain experts from accurately interpreting global feature interactions, thereby compromising trust and regulatory compliance. A method called the surrogate interpretability graph has been developed to address this issue. It uses graphs and mixed-integer linear programming to analyze and visualize feature interactions. This improves their interpretability by visualizing the feature usage per decision-feature-interaction table and the most dominant hierarchical decision feature interactions for predictions. The implementation of a surrogate interpretable graph enhances global interpretability, which is critical for such a high-stakes domain.


[28] 2506.01989

Coded Robust Aggregation for Distributed Learning under Byzantine Attacks

In this paper, we investigate the problem of distributed learning (DL) in the presence of Byzantine attacks. For this problem, various robust bounded aggregation (RBA) rules have been proposed at the central server to mitigate the impact of Byzantine attacks. However, current DL methods apply RBA rules for the local gradients from the honest devices and the disruptive information from Byzantine devices, and the learning performance degrades significantly when the local gradients of different devices vary considerably from each other. To overcome this limitation, we propose a new DL method to cope with Byzantine attacks based on coded robust aggregation (CRA-DL). Before training begins, the training data are allocated to the devices redundantly. During training, in each iteration, the honest devices transmit coded gradients to the server computed from the allocated training data, and the server then aggregates the information received from both honest and Byzantine devices using RBA rules. In this way, the global gradient can be approximately recovered at the server to update the global model. Compared with current DL methods applying RBA rules, the improvement of CRA-DL is attributed to the fact that the coded gradients sent by the honest devices are closer to each other. This closeness enhances the robustness of the aggregation against Byzantine attacks, since Byzantine messages tend to be significantly different from those of honest devices in this case. We theoretically analyze the convergence performance of CRA-DL. Finally, we present numerical results to verify the superiority of the proposed method over existing baselines, showing its enhanced learning performance under Byzantine attacks.


[29] 2506.01991

Investigating Timing-Based Information Leakage in Data Flow-Driven Real-Time Systems

Leaking information about the execution behavior of critical real-time tasks may lead to serious consequences, including violations of temporal constraints and even severe failures. We study information leakage for a special class of real-time tasks that have two execution modes, namely, typical execution (which invokes the majority of times) and critical execution (to tackle exceptional conditions). The data flow-driven applications inherit such a multimode execution model. In this paper, we investigate whether a low-priority "observer" task can infer the execution patterns of a high-priority "victim" task (especially the critical executions). We develop a new statistical analysis technique and show that by analyzing the response times of the low-priority task, it becomes possible to extract the execution behavior of the high-priority task. We test our approach against a random selection technique that arbitrarily classifies a job as critical. We find that correlating the observer's response times with the victim's jobs can result in higher precision in identifying critical invocations compared to a random guess. We conduct extensive evaluations with systemically generated workloads, including a case study using a UAV autopilot (ArduPilot) taskset parameters. We found that our inference algorithm can achieve relatively low false positive rates (less than 25%) with relatively low footprint (1 MB memory and 50 ms timing overhead on a Raspberry Pi 4 platform). We further demonstrate the feasibility of inference on two cyber-physical platforms: an off-the-shelf manufacturing robot and a custom-built surveillance system.


[30] 2506.01992

No Free Lunch in Active Learning: LLM Embedding Quality Dictates Query Strategy Success

The advent of large language models (LLMs) capable of producing general-purpose representations lets us revisit the practicality of deep active learning (AL): By leveraging frozen LLM embeddings, we can mitigate the computational costs of iteratively fine-tuning large backbones. This study establishes a benchmark and systematically investigates the influence of LLM embedding quality on query strategies in deep AL. We employ five top-performing models from the massive text embedding benchmark (MTEB) leaderboard and two baselines for ten diverse text classification tasks. Our findings reveal key insights: First, initializing the labeled pool using diversity-based sampling synergizes with high-quality embeddings, boosting performance in early AL iterations. Second, the choice of the optimal query strategy is sensitive to embedding quality. While the computationally inexpensive Margin sampling can achieve performance spikes on specific datasets, we find that strategies like Badge exhibit greater robustness across tasks. Importantly, their effectiveness is often enhanced when paired with higher-quality embeddings. Our results emphasize the need for context-specific evaluation of AL strategies, as performance heavily depends on embedding quality and the target task.


[31] 2506.01998

Inter(sectional) Alia(s): Ambiguity in Voice Agent Identity via Intersectional Japanese Self-Referents

Conversational agents that mimic people have raised questions about the ethics of anthropomorphizing machines with human social identity cues. Critics have also questioned assumptions of identity neutrality in humanlike agents. Recent work has revealed that intersectional Japanese pronouns can elicit complex and sometimes evasive impressions of agent identity. Yet, the role of other "neutral" non-pronominal self-referents (NPSR) and voice as a socially expressive medium remains unexplored. In a crowdsourcing study, Japanese participants (N = 204) evaluated three ChatGPT voices (Juniper, Breeze, and Ember) using seven self-referents. We found strong evidence of voice gendering alongside the potential of intersectional self-referents to evade gendering, i.e., ambiguity through neutrality and elusiveness. Notably, perceptions of age and formality intersected with gendering as per sociolinguistic theories, especially boku and watakushi. This work provides a nuanced take on agent identity perceptions and champions intersectional and culturally-sensitive work on voice agents.


[32] 2506.02000

NovelHopQA: Diagnosing Multi-Hop Reasoning Failures in Long Narrative Contexts

Current large language models (LLMs) struggle to answer questions that span tens of thousands of tokens, especially when multi-hop reasoning is involved. While prior benchmarks explore long-context comprehension or multi-hop reasoning in isolation, none jointly vary context length and reasoning depth in natural narrative settings. We introduce NovelHopQA, the first benchmark to evaluate k1-4 hop QA over 64k-128k-token excerpts from 83 full-length public-domain novels. A keyword-guided pipeline builds hop-separated chains grounded in coherent storylines. We evaluate six state-of-the-art (SOTA) models and apply oracle-context filtering to ensure all questions are genuinely answerable. Human annotators validate both alignment and hop depth. We noticed consistent accuracy drops with increased hops and context length, even in frontier models-revealing that sheer scale does not guarantee robust reasoning. Our failure mode analysis highlights common breakdowns, such as missed final-hop integration and long-range drift. NovelHopQA offers a controlled diagnostic setting to stress-test multi-hop reasoning at scale.


[33] 2506.02001

EcoLoRA: Communication-Efficient Federated Fine-Tuning of Large Language Models

To address data locality and privacy restrictions, Federated Learning (FL) has recently been adopted to fine-tune large language models (LLMs), enabling improved performance on various downstream tasks without requiring aggregated data. However, the repeated exchange of model updates in FL can result in prohibitively high communication costs, hindering the distributed learning process. To address this challenge, we propose EcoLoRA, a novel communication-efficient federated fine-tuning framework for LLMs. Leveraging the modular structure, we propose a round-robin segment sharing scheme, where each client uploads only a complementary LoRA segment per round to reduce network bandwidth. It is further combined with adaptive sparsification methods tailored to LoRA's training dynamics and lossless encoding techniques. We conduct extensive evaluations on both question-answering and value-alignment tasks across multiple datasets and models. The results show that EcoLoRA significantly reduces communication overhead without compromising performance. For instance, it reduces communication time by up to 79% and total training time by up to 65%.


[34] 2506.02002

Machine Learning for Consistency Violation Faults Analysis

Distributed systems frequently encounter consistency violation faults (cvfs), where nodes operate on outdated or inaccurate data, adversely affecting convergence and overall system performance. This study presents a machine learning-based approach for analyzing the impact of CVFs, using Dijkstra's Token Ring problem as a case study. By computing program transition ranks and their corresponding effects, the proposed method quantifies the influence of cvfs on system behavior. To address the state space explosion encountered in larger graphs, two models are implemented: a Feedforward Neural Network (FNN) and a distributed neural network leveraging TensorFlow's \texttt{tf.distribute} API. These models are trained on datasets generated from smaller graphs (3 to 10 nodes) to predict parameters essential for determining rank effects. Experimental results demonstrate promising performance, with a test loss of 4.39 and a mean absolute error of 1.5. Although distributed training on a CPU did not yield significant speed improvements over a single-device setup, the findings suggest that scalability could be enhanced through the use of advanced hardware accelerators such as GPUs or TPUs.


[35] 2506.02003

Navigating the Edge-Cloud Continuum: A State-of-Practice Survey

The edge-cloud continuum has emerged as a transformative paradigm that meets the growing demand for low-latency, scalable, end-to-end service delivery by integrating decentralized edge resources with centralized cloud infrastructures. Driven by the exponential growth of IoT-generated data and the need for real-time responsiveness, this continuum features multi-layered architectures. However, its adoption is hindered by infrastructural challenges, fragmented standards, and limited guidance for developers and researchers. Existing surveys rarely tackle practical implementation or recent industrial advances. This survey closes those gaps from a developer-oriented perspective, introducing a conceptual framework for navigating the edge-cloud continuum. We systematically examine architectural models, performance metrics, and paradigms for computation, communication, and deployment, together with enabling technologies and widely used edge-to-cloud platforms. We also discuss real-world applications in smart cities, healthcare, and Industry 4.0, as well as tools for testing and experimentation. Drawing on academic research and practices of leading cloud providers, this survey serves as a practical guide for developers and a structured reference for researchers, while identifying open challenges and emerging trends that will shape the future of the continuum.


[36] 2506.02005

Pruning for Performance: Efficient Idiom and Metaphor Classification in Low-Resource Konkani Using mBERT

In this paper, we address the persistent challenges that figurative language expressions pose for natural language processing (NLP) systems, particularly in low-resource languages such as Konkani. We present a hybrid model that integrates a pre-trained Multilingual BERT (mBERT) with a bidirectional LSTM and a linear classifier. This architecture is fine-tuned on a newly introduced annotated dataset for metaphor classification, developed as part of this work. To improve the model's efficiency, we implement a gradient-based attention head pruning strategy. For metaphor classification, the pruned model achieves an accuracy of 78%. We also applied our pruning approach to expand on an existing idiom classification task, achieving 83% accuracy. These results demonstrate the effectiveness of attention head pruning for building efficient NLP tools in underrepresented languages.


[37] 2506.02006

Efficient and Workload-Aware LLM Serving via Runtime Layer Swapping and KV Cache Resizing

Efficiently serving large language models (LLMs) under dynamic and bursty workloads remains a key challenge for real-world deployment. Existing serving frameworks and static model compression techniques fail to adapt to workload fluctuations, leading to either service-level objective (SLO) violations under full-precision serving or persistent accuracy degradation with static quantization. We present MorphServe, a dynamic, workload-aware LLM serving framework based on morphological adaptation. MorphServe introduces two asynchronous, token-level runtime mechanisms: quantized layer swapping, which selectively replaces less impactful layers with quantized alternatives during high-load periods, and pressure-aware KV cache resizing, which dynamically adjusts KV cache capacity in response to memory pressure. These mechanisms enable state-preserving transitions with minimum runtime overhead and are fully compatible with modern scheduling and attention techniques. Extensive experiments on Vicuna and Llama family models with real-world workloads demonstrate that MorphServe reduces average SLO violations by 92.45 percent and improves the P95 TTFT latency by 2.2x-3.9x compared to full-precision serving, without compromising generation quality. These results establish MorphServe as a practical and elastic solution for LLM deployment in dynamic environments.


[38] 2506.02007

eACGM: Non-instrumented Performance Tracing and Anomaly Detection towards Machine Learning Systems

We present eACGM, a full-stack AI/ML system monitoring framework based on eBPF. eACGM collects real-time performance data from key hardware components, including the GPU and network communication layer, as well as from key software stacks such as CUDA, Python, and PyTorch, all without requiring any code instrumentation or modifications. Additionally, it leverages libnvml to gather process-level GPU resource usage information. By applying a Gaussian Mixture Model (GMM) to the collected multidimensional performance metrics for statistical modeling and clustering analysis, eACGM effectively identifies complex failure modes, such as latency anomalies, hardware failures, and communication inefficiencies, enabling rapid diagnosis of system bottlenecks and abnormal behaviors. To evaluate eACGM's effectiveness and practicality, we conducted extensive empirical studies and case analyses in multi-node distributed training scenarios. The results demonstrate that eACGM, while maintaining a non-intrusive and low-overhead profile, successfully captures critical performance anomalies during model training and inference. Its stable anomaly detection performance and comprehensive monitoring capabilities validate its applicability and scalability in real-world production environments, providing strong support for performance optimization and fault diagnosis in large-scale AI/ML systems.


[39] 2506.02008

Big Data-Driven Fraud Detection Using Machine Learning and Real-Time Stream Processing

In the age of digital finance, detecting fraudulent transactions and money laundering is critical for financial institutions. This paper presents a scalable and efficient solution using Big Data tools and machine learning models. We utilize realtime data streaming platforms like Apache Kafka and Flink, distributed processing frameworks such as Apache Spark, and cloud storage services AWS S3 and RDS. A synthetic dataset representing real-world Anti-Money Laundering (AML) challenges is employed to build a binary classification model. Logistic Regression, Decision Tree, and Random Forest are trained and evaluated using engineered features. Our system demonstrates over 99% classification accuracy, illustrating the power of combining Big Data architectures with machine learning to tackle fraud.


[40] 2506.02009

STRATUS: A Multi-agent System for Autonomous Reliability Engineering of Modern Clouds

In cloud-scale systems, failures are the norm. A distributed computing cluster exhibits hundreds of machine failures and thousands of disk failures; software bugs and misconfigurations are reported to be more frequent. The demand for autonomous, AI-driven reliability engineering continues to grow, as existing humanin-the-loop practices can hardly keep up with the scale of modern clouds. This paper presents STRATUS, an LLM-based multi-agent system for realizing autonomous Site Reliability Engineering (SRE) of cloud services. STRATUS consists of multiple specialized agents (e.g., for failure detection, diagnosis, mitigation), organized in a state machine to assist system-level safety reasoning and enforcement. We formalize a key safety specification of agentic SRE systems like STRATUS, termed Transactional No-Regression (TNR), which enables safe exploration and iteration. We show that TNR can effectively improve autonomous failure mitigation. STRATUS significantly outperforms state-of-the-art SRE agents in terms of success rate of failure mitigation problems in AIOpsLab and ITBench (two SRE benchmark suites), by at least 1.5 times across various models. STRATUS shows a promising path toward practical deployment of agentic systems for cloud reliability.


[41] 2506.02010

CNVSRC 2024: The Second Chinese Continuous Visual Speech Recognition Challenge

This paper presents the second Chinese Continuous Visual Speech Recognition Challenge (CNVSRC 2024), which builds on CNVSRC 2023 to advance research in Chinese Large Vocabulary Continuous Visual Speech Recognition (LVC-VSR). The challenge evaluates two test scenarios: reading in recording studios and Internet speech. CNVSRC 2024 uses the same datasets as its predecessor CNVSRC 2023, which involves CN-CVS for training and CNVSRC-Single/Multi for development and evaluation. However, CNVSRC 2024 introduced two key improvements: (1) a stronger baseline system, and (2) an additional dataset, CN-CVS2-P1, for open tracks to improve data volume and diversity. The new challenge has demonstrated several important innovations in data preprocessing, feature extraction, model design, and training strategies, further pushing the state-of-the-art in Chinese LVC-VSR. More details and resources are available at the official website.


[42] 2506.02011

OASIS: Online Sample Selection for Continual Visual Instruction Tuning

In continual visual instruction tuning (CVIT) scenarios, where multi-modal data continuously arrive in an online streaming manner, training delays from large-scale data significantly hinder real-time adaptation. While existing data selection strategies reduce training overheads, they rely on pre-trained reference models, which are impractical in CVIT setups due to unknown future data. Recent reference model-free online sample selection methods address this issue but typically select a fixed number of samples per batch (e.g., top-k), causing them to suffer from distribution shifts where informativeness varies across batches. To address these limitations, we propose OASIS, an adaptive online sample selection approach for CVIT that: (1) dynamically adjusts selected samples per batch based on relative inter-batch informativeness, and (2) minimizes redundancy of selected samples through iterative selection score updates. Empirical results across various MLLMs, such as LLaVA-1.5 and Qwen-VL-2.5, show that OASIS achieves comparable performance to full-data training using only 25% of the data and outperforms the state-of-the-art.


[43] 2506.02012

Leveraging Large Language Models in Visual Speech Recognition: Model Scaling, Context-Aware Decoding, and Iterative Polishing

Visual Speech Recognition (VSR) transcribes speech by analyzing lip movements. Recently, Large Language Models (LLMs) have been integrated into VSR systems, leading to notable performance improvements. However, the potential of LLMs has not been extensively studied, and how to effectively utilize LLMs in VSR tasks remains unexplored. This paper systematically explores how to better leverage LLMs for VSR tasks and provides three key contributions: (1) Scaling Test: We study how the LLM size affects VSR performance, confirming a scaling law in the VSR task. (2) Context-Aware Decoding: We add contextual text to guide the LLM decoding, improving recognition accuracy. (3) Iterative Polishing: We propose iteratively refining LLM outputs, progressively reducing recognition errors. Extensive experiments demonstrate that by these designs, the great potential of LLMs can be largely harnessed, leading to significant VSR performance improvement.


[44] 2506.02014

Research on Driving Scenario Technology Based on Multimodal Large Lauguage Model Optimization

With the advancement of autonomous and assisted driving technologies, higher demands are placed on the ability to understand complex driving scenarios. Multimodal general large models have emerged as a solution for this challenge. However, applying these models in vertical domains involves difficulties such as data collection, model training, and deployment optimization. This paper proposes a comprehensive method for optimizing multimodal models in driving scenarios, including cone detection, traffic light recognition, speed limit recommendation, and intersection alerts. The method covers key aspects such as dynamic prompt optimization, dataset construction, model training, and deployment. Specifically, the dynamic prompt optimization adjusts the prompts based on the input image content to focus on objects affecting the ego vehicle, enhancing the model's task-specific focus and judgment capabilities. The dataset is constructed by combining real and synthetic data to create a high-quality and diverse multimodal training dataset, improving the model's generalization in complex driving environments. In model training, advanced techniques like knowledge distillation, dynamic fine-tuning, and quantization are integrated to reduce storage and computational costs while boosting performance. Experimental results show that this systematic optimization method not only significantly improves the model's accuracy in key tasks but also achieves efficient resource utilization, providing strong support for the practical application of driving scenario perception technologies.


[45] 2506.02015

Object-centric Self-improving Preference Optimization for Text-to-Image Generation

Recent advancements in Multimodal Large Language Models (MLLMs) have significantly improved both image understanding and generation capabilities. Despite these improvements, MLLMs still struggle with fine-grained visual comprehension, particularly in text-to-image generation tasks. While preference optimization methods have been explored to address these limitations in image understanding tasks, their application to image generation remains largely underexplored. To address this gap, we propose an Object-centric Self-improving Preference Optimization (OSPO) framework designed for text-to-image generation by MLLMs. OSPO leverages the intrinsic reasoning abilities of MLLMs without requiring any external datasets or models. OSPO emphasizes the importance of high-quality preference pair data, which is critical for effective preference optimization. To achieve this, it introduces a self-improving mechanism that autonomously constructs object-level contrastive preference pairs through object-centric prompt perturbation, densification and VQA scoring. This process eliminates ambiguous or disproportionate variations commonly found in naively generated preference pairs, thereby enhancing the effectiveness of preference optimization. We validate OSPO on three representative compositional text-to-image benchmarks, demonstrating substantial performance gains over baseline models.


[46] 2506.02016

Are classical deep neural networks weakly adversarially robust?

Adversarial attacks have received increasing attention and it has been widely recognized that classical DNNs have weak adversarial robustness. The most commonly used adversarial defense method, adversarial training, improves the adversarial accuracy of DNNs by generating adversarial examples and retraining the model. However, adversarial training requires a significant computational overhead. In this paper, inspired by existing studies focusing on the clustering properties of DNN output features at each layer and the Progressive Feedforward Collapse phenomenon, we propose a method for adversarial example detection and image recognition that uses layer-wise features to construct feature paths and computes the correlation between the examples feature paths and the class-centered feature paths. Experimental results show that the recognition method achieves 82.77% clean accuracy and 44.17% adversarial accuracy on the ResNet-20 with PFC. Compared to the adversarial training method with 77.64% clean accuracy and 52.94% adversarial accuracy, our method exhibits a trade-off without relying on computationally expensive defense strategies. Furthermore, on the standard ResNet-18, our method maintains this advantage with respective metrics of 80.01% and 46.1%. This result reveals inherent adversarial robustness in DNNs, challenging the conventional understanding of the weak adversarial robustness in DNNs.


[47] 2506.02017

Fairness through Feedback: Addressing Algorithmic Misgendering in Automatic Gender Recognition

Automatic Gender Recognition (AGR) systems are an increasingly widespread application in the Machine Learning (ML) landscape. While these systems are typically understood as detecting gender, they often classify datapoints based on observable features correlated at best with either male or female sex. In addition to questionable binary assumptions, from an epistemological point of view, this is problematic for two reasons. First, there exists a gap between the categories the system is meant to predict (woman versus man) and those onto which their output reasonably maps (female versus male). What is more, gender cannot be inferred on the basis of such observable features. This makes AGR tools often unreliable, especially in the case of non-binary and gender non-conforming people. We suggest a theoretical and practical rethinking of AGR systems. To begin, distinctions are made between sex, gender, and gender expression. Then, we build upon the observation that, unlike algorithmic misgendering, human-human misgendering is open to the possibility of re-evaluation and correction. We suggest that analogous dynamics should be recreated in AGR, giving users the possibility to correct the system's output. While implementing such a feedback mechanism could be regarded as diminishing the system's autonomy, it represents a way to significantly increase fairness levels in AGR. This is consistent with the conceptual change of paradigm that we advocate for AGR systems, which should be understood as tools respecting individuals' rights and capabilities of self-expression and determination.


[48] 2506.02018

Enhancing Paraphrase Type Generation: The Impact of DPO and RLHF Evaluated with Human-Ranked Data

Paraphrasing re-expresses meaning to enhance applications like text simplification, machine translation, and question-answering. Specific paraphrase types facilitate accurate semantic analysis and robust language models. However, existing paraphrase-type generation methods often misalign with human preferences due to reliance on automated metrics and limited human-annotated training data, obscuring crucial aspects of semantic fidelity and linguistic transformations. This study addresses this gap by leveraging a human-ranked paraphrase-type dataset and integrating Direct Preference Optimization (DPO) to align model outputs directly with human judgments. DPO-based training increases paraphrase-type generation accuracy by 3 percentage points over a supervised baseline and raises human preference ratings by 7 percentage points. A newly created human-annotated dataset supports more rigorous future evaluations. Additionally, a paraphrase-type detection model achieves F1 scores of 0.91 for addition/deletion, 0.78 for same polarity substitution, and 0.70 for punctuation changes. These findings demonstrate that preference data and DPO training produce more reliable, semantically accurate paraphrases, enabling downstream applications such as improved summarization and more robust question-answering. The PTD model surpasses automated metrics and provides a more reliable framework for evaluating paraphrase quality, advancing paraphrase-type research toward richer, user-aligned language generation and establishing a stronger foundation for future evaluations grounded in human-centric criteria.


[49] 2506.02019

ChatCFD: an End-to-End CFD Agent with Domain-specific Structured Thinking

Computational Fluid Dynamics (CFD) is essential for scientific and engineering advancements but is limited by operational complexity and the need for extensive expertise. This paper presents ChatCFD, a large language model-driven pipeline that automates CFD workflows within the OpenFOAM framework. It enables users to configure and execute complex simulations from natural language prompts or published literature with minimal expertise. The innovation is its structured approach to database construction, configuration validation, and error reflection, integrating CFD and OpenFOAM knowledge with general language models to improve accuracy and adaptability. Validation shows ChatCFD can autonomously reproduce published CFD results, handling complex, unseen configurations beyond basic examples, a task challenging for general language models.


[50] 2506.02020

Improve Multi-Modal Embedding Learning via Explicit Hard Negative Gradient Amplifying

With the rapid advancement of multi-modal large language models (MLLMs) in recent years, the foundational Contrastive Language-Image Pretraining (CLIP) framework has been successfully extended to MLLMs, enabling more powerful and universal multi-modal embeddings for a wide range of retrieval tasks. Despite these developments, the core contrastive learning paradigm remains largely unchanged from CLIP-style models to MLLMs. Within this framework, the effective mining of hard negative samples continues to be a critical factor for enhancing performance. Prior works have introduced both offline and online strategies for hard negative mining to improve the efficiency of contrastive learning. While these approaches have led to improved multi-modal embeddings, the specific contribution of each hard negative sample to the learning process has not been thoroughly investigated. In this work, we conduct a detailed analysis of the gradients of the info-NCE loss with respect to the query, positive, and negative samples, elucidating the role of hard negatives in updating model parameters. Building upon this analysis, we propose to explicitly amplify the gradients associated with hard negative samples, thereby encouraging the model to learn more discriminative embeddings. Our multi-modal embedding model, trained with the proposed Explicit Gradient Amplifier and based on the LLaVA-OneVision-7B architecture, achieves state-of-the-art performance on the MMEB benchmark compared to previous methods utilizing the same MLLM backbone. Furthermore, when integrated with our self-developed MLLM, QQMM, our approach attains the top rank on the MMEB leaderboard. Code and models are released on https://github.com/QQ-MM/QQMM-embed.


[51] 2506.02021

Dynamic-Aware Video Distillation: Optimizing Temporal Resolution Based on Video Semantics

With the rapid development of vision tasks and the scaling on datasets and models, redundancy reduction in vision datasets has become a key area of research. To address this issue, dataset distillation (DD) has emerged as a promising approach to generating highly compact synthetic datasets with significantly less redundancy while preserving essential information. However, while DD has been extensively studied for image datasets, DD on video datasets remains underexplored. Video datasets present unique challenges due to the presence of temporal information and varying levels of redundancy across different classes. Existing DD approaches assume a uniform level of temporal redundancy across all different video semantics, which limits their effectiveness on video datasets. In this work, we propose Dynamic-Aware Video Distillation (DAViD), a Reinforcement Learning (RL) approach to predict the optimal Temporal Resolution of the synthetic videos. A teacher-in-the-loop reward function is proposed to update the RL agent policy. To the best of our knowledge, this is the first study to introduce adaptive temporal resolution based on video semantics in video dataset distillation. Our approach significantly outperforms existing DD methods, demonstrating substantial improvements in performance. This work paves the way for future research on more efficient and semantic-adaptive video dataset distillation research.


[52] 2506.02022

Do You See Me : A Multidimensional Benchmark for Evaluating Visual Perception in Multimodal LLMs

Multimodal Large Language Models (MLLMs) show reasoning promise, yet their visual perception is a critical bottleneck. Strikingly, MLLMs can produce correct answers even while misinterpreting crucial visual elements, masking these underlying failures. Our preliminary study on a joint perception-reasoning dataset revealed that for one leading MLLM, 29% of its correct answers to reasoning questions still exhibited visual perception errors. To systematically address this, we introduce "Do You See Me", a scalable benchmark with 1,758 images and 2,612 questions. It spans seven human-psychology inspired subtasks in 2D and 3D, featuring controllable complexity to rigorously evaluate MLLM visual skills. Our findings on 3 leading closed-source and 5 major open-source models reveal a stark deficit: humans achieve 96.49% accuracy, while top MLLMs average below 50%. This performance gap widens rapidly with increased task complexity (e.g., from 12% to 45% in the visual form constancy subtask). Further analysis into the root causes suggests that failures stem from challenges like misallocated visual attention and the instability of internal representations for fine-grained details, especially at or below encoder patch resolution. This underscores an urgent need for MLLMs with truly robust visual perception. The benchmark dataset, source code and evaluation scripts are available at https://github.com/microsoft/Do-You-See-Me.


[53] 2506.02023

DistMLIP: A Distributed Inference Platform for Machine Learning Interatomic Potentials

Large-scale atomistic simulations are essential to bridge computational materials and chemistry to realistic materials and drug discovery applications. In the past few years, rapid developments of machine learning interatomic potentials (MLIPs) have offered a solution to scale up quantum mechanical calculations. Parallelizing these interatomic potentials across multiple devices poses a challenging, but promising approach to further extending simulation scales to real-world applications. In this work, we present DistMLIP, an efficient distributed inference platform for MLIPs based on zero-redundancy, graph-level parallelization. In contrast to conventional space-partitioning parallelization, DistMLIP enables efficient MLIP parallelization through graph partitioning, allowing multi-device inference on flexible MLIP model architectures like multi-layer graph neural networks. DistMLIP presents an easy-to-use, flexible, plug-in interface that enables distributed inference of pre-existing MLIPs. We demonstrate DistMLIP on four widely used and state-of-the-art MLIPs: CHGNet, MACE, TensorNet, and eSEN. We show that existing foundational potentials can perform near-million-atom calculations at the scale of a few seconds on 8 GPUs with DistMLIP.


[54] 2506.02024

NestedFP: High-Performance, Memory-Efficient Dual-Precision Floating Point Support for LLMs

Large Language Models (LLMs) are playing a crucial role in latency-critical, high-throughput services like virtual assistants and code generation. While techniques such as continuous batching and paged attention address service-level objectives (SLOs), and quantization methods accelerate inference, the dynamic and efficient adaptation of precision at runtime remains a significant, largely underexplored challenge. The emergence of hardware support for FP8 arithmetic, offering up to 2x the throughput of FP16, presents an attractive opportunity for interactive LLM serving. However, current approaches like co-deploying FP8 and FP16 models suffer from increased storage overhead and fail to unlock FP8's full potential. To address these limitations, we introduce NestedFP, a novel precision-adaptive serving technique enabling seamless FP8 and FP16 inference from a single 16-bit model representation, thereby incurring no additional memory cost. NestedFP decomposes each FP16 weight into two 8-bit components, facilitating efficient FP8 execution while preserving full FP16 accuracy. We demonstrate the practical viability of our approach by implementing a custom CUTLASS-based GEMM kernel that reconstructs FP16 operands on-the-fly, integrated within the vLLM serving framework. Our evaluation shows that NestedFP delivers up to 1.55x throughput improvement in FP8 mode with negligible accuracy degradation compared to FP16 precision, while introducing only 3.9% performance overhead on average in FP16 mode across various models. NestedFP thus provides a flexible foundation for dynamic, SLO-aware precision selection, paving the way for more scalable and efficient LLM serving under bursty and heterogeneous workloads.


[55] 2506.02025

Evaluating the Efficacy of LLM-Based Reasoning for Multiobjective HPC Job Scheduling

High-Performance Computing (HPC) job scheduling involves balancing conflicting objectives such as minimizing makespan, reducing wait times, optimizing resource use, and ensuring fairness. Traditional methods, including heuristic-based (e.g., First-Come-First-Served) or intensive optimization techniques, often lack adaptability to dynamic workloads and heterogeneous HPC systems. To address this, we propose a novel Large Language Model (LLM)-based scheduler using a ReAct-style framework (Reason + Act), enabling iterative, interpretable decision-making. The system incorporates a scratchpad memory to track scheduling history and refine decisions via natural language feedback, while a constraint enforcement module ensures feasibility and safety. We evaluate our approach using OpenAI's O4-Mini and Anthropic's Claude 3.7 across seven real-world HPC workload scenarios, including heterogeneous mixes, bursty patterns, and adversarial cases. Comparisons against FCFS, Shortest Job First, and Google OR-Tools (on 10 to 100 jobs) reveal that LLM-based scheduling effectively balances multiple objectives while offering transparent reasoning through natural language traces. The method excels in constraint satisfaction and adapts to diverse workloads without domain-specific training. However, a trade-off between reasoning quality and computational overhead challenges real-time deployment. This work presents the first comprehensive study of reasoning-capable LLMs for HPC scheduling, demonstrating their potential to handle multiobjective optimization while highlighting limitations in computational efficiency. The findings provide insights into leveraging advanced language models for complex scheduling problems in dynamic HPC environments.


[56] 2506.02026

D-Rex: Heterogeneity-Aware Reliability Framework and Adaptive Algorithms for Distributed Storage

The exponential growth of data necessitates distributed storage models, such as peer-to-peer systems and data federations. While distributed storage can reduce costs and increase reliability, the heterogeneity in storage capacity, I/O performance, and failure rates of storage resources makes their efficient use a challenge. Further, node failures are common and can lead to data unavailability and even data loss. Erasure coding is a common resiliency strategy implemented in storage systems to mitigate failures by striping data across storage locations. However, erasure coding is computationally expensive and existing systems do not consider the heterogeneous resources and their varied capacity and performance when placing data chunks. We tackle the challenges of using erasure coding with distributed and heterogeneous nodes, aiming to store as much data as possible, minimize encoding and decoding time, and meeting user-defined reliability requirements for each data item. We propose two new dynamic scheduling algorithms, D-Rex LB and D-Rex SC, that adaptively choose erasure coding parameters and map chunks to heterogeneous nodes. D-Rex SC achieves robust performance for both storage utilization and throughput, at a higher computational cost, while D-Rex LB is faster but with slightly less competitive performance. In addition, we propose two greedy algorithms, GreedyMinStorage and GreedyLeastUsed, that optimize for storage utilization and load balancing, respectively. Our experimental evaluation shows that our dynamic schedulers store, on average, 45% more data items without significantly degrading I/O throughput compared to state-of-the-art algorithms, while GreedyLeastUsed is able to store 21% more data items while also increasing throughput.


[57] 2506.02027

The End Of Universal Lifelong Identifiers: Identity Systems For The AI Era

Many identity systems assign a single, static identifier to an individual for life, reused across domains like healthcare, finance, and education. These Universal Lifelong Identifiers (ULIs) underpin critical workflows but now pose systemic privacy risks. We take the position that ULIs are fundamentally incompatible with the AI era and must be phased out. We articulate a threat model grounded in modern AI capabilities and show that traditional safeguards such as redaction, consent, and access controls are no longer sufficient. We define core properties for identity systems in the AI era and present a cryptographic framework that satisfies them while retaining compatibility with existing identifier workflows. Our design preserves institutional workflows, supports essential functions such as auditability and delegation, and offers a practical migration path beyond ULIs.


[58] 2506.02028

A tertiary review on quantum cryptography

Quantum computers impose an immense threat to system security. As a countermeasure, new cryptographic classes have been created to prevent these attacks. Technologies such as post-quantum cryptography and quantum cryptography. Quantum cryptography uses the principle of quantum physics to produce theoretically unbreakable security. This tertiary review selected 51 secondary studies from the Scopus database and presented bibliometric analysis, a list of the main techniques used in the field, and existing open challenges and future directions in quantum cryptography research. The results showed a prevalence of QKD over other techniques among the selected papers and stated that the field still faces many problems related to implementation cost, error correction, decoherence, key rates, communication distance, and quantum hacking.


[59] 2506.02030

Adaptive Privacy-Preserving SSD

Data remanence in NAND flash complicates complete deletion on IoT SSDs. We design an adaptive architecture offering four privacy levels (PL0-PL3) that select among address, data, and parity deletion techniques. Quantitative analysis balances efficacy, latency, endurance, and cost. Machine-learning adjusts levels contextually, boosting privacy with negligible performance overhead and complexity.


[60] 2506.02032

Towards Secure MLOps: Surveying Attacks, Mitigation Strategies, and Research Challenges

The rapid adoption of machine learning (ML) technologies has driven organizations across diverse sectors to seek efficient and reliable methods to accelerate model development-to-deployment. Machine Learning Operations (MLOps) has emerged as an integrative approach addressing these requirements by unifying relevant roles and streamlining ML workflows. As the MLOps market continues to grow, securing these pipelines has become increasingly critical. However, the unified nature of MLOps ecosystem introduces vulnerabilities, making them susceptible to adversarial attacks where a single misconfiguration can lead to compromised credentials, severe financial losses, damaged public trust, and the poisoning of training data. Our paper presents a systematic application of the MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) framework, a comprehensive and continuously updated catalog of AI-focused attacks, to systematically assess attacks across different phases of the MLOps ecosystem. We begin by examining the preparatory phases during which adversaries acquire the essential intelligence required to initiate their attacks. We then present a structured taxonomy of attack techniques explicitly mapped to corresponding phases of the MLOps ecosystem, supported by examples drawn from red-teaming exercises and real-world incidents. This is followed by a taxonomy of mitigation strategies aligned with these attack categories, offering actionable early-stage defenses to strengthen the security of MLOps ecosystem. Given the rapid evolution and adoption of MLOps, we further highlight key research gaps that require immediate attention. Our work emphasizes the importance of implementing robust security protocols from the outset, empowering practitioners to safeguard MLOps ecosystem against evolving cyber attacks.


[61] 2506.02033

Smartphone-Based Food Traceability System Using NoSQL Database

With growing consumer health awareness, ensuring food safety and quality throughout the supply chain is crucial, particularly for perishable goods. Contamination can occur during production, processing, or distribution, making real-time monitoring essential. This study proposes an affordable Smartphone-based food traceability system (FTS) that utilizes RFID technology and smartphone sensors. A smartphone-based RFID reader tracks products, while integrated sensors monitor temperature, humidity, and location during storage and transport. The system is assessed in the kimchi supply chain in Korea, providing real-time data to both managers and consumers. It offered comprehensive product tracking, including temperature and humidity records, ensuring transparency and safety. Compared to traditional methods, the proposed system demonstrated improved efficiency in handling large volumes of data while maintaining accurate traceability. The results highlight its potential for enhancing food safety and quality across supply chains.


[62] 2506.02034

High-throughput viscometry via machine-learning from videos of inverted vials

Although the inverted vial test has been widely used as a qualitative method for estimating fluid viscosity, quantitative rheological characterization has remained limited due to its complex, uncontrolled flow - driven by gravity, surface tension, inertia, and initial conditions. Here, we present a computer vision (CV) viscometer that automates the inverted vial test and enables quantitative viscosity inference across nearly five orders of magnitude (0.01-1000 Pas), without requiring direct velocity field measurements. The system simultaneously inverts multiple vials and records videos of the evolving fluid, which are fed into a neural network that approximates the inverse function from visual features and known fluid density. Despite the complex, multi-regime flow within the vial, our approach achieves relative errors below 25%, improving to 15% for viscosities above 0.1 Pas. When tested on non-Newtonian polymer solutions, the method reliably estimates zero-shear viscosity as long as viscoelastic or shear-thinning behaviors remain negligible within the flow regime. Moreover, high standard deviations in the inferred values may serve as a proxy for identifying fluids with strong non-Newtonian behavior. The CV viscometer requires only one camera and one motor, is contactless and low-cost, and can be easily integrated into high-throughput experimental automated and manual workflows. Transcending traditional characterization paradigms, our method leverages uncontrolled flows and visual features to achieve simplicity and scalability, enabling high-throughput viscosity inference that can meet the growing demand of data-driven material models while remaining accessible to lower resource environments.


[63] 2506.02035

Asymmetry by Design: Boosting Cyber Defenders with Differential Access to AI

As AI-enabled cyber capabilities become more advanced, we propose "differential access" as a strategy to tilt the cybersecurity balance toward defense by shaping access to these capabilities. We introduce three possible approaches that form a continuum, becoming progressively more restrictive for higher-risk capabilities: Promote Access, Manage Access, and Deny by Default. However, a key principle across all approaches is the need to prioritize defender access, even in the most restrictive scenarios, so that defenders can prepare for adversaries gaining access to similar capabilities. This report provides a process to help frontier AI developers choose and implement one of the three differential access approaches, including considerations based on a model's cyber capabilities, a defender's maturity and role, and strategic and technical implementation details. We also present four example schemes for defenders to reference, demonstrating how differential access provides value across various capability and defender levels, and suggest directions for further research.


[64] 2506.02037

FinS-Pilot: A Benchmark for Online Financial System

Large language models (LLMs) have demonstrated remarkable capabilities across various professional domains, with their performance typically evaluated through standardized benchmarks. However, the development of financial RAG benchmarks has been constrained by data confidentiality issues and the lack of dynamic data integration. To address this issue, we introduces FinS-Pilot, a novel benchmark for evaluating RAG systems in online financial applications. Constructed from real-world financial assistant interactions, our benchmark incorporates both real-time API data and structured text sources, organized through an intent classification framework covering critical financial domains such as equity analysis and macroeconomic forecasting. The benchmark enables comprehensive evaluation of financial assistants' capabilities in handling both static knowledge and time-sensitive market information. Through systematic experiments with multiple Chinese leading LLMs, we demonstrate FinS-Pilot's effectiveness in identifying models suitable for financial applications while addressing the current gap in specialized evaluation tools for the financial domain. Our work contributes both a practical evaluation framework and a curated dataset to advance research in financial NLP systems. The code and dataset are accessible on GitHub\footnote{https://github.com/PhealenWang/financial\_rag\_benchmark}.


[65] 2506.02038

Blockchain Powered Edge Intelligence for U-Healthcare in Privacy Critical and Time Sensitive Environment

Edge Intelligence (EI) serves as a critical enabler for privacy-preserving systems by providing AI-empowered computation and distributed caching services at the edge, thereby minimizing latency and enhancing data privacy. The integration of blockchain technology further augments EI frameworks by ensuring transactional transparency, auditability, and system-wide reliability through a decentralized network model. However, the operational architecture of such systems introduces inherent vulnerabilities, particularly due to the extensive data interactions between edge gateways (EGs) and the distributed nature of information storage during service provisioning. To address these challenges, we propose an autonomous computing model along with its interaction topologies tailored for privacy-critical and time-sensitive health applications. The system supports continuous monitoring, real-time alert notifications, disease detection, and robust data processing and aggregation. It also includes a data transaction handler and mechanisms for ensuring privacy at the EGs. Moreover, a resource-efficient one-dimensional convolutional neural network (1D-CNN) is proposed for the multiclass classification of arrhythmia, enabling accurate and real-time analysis of constrained EGs. Furthermore, a secure access scheme is defined to manage both off-chain and on-chain data sharing and storage. To validate the proposed model, comprehensive security, performance, and cost analyses are conducted, demonstrating the efficiency and reliability of the fine-grained access control scheme.


[66] 2506.02040

Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem

The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.


[67] 2506.02041

Enhancing Multimodal Continual Instruction Tuning with BranchLoRA

Multimodal Continual Instruction Tuning (MCIT) aims to finetune Multimodal Large Language Models (MLLMs) to continually align with human intent across sequential tasks. Existing approaches often rely on the Mixture-of-Experts (MoE) LoRA framework to preserve previous instruction alignments. However, these methods are prone to Catastrophic Forgetting (CF), as they aggregate all LoRA blocks via simple summation, which compromises performance over time. In this paper, we identify a critical parameter inefficiency in the MoELoRA framework within the MCIT context. Based on this insight, we propose BranchLoRA, an asymmetric framework to enhance both efficiency and performance. To mitigate CF, we introduce a flexible tuning-freezing mechanism within BranchLoRA, enabling branches to specialize in intra-task knowledge while fostering inter-task collaboration. Moreover, we incrementally incorporate task-specific routers to ensure an optimal branch distribution over time, rather than favoring the most recent task. To streamline inference, we introduce a task selector that automatically routes test inputs to the appropriate router without requiring task identity. Extensive experiments on the latest MCIT benchmark demonstrate that BranchLoRA significantly outperforms MoELoRA and maintains its superiority across various MLLM sizes.


[68] 2506.02043

Docker under Siege: Securing Containers in the Modern Era

Containerization, driven by Docker, has transformed application development and deployment by enhancing efficiency and scalability. However, the rapid adoption of container technologies introduces significant security challenges that require careful management. This paper investigates key areas of container security, including runtime protection, network safeguards, configuration best practices, supply chain security, and comprehensive monitoring and logging solutions. We identify common vulnerabilities within these domains and provide actionable recommendations to address and mitigate these risks. By integrating security throughout the Software Development Lifecycle (SDLC), organizations can reinforce their security posture, creating a resilient and reliable containerized application infrastructure that withstands evolving threats.


[69] 2506.02046

Machine vs Machine: Using AI to Tackle Generative AI Threats in Assessment

This paper presents a theoretical framework for addressing the challenges posed by generative artificial intelligence (AI) in higher education assessment through a machine-versus-machine approach. Large language models like GPT-4, Claude, and Llama increasingly demonstrate the ability to produce sophisticated academic content, traditional assessment methods face an existential threat, with surveys indicating 74-92% of students experimenting with these tools for academic purposes. Current responses, ranging from detection software to manual assessment redesign, show significant limitations: detection tools demonstrate bias against non-native English writers and can be easily circumvented, while manual frameworks rely heavily on subjective judgment and assume static AI capabilities. This paper introduces a dual strategy paradigm combining static analysis and dynamic testing to create a comprehensive theoretical framework for assessment vulnerability evaluation. The static analysis component comprises eight theoretically justified elements: specificity and contextualization, temporal relevance, process visibility requirements, personalization elements, resource accessibility, multimodal integration, ethical reasoning requirements, and collaborative elements. Each element addresses specific limitations in generative AI capabilities, creating barriers that distinguish authentic human learning from AI-generated simulation. The dynamic testing component provides a complementary approach through simulation-based vulnerability assessment, addressing limitations in pattern-based analysis. The paper presents a theoretical framework for vulnerability scoring, including the conceptual basis for quantitative assessment, weighting frameworks, and threshold determination theory.


[70] 2506.02048

Improving LLM Agents with Reinforcement Learning on Cryptographic CTF Challenges

Large Language Models (LLMs) still struggle with the structured reasoning and tool-assisted computation needed for problem solving in cybersecurity applications. In this work, we introduce "random-crypto", a cryptographic Capture-the-Flag (CTF) challenge generator framework that we use to fine-tune a tool-augmented Llama-3.1-8B with Guided Reinforcement Prompt Optimisation (GRPO), allowing the agent to iteratively write and execute Python inside an isolated REPL. GRPO yields a +53% absolute jump in Pass@8 on unseen "random-crypto" tasks (0.35 -> 0.88) and raises Majority@8 to 0.41. The fine-tuned agent also generalizes to an external dataset. On a subset of picoCTF cryptography problems, it improves Pass@8 by +13 pp. Ablations show the gains stem from more reliable tool invocation and code synthesis, rather than superficial prompt adaptation.


[71] 2506.02049

EvoGit: Decentralized Code Evolution via Git-Based Multi-Agent Collaboration

We introduce EvoGit, a decentralized multi-agent framework for collaborative software development driven by autonomous code evolution. EvoGit deploys a population of independent coding agents, each proposing edits to a shared codebase without centralized coordination, explicit message passing, or shared memory. Instead, all coordination emerges through a Git-based phylogenetic graph that tracks the full version lineage and enables agents to asynchronously read from and write to the evolving code repository. This graph-based structure supports fine-grained branching, implicit concurrency, and scalable agent interaction while preserving a consistent historical record. Human involvement is minimal but strategic: users define high-level goals, periodically review the graph, and provide lightweight feedback to promote promising directions or prune unproductive ones. Experiments demonstrate EvoGit's ability to autonomously produce functional and modular software artifacts across two real-world tasks: (1) building a web application from scratch using modern frameworks, and (2) constructing a meta-level system that evolves its own language-model-guided solver for the bin-packing optimization problem. Our results underscore EvoGit's potential to establish a new paradigm for decentralized, automated, and continual software development. EvoGit is open-sourced at https://github.com/BillHuang2001/evogit.


[72] 2506.02050

Decoupled Hierarchical Reinforcement Learning with State Abstraction for Discrete Grids

Effective agent exploration remains a core challenge in reinforcement learning (RL) for complex discrete state-space environments, particularly under partial observability. This paper presents a decoupled hierarchical RL framework integrating state abstraction (DcHRL-SA) to address this issue. The proposed method employs a dual-level architecture, consisting of a high level RL-based actor and a low-level rule-based policy, to promote effective exploration. Additionally, state abstraction method is incorporated to cluster discrete states, effectively lowering state dimensionality. Experiments conducted in two discrete customized grid environments demonstrate that the proposed approach consistently outperforms PPO in terms of exploration efficiency, convergence speed, cumulative reward, and policy stability. These results demonstrate a practical approach for integrating decoupled hierarchical policies and state abstraction in discrete grids with large-scale exploration space. Code will be available at https://github.com/XQY169/DcHRL-SA.


[73] 2506.02053

Generalization Performance of Ensemble Clustering: From Theory to Algorithm

Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.1%, 7.3%, and 6.0% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.


[74] 2506.02055

Will Agents Replace Us? Perceptions of Autonomous Multi-Agent AI

Autonomous multi-agent AI systems are poised to transform various industries, particularly software development and knowledge work. Understanding current perceptions among professionals is crucial for anticipating adoption challenges, ethical considerations, and future workforce development. This study analyzes responses from 130 participants to a survey on the capabilities, impact, and governance of AI agents. We explore expected timelines for AI replacing programmers, identify perceived barriers to deployment, and examine beliefs about responsibility when agents make critical decisions. Key findings reveal three distinct clusters of respondents. While the study explored factors associated with current AI agent deployment, the initial logistic regression model did not yield statistically significant predictors, suggesting that deployment decisions are complex and may be influenced by factors not fully captured or that a larger sample is needed. These insights highlight the need for organizations to address compliance concerns (a commonly cited barrier) and establish clear governance frameworks as they integrate autonomous agents into their workflows.


[75] 2506.02057

Enhancing Speech Instruction Understanding and Disambiguation in Robotics via Speech Prosody

Enabling robots to accurately interpret and execute spoken language instructions is essential for effective human-robot collaboration. Traditional methods rely on speech recognition to transcribe speech into text, often discarding crucial prosodic cues needed for disambiguating intent. We propose a novel approach that directly leverages speech prosody to infer and resolve instruction intent. Predicted intents are integrated into large language models via in-context learning to disambiguate and select appropriate task plans. Additionally, we present the first ambiguous speech dataset for robotics, designed to advance research in speech disambiguation. Our method achieves 95.79% accuracy in detecting referent intents within an utterance and determines the intended task plan of ambiguous instructions with 71.96% accuracy, demonstrating its potential to significantly improve human-robot communication.


[76] 2506.02058

Evaluating the Unseen Capabilities: How Many Theorems Do LLMs Know?

Accurate evaluation of large language models (LLMs) is crucial for understanding their capabilities and guiding their development. However, current evaluations often inconsistently reflect the actual capacities of these models. In this paper, we demonstrate that one of many contributing factors to this \textit{evaluation crisis} is the oversight of unseen knowledge -- information encoded by LLMs but not directly observed or not yet observed during evaluations. We introduce KnowSum, a statistical framework designed to provide a more comprehensive assessment by quantifying the unseen knowledge for a class of evaluation tasks. KnowSum estimates the unobserved portion by extrapolating from the appearance frequencies of observed knowledge instances. We demonstrate the effectiveness and utility of KnowSum across three critical applications: estimating total knowledge, evaluating information retrieval effectiveness, and measuring output diversity. Our experiments reveal that a substantial volume of knowledge is omitted when relying solely on observed LLM performance. Importantly, KnowSum yields significantly different comparative rankings for several common LLMs based on their internal knowledge.


[77] 2506.02059

Learning More with Less: Self-Supervised Approaches for Low-Resource Speech Emotion Recognition

Speech Emotion Recognition (SER) has seen significant progress with deep learning, yet remains challenging for Low-Resource Languages (LRLs) due to the scarcity of annotated data. In this work, we explore unsupervised learning to improve SER in low-resource settings. Specifically, we investigate contrastive learning (CL) and Bootstrap Your Own Latent (BYOL) as self-supervised approaches to enhance cross-lingual generalization. Our methods achieve notable F1 score improvements of 10.6% in Urdu, 15.2% in German, and 13.9% in Bangla, demonstrating their effectiveness in LRLs. Additionally, we analyze model behavior to provide insights on key factors influencing performance across languages, and also highlighting challenges in low-resource SER. This work provides a foundation for developing more inclusive, explainable, and robust emotion recognition systems for underrepresented languages.


[78] 2506.02062

Predicting Blood Type: Assessing Model Performance with ROC Analysis

Introduction: Personal identification is a critical aspect of forensic sciences, security, and healthcare. While conventional biometrics systems such as DNA profiling and iris scanning offer high accuracy, they are time-consuming and costly. Objectives: This study investigates the relationship between fingerprint patterns and ABO blood group classification to explore potential correlations between these two traits. Methods: The study analyzed 200 individuals, categorizing their fingerprints into three types: loops, whorls, and arches. Blood group classification was also recorded. Statistical analysis, including chi-square and Pearson correlation tests, was used to assess associations between fingerprint patterns and blood groups. Results: Loops were the most common fingerprint pattern, while blood group O+ was the most prevalent among the participants. Statistical analysis revealed no significant correlation between fingerprint patterns and blood groups (p > 0.05), suggesting that these traits are independent. Conclusions: Although the study showed limited correlation between fingerprint patterns and ABO blood groups, it highlights the importance of future research using larger and more diverse populations, incorporating machine learning approaches, and integrating multiple biometric signals. This study contributes to forensic science by emphasizing the need for rigorous protocols and comprehensive investigations in personal identification.


[79] 2506.02063

Privacy-Aware, Public-Aligned: Embedding Risk Detection and Public Values into Scalable Clinical Text De-Identification for Trusted Research Environments

Clinical free-text data offers immense potential to improve population health research such as richer phenotyping, symptom tracking, and contextual understanding of patient care. However, these data present significant privacy risks due to the presence of directly or indirectly identifying information embedded in unstructured narratives. While numerous de-identification tools have been developed, few have been tested on real-world, heterogeneous datasets at scale or assessed for governance readiness. In this paper, we synthesise our findings from previous studies examining the privacy-risk landscape across multiple document types and NHS data providers in Scotland. We characterise how direct and indirect identifiers vary by record type, clinical setting, and data flow, and show how changes in documentation practice can degrade model performance over time. Through public engagement, we explore societal expectations around the safe use of clinical free text and reflect these in the design of a prototype privacy-risk management tool to support transparent, auditable decision-making. Our findings highlight that privacy risk is context-dependent and cumulative, underscoring the need for adaptable, hybrid de-identification approaches that combine rule-based precision with contextual understanding. We offer a comprehensive view of the challenges and opportunities for safe, scalable reuse of clinical free-text within Trusted Research Environments and beyond, grounded in both technical evidence and public perspectives on responsible data use.


[80] 2506.02064

The Measurement Imbalance in Agentic AI Evaluation Undermines Industry Productivity Claims

As industry reports claim agentic AI systems deliver double-digit productivity gains and multi-trillion dollar economic potential, the validity of these claims has become critical for investment decisions, regulatory policy, and responsible technology adoption. However, this paper demonstrates that current evaluation practices for agentic AI systems exhibit a systemic imbalance that calls into question prevailing industry productivity claims. Our systematic review of 84 papers (2023--2025) reveals an evaluation imbalance where technical metrics dominate assessments (83%), while human-centered (30%), safety (53%), and economic assessments (30%) remain peripheral, with only 15% incorporating both technical and human dimensions. This measurement gap creates a fundamental disconnect between benchmark success and deployment value. We present evidence from healthcare, finance, and retail sectors where systems excelling on technical metrics failed in real-world implementation due to unmeasured human, temporal, and contextual factors. Our position is not against agentic AI's potential, but rather that current evaluation frameworks systematically privilege narrow technical metrics while neglecting dimensions critical to real-world success. We propose a balanced four-axis evaluation model and call on the community to lead this paradigm shift because benchmark-driven optimization shapes what we build. By redefining evaluation practices, we can better align industry claims with deployment realities and ensure responsible scaling of agentic systems in high-stakes domains.


[81] 2506.02065

EWGN: Elastic Weight Generation and Context Switching in Deep Learning

The ability to learn and retain a wide variety of tasks is a hallmark of human intelligence that has inspired research in artificial general intelligence. Continual learning approaches provide a significant step towards achieving this goal. It has been known that task variability and context switching are challenging for learning in neural networks. Catastrophic forgetting refers to the poor performance on retention of a previously learned task when a new task is being learned. Switching between different task contexts can be a useful approach to mitigate the same by preventing the interference between the varying task weights of the network. This paper introduces Elastic Weight Generative Networks (EWGN) as an idea for context switching between two different tasks. The proposed EWGN architecture uses an additional network that generates the weights of the primary network dynamically while consolidating the weights learned. The weight generation is input-dependent and thus enables context switching. Using standard computer vision datasets, namely MNIST and fashion-MNIST, we analyse the retention of previously learned task representations in Fully Connected Networks, Convolutional Neural Networks, and EWGN architectures with Stochastic Gradient Descent and Elastic Weight Consolidation learning algorithms. Understanding dynamic weight generation and context-switching ability can be useful in enabling continual learning for improved performance.


[82] 2506.02066

Developing a Risk Identification Framework for Foundation Model Uses

As foundation models grow in both popularity and capability, researchers have uncovered a variety of ways that the models can pose a risk to the model's owner, user, or others. Despite the efforts of measuring these risks via benchmarks and cataloging them in AI risk taxonomies, there is little guidance for practitioners on how to determine which risks are relevant for a given foundation model use. In this paper, we address this gap and develop requirements and an initial design for a risk identification framework. To do so, we look to prior literature to identify challenges for building a foundation model risk identification framework and adapt ideas from usage governance to synthesize four design requirements. We then demonstrate how a candidate framework can addresses these design requirements and provide a foundation model use example to show how the framework works in practice for a small subset of risks.


[83] 2506.02070

An Introduction to Flow Matching and Diffusion Models

Diffusion and flow-based models have become the state of the art for generative AI across a wide range of data modalities, including images, videos, shapes, molecules, music, and more! These notes are originally from https://diffusion.csail.mit.edu/, as taught at MIT over the 2025 IAP (winter) term, and are intended to accompany other course content, including lectures and labs. Overall, they function as a self-contained introduction to both flow matching and diffusion models, starting with ordinary and stochastic differential equations, and culminating in flow matching, score matching, classifier-free guidance, and the inner workings of modern, state-of-the-art models for image and video. These notes, and the accompanying course, are ideal for students and practitioners alike who want to develop a principled understanding of the theory and practice of generative AI.


[84] 2506.02071

AI Data Development: A Scorecard for the System Card Framework

Artificial intelligence has transformed numerous industries, from healthcare to finance, enhancing decision-making through automated systems. However, the reliability of these systems is mainly dependent on the quality of the underlying datasets, raising ongoing concerns about transparency, accountability, and potential biases. This paper introduces a scorecard designed to evaluate the development of AI datasets, focusing on five key areas from the system card framework data development life cycle: data dictionary, collection process, composition, motivation, and pre-processing. The method follows a structured approach, using an intake form and scoring criteria to assess the quality and completeness of the data set. Applied to four diverse datasets, the methodology reveals strengths and improvement areas. The results are compiled using a scoring system that provides tailored recommendations to enhance the transparency and integrity of the data set. The scorecard addresses technical and ethical aspects, offering a holistic evaluation of data practices. This approach aims to improve the quality of the data set. It offers practical guidance to curators and researchers in developing responsible AI systems, ensuring fairness and accountability in decision support systems.


[85] 2506.02073

Flow2Code: Evaluating Large Language Models for Flowchart-based Code Generation Capability

While large language models (LLMs) show promise in code generation, existing benchmarks neglect the flowchart-based code generation. To promote further research on flowchart-based code generation, this work presents Flow2Code, a novel benchmark for flowchart-based code generation evaluation. The evaluation dataset spans 15 programming languages and includes 5,622 code segments paired with 16,866 flowcharts of three types: code, UML, and pseudocode. Extensive experiments with 13 multimodal LLMs reveal that current LLMs can not generate code based on flowcharts perfectly. Besides, experiment results show that the supervised fine-tuning technique contributes greatly to the models' performance. We publicly release our code and datasets at https://github.com/hml-github/Flow2Code.


[86] 2506.02077

Assigning Distinct Roles to Quantized and Low-Rank Matrices Toward Optimal Weight Decomposition

Decomposing weight matrices into quantization and low-rank components ($\mathbf{W} \approx \mathbf{Q} + \mathbf{L}\mathbf{R}$) is a widely used technique for compressing large language models (LLMs). Existing joint optimization methods iteratively alternate between quantization and low-rank approximation. However, these methods tend to prioritize one component at the expense of the other, resulting in suboptimal decompositions that fail to leverage each component's unique strengths. In this work, we introduce Outlier-Driven Low-Rank Initialization (ODLRI), which assigns low-rank components the specific role of capturing activation-sensitive weights. This structured decomposition mitigates outliers' negative impact on quantization, enabling more effective balance between quantization and low-rank approximation. Experiments on Llama2 (7B, 13B, 70B), Llama3-8B, and Mistral-7B demonstrate that incorporating ODLRI into the joint optimization framework consistently reduces activation-aware error, minimizes quantization scale, and improves perplexity and zero-shot accuracy in low-bit settings.


[87] 2506.02079

Robust Federated Learning against Noisy Clients via Masked Optimization

In recent years, federated learning (FL) has made significant advance in privacy-sensitive applications. However, it can be hard to ensure that FL participants provide well-annotated data for training. The corresponding annotations from different clients often contain complex label noise at varying levels. This label noise issue has a substantial impact on the performance of the trained models, and clients with greater noise levels can be largely attributed for this degradation. To this end, it is necessary to develop an effective optimization strategy to alleviate the adverse effects of these noisy clients.In this study, we present a two-stage optimization framework, MaskedOptim, to address this intricate label noise problem. The first stage is designed to facilitate the detection of noisy clients with higher label noise rates. The second stage focuses on rectifying the labels of the noisy clients' data through an end-to-end label correction mechanism, aiming to mitigate the negative impacts caused by misinformation within datasets. This is achieved by learning the potential ground-truth labels of the noisy clients' datasets via backpropagation. To further enhance the training robustness, we apply the geometric median based model aggregation instead of the commonly-used vanilla averaged model aggregation. We implement sixteen related methods and conduct evaluations on three image datasets and one text dataset with diverse label noise patterns for a comprehensive comparison. Extensive experimental results indicate that our proposed framework shows its robustness in different scenarios. Additionally, our label correction framework effectively enhances the data quality of the detected noisy clients' local datasets. % Our codes will be open-sourced to facilitate related research communities. Our codes are available via https://github.com/Sprinter1999/MaskedOptim .


[88] 2506.02081

RATFM: Retrieval-augmented Time Series Foundation Model for Anomaly Detection

Inspired by the success of large language models (LLMs) in natural language processing, recent research has explored the building of time series foundation models and applied them to tasks such as forecasting, classification, and anomaly detection. However, their performances vary between different domains and tasks. In LLM-based approaches, test-time adaptation using example-based prompting has become common, owing to the high cost of retraining. In the context of anomaly detection, which is the focus of this study, providing normal examples from the target domain can also be effective. However, time series foundation models do not naturally acquire the ability to interpret or utilize examples or instructions, because the nature of time series data used during training does not encourage such capabilities. To address this limitation, we propose a retrieval augmented time series foundation model (RATFM), which enables pretrained time series foundation models to incorporate examples of test-time adaptation. We show that RATFM achieves a performance comparable to that of in-domain fine-tuning while avoiding domain-dependent fine-tuning. Experiments on the UCR Anomaly Archive, a multi-domain dataset including nine domains, confirms the effectiveness of the proposed approach.


[89] 2506.02082

SALF-MOS: Speaker Agnostic Latent Features Downsampled for MOS Prediction

Speech quality assessment is a critical process in selecting text-to-speech synthesis (TTS) or voice conversion models. Evaluation of voice synthesis can be done using objective metrics or subjective metrics. Although there are many objective metrics like the Perceptual Evaluation of Speech Quality (PESQ), Perceptual Objective Listening Quality Assessment (POLQA) or Short-Time Objective Intelligibility (STOI) but none of them is feasible in selecting the best model. On the other hand subjective metric like Mean Opinion Score is highly reliable but it requires a lot of manual efforts and are time-consuming. To counter the issues in MOS Evaluation, we have developed a novel model, Speaker Agnostic Latent Features (SALF)-Mean Opinion Score (MOS) which is a small-sized, end-to-end, highly generalized and scalable model for predicting MOS score on a scale of 5. We use the sequences of convolutions and stack them to get the latent features of the audio samples to get the best state-of-the-art results based on mean squared error (MSE), Linear Concordance Correlation coefficient (LCC), Spearman Rank Correlation Coefficient (SRCC) and Kendall Rank Correlation Coefficient (KTAU).


[90] 2506.02083

LASPA: Language Agnostic Speaker Disentanglement with Prefix-Tuned Cross-Attention

Speaker recognition models face challenges in multi-lingual settings due to the entanglement of linguistic information within speaker embeddings. The overlap between vocal traits such as accent, vocal anatomy, and a language's phonetic structure complicates separating linguistic and speaker information. Disentangling these components can significantly improve speaker recognition accuracy. To this end, we propose a novel disentanglement learning strategy that integrates joint learning through prefix-tuned cross-attention. This approach is particularly effective when speakers switch between languages. Experimental results show the model generalizes across monolingual and multi-lingual settings, including unseen languages. Notably, the proposed model improves the equal error rate across multiple datasets, highlighting its ability to separate language information from speaker embeddings and enhance recognition in diverse linguistic conditions.


[91] 2506.02084

Temporal Causal-based Simulation for Realistic Time-series Generation

Causal Discovery plays a pivotal role in revealing relationships among observed variables, particularly in the temporal setup. While the majority of CD methods rely on synthetic data for evaluation, and recently for training, these fall short in accurately mirroring real-world scenarios; an effect even more evident in temporal data. Generation techniques depending on simplified assumptions on causal structure, effects and time, limit the quality and diversity of the simulated data. In this work, we introduce Temporal Causal-based Simulation (TCS), a robust framework for generating realistic time-series data and their associated temporal causal graphs. The approach is structured in three phases: estimating the true lagged causal structure of the data, approximating the functional dependencies between variables and learning the noise distribution of the corresponding causal model, each part of which can be explicitly tailored based on data assumptions and characteristics. Through an extensive evaluation process, we highlight that single detection methods for generated data discrimination prove inadequate, accentuating it as a multifaceted challenge. For this, we detail a Min-max optimization phase that draws on AutoML techniques. Our contributions include a flexible, model-agnostic pipeline for generating realistic temporal causal data, a thorough evaluation setup which enhances the validity of the generated datasets and insights into the challenges posed by realistic data generation. Through experiments involving not only real but also semi-synthetic and purely synthetic datasets, we demonstrate that while sampling realistic causal data remains a complex task, our method enriches the domain of generating sensible causal-based temporal data.


[92] 2506.02085

Unveiling Audio Deepfake Origins: A Deep Metric learning And Conformer Network Approach With Ensemble Fusion

Audio deepfakes are acquiring an unprecedented level of realism with advanced AI. While current research focuses on discerning real speech from spoofed speech, tracing the source system is equally crucial. This work proposes a novel audio source tracing system combining deep metric multi-class N-pair loss with Real Emphasis and Fake Dispersion framework, a Conformer classification network, and ensemble score-embedding fusion. The N-pair loss improves discriminative ability, while Real Emphasis and Fake Dispersion enhance robustness by focusing on differentiating real and fake speech patterns. The Conformer network captures both global and local dependencies in the audio signal, crucial for source tracing. The proposed ensemble score-embedding fusion shows an optimal trade-off between in-domain and out-of-domain source tracing scenarios. We evaluate our method using Frechet Distance and standard metrics, demonstrating superior performance in source tracing over the baseline system.


[93] 2506.02086

FSM Modeling For Off-Blockchain Computation

Blockchain benefits are due to immutability, replication, and storage-and-execution of smart contracts on the blockchain. However, the benefits come at increased costs due to the blockchain size and execution. We address three fundamental issues that arise in transferring certain parts of a smart contract to be executed off-chain: (i) identifying which parts (patterns) of the smart contract should be considered for processing off-chain, (ii) under which conditions should a smart-contract pattern to be processed off-chain, and (iii) how to facilitate interaction between the computation off and on-chain. We use separation of concerns and FSM modeling to model a smart contract and generate its code. We then (i) use our algorithm to determine which parts (patterns) of the smart contract are to be processed off-chain; (ii) consider conditions under which to move the pattern off-chain; and (iii) provide model for automatically generating the interface between on and off-chain computation.


[94] 2506.02088

Enhancing Speech Emotion Recognition with Graph-Based Multimodal Fusion and Prosodic Features for the Speech Emotion Recognition in Naturalistic Conditions Challenge at Interspeech 2025

Training SER models in natural, spontaneous speech is especially challenging due to the subtle expression of emotions and the unpredictable nature of real-world audio. In this paper, we present a robust system for the INTERSPEECH 2025 Speech Emotion Recognition in Naturalistic Conditions Challenge, focusing on categorical emotion recognition. Our method combines state-of-the-art audio models with text features enriched by prosodic and spectral cues. In particular, we investigate the effectiveness of Fundamental Frequency (F0) quantization and the use of a pretrained audio tagging model. We also employ an ensemble model to improve robustness. On the official test set, our system achieved a Macro F1-score of 39.79% (42.20% on validation). Our results underscore the potential of these methods, and analysis of fusion techniques confirmed the effectiveness of Graph Attention Networks. Our source code is publicly available.


[95] 2506.02089

SALAD: Systematic Assessment of Machine Unlearing on LLM-Aided Hardware Design

Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.


[96] 2506.02090

The Impact of Software Testing with Quantum Optimization Meets Machine Learning

Modern software systems complexity challenges efficient testing, as traditional machine learning (ML) struggles with large test suites. This research presents a hybrid framework integrating Quantum Annealing with ML to optimize test case prioritization in CI/CD pipelines. Leveraging quantum optimization, it achieves a 25 percent increase in defect detection efficiency and a 30 percent reduction in test execution time versus classical ML, validated on the Defects4J dataset. A simulated CI/CD environment demonstrates robustness across evolving codebases. Visualizations, including defect heatmaps and performance graphs, enhance interpretability. The framework addresses quantum hardware limits, CI/CD integration, and scalability for 2025s hybrid quantum-classical ecosystems, offering a transformative approach to software quality assurance.


[97] 2506.02091

Comparison of spectrogram scaling in multi-label Music Genre Recognition

As the accessibility and ease-of-use of digital audio workstations increases, so does the quantity of music available to the average listener; additionally, differences between genres are not always well defined and can be abstract, with widely varying combinations of genres across individual records. In this article, multiple preprocessing methods and approaches to model training are described and compared, accounting for the eclectic nature of today's albums. A custom, manually labeled dataset of more than 18000 entries has been used to perform the experiments.


[98] 2506.02092

Towards Better Generalization and Interpretability in Unsupervised Concept-Based Models

To increase the trustworthiness of deep neural networks, it is critical to improve the understanding of how they make decisions. This paper introduces a novel unsupervised concept-based model for image classification, named Learnable Concept-Based Model (LCBM) which models concepts as random variables within a Bernoulli latent space. Unlike traditional methods that either require extensive human supervision or suffer from limited scalability, our approach employs a reduced number of concepts without sacrificing performance. We demonstrate that LCBM surpasses existing unsupervised concept-based models in generalization capability and nearly matches the performance of black-box models. The proposed concept representation enhances information retention and aligns more closely with human understanding. A user study demonstrates the discovered concepts are also more intuitive for humans to interpret. Finally, despite the use of concept embeddings, we maintain model interpretability by means of a local linear combination of concepts.


[99] 2506.02094

Generative AI for Multiple Choice STEM Assessments

Artificial intelligence technology enables a range of enhancements in computer-aided instruction, from accelerating the creation of teaching materials to customizing learning paths based on learner outcomes. However, ensuring the mathematical accuracy and semantic integrity of generative AI output remains a significant challenge, particularly in STEM disciplines. In this study, we explore the use of generative AI in which "hallucinations" -- typically viewed as undesirable inaccuracies -- can instead serve a pedagogical purpose. Specifically, we investigate the generation of plausible but incorrect alternatives for multiple choice assessments, where credible distractors are essential for effective assessment design. We describe the M\"obius platform for online instruction, with particular focus on its architecture for handling mathematical elements through specialized semantic packages that support dynamic, parameterized STEM content. We examine methods for crafting prompts that interact effectively with these mathematical semantics to guide the AI in generating high-quality multiple choice distractors. Finally, we demonstrate how this approach reduces the time and effort associated with creating robust teaching materials while maintaining academic rigor and assessment validity.


[100] 2506.02095

Cycle Consistency as Reward: Learning Image-Text Alignment without Human Preferences

Learning alignment between language and vision is a fundamental challenge, especially as multimodal data becomes increasingly detailed and complex. Existing methods often rely on collecting human or AI preferences, which can be costly and time-intensive. We propose an alternative approach that leverages cycle consistency as a supervisory signal. Given an image and generated text, we map the text back to image space using a text-to-image model and compute the similarity between the original image and its reconstruction. Analogously, for text-to-image generation, we measure the textual similarity between an input caption and its reconstruction through the cycle. We use the cycle consistency score to rank candidates and construct a preference dataset of 866K comparison pairs. The reward model trained on our dataset outperforms state-of-the-art alignment metrics on detailed captioning, with superior inference-time scalability when used as a verifier for Best-of-N sampling. Furthermore, performing DPO and Diffusion DPO using our dataset enhances performance across a wide range of vision-language tasks and text-to-image generation. Our dataset, model, and code are at https://cyclereward.github.io


[101] 2506.02096

SynthRL: Scaling Visual Reasoning with Verifiable Data Synthesis

Vision-language models (VLMs) trained via reinforcement learning with verifiable reward (RLVR) have shown notable progress in scaling test-time compute effectively. In this work, we investigate how synthesized RL data can further improve RLVR. To this end, we propose \textbf{SynthRL}-a scalable and guaranteed pipeline for automatic data scaling in reasoning-oriented RL training. SynthRL comprises three key stages: (1) selecting seed questions with appropriate distribution, (2) augmenting them into more challenging variants while preserving the original answers, and (3) a guaranteed verification stage that ensures near-perfect correctness and difficulty enhancement. Our empirical experiments demonstrate SynthRL's scalability and effectiveness. When applied to the MMK12 dataset, SynthRL synthesizes over 3.3K additional verifiable, challenging questions from approximately 8K seed samples. Models trained with our synthesized data achieve consistent gains across five out-of-domain visual math reasoning benchmarks, with a significant improvement over baseline models trained on seed data alone. Notably, detailed analysis reveals that the gains are more pronounced on the most challenging evaluation samples, highlighting SynthRL's effectiveness in eliciting deeper and more complex reasoning patterns.


[102] 2506.02097

Hybrid AI for Responsive Multi-Turn Online Conversations with Novel Dynamic Routing and Feedback Adaptation

Retrieval-Augmented Generation (RAG) systems and large language model (LLM)-powered chatbots have significantly advanced conversational AI by combining generative capabilities with external knowledge retrieval. Despite their success, enterprise-scale deployments face critical challenges, including diverse user queries, high latency, hallucinations, and difficulty integrating frequently updated domain-specific knowledge. This paper introduces a novel hybrid framework that integrates RAG with intent-based canned responses, leveraging predefined high-confidence responses for efficiency while dynamically routing complex or ambiguous queries to the RAG pipeline. Our framework employs a dialogue context manager to ensure coherence in multi-turn interactions and incorporates a feedback loop to refine intents, dynamically adjust confidence thresholds, and expand response coverage over time. Experimental results demonstrate that the proposed framework achieves a balance of high accuracy (95\%) and low latency (180ms), outperforming RAG and intent-based systems across diverse query types, positioning it as a scalable and adaptive solution for enterprise conversational AI applications.


[103] 2506.02098

LibriBrain: Over 50 Hours of Within-Subject MEG to Improve Speech Decoding Methods at Scale

LibriBrain represents the largest single-subject MEG dataset to date for speech decoding, with over 50 hours of recordings -- 5$\times$ larger than the next comparable dataset and 50$\times$ larger than most. This unprecedented `depth' of within-subject data enables exploration of neural representations at a scale previously unavailable with non-invasive methods. LibriBrain comprises high-quality MEG recordings together with detailed annotations from a single participant listening to naturalistic spoken English, covering nearly the full Sherlock Holmes canon. Designed to support advances in neural decoding, LibriBrain comes with a Python library for streamlined integration with deep learning frameworks, standard data splits for reproducibility, and baseline results for three foundational decoding tasks: speech detection, phoneme classification, and word classification. Baseline experiments demonstrate that increasing training data yields substantial improvements in decoding performance, highlighting the value of scaling up deep, within-subject datasets. By releasing this dataset, we aim to empower the research community to advance speech decoding methodologies and accelerate the development of safe, effective clinical brain-computer interfaces.


[104] 2506.02112

SAB3R: Semantic-Augmented Backbone in 3D Reconstruction

We introduce a new task, Map and Locate, which unifies the traditionally distinct objectives of open-vocabulary segmentation - detecting and segmenting object instances based on natural language queries - and 3D reconstruction, the process of estimating a scene's 3D structure from visual inputs. Specifically, Map and Locate involves generating a point cloud from an unposed video and segmenting object instances based on open-vocabulary queries. This task serves as a critical step toward real-world embodied AI applications and introduces a practical task that bridges reconstruction, recognition and reorganization. To tackle this task, we introduce a simple yet effective baseline, which we denote as SAB3R. Our approach builds upon MASt3R, a recent breakthrough in 3D computer vision, and incorporates a lightweight distillation strategy. This method transfers dense, per-pixel semantic features from 2D vision backbones (eg, CLIP and DINOv2) to enhance MASt3R's capabilities. Without introducing any auxiliary frozen networks, our model generates per-pixel semantic features and constructs cohesive point maps in a single forward pass. Compared to separately deploying MASt3R and CLIP, our unified model, SAB3R, achieves superior performance on the Map and Locate benchmark. Furthermore, we evaluate SAB3R on both 2D semantic segmentation and 3D tasks to comprehensively validate its effectiveness.


[105] 2506.02120

Random-key genetic algorithms

A random-key genetic algorithm is an evolutionary metaheuristic for discrete and global optimization. Each solution is encoded as a vector of N random keys, where a random key is a real number randomly generated in the continuous interval [0, 1). A decoder maps each vector of random keys to a solution of the optimization problem being solved and computes its cost. The benefit of this approach is that all genetic operators and transformations can be maintained within the unitary hypercube, regardless of the problem being addressed. This enhances the productivity and maintainability of the core framework. The algorithm starts with a population of P vectors of random keys. At each iteration, the vectors are partitioned into two sets: a smaller set of high-valued elite solutions and the remaining non-elite solutions. All elite elements are copied, without change, to the next population. A small number of random-key vectors (the mutants) is added to the population of the next iteration. The remaining elements of the population of the next iteration are generated by combining, with the parametrized uniform crossover of Spears and DeJong (1991), pairs of solutions. This chapter reviews random-key genetic algorithms and describes an effective variant called biased random-key genetic algorithms.


[106] 2506.02125

Descriptive History Representations: Learning Representations by Answering Questions

Effective decision making in partially observable environments requires compressing long interaction histories into informative representations. We introduce Descriptive History Representations (DHRs): sufficient statistics characterized by their capacity to answer relevant questions about past interactions and potential future outcomes. DHRs focus on capturing the information necessary to address task-relevant queries, providing a structured way to summarize a history for optimal control. We propose a multi-agent learning framework, involving representation, decision, and question-asking components, optimized using a joint objective that balances reward maximization with the representation's ability to answer informative questions. This yields representations that capture the salient historical details and predictive structures needed for effective decision making. We validate our approach on user modeling tasks with public movie and shopping datasets, generating interpretable textual user profiles which serve as sufficient statistics for predicting preference-driven behavior of users.


[107] 2506.02126

Knowledge or Reasoning? A Close Look at How LLMs Think Across Domains

Recent advances in reasoning-enhanced Large Language Models such as OpenAI-o1/3 and DeepSeek-R1 have significantly improved performance on complex tasks. However, the quality and transparency of their internal reasoning processes remain underexplored. This work moves beyond the final-answer accuracy and investigates step-by-step reasoning in the medical and mathematical domains by explicitly decomposing the thinking trajectories into two parts: knowledge and reasoning. Specifically, we introduce a fine-grained evaluation framework that judges: (1) the correctness of knowledge used (measured by Knowledge Index (KI)) and (2) the quality of reasoning (measured by Information Gain (InfoGain)). Using this framework, we study R1-distilled and base Qwen models trained with supervised fine-tuning (SFT) and/or reinforcement learning (RL) in the medical and math domains. Three intriguing findings emerge: (1) The general reasoning abilities in R1-distilled models do not transfer effectively to the medical domain through either SFT or RL. (2) SFT raises final-answer accuracy in both domains, but often at the cost of reasoning quality: InfoGain drops by 38.9% on average compared with untrained models; In the medical domain, however, SFT remains crucial because domain knowledge is indispensable. (3) RL enhances medical reasoning by pruning inaccurate or irrelevant knowledge from reasoning paths, thereby improving both reasoning accuracy and knowledge correctness.


[108] 2506.02129

Benchmarking Large Language Models for Polymer Property Predictions

Machine learning has revolutionized polymer science by enabling rapid property prediction and generative design. Large language models (LLMs) offer further opportunities in polymer informatics by simplifying workflows that traditionally rely on large labeled datasets, handcrafted representations, and complex feature engineering. LLMs leverage natural language inputs through transfer learning, eliminating the need for explicit fingerprinting and streamlining training. In this study, we finetune general purpose LLMs -- open-source LLaMA-3-8B and commercial GPT-3.5 -- on a curated dataset of 11,740 entries to predict key thermal properties: glass transition, melting, and decomposition temperatures. Using parameter-efficient fine-tuning and hyperparameter optimization, we benchmark these models against traditional fingerprinting-based approaches -- Polymer Genome, polyGNN, and polyBERT -- under single-task (ST) and multi-task (MT) learning. We find that while LLM-based methods approach traditional models in performance, they generally underperform in predictive accuracy and efficiency. LLaMA-3 consistently outperforms GPT-3.5, likely due to its tunable open-source architecture. Additionally, ST learning proves more effective than MT, as LLMs struggle to capture cross-property correlations, a key strength of traditional methods. Analysis of molecular embeddings reveals limitations of general purpose LLMs in representing nuanced chemo-structural information compared to handcrafted features and domain-specific embeddings. These findings provide insight into the interplay between molecular embeddings and natural language processing, guiding LLM selection for polymer informatics.


[109] 2506.02132

Model Internal Sleuthing: Finding Lexical Identity and Inflectional Morphology in Modern Language Models

Large transformer-based language models dominate modern NLP, yet our understanding of how they encode linguistic information is rooted in studies of early models like BERT and GPT-2. To better understand today's language models, we investigate how both classical architectures (BERT, DeBERTa, GPT-2)and contemporary large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3.1) represent lexical identity and inflectional morphology. We train linear and nonlinear classifiers on layer-wise activations to predict word lemmas and inflectional features. We discover that models concentrate lexical information linearly in early layers and increasingly nonlinearly in later layers, while keeping inflectional information uniformly accessible and linearly separable throughout the layers. Further analysis reveals that these models encode inflectional morphology through generalizable abstractions, but rely predominantly on memorization to encode lexical identity. Remarkably, these patterns emerge across all 16 models we test, despite differences in architecture, size, and training regime (including pretrained and instruction-tuned variants). This consistency suggests that, despite substantial advances in LLM technologies, transformer models organize linguistic information in similar ways, indicating that these properties could be fundamental for next token prediction and are learned early during pretraining. Our code is available at https://github.com/ml5885/model_internal_sleuthing.


[110] 2506.02133

Characterization of latency and jitter in TSN emulation

This research focuses on timestamping methods for profiling network traffic in software-based environments. Accurate timestamping is crucial for evaluating network performance, particularly in Time-Sensitive Networking (TSN). We explore and compare four timestamping techniques within a TSN emulation context, though its findings extend to other network scenarios. The study leverages the Mininet emulator to model TSN networks, defining hosts, bridges, links, and traffic streams. It characterizes bridge latencies and jitter, solves the TSN scheduling problem based on measured parameters, and evaluates the correctness of a deployed schedule for a use case. Key contributions include a methodology for software-based timestamping, solutions for TSN emulation challenges in Linux and Mininet, and experimental insights for optimizing TSN emulation platforms on various system configurations, with and without Intel TCC, either on a high-end workstation or on an industrial PC.


[111] 2506.02134

ReconXF: Graph Reconstruction Attack via Public Feature Explanations on Privatized Node Features and Labels

Graph Neural Networks (GNNs) achieve high performance across many applications but function as black-box models, limiting their use in critical domains like healthcare and criminal justice. Explainability methods address this by providing feature-level explanations that identify important node attributes for predictions. These explanations create privacy risks. Combined with auxiliary information, feature explanations can enable adversaries to reconstruct graph structure, exposing sensitive relationships. Existing graph reconstruction attacks assume access to original auxiliary data, but practical systems use differential privacy to protect node features and labels while providing explanations for transparency. We study a threat model where adversaries access public feature explanations along with privatized node features and labels. We show that existing explanation-based attacks like GSEF perform poorly with privatized data due to noise from differential privacy mechanisms. We propose ReconXF, a graph reconstruction attack for scenarios with public explanations and privatized auxiliary data. Our method adapts explanation-based frameworks by incorporating denoising mechanisms that handle differential privacy noise while exploiting structural signals in explanations. Experiments across multiple datasets show ReconXF outperforms SoTA methods in privatized settings, with improvements in AUC and average precision. Results indicate that public explanations combined with denoising enable graph structure recovery even under the privacy protection of auxiliary data. Code is available at (link to be made public after acceptance).


[112] 2506.02138

Revisiting LRP: Positional Attribution as the Missing Ingredient for Transformer Explainability

The development of effective explainability tools for Transformers is a crucial pursuit in deep learning research. One of the most promising approaches in this domain is Layer-wise Relevance Propagation (LRP), which propagates relevance scores backward through the network to the input space by redistributing activation values based on predefined rules. However, existing LRP-based methods for Transformer explainability entirely overlook a critical component of the Transformer architecture: its positional encoding (PE), resulting in violation of the conservation property, and the loss of an important and unique type of relevance, which is also associated with structural and positional features. To address this limitation, we reformulate the input space for Transformer explainability as a set of position-token pairs. This allows us to propose specialized theoretically-grounded LRP rules designed to propagate attributions across various positional encoding methods, including Rotary, Learnable, and Absolute PE. Extensive experiments with both fine-tuned classifiers and zero-shot foundation models, such as LLaMA 3, demonstrate that our method significantly outperforms the state-of-the-art in both vision and NLP explainability tasks. Our code is publicly available.


[113] 2506.02139

The Unified Cognitive Consciousness Theory for Language Models: Anchoring Semantics, Thresholds of Activation, and Emergent Reasoning

Few-shot learning in large language models (LLMs) reveals a deep paradox: Some tasks generalize from minimal examples, while others require extensive supervision. We address this through the Unified Cognitive Consciousness Theory (UCCT), which reframes LLMs not as incomplete agents, but as unconscious substrates, repositories of latent linguistic and conceptual patterns that operate without explicit semantics or goal-directed reasoning. In this view, LLMs are not broken approximations of cognition, but necessary and foundational components of general intelligence. Semantic anchoring, through prompts, roles, and interaction, acts as a conscious control layer, binding latent structure to task-relevant meaning and enabling coherent reasoning. UCCT offers a unifying account of prompting, fine-tuning, retrieval, and multi-agent coordination, all grounded in probabilistic alignment between unconscious representation and external control. To support this model, we present the Threshold-Crossing Dynamics Theorem, which formalizes semantic anchoring as a probabilistic phase transition. But the central claim remains architectural: AGI will not emerge by discarding LLMs, but by aligning and integrating them into systems that reason, regulate, and adapt together.


[114] 2506.02147

BabyLM's First Constructions: Causal interventions provide a signal of learning

Construction grammar posits that children acquire constructions (form-meaning pairings) from the statistics of their environment. Recent work supports this hypothesis by showing sensitivity to constructions in pretrained language models (PLMs), including one recent study (Rozner et al., 2025) demonstrating that constructions shape the PLM's output distribution. However, models under study have generally been trained on developmentally implausible amounts of data, casting doubt on their relevance to human language learning. Here we use Rozner et al.'s methods to evaluate constructional learning in models from the 2024 BabyLM challenge. Our results show that even when trained on developmentally plausible quantities of data, models represent diverse constructions, even hard cases that are superficially indistinguishable. We further find correlational evidence that constructional performance may be functionally relevant: models that better represent constructions perform better on the BabyLM benchmarks.


[115] 2506.02150

Implicit Deformable Medical Image Registration with Learnable Kernels

Deformable medical image registration is an essential task in computer-assisted interventions. This problem is particularly relevant to oncological treatments, where precise image alignment is necessary for tracking tumor growth, assessing treatment response, and ensuring accurate delivery of therapies. Recent AI methods can outperform traditional techniques in accuracy and speed, yet they often produce unreliable deformations that limit their clinical adoption. In this work, we address this challenge and introduce a novel implicit registration framework that can predict accurate and reliable deformations. Our insight is to reformulate image registration as a signal reconstruction problem: we learn a kernel function that can recover the dense displacement field from sparse keypoint correspondences. We integrate our method in a novel hierarchical architecture, and estimate the displacement field in a coarse-to-fine manner. Our formulation also allows for efficient refinement at test time, permitting clinicians to easily adjust registrations when needed. We validate our method on challenging intra-patient thoracic and abdominal zero-shot registration tasks, using public and internal datasets from the local University Hospital. Our method not only shows competitive accuracy to state-of-the-art approaches, but also bridges the generalization gap between implicit and explicit registration techniques. In particular, our method generates deformations that better preserve anatomical relationships and matches the performance of specialized commercial systems, underscoring its potential for clinical adoption.


[116] 2506.02151

Introduction to the theory of generalized locally Toeplitz sequences and its applications

The theory of generalized locally Toeplitz (GLT) sequences was conceived as an apparatus for computing the spectral distribution of matrices arising from the numerical discretization of differential equations (DEs). The purpose of this review is to introduce the reader to the theory of GLT sequences and to present some of its applications to the computation of the spectral distribution of DE discretization matrices. We mainly focus on the applications, whereas the theory is presented in a self-contained tool-kit fashion, without entering into technical details. The exposition is supposed to be understandable to master's degree students in mathematics. It also discloses new more efficient approaches to the spectral analysis of DE discretization matrices as well as a novel spectral analysis tool that has not been considered in the GLT literature heretofore, i.e., the modulus of integral continuity.


[117] 2506.02153

Small Language Models are the Future of Agentic AI

Large language models (LLMs) are often praised for exhibiting near-human performance on a wide range of tasks and valued for their ability to hold a general conversation. The rise of agentic AI systems is, however, ushering in a mass of applications in which language models perform a small number of specialized tasks repetitively and with little variation. Here we lay out the position that small language models (SLMs) are sufficiently powerful, inherently more suitable, and necessarily more economical for many invocations in agentic systems, and are therefore the future of agentic AI. Our argumentation is grounded in the current level of capabilities exhibited by SLMs, the common architectures of agentic systems, and the economy of LM deployment. We further argue that in situations where general-purpose conversational abilities are essential, heterogeneous agentic systems (i.e., agents invoking multiple different models) are the natural choice. We discuss the potential barriers for the adoption of SLMs in agentic systems and outline a general LLM-to-SLM agent conversion algorithm. Our position, formulated as a value statement, highlights the significance of the operational and economic impact even a partial shift from LLMs to SLMs is to have on the AI agent industry. We aim to stimulate the discussion on the effective use of AI resources and hope to advance the efforts to lower the costs of AI of the present day. Calling for both contributions to and critique of our position, we commit to publishing all such correspondence at https://research.nvidia.com/labs/lpr/slm-agents.


[118] 2506.02154

Z-Error Loss for Training Neural Networks

Outliers introduce significant training challenges in neural networks by propagating erroneous gradients, which can degrade model performance and generalization. We propose the Z-Error Loss, a statistically principled approach that minimizes outlier influence during training by masking the contribution of data points identified as out-of-distribution within each batch. This method leverages batch-level statistics to automatically detect and exclude anomalous samples, allowing the model to focus its learning on the true underlying data structure. Our approach is robust, adaptive to data quality, and provides valuable diagnostics for data curation and cleaning.


[119] 2506.02156

Mitigating Data Poisoning Attacks to Local Differential Privacy

The distributed nature of local differential privacy (LDP) invites data poisoning attacks and poses unforeseen threats to the underlying LDP-supported applications. In this paper, we propose a comprehensive mitigation framework for popular frequency estimation, which contains a suite of novel defenses, including malicious user detection, attack pattern recognition, and damaged utility recovery. In addition to existing attacks, we explore new adaptive adversarial activities for our mitigation design. For detection, we present a new method to precisely identify bogus reports and thus LDP aggregation can be performed over the ``clean'' data. When the attack behavior becomes stealthy and direct filtering out malicious users is difficult, we further propose a detection that can effectively recognize hidden adversarial patterns, thus facilitating the decision-making of service providers. These detection methods require no additional data and attack information and incur minimal computational cost. Our experiment demonstrates their excellent performance and substantial improvement over previous work in various settings. In addition, we conduct an empirical analysis of LDP post-processing for corrupted data recovery and propose a new post-processing method, through which we reveal new insights into protocol recommendations in practice and key design principles for future research.


[120] 2506.02157

HENT-SRT: Hierarchical Efficient Neural Transducer with Self-Distillation for Joint Speech Recognition and Translation

Neural transducers (NT) provide an effective framework for speech streaming, demonstrating strong performance in automatic speech recognition (ASR). However, the application of NT to speech translation (ST) remains challenging, as existing approaches struggle with word reordering and performance degradation when jointly modeling ASR and ST, resulting in a gap with attention-based encoder-decoder (AED) models. Existing NT-based ST approaches also suffer from high computational training costs. To address these issues, we propose HENT-SRT (Hierarchical Efficient Neural Transducer for Speech Recognition and Translation), a novel framework that factorizes ASR and translation tasks to better handle reordering. To ensure robust ST while preserving ASR performance, we use self-distillation with CTC consistency regularization. Moreover, we improve computational efficiency by incorporating best practices from ASR transducers, including a down-sampled hierarchical encoder, a stateless predictor, and a pruned transducer loss to reduce training complexity. Finally, we introduce a blank penalty during decoding, reducing deletions and improving translation quality. Our approach is evaluated on three conversational datasets Arabic, Spanish, and Mandarin achieving new state-of-the-art performance among NT models and substantially narrowing the gap with AED-based systems.


[121] 2506.02158

Reflection-Based Memory For Web navigation Agents

Web navigation agents have made significant progress, yet current systems operate with no memory of past experiences -- leading to repeated mistakes and an inability to learn from previous interactions. We introduce Reflection-Augment Planning (ReAP), a web navigation system to leverage both successful and failed past experiences using self-reflections. Our method improves baseline results by 11 points overall and 29 points on previously failed tasks. These findings demonstrate that reflections can transfer to different web navigation tasks.


[122] 2506.02160

A Dynamic Framework for Semantic Grouping of Common Data Elements (CDE) Using Embeddings and Clustering

This research aims to develop a dynamic and scalable framework to facilitate harmonization of Common Data Elements (CDEs) across heterogeneous biomedical datasets by addressing challenges such as semantic heterogeneity, structural variability, and context dependence to streamline integration, enhance interoperability, and accelerate scientific discovery. Our methodology leverages Large Language Models (LLMs) for context-aware text embeddings that convert CDEs into dense vectors capturing semantic relationships and patterns. These embeddings are clustered using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) to group semantically similar CDEs. The framework incorporates four key steps: (1) LLM-based text embedding to mathematically represent semantic context, (2) unsupervised clustering of embeddings via HDBSCAN, (3) automated labeling using LLM summarization, and (4) supervised learning to train a classifier assigning new or unclustered CDEs to labeled clusters. Evaluated on the NIH NLM CDE Repository with over 24,000 CDEs, the system identified 118 meaningful clusters at an optimized minimum cluster size of 20. The classifier achieved 90.46 percent overall accuracy, performing best in larger categories. External validation against Gravity Projects Social Determinants of Health domains showed strong agreement (Adjusted Rand Index 0.52, Normalized Mutual Information 0.78), indicating that embeddings effectively capture cluster characteristics. This adaptable and scalable approach offers a practical solution to CDE harmonization, improving selection efficiency and supporting ongoing data interoperability.


[123] 2506.02161

TIIF-Bench: How Does Your T2I Model Follow Your Instructions?

The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.


[124] 2506.02164

Quantifying task-relevant representational similarity using decision variable correlation

Previous studies have compared the brain and deep neural networks trained on image classification. Intriguingly, while some suggest that their representations are highly similar, others argued the opposite. Here, we propose a new approach to characterize the similarity of the decision strategies of two observers (models or brains) using decision variable correlation (DVC). DVC quantifies the correlation between decoded decisions on individual samples in a classification task and thus can capture task-relevant information rather than general representational alignment. We evaluate this method using monkey V4/IT recordings and models trained on image classification tasks. We find that model--model similarity is comparable to monkey--monkey similarity, whereas model--monkey similarity is consistently lower and, surprisingly, decreases with increasing ImageNet-1k performance. While adversarial training enhances robustness, it does not improve model--monkey similarity in task-relevant dimensions; however, it markedly increases model--model similarity. Similarly, pre-training on larger datasets does not improve model--monkey similarity. These results suggest a fundamental divergence between the task-relevant representations in monkey V4/IT and those learned by models trained on image classification tasks.


[125] 2506.02167

Fire360: A Benchmark for Robust Perception and Episodic Memory in Degraded 360-Degree Firefighting Videos

Modern AI systems struggle most in environments where reliability is critical - scenes with smoke, poor visibility, and structural deformation. Each year, tens of thousands of firefighters are injured on duty, often due to breakdowns in situational perception. We introduce Fire360, a benchmark for evaluating perception and reasoning in safety-critical firefighting scenarios. The dataset includes 228 360-degree videos from professional training sessions under diverse conditions (e.g., low light, thermal distortion), annotated with action segments, object locations, and degradation metadata. Fire360 supports five tasks: Visual Question Answering, Temporal Action Captioning, Object Localization, Safety-Critical Reasoning, and Transformed Object Retrieval (TOR). TOR tests whether models can match pristine exemplars to fire-damaged counterparts in unpaired scenes, evaluating transformation-invariant recognition. While human experts achieve 83.5% on TOR, models like GPT-4o lag significantly, exposing failures in reasoning under degradation. By releasing Fire360 and its evaluation suite, we aim to advance models that not only see, but also remember, reason, and act under uncertainty. The dataset is available at: https://uofi.box.com/v/fire360dataset.


[126] 2506.02168

An Approximation Theory Perspective on Machine Learning

A central problem in machine learning is often formulated as follows: Given a dataset $\{(x_j, y_j)\}_{j=1}^M$, which is a sample drawn from an unknown probability distribution, the goal is to construct a functional model $f$ such that $f(x) \approx y$ for any $(x, y)$ drawn from the same distribution. Neural networks and kernel-based methods are commonly employed for this task due to their capacity for fast and parallel computation. The approximation capabilities, or expressive power, of these methods have been extensively studied over the past 35 years. In this paper, we will present examples of key ideas in this area found in the literature. We will discuss emerging trends in machine learning including the role of shallow/deep networks, approximation on manifolds, physics-informed neural surrogates, neural operators, and transformer architectures. Despite function approximation being a fundamental problem in machine learning, approximation theory does not play a central role in the theoretical foundations of the field. One unfortunate consequence of this disconnect is that it is often unclear how well trained models will generalize to unseen or unlabeled data. In this review, we examine some of the shortcomings of the current machine learning framework and explore the reasons for the gap between approximation theory and machine learning practice. We will then introduce our novel research to achieve function approximation on unknown manifolds without the need to learn specific manifold features, such as the eigen-decomposition of the Laplace-Beltrami operator or atlas construction. In many machine learning problems, particularly classification tasks, the labels $y_j$ are drawn from a finite set of values.


[127] 2506.02169

LoL-NMPC: Low-Level Dynamics Integration in Nonlinear Model Predictive Control for Unmanned Aerial Vehicles

In this paper, we address the problem of tracking high-speed agile trajectories for Unmanned Aerial Vehicles(UAVs), where model inaccuracies can lead to large tracking errors. Existing Nonlinear Model Predictive Controller(NMPC) methods typically neglect the dynamics of the low-level flight controllers such as underlying PID controller present in many flight stacks, and this results in sub-optimal tracking performance at high speeds and accelerations. To this end, we propose a novel NMPC formulation, LoL-NMPC, which explicitly incorporates low-level controller dynamics and motor dynamics in order to minimize trajectory tracking errors while maintaining computational efficiency. By leveraging linear constraints inside low-level dynamics, our approach inherently accounts for actuator constraints without requiring additional reallocation strategies. The proposed method is validated in both simulation and real-world experiments, demonstrating improved tracking accuracy and robustness at speeds up to 98.57 km/h and accelerations of 3.5 g. Our results show an average 21.97 % reduction in trajectory tracking error over standard NMPC formulation, with LoL-NMPC maintaining real-time feasibility at 100 Hz on an embedded ARM-based flight computer.


[128] 2506.02172

Different Speech Translation Models Encode and Translate Speaker Gender Differently

Recent studies on interpreting the hidden states of speech models have shown their ability to capture speaker-specific features, including gender. Does this finding also hold for speech translation (ST) models? If so, what are the implications for the speaker's gender assignment in translation? We address these questions from an interpretability perspective, using probing methods to assess gender encoding across diverse ST models. Results on three language directions (English-French/Italian/Spanish) indicate that while traditional encoder-decoder models capture gender information, newer architectures -- integrating a speech encoder with a machine translation system via adapters -- do not. We also demonstrate that low gender encoding capabilities result in systems' tendency toward a masculine default, a translation bias that is more pronounced in newer architectures.


[129] 2506.02175

AI Debate Aids Assessment of Controversial Claims

As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.


[130] 2506.02177

Act Only When It Pays: Efficient Reinforcement Learning for LLM Reasoning via Selective Rollouts

Reinforcement learning, such as PPO and GRPO, has powered recent breakthroughs in LLM reasoning. Scaling rollout to sample more prompts enables models to selectively use higher-quality data for training, which can stabilize RL training and improve model performance. However, this comes at the cost of significant computational overhead. In this paper, we show that a substantial portion of this overhead can be avoided by skipping uninformative prompts before rollout. Our analysis of reward dynamics reveals a strong temporal consistency in prompt value: prompts that are uninformative in one epoch of training are likely to remain uninformative in future epochs. Based on these insights, we propose GRESO (GRPO with Efficient Selective Rollout), an online, lightweight pre-rollout filtering algorithm that predicts and skips uninformative prompts using reward training dynamics. By evaluating GRESO on a broad range of math reasoning benchmarks and models, such as Qwen2.5-Math-1.5B, DeepSeek-R1-Distill-Qwen-1.5B, and Qwen2.5-Math-7B, we show that GRESO achieves up to 2.4x wall-clock time speedup in rollout and up to 2.0x speedup in total training time without accuracy degradation.


[131] 2506.02178

Cocktail-Party Audio-Visual Speech Recognition

Audio-Visual Speech Recognition (AVSR) offers a robust solution for speech recognition in challenging environments, such as cocktail-party scenarios, where relying solely on audio proves insufficient. However, current AVSR models are often optimized for idealized scenarios with consistently active speakers, overlooking the complexities of real-world settings that include both speaking and silent facial segments. This study addresses this gap by introducing a novel audio-visual cocktail-party dataset designed to benchmark current AVSR systems and highlight the limitations of prior approaches in realistic noisy conditions. Additionally, we contribute a 1526-hour AVSR dataset comprising both talking-face and silent-face segments, enabling significant performance gains in cocktail-party environments. Our approach reduces WER by 67% relative to the state-of-the-art, reducing WER from 119% to 39.2% in extreme noise, without relying on explicit segmentation cues.


[132] 2506.02179

Optimal Coordination of Flexible DERs in Local Energy and Flexibility Markets to Ensure Social Equity

Local electricity markets offer a promising solution for integrating renewable energy sources and other distributed energy resources (DERs) into distribution networks. These markets enable the effective utilization of flexible resources by facilitating coordination among various agents. Beyond technical and economic considerations, addressing social equity within these local communities is critical and requires dedicated attention in market-clearing frameworks. This paper proposes a social equity-based market-clearing framework for the optimal management of DERs' energy and flexibility within local communities. The proposed framework incorporates consumers' energy burden to ensure fair pricing in energy market clearance. Furthermore, to ensure equity during unbalanced operating conditions, flexible resources are managed in the local flexibility market, ensuring that all participants can trade power fairly under network disturbances. The model is formulated as a second-order cone programming (SOCP) optimization and validated on the IEEE 33-bus test distribution network.


[133] 2506.02181

Echoes of Phonetics: Unveiling Relevant Acoustic Cues for ASR via Feature Attribution

Despite significant advances in ASR, the specific acoustic cues models rely on remain unclear. Prior studies have examined such cues on a limited set of phonemes and outdated models. In this work, we apply a feature attribution technique to identify the relevant acoustic cues for a modern Conformer-based ASR system. By analyzing plosives, fricatives, and vowels, we assess how feature attributions align with their acoustic properties in the time and frequency domains, also essential for human speech perception. Our findings show that the ASR model relies on vowels' full time spans, particularly their first two formants, with greater saliency in male speech. It also better captures the spectral characteristics of sibilant fricatives than non-sibilants and prioritizes the release phase in plosives, especially burst characteristics. These insights enhance the interpretability of ASR models and highlight areas for future research to uncover potential gaps in model robustness.


[134] 2506.02182

Spegion: Implicit and Non-Lexical Regions with Sized Allocations

Region based memory management is a powerful tool designed with the goal of ensuring memory safety statically. The region calculus of Tofte and Talpin is a well known example of a region based system, which uses regions to manage memory in a stack-like fashion. However, the region calculus is lexically scoped and requires explicit annotation of memory regions, which can be cumbersome for the programmer. Other systems have addressed non-lexical regions, but these approaches typically require the use of a substructural type system to track the lifetimes of regions. We present Spegion, a language with implicit non-lexical regions, which provides these same memory safety guarantees for programs that go beyond using memory allocation in a stack-like manner. We are able to achieve this with a concise syntax, and without the use of substructural types, relying instead on an effect system to enforce constraints on region allocation and deallocation. These regions may be divided into sub-regions, i.e., Splittable rEgions, allowing fine grained control over memory allocation. Furthermore, Spegion permits sized allocations, where each value has an associated size which is used to ensure that regions are not over-allocated into. We present a type system for Spegion and prove it is type safe with respect to a small-step operational semantics.


[135] 2506.02183

Natural, Artificial, and Human Intelligences

Human achievement, whether in culture, science, or technology, is unparalleled in the known existence. This achievement is tied to the enormous communities of knowledge, made possible by (especially written) language: leaving theological content aside, it is very much true that "in the beginning was the word". There lies the challenge regarding modern age chatbots: they can 'do' language apparently as well as ourselves and there is a natural question of whether they can be considered intelligent, in the same way as we are or otherwise. Are humans uniquely intelligent? We consider this question in terms of the psychological literature on intelligence, evidence for intelligence in non-human animals, the role of written language in science and technology, progress with artificial intelligence, the history of intelligence testing (for both humans and machines), and the role of embodiment in intelligence. For the most unique accomplishments of human intelligence (such as music symphonies or complex scientific theories), we think that, together with language, there are four essential ingredients, which can be summarised as invention, capacity for complex inference, embodiment, and self-awareness. This conclusion makes untenable the position that human intelligence differs qualitatively from that of many non-human animals, since, with the exception of complex language, all the other requirements are fulfilled. Regarding chatbots, the current limitations are localised to the lack of embodiment and (apparent) lack of awareness.


[136] 2506.02193

Fairly Wired: Towards Leximin-Optimal Division of Electricity

In many parts of the world - particularly in developing countries - the demand for electricity exceeds the available supply. In such cases, it is impossible to provide electricity to all households simultaneously. This raises a fundamental question: how should electricity be allocated fairly? In this paper, we explore this question through the lens of egalitarianism - a principle that emphasizes equality by prioritizing the welfare of the worst-off households. One natural rule that aligns with this principle is to maximize the egalitarian welfare - the smallest utility across all households. We show that computing such an allocation is NP-hard, even under strong simplifying assumptions. Leximin is a stronger fairness notion that generalizes the egalitarian welfare: it also requires to maximize the smallest utility, but then, subject to that, the second-smallest, then the third, and so on. The hardness results extends directly to leximin as well. Despite this, we present a Fully Polynomial-Time Approximation Scheme (FPTAS) for leximin in the special case where the network connectivity graph is a tree. This means that we can efficiently approximate leximin - and, in particular, the egalitarian welfare - to any desired level of accuracy.


[137] 2506.02200

Learning Treatment Representations for Downstream Instrumental Variable Regression

Traditional instrumental variable (IV) estimators face a fundamental constraint: they can only accommodate as many endogenous treatment variables as available instruments. This limitation becomes particularly challenging in settings where the treatment is presented in a high-dimensional and unstructured manner (e.g. descriptions of patient treatment pathways in a hospital). In such settings, researchers typically resort to applying unsupervised dimension reduction techniques to learn a low-dimensional treatment representation prior to implementing IV regression analysis. We show that such methods can suffer from substantial omitted variable bias due to implicit regularization in the representation learning step. We propose a novel approach to construct treatment representations by explicitly incorporating instrumental variables during the representation learning process. Our approach provides a framework for handling high-dimensional endogenous variables with limited instruments. We demonstrate both theoretically and empirically that fitting IV models on these instrument-informed representations ensures identification of directions that optimize outcome prediction. Our experiments show that our proposed methodology improves upon the conventional two-stage approaches that perform dimension reduction without incorporating instrument information.


[138] 2506.02203

Constrained Sliced Wasserstein Embedding

Sliced Wasserstein (SW) distances offer an efficient method for comparing high-dimensional probability measures by projecting them onto multiple 1-dimensional probability distributions. However, identifying informative slicing directions has proven challenging, often necessitating a large number of slices to achieve desirable performance and thereby increasing computational complexity. We introduce a constrained learning approach to optimize the slicing directions for SW distances. Specifically, we constrain the 1D transport plans to approximate the optimal plan in the original space, ensuring meaningful slicing directions. By leveraging continuous relaxations of these transport plans, we enable a gradient-based primal-dual approach to train the slicer parameters, alongside the remaining model parameters. We demonstrate how this constrained slicing approach can be applied to pool high-dimensional embeddings into fixed-length permutation-invariant representations. Numerical results on foundation models trained on images, point clouds, and protein sequences showcase the efficacy of the proposed constrained learning approach in learning more informative slicing directions. Our implementation code can be found at https://github.com/Stranja572/constrainedswe.


[139] 2506.02204

BehaviorBox: Automated Discovery of Fine-Grained Performance Differences Between Language Models

Language model evaluation is a daunting task: prompts are brittle, corpus-level perplexities are vague, and the choice of benchmarks are endless. Finding examples that show meaningful, generalizable differences between two LMs is crucial to understanding where one model succeeds and another fails. Can this process be done automatically? In this work, we propose methodology for automated comparison of language models that uses performance-aware contextual embeddings to find fine-grained features of text where one LM outperforms another. Our method, which we name BehaviorBox, extracts coherent features that demonstrate differences with respect to the ease of generation between two LMs. Specifically, BehaviorBox finds features that describe groups of words in fine-grained contexts, such as "conditional 'were' in the phrase 'if you were'" and "exclamation marks after emotional statements", where one model outperforms another within a particular datatset. We apply BehaviorBox to compare models that vary in size, model family, and post-training, and enumerate insights into specific contexts that illustrate meaningful differences in performance which cannot be found by measures such as corpus-level perplexity alone.


[140] 2506.02205

Bregman Centroid Guided Cross-Entropy Method

The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.


[141] 2506.02206

Reinforcement Learning with Data Bootstrapping for Dynamic Subgoal Pursuit in Humanoid Robot Navigation

Safe and real-time navigation is fundamental for humanoid robot applications. However, existing bipedal robot navigation frameworks often struggle to balance computational efficiency with the precision required for stable locomotion. We propose a novel hierarchical framework that continuously generates dynamic subgoals to guide the robot through cluttered environments. Our method comprises a high-level reinforcement learning (RL) planner for subgoal selection in a robot-centric coordinate system and a low-level Model Predictive Control (MPC) based planner which produces robust walking gaits to reach these subgoals. To expedite and stabilize the training process, we incorporate a data bootstrapping technique that leverages a model-based navigation approach to generate a diverse, informative dataset. We validate our method in simulation using the Agility Robotics Digit humanoid across multiple scenarios with random obstacles. Results show that our framework significantly improves navigation success rates and adaptability compared to both the original model-based method and other learning-based methods.


[142] 2506.02208

KDRL: Post-Training Reasoning LLMs via Unified Knowledge Distillation and Reinforcement Learning

Recent advances in large language model (LLM) post-training have leveraged two distinct paradigms to enhance reasoning capabilities: reinforcement learning (RL) and knowledge distillation (KD). While RL enables the emergence of complex reasoning behaviors, it often suffers from low sample efficiency when the initial policy struggles to explore high-reward trajectories. Conversely, KD improves learning efficiency via mimicking the teacher model but tends to generalize poorly to out-of-domain scenarios. In this work, we present \textbf{KDRL}, a \textit{unified post-training framework} that jointly optimizes a reasoning model through teacher supervision (KD) and self-exploration (RL). Specifically, KDRL leverages policy gradient optimization to simultaneously minimize the reverse Kullback-Leibler divergence (RKL) between the student and teacher distributions while maximizing the expected rule-based rewards. We first formulate a unified objective that integrates GRPO and KD, and systematically explore how different KL approximations, KL coefficients, and reward-guided KD strategies affect the overall post-training dynamics and performance. Empirical results on multiple reasoning benchmarks demonstrate that KDRL outperforms GRPO and various KD baselines while achieving a favorable balance between performance and reasoning token efficiency. These findings indicate that integrating KD and RL serves as an effective and efficient strategy to train reasoning LLMs.


[143] 2506.02210

Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Neural networks (NNs) are equipped with increasingly many parameters and require more and more resource for deployment. Researchers have explored various ways to improve the efficiency of NNs by identifying and reducing the redundancy, such as pruning or quantizing unimportant weights. Symmetry in the NN architectures has been identified by prior work as a possible type of redundancy, but exploiting it for efficient inference is not yet explored. In this work, we formalize the symmetry of parameters and intermediate values in NNs using the statistical property of exchangeablility. We identify that exchangeable values in NN computation may contain overlapping information, leading to redundancy. Exploiting the insight, we derive a principled general dynamic pruning algorithm ExPrune to remove symmetry-induced redundancy on a per-input basis. We also provide an instantiation of ExPrune that performs neuron-level dynamic pruning by predicting negative inputs to ReLU activations. We evaluate ExPrune on two computer vision models, one graph model and one language model. ExPrune provides 10.98--26.3% reduction in FLOPs with negligible accuracy drop and 21.01--39.05% reduction in FLOPs with at most 1% accuracy drop. We also demonstrate that ExPrune composes with static pruning. On models that have been aggressively pruned statically, ExPrune provides additional 10.24--11.11% reduction in FLOPs with negligible accuracy drop and 13.91--14.39% reduction in FLOPs with at most 1% accuracy drop.


[144] 2506.02211

Improving LLM-Generated Code Quality with GRPO

Large Language Models (LLMs) are gaining widespread use for code generation. Recent training procedures use execution feedback as a reward signal, typically focusing on the functional correctness of the code, using unit test pass rate as a reward signal. However, this reward signal fails to capture notions of maintainability, quality and safety of the code produced. We address this under-explored area and develop a comprehensive library to quantify various aspects of code quality, and use it as a reward in GRPO. We find GRPO increases code quality according to this measure, which is confirmed by expert, blinded human annotators.


[145] 2506.02212

Leveraging Natural Language Processing to Unravel the Mystery of Life: A Review of NLP Approaches in Genomics, Transcriptomics, and Proteomics

Natural Language Processing (NLP) has transformed various fields beyond linguistics by applying techniques originally developed for human language to the analysis of biological sequences. This review explores the application of NLP methods to biological sequence data, focusing on genomics, transcriptomics, and proteomics. We examine how various NLP methods, from classic approaches like word2vec to advanced models employing transformers and hyena operators, are being adapted to analyze DNA, RNA, protein sequences, and entire genomes. The review also examines tokenization strategies and model architectures, evaluating their strengths, limitations, and suitability for different biological tasks. We further cover recent advances in NLP applications for biological data, such as structure prediction, gene expression, and evolutionary analysis, highlighting the potential of these methods for extracting meaningful insights from large-scale genomic data. As language models continue to advance, their integration into bioinformatics holds immense promise for advancing our understanding of biological processes in all domains of life.


[146] 2506.02213

Quantum Ensembling Methods for Healthcare and Life Science

Learning on small data is a challenge frequently encountered in many real-world applications. In this work we study how effective quantum ensemble models are when trained on small data problems in healthcare and life sciences. We constructed multiple types of quantum ensembles for binary classification using up to 26 qubits in simulation and 56 qubits on quantum hardware. Our ensemble designs use minimal trainable parameters but require long-range connections between qubits. We tested these quantum ensembles on synthetic datasets and gene expression data from renal cell carcinoma patients with the task of predicting patient response to immunotherapy. From the performance observed in simulation and initial hardware experiments, we demonstrate how quantum embedding structure affects performance and discuss how to extract informative features and build models that can learn and generalize effectively. We present these exploratory results in order to assist other researchers in the design of effective learning on small data using ensembles. Incorporating quantum computing in these data constrained problems offers hope for a wide range of studies in healthcare and life sciences where biological samples are relatively scarce given the feature space to be explored.


[147] 2506.02214

Is PMBOK Guide the Right Fit for AI? Re-evaluating Project Management in the Face of Artificial Intelligence Projects

This paper critically evaluates the applicability of the Project Management Body of Knowledge (PMBOK) Guide framework to Artificial Intelligence (AI) software projects, highlighting key limitations and proposing tailored adaptations. Unlike traditional projects, AI initiatives rely heavily on complex data, iterative experimentation, and specialized expertise while navigating significant ethical considerations. Our analysis identifies gaps in the PMBOK Guide, including its limited focus on data management, insufficient support for iterative development, and lack of guidance on ethical and multidisciplinary challenges. To address these deficiencies, we recommend integrating data lifecycle management, adopting iterative and AI project management frameworks, and embedding ethical considerations within project planning and execution. Additionally, we explore alternative approaches that better align with AI's dynamic and exploratory nature. We aim to enhance project management practices for AI software projects by bridging these gaps.


[148] 2506.02215

Active inference as a unified model of collision avoidance behavior in human drivers

Collision avoidance -- involving a rapid threat detection and quick execution of the appropriate evasive maneuver -- is a critical aspect of driving. However, existing models of human collision avoidance behavior are fragmented, focusing on specific scenarios or only describing certain aspects of the avoidance behavior, such as response times. This paper addresses these gaps by proposing a novel computational cognitive model of human collision avoidance behavior based on active inference. Active inference provides a unified approach to modeling human behavior: the minimization of free energy. Building on prior active inference work, our model incorporates established cognitive mechanisms such as evidence accumulation to simulate human responses in two distinct collision avoidance scenarios: front-to-rear lead vehicle braking and lateral incursion by an oncoming vehicle. We demonstrate that our model explains a wide range of previous empirical findings on human collision avoidance behavior. Specifically, the model closely reproduces both aggregate results from meta-analyses previously reported in the literature and detailed, scenario-specific effects observed in a recent driving simulator study, including response timing, maneuver selection, and execution. Our results highlight the potential of active inference as a unified framework for understanding and modeling human behavior in complex real-life driving tasks.


[149] 2506.02217

Analyzing Contact Patterns in Public Transportation Systems for Opportunistic Communication Services

Vehicle mobility has a significant impact on wireless communication between vehicles (buses) in Public Transportation Systems (PTS). Nevertheless, the transportation literature does not provide satisfactory models for bus movements because they are influenced by a variety of factors (itineraries, timetables, etc.). Custom-made mobility models that take these issues into account require a great deal of effort and may render simulations unfeasible. This article considers a tool (EMMS) that automatically inserts PTS information into a mobility simulator in order to undertake a complete statistical analysis of vehicular density, trip duration, and vehicle-to-vehicle interaction. In light of opportunistic communication services, this analysis is of the utmost importance.


[150] 2506.02219

Stochastic Barnes-Hut Approximation for Fast Summation on the GPU

We present a novel stochastic version of the Barnes-Hut approximation. Regarding the level-of-detail (LOD) family of approximations as control variates, we construct an unbiased estimator of the kernel sum being approximated. Through several examples in graphics applications such as winding number computation and smooth distance evaluation, we demonstrate that our method is well-suited for GPU computation, capable of outperforming a GPU-optimized implementation of the deterministic Barnes-Hut approximation by achieving equal median error in up to 9.4x less time.


[151] 2506.02221

Diff2Flow: Training Flow Matching Models via Diffusion Model Alignment

Diffusion models have revolutionized generative tasks through high-fidelity outputs, yet flow matching (FM) offers faster inference and empirical performance gains. However, current foundation FM models are computationally prohibitive for finetuning, while diffusion models like Stable Diffusion benefit from efficient architectures and ecosystem support. This work addresses the critical challenge of efficiently transferring knowledge from pre-trained diffusion models to flow matching. We propose Diff2Flow, a novel framework that systematically bridges diffusion and FM paradigms by rescaling timesteps, aligning interpolants, and deriving FM-compatible velocity fields from diffusion predictions. This alignment enables direct and efficient FM finetuning of diffusion priors with no extra computation overhead. Our experiments demonstrate that Diff2Flow outperforms na\"ive FM and diffusion finetuning particularly under parameter-efficient constraints, while achieving superior or competitive performance across diverse downstream tasks compared to state-of-the-art methods. We will release our code at https://github.com/CompVis/diff2flow.


[152] 2506.02229

VLCD: Vision-Language Contrastive Distillation for Accurate and Efficient Automatic Placenta Analysis

Pathological examination of the placenta is an effective method for detecting and mitigating health risks associated with childbirth. Recent advancements in AI have enabled the use of photographs of the placenta and pathology reports for detecting and classifying signs of childbirth-related pathologies. However, existing automated methods are computationally extensive, which limits their deployability. We propose two modifications to vision-language contrastive learning (VLC) frameworks to enhance their accuracy and efficiency: (1) text-anchored vision-language contrastive knowledge distillation (VLCD)-a new knowledge distillation strategy for medical VLC pretraining, and (2) unsupervised predistillation using a large natural images dataset for improved initialization. Our approach distills efficient neural networks that match or surpass the teacher model in performance while achieving model compression and acceleration. Our results showcase the value of unsupervised predistillation in improving the performance and robustness of our approach, specifically for lower-quality images. VLCD serves as an effective way to improve the efficiency and deployability of medical VLC approaches, making AI-based healthcare solutions more accessible, especially in resource-constrained environments.


[153] 2506.02233

Improving compiler support for SIMD offload using Arm Streaming SVE

The wider adoption of tightly coupled core-adjacent accelerators, such as Arm Scalable Matrix Extension (SME), hinges on lowering software programming complexity. In this paper, we focus on enabling the use of SME architecture in Streaming Scalable Vector Extension (SSVE) mode for workloads written in C/C++. While current compilers optimize loops for all types of SIMD instructions, these techniques primarily target vector units within the core and falter when applied to disaggregated, core-adjacent SIMD accelerators. Our goal is to enable the compiler to automatically generate code for such accelerators only when profitable. To this end, we investigate a path towards performant, precise, and repeatable computation offloading through two compiler ecosystems. We revisit LLVM compiler passes, MLIR transforms and their associated cost models, and heuristics. We hope that these insights can provide directions for evolving compiler capabilities towards automatic code generation for this next-generation vector processing paradigm.


[154] 2506.02234

Second-Order-Cone Formulations of Power Flow for Topology Optimization

Optimization problems that involve topology optimization in scenarios with large scale outages, such as post-disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representations such as DC power flow or network flow models results in low quality solutions which requires significantly higher-than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads.


[155] 2506.02239

Investigating the Impact of Word Informativeness on Speech Emotion Recognition

In emotion recognition from speech, a key challenge lies in identifying speech signal segments that carry the most relevant acoustic variations for discerning specific emotions. Traditional approaches compute functionals for features such as energy and F0 over entire sentences or longer speech portions, potentially missing essential fine-grained variation in the long-form statistics. This research investigates the use of word informativeness, derived from a pre-trained language model, to identify semantically important segments. Acoustic features are then computed exclusively for these identified segments, enhancing emotion recognition accuracy. The methodology utilizes standard acoustic prosodic features, their functionals, and self-supervised representations. Results indicate a notable improvement in recognition performance when features are computed on segments selected based on word informativeness, underscoring the effectiveness of this approach.


[156] 2506.02241

Second-order AAA algorithms for structured data-driven modeling

The data-driven modeling of dynamical systems has become an essential tool for the construction of accurate computational models from real-world data. In this process, the inherent differential structures underlying the considered physical phenomena are often neglected making the reinterpretation of the learned models in a physically meaningful sense very challenging. In this work, we present three data-driven modeling approaches for the construction of dynamical systems with second-order differential structure directly from frequency domain data. Based on the second-order structured barycentric form, we extend the well-known Adaptive Antoulas-Anderson algorithm to the case of second-order systems. Depending on the available computational resources, we propose variations of the proposed method that prioritize either higher computation speed or greater modeling accuracy, and we present a theoretical analysis for the expected accuracy and performance of the proposed methods. Three numerical examples demonstrate the effectiveness of our new structured approaches in comparison to classical unstructured data-driven modeling.


[157] 2506.02242

From Street Views to Urban Science: Discovering Road Safety Factors with Multimodal Large Language Models

Urban and transportation research has long sought to uncover statistically meaningful relationships between key variables and societal outcomes such as road safety, to generate actionable insights that guide the planning, development, and renewal of urban and transportation systems. However, traditional workflows face several key challenges: (1) reliance on human experts to propose hypotheses, which is time-consuming and prone to confirmation bias; (2) limited interpretability, particularly in deep learning approaches; and (3) underutilization of unstructured data that can encode critical urban context. Given these limitations, we propose a Multimodal Large Language Model (MLLM)-based approach for interpretable hypothesis inference, enabling the automated generation, evaluation, and refinement of hypotheses concerning urban context and road safety outcomes. Our method leverages MLLMs to craft safety-relevant questions for street view images (SVIs), extract interpretable embeddings from their responses, and apply them in regression-based statistical models. UrbanX supports iterative hypothesis testing and refinement, guided by statistical evidence such as coefficient significance, thereby enabling rigorous scientific discovery of previously overlooked correlations between urban design and safety. Experimental evaluations on Manhattan street segments demonstrate that our approach outperforms pretrained deep learning models while offering full interpretability. Beyond road safety, UrbanX can serve as a general-purpose framework for urban scientific discovery, extracting structured insights from unstructured urban data across diverse socioeconomic and environmental outcomes. This approach enhances model trustworthiness for policy applications and establishes a scalable, statistically grounded pathway for interpretable knowledge discovery in urban and transportation studies.


[158] 2506.02243

From Features to Structure: Task-Aware Graph Construction for Relational and Tabular Learning with GNNs

Tabular and relational data remain the most ubiquitous formats in real-world machine learning applications, spanning domains from finance to healthcare. Although both formats offer structured representations, they pose distinct challenges for modern deep learning methods, which typically assume flat, feature-aligned inputs. Graph Neural Networks (GNNs) have emerged as a promising solution by capturing structural dependencies within and between tables. However, existing GNN-based approaches often rely on rigid, schema-derived graphs -- such as those based on primary-foreign key links -- thereby underutilizing rich, predictive signals in non key attributes. In this work, we introduce auGraph, a unified framework for task-aware graph augmentation that applies to both tabular and relational data. auGraph enhances base graph structures by selectively promoting attributes into nodes, guided by scoring functions that quantify their relevance to the downstream prediction task. This augmentation preserves the original data schema while injecting task-relevant structural signal. Empirically, auGraph outperforms schema-based and heuristic graph construction methods by producing graphs that better support learning for relational and tabular prediction tasks.


[159] 2506.02244

Motion aware video generative model

Recent advances in diffusion-based video generation have yielded unprecedented quality in visual content and semantic coherence. However, current approaches predominantly rely on statistical learning from vast datasets without explicitly modeling the underlying physics of motion, resulting in subtle yet perceptible non-physical artifacts that diminish the realism of generated videos. This paper introduces a physics-informed frequency domain approach to enhance the physical plausibility of generated videos. We first conduct a systematic analysis of the frequency-domain characteristics of diverse physical motions (translation, rotation, scaling), revealing that each motion type exhibits distinctive and identifiable spectral signatures. Building on this theoretical foundation, we propose two complementary components: (1) a physical motion loss function that quantifies and optimizes the conformity of generated videos to ideal frequency-domain motion patterns, and (2) a frequency domain enhancement module that progressively learns to adjust video features to conform to physical motion constraints while preserving original network functionality through a zero-initialization strategy. Experiments across multiple video diffusion architectures demonstrate that our approach significantly enhances motion quality and physical plausibility without compromising visual quality or semantic alignment. Our frequency-domain physical motion framework generalizes effectively across different video generation architectures, offering a principled approach to incorporating physical constraints into deep learning-based video synthesis pipelines. This work seeks to establish connections between data-driven models and physics-based motion models.


[160] 2506.02247

PAIR-Net: Enhancing Egocentric Speaker Detection via Pretrained Audio-Visual Fusion and Alignment Loss

Active speaker detection (ASD) in egocentric videos presents unique challenges due to unstable viewpoints, motion blur, and off-screen speech sources - conditions under which traditional visual-centric methods degrade significantly. We introduce PAIR-Net (Pretrained Audio-Visual Integration with Regularization Network), an effective model that integrates a partially frozen Whisper audio encoder with a fine-tuned AV-HuBERT visual backbone to robustly fuse cross-modal cues. To counteract modality imbalance, we introduce an inter-modal alignment loss that synchronizes audio and visual representations, enabling more consistent convergence across modalities. Without relying on multi-speaker context or ideal frontal views, PAIR-Net achieves state-of-the-art performance on the Ego4D ASD benchmark with 76.6% mAP, surpassing LoCoNet and STHG by 8.2% and 12.9% mAP, respectively. Our results highlight the value of pretrained audio priors and alignment-based fusion for robust ASD under real-world egocentric conditions.


[161] 2506.02255

SafeOR-Gym: A Benchmark Suite for Safe Reinforcement Learning Algorithms on Practical Operations Research Problems

Most existing safe reinforcement learning (RL) benchmarks focus on robotics and control tasks, offering limited relevance to high-stakes domains that involve structured constraints, mixed-integer decisions, and industrial complexity. This gap hinders the advancement and deployment of safe RL in critical areas such as energy systems, manufacturing, and supply chains. To address this limitation, we present SafeOR-Gym, a benchmark suite of nine operations research (OR) environments tailored for safe RL under complex constraints. Each environment captures a realistic planning, scheduling, or control problems characterized by cost-based constraint violations, planning horizons, and hybrid discrete-continuous action spaces. The suite integrates seamlessly with the Constrained Markov Decision Process (CMDP) interface provided by OmniSafe. We evaluate several state-of-the-art safe RL algorithms across these environments, revealing a wide range of performance: while some tasks are tractable, others expose fundamental limitations in current approaches. SafeOR-Gym provides a challenging and practical testbed that aims to catalyze future research in safe RL for real-world decision-making problems. The SafeOR-Gym framework and all accompanying code are available at: https://github.com/li-group/SafeOR-Gym.


[162] 2506.02256

Human Heterogeneity Invariant Stress Sensing

Stress affects physical and mental health, and wearable devices have been widely used to detect daily stress through physiological signals. However, these signals vary due to factors such as individual differences and health conditions, making generalizing machine learning models difficult. To address these challenges, we present Human Heterogeneity Invariant Stress Sensing (HHISS), a domain generalization approach designed to find consistent patterns in stress signals by removing person-specific differences. This helps the model perform more accurately across new people, environments, and stress types not seen during training. Its novelty lies in proposing a novel technique called person-wise sub-network pruning intersection to focus on shared features across individuals, alongside preventing overfitting by leveraging continuous labels while training. The study focuses especially on people with opioid use disorder (OUD)-a group where stress responses can change dramatically depending on their time of daily medication taking. Since stress often triggers cravings, a model that can adapt well to these changes could support better OUD rehabilitation and recovery. We tested HHISS on seven different stress datasets-four of which we collected ourselves and three public ones. Four are from lab setups, one from a controlled real-world setting, driving, and two are from real-world in-the-wild field datasets without any constraints. This is the first study to evaluate how well a stress detection model works across such a wide range of data. Results show HHISS consistently outperformed state-of-the-art baseline methods, proving both effective and practical for real-world use. Ablation studies, empirical justifications, and runtime evaluations confirm HHISS's feasibility and scalability for mobile stress sensing in sensitive real-world applications.


[163] 2506.02259

Stochastically Dominant Peer Prediction

Eliciting reliable human feedback is essential for many machine learning tasks, such as learning from noisy labels and aligning AI systems with human preferences. Peer prediction mechanisms incentivize truthful reporting without ground truth verification by scoring agents based on correlations with peers. Traditional mechanisms, which ensure that truth-telling maximizes the expected scores in equilibrium, can elicit honest information while assuming agents' utilities are linear functions of their scores. However, in practice, non-linear payment rules are usually preferred, or agents' utilities are inherently non-linear. We propose stochastically dominant truthfulness (SD-truthfulness) as a stronger guarantee: the score distribution of truth-telling stochastically dominates all other strategies, incentivizing truthful reporting for a wide range of monotone utility functions. Our first observation is that no existing peer prediction mechanism naturally satisfies this criterion without strong assumptions. A simple solution -- rounding scores into binary lotteries -- can enforce SD-truthfulness, but often degrades sensitivity, a key property related to fairness and statistical efficiency. We demonstrate how a more careful application of rounding can better preserve sensitivity. Furthermore, we introduce a new enforced agreement (EA) mechanism that is theoretically guaranteed to be SD-truthful in binary-signal settings under mild assumptions, and empirically achieves the highest sensitivity among all known SD-truthful mechanisms.


[164] 2506.02261

Towards Human-like Preference Profiling in Sequential Recommendation

Sequential recommendation systems aspire to profile users by interpreting their interaction histories, echoing how humans make decisions by weighing experience, relative preference strength, and situational relevance. Yet, existing large language model (LLM)-based recommenders often fall short of mimicking the flexible, context-aware decision strategies humans exhibit, neglecting the structured, dynamic, and context-aware mechanisms fundamental to human behaviors. To bridge this gap, we propose RecPO, a preference optimization framework that models structured feedback and contextual delay to emulate human-like prioritization in sequential recommendation RecPO exploits adaptive reward margins based on inferred preference hierarchies and temporal signals, enabling the model to favor immediately relevant items and to distinguish between varying degrees of preference and aversion. Extensive experiments across five real-world datasets demonstrate that RecPO not only yields performance gains over state-of-the-art baselines, but also mirrors key characteristics of human decision-making: favoring timely satisfaction, maintaining coherent preferences, and exercising discernment under shifting contexts.


[165] 2506.02262

Composable Building Blocks for Controllable and Transparent Interactive AI Systems

While the increased integration of AI technologies into interactive systems enables them to solve an equally increasing number of tasks, the black box problem of AI models continues to spread throughout the interactive system as a whole. Explainable AI (XAI) techniques can make AI models more accessible by employing post-hoc methods or transitioning to inherently interpretable models. While this makes individual AI models clearer, the overarching system architecture remains opaque. To this end, we propose an approach to represent interactive systems as sequences of structural building blocks, such as AI models and control mechanisms grounded in the literature. These can then be explained through accompanying visual building blocks, such as XAI techniques. The flow and APIs of the structural building blocks form an explicit overview of the system. This serves as a communication basis for both humans and automated agents like LLMs, aligning human and machine interpretability of AI models. We discuss a selection of building blocks and concretize our flow-based approach in an architecture and accompanying prototype interactive system.


[166] 2506.02264

CoDial: Interpretable Task-Oriented Dialogue Systems Through Dialogue Flow Alignment

It is often challenging to teach specialized, unseen tasks to dialogue systems due to the high cost of expert knowledge, training data, and high technical difficulty. To support domain-specific applications - such as law, medicine, or finance - it is essential to build frameworks that enable non-technical experts to define, test, and refine system behaviour with minimal effort. Achieving this requires cross-disciplinary collaboration between developers and domain specialists. In this work, we introduce a novel framework, CoDial (Code for Dialogue), that converts expert knowledge, represented as a novel structured heterogeneous graph, into executable conversation logic. CoDial can be easily implemented in existing guardrailing languages, such as Colang, to enable interpretable, modifiable, and true zero-shot specification of task-oriented dialogue systems. Empirically, CoDial achieves state-of-the-art performance on the STAR dataset for inference-based models and is competitive with similar baselines on the well-known MultiWOZ dataset. We also demonstrate CoDial's iterative improvement via manual and LLM-aided feedback, making it a practical tool for expert-guided alignment of LLMs in high-stakes domains.


[167] 2506.02265

Rig3R: Rig-Aware Conditioning for Learned 3D Reconstruction

Estimating agent pose and 3D scene structure from multi-camera rigs is a central task in embodied AI applications such as autonomous driving. Recent learned approaches such as DUSt3R have shown impressive performance in multiview settings. However, these models treat images as unstructured collections, limiting effectiveness in scenarios where frames are captured from synchronized rigs with known or inferable structure. To this end, we introduce Rig3R, a generalization of prior multiview reconstruction models that incorporates rig structure when available, and learns to infer it when not. Rig3R conditions on optional rig metadata including camera ID, time, and rig poses to develop a rig-aware latent space that remains robust to missing information. It jointly predicts pointmaps and two types of raymaps: a pose raymap relative to a global frame, and a rig raymap relative to a rig-centric frame consistent across time. Rig raymaps allow the model to infer rig structure directly from input images when metadata is missing. Rig3R achieves state-of-the-art performance in 3D reconstruction, camera pose estimation, and rig discovery, outperforming both traditional and learned methods by 17-45% mAA across diverse real-world rig datasets, all in a single forward pass without post-processing or iterative refinement.


[168] 2506.02267

TransAct V2: Lifelong User Action Sequence Modeling on Pinterest Recommendation

Modeling user action sequences has become a popular focus in industrial recommendation system research, particularly for Click-Through Rate (CTR) prediction tasks. However, industry-scale CTR models often rely on short user sequences, limiting their ability to capture long-term behavior. Additionally, these models typically lack an integrated action-prediction task within a point-wise ranking framework, reducing their predictive power. They also rarely address the infrastructure challenges involved in efficiently serving large-scale sequential models. In this paper, we introduce TransAct V2, a production model for Pinterest's Homefeed ranking system, featuring three key innovations: (1) leveraging very long user sequences to improve CTR predictions, (2) integrating a Next Action Loss function for enhanced user action forecasting, and (3) employing scalable, low-latency deployment solutions tailored to handle the computational demands of extended user action sequences.


[169] 2506.02269

A Tale of Two Symmetries: Exploring the Loss Landscape of Equivariant Models

Equivariant neural networks have proven to be effective for tasks with known underlying symmetries. However, optimizing equivariant networks can be tricky and best training practices are less established than for standard networks. In particular, recent works have found small training benefits from relaxing equivariance constraints. This raises the question: do equivariance constraints introduce fundamental obstacles to optimization? Or do they simply require different hyperparameter tuning? In this work, we investigate this question through a theoretical analysis of the loss landscape geometry. We focus on networks built using permutation representations, which we can view as a subset of unconstrained MLPs. Importantly, we show that the parameter symmetries of the unconstrained model has nontrivial effects on the loss landscape of the equivariant subspace and under certain conditions can provably prevent learning of the global minima. Further, we empirically demonstrate in such cases, relaxing to an unconstrained MLP can sometimes solve the issue. Interestingly, the weights eventually found via relaxation corresponds to a different choice of group representation in the hidden layer. From this, we draw 3 key takeaways. (1) Viewing any class of networks in the context of larger unconstrained function space can give important insights on loss landscape structure. (2) Within the unconstrained function space, equivariant networks form a complicated union of linear hyperplanes, each associated with a specific choice of internal group representation. (3) Effective relaxation of equivariance may require not only adding nonequivariant degrees of freedom, but also rethinking the fixed choice of group representations in hidden layers.


[170] 2506.02276

Latent Stochastic Interpolants

Stochastic Interpolants (SI) are a powerful framework for generative modeling, capable of flexibly transforming between two probability distributions. However, their use in jointly optimized latent variable models remains unexplored as they require direct access to the samples from the two distributions. This work presents Latent Stochastic Interpolants (LSI) enabling joint learning in a latent space with end-to-end optimized encoder, decoder and latent SI models. We achieve this by developing a principled Evidence Lower Bound (ELBO) objective derived directly in continuous time. The joint optimization allows LSI to learn effective latent representations along with a generative process that transforms an arbitrary prior distribution into the encoder-defined aggregated posterior. LSI sidesteps the simple priors of the normal diffusion models and mitigates the computational demands of applying SI directly in high-dimensional observation spaces, while preserving the generative flexibility of the SI framework. We demonstrate the efficacy of LSI through comprehensive experiments on the standard large scale ImageNet generation benchmark.


[171] 2506.02279

ImpRAG: Retrieval-Augmented Generation with Implicit Queries

Retrieval-Augmented Generation (RAG) systems traditionally treat retrieval and generation as separate processes, requiring explicit textual queries to connect them. This separation can limit the ability of models to generalize across diverse tasks. In this work, we propose a query-free RAG system, named ImpRAG, which integrates retrieval and generation into a unified model. ImpRAG allows models to implicitly express their information needs, eliminating the need for human-specified queries. By dividing pretrained decoder-only language models into specialized layer groups, ImpRAG optimizes retrieval and generation tasks simultaneously. Our approach employs a two-stage inference process, using the same model parameters and forward pass for both retrieval and generation, thereby minimizing the disparity between retrievers and language models. Experiments on 8 knowledge-intensive tasks demonstrate that ImpRAG achieves 3.6-11.5 improvements in exact match scores on unseen tasks with diverse formats, highlighting its effectiveness in enabling models to articulate their own information needs and generalize across tasks. Our analysis underscores the importance of balancing retrieval and generation parameters and leveraging generation perplexities as retrieval training objectives for enhanced performance.


[172] 2506.02280

The State of Large Language Models for African Languages: Progress and Challenges

Large Language Models (LLMs) are transforming Natural Language Processing (NLP), but their benefits are largely absent for Africa's 2,000 low-resource languages. This paper comparatively analyzes African language coverage across six LLMs, eight Small Language Models (SLMs), and six Specialized SLMs (SSLMs). The evaluation covers language coverage, training sets, technical limitations, script problems, and language modelling roadmaps. The work identifies 42 supported African languages and 23 available public data sets, and it shows a big gap where four languages (Amharic, Swahili, Afrikaans, and Malagasy) are always treated while there is over 98\% of unsupported African languages. Moreover, the review shows that just Latin, Arabic, and Ge'ez scripts are identified while 20 active scripts are neglected. Some of the primary challenges are lack of data, tokenization biases, computational costs being very high, and evaluation issues. These issues demand language standardization, corpus development by the community, and effective adaptation methods for African languages.


[173] 2506.02281

Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals

Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.


[174] 2506.02282

Singularity Blockchain Key Management via non-custodial key management

web3 wallets are key to managing user identity on blockchain. The main purpose of a web3 wallet application is to manage the private key for the user and provide an interface to interact with the blockchain. The key management scheme ( KMS ) used by the wallet to store and recover the private key can be either custodial, where the keys are permissioned and in custody of the wallet provider or noncustodial where the keys are in custody of the user. The existing non-custodial key management schemes tend to offset the burden of storing and recovering the key entirely on the user by asking them to remember seed-phrases. This creates onboarding hassles for the user and introduces the risk that the user may lose their assets if they forget or lose their seedphrase/private key. In this paper, we propose a novel method of backing up user keys using a non-custodial key management technique that allows users to save and recover a backup of their private key using any independent sign-in method such as google-oAuth or other 3P oAuth.


[175] 2506.02283

Sounding Like a Winner? Prosodic Differences in Post-Match Interviews

This study examines the prosodic characteristics associated with winning and losing in post-match tennis interviews. Additionally, this research explores the potential to classify match outcomes solely based on post-match interview recordings using prosodic features and self-supervised learning (SSL) representations. By analyzing prosodic elements such as pitch and intensity, alongside SSL models like Wav2Vec 2.0 and HuBERT, the aim is to determine whether an athlete has won or lost their match. Traditional acoustic features and deep speech representations are extracted from the data, and machine learning classifiers are employed to distinguish between winning and losing players. Results indicate that SSL representations effectively differentiate between winning and losing outcomes, capturing subtle speech patterns linked to emotional states. At the same time, prosodic cues -- such as pitch variability -- remain strong indicators of victory.


[176] 2506.02284

Learning Optimal Posted Prices for a Unit-Demand Buyer

We study the problem of learning the optimal item pricing for a unit-demand buyer with independent item values, and the learner has query access to the buyer's value distributions. We consider two common query models in the literature: the sample access model where the learner can obtain a sample of each item value, and the pricing query model where the learner can set a price for an item and obtain a binary signal on whether the sampled value of the item is greater than our proposed price. In this work, we give nearly tight sample complexity and pricing query complexity of the unit-demand pricing problem.


[177] 2506.02285

Why Gradients Rapidly Increase Near the End of Training

During long-duration Large Language Model (LLM) training runs the gradient norm increases rapidly near the end of training. In this short note, we show that this increase is due to an unintended interaction between weight decay, normalization layers, and the learning rate schedule. We propose a simple correction that fixes this behavior while also resulting in lower loss values throughout training.


[178] 2506.02286

Efficient Manipulation-Enhanced Semantic Mapping With Uncertainty-Informed Action Selection

Service robots operating in cluttered human environments such as homes, offices, and schools cannot rely on predefined object arrangements and must continuously update their semantic and spatial estimates while dealing with possible frequent rearrangements. Efficient and accurate mapping under such conditions demands selecting informative viewpoints and targeted manipulations to reduce occlusions and uncertainty. In this work, we present a manipulation-enhanced semantic mapping framework for occlusion-heavy shelf scenes that integrates evidential metric-semantic mapping with reinforcement-learning-based next-best view planning and targeted action selection. Our method thereby exploits uncertainty estimates from the Dirichlet and Beta distributions in the semantic and occupancy prediction networks to guide both active sensor placement and object manipulation, focusing on areas of limited knowledge and selecting actions with high expected information gain. For object manipulation, we introduce an uncertainty-informed push strategy that targets occlusion-critical objects and generates minimally invasive actions to reveal hidden regions. The experimental evaluation shows that our framework highly reduces object displacement and drops while achieving a 95% reduction in planning time compared to the state-of-the-art, thereby realizing real-world applicability.


[179] 2506.02290

HEC: Equivalence Verification Checking for Code Transformation via Equality Saturation

In modern computing systems, compilation employs numerous optimization techniques to enhance code performance. Source-to-source code transformations, which include control flow and datapath transformations, have been widely used in High-Level Synthesis (HLS) and compiler optimization. While researchers actively investigate methods to improve performance with source-to-source code transformations, they often overlook the significance of verifying their correctness. Current tools cannot provide a holistic verification of these transformations. This paper introduces HEC, a framework for equivalence checking that leverages the e-graph data structure to comprehensively verify functional equivalence between programs. HEC utilizes the MLIR as its frontend and integrates MLIR into the e-graph framework. Through the combination of dynamic and static e-graph rewriting, HEC facilitates the validation of comprehensive code transformations. We demonstrate effectiveness of HEC on PolyBenchC benchmarks, successfully verifying loop unrolling, tiling, and fusion transformations. HEC processes over 100,000 lines of MLIR code in 40 minutes with predictable runtime scaling. Importantly, HEC identified two critical compilation errors in mlir-opt: loop boundary check errors causing unintended executions during unrolling, and memory read-after-write violations in loop fusion that alter program semantics. These findings demonstrate HEC practical value in detecting real-world compiler bugs and highlight the importance of formal verification in optimization pipelines.


[180] 2506.02291

Entity Image and Mixed-Modal Image Retrieval Datasets

Despite advances in multimodal learning, challenging benchmarks for mixed-modal image retrieval that combines visual and textual information are lacking. This paper introduces a novel benchmark to rigorously evaluate image retrieval that demands deep cross-modal contextual understanding. We present two new datasets: the Entity Image Dataset (EI), providing canonical images for Wikipedia entities, and the Mixed-Modal Image Retrieval Dataset (MMIR), derived from the WIT dataset. The MMIR benchmark features two challenging query types requiring models to ground textual descriptions in the context of provided visual entities: single entity-image queries (one entity image with descriptive text) and multi-entity-image queries (multiple entity images with relational text). We empirically validate the benchmark's utility as both a training corpus and an evaluation set for mixed-modal retrieval. The quality of both datasets is further affirmed through crowd-sourced human annotations. The datasets are accessible through the GitHub page: https://github.com/google-research-datasets/wit-retrieval.


[181] 2506.02293

On Universality Classes of Equivariant Networks

Equivariant neural networks provide a principled framework for incorporating symmetry into learning architectures and have been extensively analyzed through the lens of their separation power, that is, the ability to distinguish inputs modulo symmetry. This notion plays a central role in settings such as graph learning, where it is often formalized via the Weisfeiler-Leman hierarchy. In contrast, the universality of equivariant models-their capacity to approximate target functions-remains comparatively underexplored. In this work, we investigate the approximation power of equivariant neural networks beyond separation constraints. We show that separation power does not fully capture expressivity: models with identical separation power may differ in their approximation ability. To demonstrate this, we characterize the universality classes of shallow invariant networks, providing a general framework for understanding which functions these architectures can approximate. Since equivariant models reduce to invariant ones under projection, this analysis yields sufficient conditions under which shallow equivariant networks fail to be universal. Conversely, we identify settings where shallow models do achieve separation-constrained universality. These positive results, however, depend critically on structural properties of the symmetry group, such as the existence of adequate normal subgroups, which may not hold in important cases like permutation symmetry.


[182] 2506.02294

Improving Knowledge Distillation Under Unknown Covariate Shift Through Confidence-Guided Data Augmentation

Large foundation models trained on extensive datasets demonstrate strong zero-shot capabilities in various domains. To replicate their success when data and model size are constrained, knowledge distillation has become an established tool for transferring knowledge from foundation models to small student networks. However, the effectiveness of distillation is critically limited by the available training data. This work addresses the common practical issue of covariate shift in knowledge distillation, where spurious features appear during training but not at test time. We ask the question: when these spurious features are unknown, yet a robust teacher is available, is it possible for a student to also become robust to them? We address this problem by introducing a novel diffusion-based data augmentation strategy that generates images by maximizing the disagreement between the teacher and the student, effectively creating challenging samples that the student struggles with. Experiments demonstrate that our approach significantly improves worst group and mean group accuracy on CelebA and SpuCo Birds as well as the spurious mAUC on spurious ImageNet under covariate shift, outperforming state-of-the-art diffusion-based data augmentation baselines


[183] 2506.02295

QARI-OCR: High-Fidelity Arabic Text Recognition through Multimodal Large Language Model Adaptation

The inherent complexities of Arabic script; its cursive nature, diacritical marks (tashkeel), and varied typography, pose persistent challenges for Optical Character Recognition (OCR). We present Qari-OCR, a series of vision-language models derived from Qwen2-VL-2B-Instruct, progressively optimized for Arabic through iterative fine-tuning on specialized synthetic datasets. Our leading model, QARI v0.2, establishes a new open-source state-of-the-art with a Word Error Rate (WER) of 0.160, Character Error Rate (CER) of 0.061, and BLEU score of 0.737 on diacritically-rich texts. Qari-OCR demonstrates superior handling of tashkeel, diverse fonts, and document layouts, alongside impressive performance on low-resolution images. Further explorations (QARI v0.3) showcase strong potential for structural document understanding and handwritten text. This work delivers a marked improvement in Arabic OCR accuracy and efficiency, with all models and datasets released to foster further research.


[184] 2506.02297

Experimental Covert Communication Using Software-Defined Radio

The fundamental information-theoretic limits of covert, or low probability of detection (LPD), communication have been extensively studied for over a decade, resulting in the square root law (SRL): only $L\sqrt{n}$ covert bits can be reliably transmitted over time-bandwidth product $n$, for constant $L>0$. Transmitting more either results in detection or decoding errors. The SRL imposes significant constraints on hardware realization of provably-secure covert communication. Thus, experimental validation of covert communication is underexplored: to date, only two experimental studies of SRL-based covert communication are available, both focusing on optical channels. Here, we report our initial results demonstrating the provably-secure covert radio-frequency (RF) communication using software-defined radios (SDRs). These validate theoretical predictions, open practical avenues for implementing covert communication systems, as well as raise future research questions.


[185] 2506.02298

LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback

Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data, especially for multi-steps tasks that involve planning, executing tool calls, and responding to feedback. To address these issues, we present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback. Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback. This setup enables LLM Agents to explore and solve tasks autonomously, facilitating the discovery of multiple approaches to tackle any given task. The resulting action trajectory data are then used to create high-quality training datasets for LAMs. Our experiments on popular agentic benchmarks, ToolBench and CRMArena, highlight the effectiveness of LAM SIMULATOR: models trained with self-generated datasets using our framework achieve significant performance gains, up to a 49.3\% improvement over their original baselines. LAM SIMULATOR requires minimal human input during dataset creation, highlighting LAM SIMULATOR's efficiency and effectiveness in speeding up development of AI agents.


[186] 2506.02300

Through a Steerable Lens: Magnifying Neural Network Interpretability via Phase-Based Extrapolation

Understanding the internal representations and decision mechanisms of deep neural networks remains a critical open challenge. While existing interpretability methods often identify influential input regions, they may not elucidate how a model distinguishes between classes or what specific changes would transition an input from one category to another. To address these limitations, we propose a novel framework that visualizes the implicit path between classes by treating the network gradient as a form of infinitesimal motion. Drawing inspiration from phase-based motion magnification, we first decompose images using invertible transforms-specifically the Complex Steerable Pyramid-then compute class-conditional gradients in the transformed space. Rather than iteratively integrating the gradient to trace a full path, we amplify the one-step gradient to the input and perform a linear extrapolation to expose how the model moves from source to target class. By operating in the steerable pyramid domain, these amplified gradients produce semantically meaningful, spatially coherent morphs that highlight the classifier's most sensitive directions, giving insight into the geometry of its decision boundaries. Experiments on both synthetic and real-world datasets demonstrate that our phase-focused extrapolation yields perceptually aligned, semantically meaningful transformations, offering a novel, interpretable lens into neural classifiers' internal representations.


[187] 2506.02302

Explain-then-Process: Using Grammar Prompting to Enhance Grammatical Acceptability Judgments

Large language models (LLMs) can explain grammatical rules, yet they often fail to apply those rules when judging sentence acceptability. We present "grammar prompting", an explain-then-process paradigm: a large LLM first produces a concise explanation of the relevant syntactic phenomenon, then that explanation is fed back as additional context to the target model -- either an LLM or a smaller language model (SLM) -- before deciding which sentence of a minimal pair is grammatical. On the English BLiMP, Chinese SLING, and Russian RuBLiMP benchmarks, this simple prompt design yields substantial improvements over strong baselines across many syntactic phenomena. Feeding an LLM's metalinguistic explanation back to the target model bridges the gap between knowing a rule and using it. On SLMs, grammar prompting alone trims the average LLM-SLM accuracy gap by about 20%, and when paired with chain-of-thought, by 56% (13.0 pp -> 5.8 pp), all at negligible cost. The lightweight, language-agnostic cue lets low-cost SLMs approach frontier-LLM performance in multilingual settings.


[188] 2506.02306

CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation

We present CACTI, a masked autoencoding approach for imputing tabular data that leverages the structure in missingness patterns and contextual information. Our approach employs a novel median truncated copy masking training strategy that encourages the model to learn from empirical patterns of missingness while incorporating semantic relationships between features - captured by column names and text descriptions - to better represent feature dependence. These dual sources of inductive bias enable CACTI to outperform state-of-the-art methods - an average $R^2$ gain of 7.8% over the next best method (13.4%, 6.1%, and 5.3% under missing not at random, at random and completely at random, respectively) - across a diverse range of datasets and missingness conditions. Our results highlight the value of leveraging dataset-specific contextual information and missingness patterns to enhance imputation performance.


[189] 2506.02308

MINT: Multimodal Instruction Tuning with Multimodal Interaction Grouping

Recent advances in multimodal foundation models have achieved state-of-the-art performance across a range of tasks. These breakthroughs are largely driven by new pre-training paradigms that leverage large-scale, unlabeled multimodal data, followed by instruction fine-tuning on curated labeled datasets and high-quality prompts. While there is growing interest in scaling instruction fine-tuning to ever-larger datasets in both quantity and scale, our findings reveal that simply increasing the number of instruction-tuning tasks does not consistently yield better performance. Instead, we observe that grouping tasks by the common interactions across modalities, such as discovering redundant shared information, prioritizing modality selection with unique information, or requiring synergistic fusion to discover new information from both modalities, encourages the models to learn transferrable skills within a group while suppressing interference from mismatched tasks. To this end, we introduce MINT, a simple yet surprisingly effective task-grouping strategy based on the type of multimodal interaction. We demonstrate that the proposed method greatly outperforms existing task grouping baselines for multimodal instruction tuning, striking an effective balance between generalization and specialization.


[190] 2506.02309

SIL Allocation for Mitigation Safety Functions

SIL (Safety Integrity Level) allocation plays a pivotal role in evaluating the significance of Safety Functions (SFs) within high-risk industries. The outcomes of a SIL allocation study determine the design specifications necessary to uphold the Probability of Failure on Demand (PFD) below permissible limits, thus managing risk effectively. While extensive research has focused on SIL allocation for preventive SFs, there is a noticeable gap in attention towards mitigation SFs. To address this gap, this paper discusses the shortcomings of current methods and proposes a new approach to overcome them. The principles of the proposed method are substantiated by detailed mathematical formulation and the practical application of the method is demonstrated through a case study in a road tunnel project.


[191] 2506.02311

Unicorn-CIM: Unconvering the Vulnerability and Improving the Resilience of High-Precision Compute-in-Memory

Compute-in-memory (CIM) architecture has been widely explored to address the von Neumann bottleneck in accelerating deep neural networks (DNNs). However, its reliability remains largely understudied, particularly in the emerging domain of floating-point (FP) CIM, which is crucial for speeding up high-precision inference and on device training. This paper introduces Unicorn-CIM, a framework to uncover the vulnerability and improve the resilience of high-precision CIM, built on static random-access memory (SRAM)-based FP CIM architecture. Through the development of fault injection and extensive characterizations across multiple DNNs, Unicorn-CIM reveals how soft errors manifest in FP operations and impact overall model performance. Specifically, we find that high-precision DNNs are extremely sensitive to errors in the exponent part of FP numbers. Building on this insight, Unicorn-CIM develops an efficient algorithm-hardware co-design method that optimizes model exponent distribution through fine-tuning and incorporates a lightweight Error Correcting Code (ECC) scheme to safeguard high-precision DNNs on FP CIM. Comprehensive experiments show that our approach introduces just an 8.98% minimal logic overhead on the exponent processing path while providing robust error protection and maintaining model accuracy. This work paves the way for developing more reliable and efficient CIM hardware.


[192] 2506.02314

ResearchCodeBench: Benchmarking LLMs on Implementing Novel Machine Learning Research Code

Large language models (LLMs) have shown promise in transforming machine learning research, yet their capability to faithfully implement novel ideas from recent research papers-ideas unseen during pretraining-remains unclear. We introduce ResearchCodeBench, a benchmark of 212 coding challenges that evaluates LLMs' ability to translate cutting-edge ML contributions from top 2024-2025 research papers into executable code. We assessed 30+ proprietary and open-source LLMs, finding that even the best models correctly implement less than 40% of the code. We find Gemini-2.5-Pro-Preview to perform best at 37.3% success rate, with O3 (High) and O4-mini (High) following behind at 32.3% and 30.8% respectively. We present empirical findings on performance comparison, contamination, and error patterns. By providing a rigorous and community-driven evaluation platform, ResearchCodeBench enables continuous understanding and advancement of LLM-driven innovation in research code generation.


[193] 2506.02315

A Data-Based Architecture for Flight Test without Test Points

The justification for the "test point" derives from the test pilot's obligation to reproduce faithfully the pre-specified conditions of some model prediction. Pilot deviation from those conditions invalidates the model assumptions. Flight test aids have been proposed to increase accuracy on more challenging test points. However, the very existence of databands and tolerances is the problem more fundamental than inadequate pilot skill. We propose a novel approach, which eliminates test points. We start with a high-fidelity digital model of an air vehicle. Instead of using this model to generate a point prediction, we use a machine learning method to produce a reduced-order model (ROM). The ROM has two important properties. First, it can generate a prediction based on any set of conditions the pilot flies. Second, if the test result at those conditions differ from the prediction, the ROM can be updated using the new data. The outcome of flight test is thus a refined ROM at whatever conditions were flown. This ROM in turn updates and validates the high-fidelity model. We present a single example of this "point-less" architecture, using T-38C flight test data. We first use a generic aircraft model to build a ROM of longitudinal pitching motion as a hypersurface. We then ingest unconstrained flight test data and use Gaussian Process Regression to update and condition the hypersurface. By proposing a second-order equivalent system for the T-38C, this hypersurface then generates parameters necessary to assess MIL-STD-1797B compliance for longitudinal dynamics.


[194] 2506.02318

Absorb and Converge: Provable Convergence Guarantee for Absorbing Discrete Diffusion Models

Discrete state space diffusion models have shown significant advantages in applications involving discrete data, such as text and image generation. It has also been observed that their performance is highly sensitive to the choice of rate matrices, particularly between uniform and absorbing rate matrices. While empirical results suggest that absorbing rate matrices often yield better generation quality compared to uniform rate matrices, existing theoretical works have largely focused on the uniform rate matrices case. Notably, convergence guarantees and error analyses for absorbing diffusion models are still missing. In this work, we provide the first finite-time error bounds and convergence rate analysis for discrete diffusion models using absorbing rate matrices. We begin by deriving an upper bound on the KL divergence of the forward process, introducing a surrogate initialization distribution to address the challenge posed by the absorbing stationary distribution, which is a singleton and causes the KL divergence to be ill-defined. We then establish the first convergence guarantees for both the $\tau$-leaping and uniformization samplers under absorbing rate matrices, demonstrating improved rates over their counterparts using uniform rate matrices. Furthermore, under suitable assumptions, we provide convergence guarantees without early stopping. Our analysis introduces several new technical tools to address challenges unique to absorbing rate matrices. These include a Jensen-type argument for bounding forward process convergence, novel techniques for bounding absorbing score functions, and a non-divergent upper bound on the score near initialization that removes the need of early-stopping.


[195] 2506.02320

Greedy recursion parameter selection for the One-Way Navier-Stokes (OWNS) equations

The One-Way Navier-Stokes (OWNS) equations use recursive filtering to construct efficient, well-posed one-way approximations to linear hyperbolic systems. The recursion parameters are critical to the accuracy and stability of the method, and have previously been chosen based on heuristic estimates of key eigenvalues (or their branches), which converges slowly and requires trial-and-error tuning for new systems. We review the projection and recursive OWNS formulations (OWNS-P and OWNS-R) for inhomogeneous equations and propose a greedy algorithm for parameter selection. We show that it converges faster and leads to a net decrease in computational cost.


[196] 2506.02321

Quantifying Misattribution Unfairness in Authorship Attribution

Authorship misattribution can have profound consequences in real life. In forensic settings simply being considered as one of the potential authors of an evidential piece of text or communication can result in undesirable scrutiny. This raises a fairness question: Is every author in the candidate pool at equal risk of misattribution? Standard evaluation measures for authorship attribution systems do not explicitly account for this notion of fairness. We introduce a simple measure, Misattribution Unfairness Index (MAUIk), which is based on how often authors are ranked in the top k for texts they did not write. Using this measure we quantify the unfairness of five models on two different datasets. All models exhibit high levels of unfairness with increased risks for some authors. Furthermore, we find that this unfairness relates to how the models embed the authors as vectors in the latent search space. In particular, we observe that the risk of misattribution is higher for authors closer to the centroid (or center) of the embedded authors in the haystack. These results indicate the potential for harm and the need for communicating with and calibrating end users on misattribution risk when building and providing such models for downstream use.


[197] 2506.02323

Sensitivity-Aware Density Estimation in Multiple Dimensions

We formulate an optimization problem to estimate probability densities in the context of multidimensional problems that are sampled with uneven probability. It considers detector sensitivity as an heterogeneous density and takes advantage of the computational speed and flexible boundary conditions offered by splines on a grid. We choose to regularize the Hessian of the spline via the nuclear norm to promote sparsity. As a result, the method is spatially adaptive and stable against the choice of the regularization parameter, which plays the role of the bandwidth. We test our computational pipeline on standard densities and provide software. We also present a new approach to PET rebinning as an application of our framework.


[198] 2506.02324

Are Crypto Ecosystems (De)centralizing? A Framework for Longitudinal Analysis

Blockchain technology relies on decentralization to resist faults and attacks while operating without trusted intermediaries. Although industry experts have touted decentralization as central to their promise and disruptive potential, it is still unclear whether the crypto ecosystems built around blockchains are becoming more or less decentralized over time. As crypto plays an increasing role in facilitating economic transactions and peer-to-peer interactions, measuring their decentralization becomes even more essential. We thus propose a systematic framework for measuring the decentralization of crypto ecosystems over time and compare commonly used decentralization metrics. We applied this framework to seven prominent crypto ecosystems, across five distinct subsystems and across their lifetime for over 15 years. Our analysis revealed that while crypto has largely become more decentralized over time, recent trends show a shift toward centralization in the consensus layer, NFT marketplaces, and developers. Our framework and results inform researchers, policymakers, and practitioners about the design, regulation, and implementation of crypto ecosystems and provide a systematic, replicable foundation for future studies.


[199] 2506.02326

Something Just Like TRuST : Toxicity Recognition of Span and Target

Toxicity in online content, including content generated by language models, has become a critical concern due to its potential for negative psychological and social impact. This paper introduces TRuST, a comprehensive dataset designed to improve toxicity detection that merges existing datasets, and has labels for toxicity, target social group, and toxic spans. It includes a diverse range of target groups such as ethnicity, gender, religion, disability, and politics, with both human/machine-annotated and human machine-generated data. We benchmark state-of-the-art large language models (LLMs) on toxicity detection, target group identification, and toxic span extraction. We find that fine-tuned models consistently outperform zero-shot and few-shot prompting, though performance remains low for certain social groups. Further, reasoning capabilities do not significantly improve performance, indicating that LLMs have weak social reasoning skills.


[200] 2506.02327

Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning

Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.


[201] 2506.02332

Finite State Dimension and The Davenport Erdős Theorem

A 1952 result of Davenport and Erd\H{o}s states that if $p$ is an integer-valued polynomial, then the real number $0.p(1)p(2)p(3)\dots$ is Borel normal in base ten. A later result of Nakai and Shiokawa extends this result to polynomials with arbitrary real coefficients and all bases $b\geq 2$. It is well-known that finite-state dimension, a finite-state effectivization of the classical Hausdorff dimension, characterizes the Borel normal sequences as precisely those sequences of finite-state dimension 1. For an infinite set of natural numbers, and a base $b\geq 2$, the base $b$ Copeland-Erd\H{o}s sequence of $A$, $CE_b(A)$, is the infinite sequence obtained by concatenating the base $b$ expressions of the numbers in $A$ in increasing order. In this work we investigate the possible relationships between the finite-state dimensions of $CE_b(A)$ and $CE_b(p(A))$ where $p$ is a polynomial. We show that, if the polynomial is permitted to have arbitrary real coefficients, then for any $s,s^\prime$ in the unit interval, there is a set $A$ of natural numbers and a linear polynomial $p$ so that the finite-state dimensions of $CE_b(A)$ and $CE_b(p(A))$ are $s$ and $s^\prime$ respectively. We also demonstrate that linear polynomials with rational coefficients do not change the finite-state dimension of any Copeland-Erd\H{o}s sequence, but there exist polynomials with rational coefficients of every larger integer degree that change the finite-state dimension of some sequence. To prove our main results, we develop techniques involving taking concatenated prefixes of a sequence as well as inserting a density zero set of strings into a sequence that may be of independent interest.


[202] 2506.02334

Generalized Category Discovery via Reciprocal Learning and Class-Wise Distribution Regularization

Generalized Category Discovery (GCD) aims to identify unlabeled samples by leveraging the base knowledge from labeled ones, where the unlabeled set consists of both base and novel classes. Since clustering methods are time-consuming at inference, parametric-based approaches have become more popular. However, recent parametric-based methods suffer from inferior base discrimination due to unreliable self-supervision. To address this issue, we propose a Reciprocal Learning Framework (RLF) that introduces an auxiliary branch devoted to base classification. During training, the main branch filters the pseudo-base samples to the auxiliary branch. In response, the auxiliary branch provides more reliable soft labels for the main branch, leading to a virtuous cycle. Furthermore, we introduce Class-wise Distribution Regularization (CDR) to mitigate the learning bias towards base classes. CDR essentially increases the prediction confidence of the unlabeled data and boosts the novel class performance. Combined with both components, our proposed method, RLCD, achieves superior performance in all classes with negligible extra computation. Comprehensive experiments across seven GCD datasets validate its superiority. Our codes are available at https://github.com/APORduo/RLCD.


[203] 2506.02337

Discovery of Probabilistic Dirichlet-to-Neumann Maps on Graphs

Dirichlet-to-Neumann maps enable the coupling of multiphysics simulations across computational subdomains by ensuring continuity of state variables and fluxes at artificial interfaces. We present a novel method for learning Dirichlet-to-Neumann maps on graphs using Gaussian processes, specifically for problems where the data obey a conservation constraint from an underlying partial differential equation. Our approach combines discrete exterior calculus and nonlinear optimal recovery to infer relationships between vertex and edge values. This framework yields data-driven predictions with uncertainty quantification across the entire graph, even when observations are limited to a subset of vertices and edges. By optimizing over the reproducing kernel Hilbert space norm while applying a maximum likelihood estimation penalty on kernel complexity, our method ensures that the resulting surrogate strictly enforces conservation laws without overfitting. We demonstrate our method on two representative applications: subsurface fracture networks and arterial blood flow. Our results show that the method maintains high accuracy and well-calibrated uncertainty estimates even under severe data scarcity, highlighting its potential for scientific applications where limited data and reliable uncertainty quantification are critical.


[204] 2506.02338

One Missing Piece for Open-Source Reasoning Models: A Dataset to Mitigate Cold-Starting Short CoT LLMs in RL

With the release of R1, a publicly available large reasoning model (LRM), researchers commonly train new LRMs by training language models on R1's long chain-of-thought (CoT) inferences. While prior works show that LRMs' capabilities can be reproduced through direct distillation, the continued reliance on the existing models (e.g., R1) remains a critical limitation in advancing the field. As a first step toward independent LRM development, this paper explores the possibility of constructing a long CoT dataset with LLMs that are not trained for inference-time scaling. To this end, we present the Long CoT Collection, a dataset of 100K CoT rationales annotated using existing short CoT LLMs. We develop a pipeline that induces o1's novel reasoning strategies into short CoT LLMs, enabling them to think longer and introducing controllability over the thought budget to better manage the overthinking problem. Our extensive analyses validate that our dataset achieves quality comparable to--or slightly below--R1. Furthermore, our experiments demonstrate that training on our dataset not only strengthens general reasoning skills, but also provides a strong foundation for reinforcement learning--models initialized on our data achieve 2-3x larger gains with RLVR.


[205] 2506.02341

Minimal Neuron Circuits -- Part I: Resonators

Spiking Neural Networks have earned increased recognition in recent years owing to their biological plausibility and event-driven computation. Spiking neurons are the fundamental building components of Spiking Neural Networks. Those neurons act as computational units that determine the decision to fire an action potential. This work presents a methodology to implement biologically plausible yet scalable spiking neurons in hardware. We show that it is more efficient to design neurons that mimic the $I_{Na,p}+I_{K}$ model rather than the more complicated Hodgkin-Huxley model. We demonstrate our methodology by presenting eleven novel minimal spiking neuron circuits in Parts I and II of the paper. We categorize the neuron circuits presented into two types: Resonators and Integrators. We discuss the methodology employed in designing neurons of the resonator type in Part I, while we discuss neurons of the integrator type in Part II. In part I, we postulate that Sodium channels exhibit type-N negative differential resistance. Consequently, we present three novel minimal neuron circuits that use type-N negative differential resistance circuits or devices as the Sodium channel. Nevertheless, the aim of the paper is not to present a set of minimal neuron circuits but rather the methodology utilized to construct those circuits.


[206] 2506.02344

Memory Access Vectors: Improving Sampling Fidelity for CPU Performance Simulations

Accurate performance projection of large-scale benchmarks is essential for CPU architects to evaluate and optimize future processor designs. SimPoint sampling, which uses Basic Block Vectors (BBVs), is a widely adopted technique to reduce simulation time by selecting representative program phases. However, BBVs often fail to capture the behavior of applications with extensive array-indirect memory accesses, leading to inaccurate projections. In particular, the 523.xalancbmk_r benchmark exhibits complex data movement patterns that challenge traditional SimPoint methods. To address this, we propose enhancing SimPoint's BBV methodology by incorporating Memory Access Vectors (MAV), a microarchitecture independent technique that tracks functional memory access patterns. This combined approach significantly improves the projection accuracy of 523.xalancbmk_r on a 192-core system-on-chip, increasing it from 80% to 98%.


[207] 2506.02345

PandasBench: A Benchmark for the Pandas API

The Pandas API has been central to the success of pandas and its alternatives. Despite its importance, there is no benchmark for it, and we argue that we cannot repurpose existing benchmarks (from other domains) for the Pandas API. In this paper, we introduce requirements that are necessary for a Pandas API enchmark, and present the first benchmark that fulfills them: PandasBench. We argue that it should evaluate the real-world coverage of a technique. Yet, real-world coverage is not sufficient for a useful benchmark, and so we also: cleaned it from irrelevant code, adapted it for benchmark usage, and introduced input scaling. We claim that uniform scaling used in other benchmarks (e.g., TPC-H) is too coarse-grained for PandasBench, and use a non-uniform scaling scheme. PandasBench is the largest Pandas API benchmark to date, with 102 notebooks and 3,721 cells. We used PandasBench to evaluate Modin, Dask, Koalas, and Dias. This is the largest-scale evaluation of all these techniques to date. Prior works report significant speedups using constrained benchmarks, but we show that on a larger benchmark with real-world code, the most notebooks that got a speedup were 8/102 (~8%) for Modin, and 0 for both Koalas and Dask. Dias showed speedups in up to 55 notebooks (~54%), but it rewrites code incorrectly in certain cases, which had not been observed in prior work. Second, we identified many failures: Modin runs only 72/102 (~70%) notebooks, Dask 4 (~4%), Koalas 10 (~10%), and Dias 97 (95%).


[208] 2506.02346

A Practical Linear Time Algorithm for Optimal Tree Decomposition of Halin Graphs

This work proposes \textsc{H-Td}, a practical linear-time algorithm for computing an optimal-width tree decomposition of Halin graphs. Unlike state-of-the-art methods based on reduction rules or separators, \textsc{H-Td} exploits the structural properties of Halin graphs. Although two theoretical linear-time algorithms exist that can be applied to graphs of treewidth three, no practical implementation has been made publicly available. Furthermore, extending reduction-based approaches to partial $k$-trees with $k > 3$ results in increasingly complex rules that are challenging to implement. This motivates the exploration of alternative strategies that leverage structural insights specific to certain graph classes. Experimental validation against the winners of the Parameterized Algorithms and Computational Experiments Challenge (PACE) 2017 and the treewidth library \texttt{libtw} demonstrates the advantage of \textsc{H-Td} when the input is known to be a Halin graph.


[209] 2506.02347

STORYTELLER: An Enhanced Plot-Planning Framework for Coherent and Cohesive Story Generation

Stories are central to human culture, serving to share ideas, preserve traditions, and foster connections. Automatic story generation, a key advancement in artificial intelligence (AI), offers new possibilities for creating personalized content, exploring creative ideas, and enhancing interactive experiences. However, existing methods struggle to maintain narrative coherence and logical consistency. This disconnect compromises the overall storytelling experience, underscoring the need for substantial improvements. Inspired by human cognitive processes, we introduce Storyteller, a novel approach that systemically improves the coherence and consistency of automatically generated stories. Storyteller introduces a plot node structure based on linguistically grounded subject verb object (SVO) triplets, which capture essential story events and ensure a consistent logical flow. Unlike previous methods, Storyteller integrates two dynamic modules, the STORYLINE and narrative entity knowledge graph (NEKG),that continuously interact with the story generation process. This integration produces structurally sound, cohesive and immersive narratives. Extensive experiments demonstrate that Storyteller significantly outperforms existing approaches, achieving an 84.33% average win rate through human preference evaluation. At the same time, it is also far ahead in other aspects including creativity, coherence, engagement, and relevance.


[210] 2506.02350

Truth over Tricks: Measuring and Mitigating Shortcut Learning in Misinformation Detection

Misinformation detection models often rely on superficial cues (i.e., \emph{shortcuts}) that correlate with misinformation in training data but fail to generalize to the diverse and evolving nature of real-world misinformation. This issue is exacerbated by large language models (LLMs), which can easily generate convincing misinformation through simple prompts. We introduce TruthOverTricks, a unified evaluation paradigm for measuring shortcut learning in misinformation detection. TruthOverTricks categorizes shortcut behaviors into intrinsic shortcut induction and extrinsic shortcut injection, and evaluates seven representative detectors across 14 popular benchmarks, along with two new factual misinformation datasets, NQ-Misinfo and Streaming-Misinfo. Empirical results reveal that existing detectors suffer severe performance degradation when exposed to both naturally occurring and adversarially crafted shortcuts. To address this, we propose SMF, an LLM-augmented data augmentation framework that mitigates shortcut reliance through paraphrasing, factual summarization, and sentiment normalization. SMF consistently enhances robustness across 16 benchmarks, encouraging models to rely on deeper semantic understanding rather than shortcut cues. To promote the development of misinformation detectors, we have published the resources publicly at https://github.com/whr000001/TruthOverTricks.


[211] 2506.02351

DIAMOND: An LLM-Driven Agent for Context-Aware Baseball Highlight Summarization

Traditional approaches -- such as Win Probability Added (WPA)-based ranking or computer vision-driven event detection -- can identify scoring plays but often miss strategic depth, momentum shifts, and storyline progression. Manual curation remains the gold standard but is resource-intensive and not scalable. We introduce DIAMOND, an LLM-driven agent for context-aware baseball highlight summarization that integrates structured sports analytics with natural language reasoning. DIAMOND leverages sabermetric features -- Win Expectancy, WPA, and Leverage Index -- to quantify play importance, while an LLM module enhances selection based on contextual narrative value. This hybrid approach ensures both quantitative rigor and qualitative richness, surpassing the limitations of purely statistical or vision-based systems. Evaluated on five diverse Korean Baseball Organization League games, DIAMOND improves F1-score from 42.9% (WPA-only) to 84.8%, outperforming both commercial and statistical baselines. Though limited in scale, our results highlight the potential of modular, interpretable agent-based frameworks for event-level summarization in sports and beyond.


[212] 2506.02353

SAVOR: Skill Affordance Learning from Visuo-Haptic Perception for Robot-Assisted Bite Acquisition

Robot-assisted feeding requires reliable bite acquisition, a challenging task due to the complex interactions between utensils and food with diverse physical properties. These interactions are further complicated by the temporal variability of food properties-for example, steak becomes firm as it cools even during a meal. To address this, we propose SAVOR, a novel approach for learning skill affordances for bite acquisition-how suitable a manipulation skill (e.g., skewering, scooping) is for a given utensil-food interaction. In our formulation, skill affordances arise from the combination of tool affordances (what a utensil can do) and food affordances (what the food allows). Tool affordances are learned offline through calibration, where different utensils interact with a variety of foods to model their functional capabilities. Food affordances are characterized by physical properties such as softness, moisture, and viscosity, initially inferred through commonsense reasoning using a visually-conditioned language model and then dynamically refined through online multi-modal visuo-haptic perception using SAVOR-Net during interaction. Our method integrates these offline and online estimates to predict skill affordances in real time, enabling the robot to select the most appropriate skill for each food item. Evaluated on 20 single-item foods and 10 in-the-wild meals, our approach improves bite acquisition success by 13% over state-of-the-art (SOTA) category-based methods (e.g. use skewer for fruits). These results highlight the importance of modeling interaction-driven skill affordances for generalizable and effective robot-assisted bite acquisition. Website: https://emprise.cs.cornell.edu/savor/


[213] 2506.02354

RATE-Nav: Region-Aware Termination Enhancement for Zero-shot Object Navigation with Vision-Language Models

Object Navigation (ObjectNav) is a fundamental task in embodied artificial intelligence. Although significant progress has been made in semantic map construction and target direction prediction in current research, redundant exploration and exploration failures remain inevitable. A critical but underexplored direction is the timely termination of exploration to overcome these challenges. We observe a diminishing marginal effect between exploration steps and exploration rates and analyze the cost-benefit relationship of exploration. Inspired by this, we propose RATE-Nav, a Region-Aware Termination-Enhanced method. It includes a geometric predictive region segmentation algorithm and region-Based exploration estimation algorithm for exploration rate calculation. By leveraging the visual question answering capabilities of visual language models (VLMs) and exploration rates enables efficient termination.RATE-Nav achieves a success rate of 67.8% and an SPL of 31.3% on the HM3D dataset. And on the more challenging MP3D dataset, RATE-Nav shows approximately 10% improvement over previous zero-shot methods.


[214] 2506.02355

Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening

Reinforcement learning has emerged as an effective framework for training large language models on structured language-conditioned tasks. We identify a critical flaw of Group Relative Policy Optimization (GRPO), a widely used RL algorithm in this setting. For tasks that require multi-sample performance, such as formal theorem proving, GRPO biasedly reinforces already probable solutions and neglects rare but correct proofs. This implicit bias impairs performance on pass@$N$ metrics at large sample sizes, limiting its practicality for training theorem provers. To address this, we introduce the unlikeliness reward, a straightforward method that explicitly encourages reinforcing rare correct solutions. Additionally, we find that increasing the number of PPO epochs further mitigates this bias. Our experiments confirm that incorporating the unlikeliness reward significantly improves pass@$N$ across a large range of N, outperforming standard GRPO and substantially increasing sample diversity. Applying our revised recipe to Lean, we achieve competitive performance with DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation, providing a simple yet effective recipe for training formal theorem provers with RL.


[215] 2506.02356

InterRVOS: Interaction-aware Referring Video Object Segmentation

Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at \href{https://cvlab-kaist.github.io/InterRVOS}{https://cvlab-kaist.github.io/InterRVOS}.


[216] 2506.02357

Evaluating LLM Agent Adherence to Hierarchical Safety Principles: A Lightweight Benchmark for Probing Foundational Controllability Components

Credible safety plans for advanced AI development require methods to verify agent behavior and detect potential control deficiencies early. A fundamental aspect is ensuring agents adhere to safety-critical principles, especially when these conflict with operational goals. Failure to prioritize such principles indicates a potential basic control failure. This paper introduces a lightweight, interpretable benchmark methodology using a simple grid world to evaluate an LLM agent's ability to uphold a predefined, high-level safety principle (e.g., "never enter hazardous zones") when faced with conflicting lower-level task instructions. We probe whether the agent reliably prioritizes the inviolable directive, testing a foundational controllability aspect of LLMs. This pilot study demonstrates the methodology's feasibility, offers preliminary insights into agent behavior under principle conflict, and discusses how such benchmarks can contribute empirical evidence for assessing controllability. We argue that evaluating adherence to hierarchical principles is a crucial early step in understanding our capacity to build governable AI systems.


[217] 2506.02358

RoadFormer : Local-Global Feature Fusion for Road Surface Classification in Autonomous Driving

The classification of the type of road surface (RSC) aims to utilize pavement features to identify the roughness, wet and dry conditions, and material information of the road surface. Due to its ability to effectively enhance road safety and traffic management, it has received widespread attention in recent years. In autonomous driving, accurate RSC allows vehicles to better understand the road environment, adjust driving strategies, and ensure a safer and more efficient driving experience. For a long time, vision-based RSC has been favored. However, existing visual classification methods have overlooked the exploration of fine-grained classification of pavement types (such as similar pavement textures). In this work, we propose a pure vision-based fine-grained RSC method for autonomous driving scenarios, which fuses local and global feature information through the stacking of convolutional and transformer modules. We further explore the stacking strategies of local and global feature extraction modules to find the optimal feature extraction strategy. In addition, since fine-grained tasks also face the challenge of relatively large intra-class differences and relatively small inter-class differences, we propose a Foreground-Background Module (FBM) that effectively extracts fine-grained context features of the pavement, enhancing the classification ability for complex pavements. Experiments conducted on a large-scale pavement dataset containing one million samples and a simplified dataset reorganized from this dataset achieved Top-1 classification accuracies of 92.52% and 96.50%, respectively, improving by 5.69% to 12.84% compared to SOTA methods. These results demonstrate that RoadFormer outperforms existing methods in RSC tasks, providing significant progress in improving the reliability of pavement perception in autonomous driving systems.


[218] 2506.02359

Auto-Labeling Data for Object Detection

Great labels make great models. However, traditional labeling approaches for tasks like object detection have substantial costs at scale. Furthermore, alternatives to fully-supervised object detection either lose functionality or require larger models with prohibitive computational costs for inference at scale. To that end, this paper addresses the problem of training standard object detection models without any ground truth labels. Instead, we configure previously-trained vision-language foundation models to generate application-specific pseudo "ground truth" labels. These auto-generated labels directly integrate with existing model training frameworks, and we subsequently train lightweight detection models that are computationally efficient. In this way, we avoid the costs of traditional labeling, leverage the knowledge of vision-language models, and keep the efficiency of lightweight models for practical application. We perform exhaustive experiments across multiple labeling configurations, downstream inference models, and datasets to establish best practices and set an extensive auto-labeling benchmark. From our results, we find that our approach is a viable alternative to standard labeling in that it maintains competitive performance on multiple datasets and substantially reduces labeling time and costs.


[219] 2506.02362

MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models

Model extraction attacks aim to replicate the functionality of a black-box model through query access, threatening the intellectual property (IP) of machine-learning-as-a-service (MLaaS) providers. Defending against such attacks is challenging, as it must balance efficiency, robustness, and utility preservation in the real-world scenario. Despite the recent advances, most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs. However, this assumption is increasingly unreliable, as modern models are trained on diverse datasets and attackers often operate under limited query budgets. As a result, the effectiveness of these defenses is significantly compromised in realistic deployment scenarios. To address this gap, we propose MISLEADER (enseMbles of dIStiLled modEls Against moDel ExtRaction), a novel defense strategy that does not rely on OOD assumptions. MISLEADER formulates model protection as a bilevel optimization problem that simultaneously preserves predictive fidelity on benign inputs and reduces extractability by potential clone models. Our framework combines data augmentation to simulate attacker queries with an ensemble of heterogeneous distilled models to improve robustness and diversity. We further provide a tractable approximation algorithm and derive theoretical error bounds to characterize defense effectiveness. Extensive experiments across various settings validate the utility-preserving and extraction-resistant properties of our proposed defense strategy. Our code is available at https://github.com/LabRAI/MISLEADER.


[220] 2506.02364

A TRPCA-Inspired Deep Unfolding Network for Hyperspectral Image Denoising via Thresholded t-SVD and Top-K Sparse Transformer

Hyperspectral images (HSIs) are often degraded by complex mixed noise during acquisition and transmission, making effective denoising essential for subsequent analysis. Recent hybrid approaches that bridge model-driven and data-driven paradigms have shown great promise. However, most of these approaches lack effective alternation between different priors or modules, resulting in loosely coupled regularization and insufficient exploitation of their complementary strengths. Inspired by tensor robust principal component analysis (TRPCA), we propose a novel deep unfolding network (DU-TRPCA) that enforces stage-wise alternation between two tightly integrated modules: low-rank and sparse. The low-rank module employs thresholded tensor singular value decomposition (t-SVD), providing a widely adopted convex surrogate for tensor low-rankness and has been demonstrated to effectively capture the global spatial-spectral structure of HSIs. The Top-K sparse transformer module adaptively imposes sparse constraints, directly matching the sparse regularization in TRPCA and enabling effective removal of localized outliers and complex noise. This tightly coupled architecture preserves the stage-wise alternation between low-rank approximation and sparse refinement inherent in TRPCA, while enhancing representational capacity through attention mechanisms. Extensive experiments on synthetic and real-world HSIs demonstrate that DU-TRPCA surpasses state-of-the-art methods under severe mixed noise, while offering interpretability benefits and stable denoising dynamics inspired by iterative optimization. Code is available at https://github.com/liangli97/TRPCA-Deep-Unfolding-HSI-Denoising.


[221] 2506.02365

Dynamic real-time multi-UAV cooperative mission planning method under multiple constraints

As UAV popularity soars, so does the mission planning associated with it. The classical approaches suffer from the triple problems of decoupled of task assignment and path planning, poor real-time performance and limited adaptability. Aiming at these challenges, this paper proposes a dynamic real-time multi-UAV collaborative mission planning algorithm based on Dubins paths under a distributed formation structure. Dubins path with multiple advantages bridges the gap between task assignment and path planning, leading to a coupled solution for mission planning. Then, a series of acceleration techniques, task clustering preprocessing, highly efficient distance cost functions, low-complexity and less iterative task allocation strategies, are employed to guarantee the real-time performance of the algorithms. To cope with different emergencies and their simultaneous extremes, real-time planning of emerging tasks and mission replanning due to the reduction of available UAVs are appropriately handled. Finally, the developed algorithm is comprehensively exemplified and studied through simulations, highlighting that the proposed method only sacrifices 9.57% of the path length, while achieving a speed improvement of 4-5 orders of magnitude over the simulated annealing method, with a single mission planning of about 0.0003s.


[222] 2506.02366

Approximate Borderline Sampling using Granular-Ball for Classification Tasks

Data sampling enhances classifier efficiency and robustness through data compression and quality improvement. Recently, the sampling method based on granular-ball (GB) has shown promising performance in generality and noisy classification tasks. However, some limitations remain, including the absence of borderline sampling strategies and issues with class boundary blurring or shrinking due to overlap between GBs. In this paper, an approximate borderline sampling method using GBs is proposed for classification tasks. First, a restricted diffusion-based GB generation (RD-GBG) method is proposed, which prevents GB overlaps by constrained expansion, preserving precise geometric representation of GBs via redefined ones. Second, based on the concept of heterogeneous nearest neighbor, a GB-based approximate borderline sampling (GBABS) method is proposed, which is the first general sampling method capable of both borderline sampling and improving the quality of class noise datasets. Additionally, since RD-GBG incorporates noise detection and GBABS focuses on borderline samples, GBABS performs outstandingly on class noise datasets without the need for an optimal purity threshold. Experimental results demonstrate that the proposed methods outperform the GB-based sampling method and several representative sampling methods. Our source code is publicly available at https://github.com/CherylTse/GBABS.


[223] 2506.02367

ViTNF: Leveraging Neural Fields to Boost Vision Transformers in Generalized Category Discovery

Generalized category discovery (GCD) is a highly popular task in open-world recognition, aiming to identify unknown class samples using known class data. By leveraging pre-training, meta-training, and fine-tuning, ViT achieves excellent few-shot learning capabilities. Its MLP head is a feedforward network, trained synchronously with the entire network in the same process, increasing the training cost and difficulty without fully leveraging the power of the feature extractor. This paper proposes a new architecture by replacing the MLP head with a neural field-based one. We first present a new static neural field function to describe the activity distribution of the neural field and then use two static neural field functions to build an efficient few-shot classifier. This neural field-based (NF) classifier consists of two coupled static neural fields. It stores the feature information of support samples by its elementary field, the known categories by its high-level field, and the category information of support samples by its cross-field connections. We replace the MLP head with the proposed NF classifier, resulting in a novel architecture ViTNF, and simplify the three-stage training mode by pre-training the feature extractor on source tasks and training the NF classifier with support samples in meta-testing separately, significantly reducing ViT's demand for training samples and the difficulty of model training. To enhance the model's capability in identifying new categories, we provide an effective algorithm to determine the lateral interaction scale of the elementary field. Experimental results demonstrate that our model surpasses existing state-of-the-art methods on CIFAR-100, ImageNet-100, CUB-200, and Standard Cars, achieving dramatic accuracy improvements of 19\% and 16\% in new and all classes, respectively, indicating a notable advantage in GCD.


[224] 2506.02368

NextQuill: Causal Preference Modeling for Enhancing LLM Personalization

Personalizing large language models (LLMs) for individual users has become increasingly important as they are progressively integrated into real-world applications to support users' daily lives. However, existing personalization approaches often fail to distinguish which components of model predictions and training data truly reflect user preferences, leading to superficial personalization alignment. In this paper, we introduce NextQuill, a novel LLM personalization alignment framework grounded in causal preference modeling. We approach personalization from a causal perspective, treating both model predictions and ground-truth data generation as outcomes influenced by user preferences, along with other factors. We define the true preference effect as the causal impact of user history (which reflects preferences) on each token prediction or data generation instance, estimated through causal intervention techniques. Building on this insight, NextQuill introduces two complementary alignment strategies: (1) aligning model-internal causal preference effects on predictions with those reflected in ground-truth data, rather than indiscriminately fitting predictions, and (2) focusing on fitting preference-bearing tokens identified via ground-truth data preference effects, rather than treating all tokens uniformly. By integrating these strategies, NextQuill shifts the alignment process toward learning from causal preference effects, facilitating more effective and personalized adaptation. Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality, offering a principled, causal foundation for LLM personalization. Our codes are available on https://github.com/juntaoyou/NextQuill.


[225] 2506.02370

Reconciling Hessian-Informed Acceleration and Scalar-Only Communication for Efficient Federated Zeroth-Order Fine-Tuning

Recent dimension-free communication frameworks in Federated Learning (FL), such as DeComFL, significantly reduce per-round communication by transmitting only scalars via zeroth-order stochastic gradient descent (ZO-SGD). This method is particularly advantageous for federated fine-tuning of Large Language Models (LLMs). Yet, the high variance in ZO gradient estimation typically leads to slow convergence. Although leveraging Hessian information is known to enhance optimization speed, integrating this into FL presents significant challenges. These include clients' restrictions on local data and the critical need to maintain the dimension-free communication property. To overcome this limitation, we first introduce a generalized scalar-only communication FL framework that decouples dimension-free communication from standard ZO-SGD, enabling the integration of more advanced optimization strategies. Building on this framework, we propose HiSo, a fast federated fine-tuning method via Hessian-informed zeroth-order optimization and Scalar-only communication. Specifically, it leverages global curvature information to accelerate convergence while preserving the same minimal communication cost per round. Theoretically, we establish convergence guarantees that are independent of the global Lipschitz constant, and further show that HiSo achieves faster rates when the global Hessian exhibits a low effective rank -- a common phenomenon in LLMs. Extensive experiments on benchmark datasets and LLM fine-tuning tasks confirm that HiSo significantly outperforms existing ZO-based FL methods in both convergence speed and communication efficiency.


[226] 2506.02371

SFBD Flow: A Continuous-Optimization Framework for Training Diffusion Models with Noisy Samples

Diffusion models achieve strong generative performance but often rely on large datasets that may include sensitive content. This challenge is compounded by the models' tendency to memorize training data, raising privacy concerns. SFBD (Lu et al., 2025) addresses this by training on corrupted data and using limited clean samples to capture local structure and improve convergence. However, its iterative denoising and fine-tuning loop requires manual coordination, making it burdensome to implement. We reinterpret SFBD as an alternating projection algorithm and introduce a continuous variant, SFBD flow, that removes the need for alternating steps. We further show its connection to consistency constraint-based methods, and demonstrate that its practical instantiation, Online SFBD, consistently outperforms strong baselines across benchmarks.


[227] 2506.02372

AnswerCarefully: A Dataset for Improving the Safety of Japanese LLM Output

In this paper we present AnswerCarefully, a dataset for promoting the safety and appropriateness of Japanese LLM outputs. The dataset consists of 1,800 pairs of questions and reference answers, where the questions require special attention in answering. It covers a wide range of risk categories established in prior English-language datasets, but the data samples are original in that they are manually created to reflect the socio-cultural context of LLM usage in Japan. We show that using this dataset for instruction to fine-tune a Japanese LLM led to improved output safety without compromising the utility of general responses. We also report the results of a safety evaluation of 12 Japanese LLMs using this dataset as a benchmark. Finally, we describe the latest update on the dataset which provides English translations and annotations of the questions, aimed at facilitating the derivation of similar datasets in different languages and regions.


[228] 2506.02373

Olfactory Inertial Odometry: Methodology for Effective Robot Navigation by Scent

Olfactory navigation is one of the most primitive mechanisms of exploration used by organisms. Navigation by machine olfaction (artificial smell) is a very difficult task to both simulate and solve. With this work, we define olfactory inertial odometry (OIO), a framework for using inertial kinematics, and fast-sampling olfaction sensors to enable navigation by scent analogous to visual inertial odometry (VIO). We establish how principles from SLAM and VIO can be extrapolated to olfaction to enable real-world robotic tasks. We demonstrate OIO with three different odour localization algorithms on a real 5-DoF robot arm over an odour-tracking scenario that resembles real applications in agriculture and food quality control. Our results indicate success in establishing a baseline framework for OIO from which other research in olfactory navigation can build, and we note performance enhancements that can be made to address more complex tasks in the future.


[229] 2506.02378

Exploring Explanations Improves the Robustness of In-Context Learning

In-context learning (ICL) has emerged as a successful paradigm for leveraging large language models (LLMs). However, it often struggles to generalize beyond the distribution of the provided demonstrations. A recent advancement in enhancing robustness is ICL with explanations (X-ICL), which improves prediction reliability by guiding LLMs to understand and articulate the reasoning behind correct labels. Building on this approach, we introduce an advanced framework that extends X-ICL by systematically exploring explanations for all possible labels (X$^2$-ICL), thereby enabling more comprehensive and robust decision-making. Experimental results on multiple natural language understanding datasets validate the effectiveness of X$^2$-ICL, demonstrating significantly improved robustness to out-of-distribution data compared to the existing ICL approaches.


[230] 2506.02380

EyeNavGS: A 6-DoF Navigation Dataset and Record-n-Replay Software for Real-World 3DGS Scenes in VR

3D Gaussian Splatting (3DGS) is an emerging media representation that reconstructs real-world 3D scenes in high fidelity, enabling 6-degrees-of-freedom (6-DoF) navigation in virtual reality (VR). However, developing and evaluating 3DGS-enabled applications and optimizing their rendering performance, require realistic user navigation data. Such data is currently unavailable for photorealistic 3DGS reconstructions of real-world scenes. This paper introduces EyeNavGS (EyeNavGS), the first publicly available 6-DoF navigation dataset featuring traces from 46 participants exploring twelve diverse, real-world 3DGS scenes. The dataset was collected at two sites, using the Meta Quest Pro headsets, recording the head pose and eye gaze data for each rendered frame during free world standing 6-DoF navigation. For each of the twelve scenes, we performed careful scene initialization to correct for scene tilt and scale, ensuring a perceptually-comfortable VR experience. We also release our open-source SIBR viewer software fork with record-and-replay functionalities and a suite of utility tools for data processing, conversion, and visualization. The EyeNavGS dataset and its accompanying software tools provide valuable resources for advancing research in 6-DoF viewport prediction, adaptive streaming, 3D saliency, and foveated rendering for 3DGS scenes. The EyeNavGS dataset is available at: https://symmru.github.io/EyeNavGS/.


[231] 2506.02382

Multi-level and Multi-modal Action Anticipation

Action anticipation, the task of predicting future actions from partially observed videos, is crucial for advancing intelligent systems. Unlike action recognition, which operates on fully observed videos, action anticipation must handle incomplete information. Hence, it requires temporal reasoning, and inherent uncertainty handling. While recent advances have been made, traditional methods often focus solely on visual modalities, neglecting the potential of integrating multiple sources of information. Drawing inspiration from human behavior, we introduce \textit{Multi-level and Multi-modal Action Anticipation (m\&m-Ant)}, a novel multi-modal action anticipation approach that combines both visual and textual cues, while explicitly modeling hierarchical semantic information for more accurate predictions. To address the challenge of inaccurate coarse action labels, we propose a fine-grained label generator paired with a specialized temporal consistency loss function to optimize performance. Extensive experiments on widely used datasets, including Breakfast, 50 Salads, and DARai, demonstrate the effectiveness of our approach, achieving state-of-the-art results with an average anticipation accuracy improvement of 3.08\% over existing methods. This work underscores the potential of multi-modal and hierarchical modeling in advancing action anticipation and establishes a new benchmark for future research in the field. Our code is available at: https://github.com/olivesgatech/mM-ant.


[232] 2506.02385

Multi-agent Markov Entanglement

Value decomposition has long been a fundamental technique in multi-agent dynamic programming and reinforcement learning (RL). Specifically, the value function of a global state $(s_1,s_2,\ldots,s_N)$ is often approximated as the sum of local functions: $V(s_1,s_2,\ldots,s_N)\approx\sum_{i=1}^N V_i(s_i)$. This approach traces back to the index policy in restless multi-armed bandit problems and has found various applications in modern RL systems. However, the theoretical justification for why this decomposition works so effectively remains underexplored. In this paper, we uncover the underlying mathematical structure that enables value decomposition. We demonstrate that a multi-agent Markov decision process (MDP) permits value decomposition if and only if its transition matrix is not "entangled" -- a concept analogous to quantum entanglement in quantum physics. Drawing inspiration from how physicists measure quantum entanglement, we introduce how to measure the "Markov entanglement" for multi-agent MDPs and show that this measure can be used to bound the decomposition error in general multi-agent MDPs. Using the concept of Markov entanglement, we proved that a widely-used class of index policies is weakly entangled and enjoys a sublinear $\mathcal O(\sqrt{N})$ scale of decomposition error for $N$-agent systems. Finally, we show how Markov entanglement can be efficiently estimated in practice, providing practitioners with an empirical proxy for the quality of value decomposition.


[233] 2506.02386

Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget

The challenge of identifying the best feasible arm within a fixed budget has attracted considerable interest in recent years. However, a notable gap remains in the literature: the exact exponential rate at which the error probability approaches zero has yet to be established, even in the relatively simple setting of $K$-armed bandits with Gaussian noise. In this paper, we address this gap by examining the problem within the context of linear bandits. We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability. Remarkably, the decay rate -- characterized by the exponent -- matches the theoretical lower bound derived using information-theoretic principles. Our approach leverages a posterior sampling framework embedded within a game-based sampling rule involving a min-learner and a max-learner. This strategy shares its foundations with Thompson sampling, but is specifically tailored to optimize the identification process under fixed-budget constraints. Furthermore, we validate the effectiveness of our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity. The results corroborate our theoretical findings and demonstrate that our method outperforms several benchmark algorithms in terms of both accuracy and efficiency.


[234] 2506.02387

VS-Bench: Evaluating VLMs for Strategic Reasoning and Decision-Making in Multi-Agent Environments

Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and linguistic contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic reasoning and decision-making in multi-agent environments. VS-Bench comprises eight vision-grounded environments spanning cooperative, competitive, and mixed-motive interactions, designed to assess agents' ability to predict others' future moves and optimize for long-term objectives. We consider two complementary evaluation dimensions, including offline evaluation of strategic reasoning by next-action prediction accuracy and online evaluation of decision-making by normalized episode return. Extensive experiments of fourteen leading VLMs reveal a significant gap between current models and optimal performance, with the best models attaining 47.8% prediction accuracy and 24.3% normalized return. We further conduct in-depth analyses on multimodal observations, test-time scaling, social behaviors, and failure cases of VLM agents. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.


[235] 2506.02389

Univariate to Multivariate: LLMs as Zero-Shot Predictors for Time-Series Forecasting

Time-series prediction or forecasting is critical across many real-world dynamic systems, and recent studies have proposed using Large Language Models (LLMs) for this task due to their strong generalization capabilities and ability to perform well without extensive pre-training. However, their effectiveness in handling complex, noisy, and multivariate time-series data remains underexplored. To address this, we propose LLMPred which enhances LLM-based time-series prediction by converting time-series sequences into text and feeding them to LLMs for zero shot prediction along with two main data pre-processing techniques. First, we apply time-series sequence decomposition to facilitate accurate prediction on complex and noisy univariate sequences. Second, we extend this univariate prediction capability to multivariate data using a lightweight prompt-processing strategy. Extensive experiments with smaller LLMs such as Llama 2 7B, Llama 3.2 3B, GPT-4o-mini, and DeepSeek 7B demonstrate that LLMPred achieves competitive or superior performance compared to state-of-the-art baselines. Additionally, a thorough ablation study highlights the importance of the key components proposed in LLMPred.


[236] 2506.02390

GAdaBoost: An Efficient and Robust AdaBoost Algorithm Based on Granular-Ball Structure

Adaptive Boosting (AdaBoost) faces significant challenges posed by label noise, especially in multiclass classification tasks. Existing methods either lack mechanisms to handle label noise effectively or suffer from high computational costs due to redundant data usage. Inspired by granular computing, this paper proposes granular adaptive boosting (GAdaBoost), a novel two-stage framework comprising a data granulation stage and an adaptive boosting stage, to enhance efficiency and robustness under noisy conditions. To validate its feasibility, an extension of SAMME, termed GAdaBoost.SA, is proposed. Specifically, first, a granular-ball generation method is designed to compress data while preserving diversity and mitigating label noise. Second, the granular ball-based SAMME algorithm focuses on granular balls rather than individual samples, improving efficiency and reducing sensitivity to noise. Experimental results on some noisy datasets show that the proposed approach achieves superior robustness and efficiency compared with existing methods, demonstrating that this work effectively extends AdaBoost and SAMME.


[237] 2506.02391

Consultant Decoding: Yet Another Synergistic Mechanism

The synergistic mechanism based on Speculative Decoding (SD) has garnered considerable attention as a simple yet effective approach for accelerating the inference of large language models (LLMs). Nonetheless, the high rejection rates require repeated LLMs calls to validate draft tokens, undermining the overall efficiency gain of SD. In this work, we revisit existing verification mechanisms and propose a novel synergetic mechanism Consultant Decoding (CD). Unlike SD, which relies on a metric derived from importance sampling for verification, CD verifies candidate drafts using token-level likelihoods computed solely by the LLM. CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality (around 100% of the target model's performance). Interestingly, this is achieved by combining models whose parameter sizes differ by two orders of magnitude. In addition, CD reduces the call frequency of the large target model to below 10%, particularly in more demanding tasks. CD's performance was even found to surpass that of the large target model, which theoretically represents the upper bound for speculative decoding.


[238] 2506.02392

Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning

Neural Combinatorial Optimization (NCO) has emerged as a promising learning-based paradigm for addressing Vehicle Routing Problems (VRPs) by minimizing the need for extensive manual engineering. While existing NCO methods, trained on small-scale instances (e.g., 100 nodes), have demonstrated considerable success on problems of similar scale, their performance significantly degrades when applied to large-scale scenarios. This degradation arises from the distributional shift between training and testing data, rendering policies learned on small instances ineffective for larger problems. To overcome this limitation, we introduce a novel learning framework driven by Large Language Models (LLMs). This framework learns a projection between the training and testing distributions, which is then deployed to enhance the scalability of the NCO model. Notably, unlike prevailing techniques that necessitate joint training with the neural network, our approach operates exclusively during the inference phase, obviating the need for model retraining. Extensive experiments demonstrate that our method enables a backbone model (trained on 100-node instances) to achieve superior performance on large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) of up to 100K nodes from diverse distributions.


[239] 2506.02393

RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection

Infrared small target detection is a challenging task due to its unique characteristics (e.g., small, dim, shapeless and changeable). Recently published CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules. To achieve efficient and effective detection, we propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection. Specifically, RRCA-Net incorporates reusable-convolution block (RuCB) in a recurrent manner without introducing extra parameters. With the help of the repetitive iteration in RuCB, the high-level information of small targets in the deep layers can be well maintained and further refined. Then, a dual interactive attention aggregation module (DIAAM) is proposed to promote the mutual enhancement and fusion of refined information. In this way, RRCA-Net can both achieve high-level feature refinement and enhance the correlation of contextual information between adjacent layers. Moreover, to achieve steady convergence, we design a target characteristic inspired loss function (DpT-k loss) by integrating physical and mathematical constraints. Experimental results on three benchmark datasets (e.g. NUAA-SIRST, IRSTD-1k, DenseSIRST) demonstrate that our RRCA-Net can achieve comparable performance to the state-of-the-art methods while maintaining a small number of parameters, and act as a plug and play module to introduce consistent performance improvement for several popular IRSTD methods. Our code will be available at https://github.com/yongxianLiu/ soon.


[240] 2506.02395

The Devil is in the Darkness: Diffusion-Based Nighttime Dehazing Anchored in Brightness Perception

While nighttime image dehazing has been extensively studied, converting nighttime hazy images to daytime-equivalent brightness remains largely unaddressed. Existing methods face two critical limitations: (1) datasets overlook the brightness relationship between day and night, resulting in the brightness mapping being inconsistent with the real world during image synthesis; and (2) models do not explicitly incorporate daytime brightness knowledge, limiting their ability to reconstruct realistic lighting. To address these challenges, we introduce the Diffusion-Based Nighttime Dehazing (DiffND) framework, which excels in both data synthesis and lighting reconstruction. Our approach starts with a data synthesis pipeline that simulates severe distortions while enforcing brightness consistency between synthetic and real-world scenes, providing a strong foundation for learning night-to-day brightness mapping. Next, we propose a restoration model that integrates a pre-trained diffusion model guided by a brightness perception network. This design harnesses the diffusion model's generative ability while adapting it to nighttime dehazing through brightness-aware optimization. Experiments validate our dataset's utility and the model's superior performance in joint haze removal and brightness mapping.


[241] 2506.02396

Towards Explicit Geometry-Reflectance Collaboration for Generalized LiDAR Segmentation in Adverse Weather

Existing LiDAR semantic segmentation models often suffer from decreased accuracy when exposed to adverse weather conditions. Recent methods addressing this issue focus on enhancing training data through weather simulation or universal augmentation techniques. However, few works have studied the negative impacts caused by the heterogeneous domain shifts in the geometric structure and reflectance intensity of point clouds. In this paper, we delve into this challenge and address it with a novel Geometry-Reflectance Collaboration (GRC) framework that explicitly separates feature extraction for geometry and reflectance. Specifically, GRC employs a dual-branch architecture designed to independently process geometric and reflectance features initially, thereby capitalizing on their distinct characteristic. Then, GRC adopts a robust multi-level feature collaboration module to suppress redundant and unreliable information from both branches. Consequently, without complex simulation or augmentation, our method effectively extracts intrinsic information about the scene while suppressing interference, thus achieving better robustness and generalization in adverse weather conditions. We demonstrate the effectiveness of GRC through comprehensive experiments on challenging benchmarks, showing that our method outperforms previous approaches and establishes new state-of-the-art results.


[242] 2506.02397

OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation

Recent advanced large reasoning models (LRMs) leverage extended chain-of-thought (CoT) reasoning to solve complex tasks, achieving state-of-the-art performance. Despite their success, we identify a critical issue: a substantial portion of simple tasks solved by LRMs can also be addressed by non-reasoning LLMs using significantly fewer tokens, indicating the complex reasoning may not always be necessary. To address this, we systematically analyze the reasoning trajectories of LRMs and present a method utilizing identified paradigms and LLM-Judge to classify these trajectories as either Redundant Reasoning or Essential Reasoning. And we introduce OThink-R1, a method that prunes redundant reasoning steps while preserving logical validity. OThink-R1 dynamically employs the non-thinking mode (fast-thinking) for straightforward problems while engaging in deliberate thinking (slow-thinking) for complex problems. Experiments across mathematical and question-answering tasks demonstrate that OThink-R1 reduces reasoning redundancy by almost 23\% on average without compromising accuracy, offering practical guidelines for efficient reasoning models. The code is available at https://github.com/AgenticIR-Lab/OThink-R1.


[243] 2506.02401

Trusted Fake Audio Detection Based on Dirichlet Distribution

With the continuous development of deep learning-based speech conversion and speech synthesis technologies, the cybersecurity problem posed by fake audio has become increasingly serious. Previously proposed models for defending against fake audio have attained remarkable performance. However, they all fall short in modeling the trustworthiness of the decisions made by the models themselves. Based on this, we put forward a plausible fake audio detection approach based on the Dirichlet distribution with the aim of enhancing the reliability of fake audio detection. Specifically, we first generate evidence through a neural network. Uncertainty is then modeled using the Dirichlet distribution. By modeling the belief distribution with the parameters of the Dirichlet distribution, an estimate of uncertainty can be obtained for each decision. Finally, the predicted probabilities and corresponding uncertainty estimates are combined to form the final opinion. On the ASVspoof series dataset (i.e., ASVspoof 2019 LA, ASVspoof 2021 LA, and DF), we conduct a number of comparison experiments to verify the excellent performance of the proposed model in terms of accuracy, robustness, and trustworthiness.


[244] 2506.02404

GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation

Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs) by structurally organizing domain-specific corpora and facilitating complex reasoning. However, current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets. Their limited scope in questions and evaluation metrics fails to comprehensively assess the reasoning capacity improvements enabled by GraphRAG models. To address this gap, we introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models. Our benchmark offers three key superiorities: \((i)\) Challenging question design. Featuring college-level, domain-specific questions that demand multi-hop reasoning, the benchmark ensures that simple content retrieval is insufficient for problem-solving. For example, some questions require mathematical reasoning or programming. \((ii)\) Diverse task coverage. The dataset includes a broad spectrum of reasoning tasks, multiple-choice, true/false, multi-select, open-ended, and fill-in-the-blank. It spans 16 disciplines in twenty core textbooks. \((iii)\) Holistic evaluation framework. GraphRAG-Bench provides comprehensive assessment across the entire GraphRAG pipeline, including graph construction, knowledge retrieval, and answer generation. Beyond final-answer correctness, it evaluates the logical coherence of the reasoning process. By applying nine contemporary GraphRAG methods to GraphRAG-Bench, we demonstrate its utility in quantifying how graph-based structuring improves model reasoning capabilities. Our analysis reveals critical insights about graph architectures, retrieval efficacy, and reasoning capabilities, offering actionable guidance for the research community.


[245] 2506.02405

Modelship Attribution: Tracing Multi-Stage Manipulations Across Generative Models

As generative techniques become increasingly accessible, authentic visuals are frequently subjected to iterative alterations by various individuals employing a variety of tools. Currently, to avoid misinformation and ensure accountability, a lot of research on detection and attribution is emerging. Although these methods demonstrate promise in single-stage manipulation scenarios, they fall short when addressing complex real-world iterative manipulation. In this paper, we are the first, to the best of our knowledge, to systematically model this real-world challenge and introduce a novel method to solve it. We define a task called "Modelship Attribution", which aims to trace the evolution of manipulated images by identifying the generative models involved and reconstructing the sequence of edits they performed. To realistically simulate this scenario, we utilize three generative models, StyleMapGAN, DiffSwap, and FacePartsSwap, that sequentially modify distinct regions of the same image. This process leads to the creation of the first modelship dataset, comprising 83,700 images (16,740 images*5). Given that later edits often overwrite the fingerprints of earlier models, the focus shifts from extracting blended fingerprints to characterizing each model's distinctive editing patterns. To tackle this challenge, we introduce the modelship attribution transformer (MAT), a purpose-built framework designed to effectively recognize and attribute the contributions of various models within complex, multi-stage manipulation workflows. Through extensive experiments and comparative analysis with other related methods, our results, including comprehensive ablation studies, demonstrate that the proposed approach is a highly effective solution for modelship attribution.


[246] 2506.02406

Random at First, Fast at Last: NTK-Guided Fourier Pre-Processing for Tabular DL

While random Fourier features are a classic tool in kernel methods, their utility as a pre-processing step for deep learning on tabular data has been largely overlooked. Motivated by shortcomings in tabular deep learning pipelines - revealed through Neural Tangent Kernel (NTK) analysis - we revisit and repurpose random Fourier mappings as a parameter-free, architecture-agnostic transformation. By projecting each input into a fixed feature space via sine and cosine projections with frequencies drawn once at initialization, this approach circumvents the need for ad hoc normalization or additional learnable embeddings. We show within the NTK framework that this mapping (i) bounds and conditions the network's initial NTK spectrum, and (ii) introduces a bias that shortens the optimization trajectory, thereby accelerating gradient-based training. These effects pre-condition the network with a stable kernel from the outset. Empirically, we demonstrate that deep networks trained on Fourier-transformed inputs converge more rapidly and consistently achieve strong final performance, often with fewer epochs and less hyperparameter tuning. Our findings establish random Fourier pre-processing as a theoretically motivated, plug-and-play enhancement for tabular deep learning.


[247] 2506.02408

Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology

Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.


[248] 2506.02412

SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning

The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes. In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels.


[249] 2506.02414

StarVC: A Unified Auto-Regressive Framework for Joint Text and Speech Generation in Voice Conversion

Voice Conversion (VC) modifies speech to match a target speaker while preserving linguistic content. Traditional methods usually extract speaker information directly from speech while neglecting the explicit utilization of linguistic content. Since VC fundamentally involves disentangling speaker identity from linguistic content, leveraging structured semantic features could enhance conversion performance. However, previous attempts to incorporate semantic features into VC have shown limited effectiveness, motivating the integration of explicit text modeling. We propose StarVC, a unified autoregressive VC framework that first predicts text tokens before synthesizing acoustic features. The experiments demonstrate that StarVC outperforms conventional VC methods in preserving both linguistic content (i.e., WER and CER) and speaker characteristics (i.e., SECS and MOS). Audio demo can be found at: https://thuhcsi.github.io/StarVC/.


[250] 2506.02415

AERO: A Redirection-Based Optimization Framework Inspired by Judo for Robust Probabilistic Forecasting

Optimization remains a fundamental pillar of machine learning, yet existing methods often struggle to maintain stability and adaptability in dynamic, non linear systems, especially under uncertainty. We introduce AERO (Adversarial Energy-based Redirection Optimization), a novel framework inspired by the redirection principle in Judo, where external disturbances are leveraged rather than resisted. AERO reimagines optimization as a redirection process guided by 15 interrelated axioms encompassing adversarial correction, energy conservation, and disturbance-aware learning. By projecting gradients, integrating uncertainty driven dynamics, and managing learning energy, AERO offers a principled approach to stable and robust model updates. Applied to probabilistic solar energy forecasting, AERO demonstrates substantial gains in predictive accuracy, reliability, and adaptability, especially in noisy and uncertain environments. Our findings highlight AERO as a compelling new direction in the theoretical and practical landscape of optimization.


[251] 2506.02419

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models

Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir


[252] 2506.02422

Enhancing Convergence, Privacy and Fairness for Wireless Personalized Federated Learning: Quantization-Assisted Min-Max Fair Scheduling

Personalized federated learning (PFL) offers a solution to balancing personalization and generalization by conducting federated learning (FL) to guide personalized learning (PL). Little attention has been given to wireless PFL (WPFL), where privacy concerns arise. Performance fairness of PL models is another challenge resulting from communication bottlenecks in WPFL. This paper exploits quantization errors to enhance the privacy of WPFL and proposes a novel quantization-assisted Gaussian differential privacy (DP) mechanism. We analyze the convergence upper bounds of individual PL models by considering the impact of the mechanism (i.e., quantization errors and Gaussian DP noises) and imperfect communication channels on the FL of WPFL. By minimizing the maximum of the bounds, we design an optimal transmission scheduling strategy that yields min-max fairness for WPFL with OFDMA interfaces. This is achieved by revealing the nested structure of this problem to decouple it into subproblems solved sequentially for the client selection, channel allocation, and power control, and for the learning rates and PL-FL weighting coefficients. Experiments validate our analysis and demonstrate that our approach substantially outperforms alternative scheduling strategies by 87.08%, 16.21%, and 38.37% in accuracy, the maximum test loss of participating clients, and fairness (Jain's index), respectively.


[253] 2506.02424

An adaptive delaminating Levin method in two dimensions

We present an adaptive delaminating Levin method for evaluating bivariate oscillatory integrals over rectangular domains. Whereas previous analyses of Levin methods impose non-resonance conditions that exclude stationary and resonance points, we rigorously establish the existence of a slowly-varying, approximate solution to the Levin PDE across all frequency regimes, even when the non-resonance condition is violated. This allows us to derive error estimates for the numerical solution of the Levin PDE via the Chebyshev spectral collocation method, and for the evaluation of the corresponding oscillatory integrals, showing that high accuracy can be achieved regardless of whether or not stationary and resonance points are present. We then present a Levin method incorporating adaptive subdivision in both two and one dimensions, as well as delaminating Chebyshev spectral collocation, which is effective in both the presence and absence of stationary and resonance points. We demonstrate the effectiveness of our algorithm with a number of numerical experiments.


[254] 2506.02425

Gender Inequality in English Textbooks Around the World: an NLP Approach

Textbooks play a critical role in shaping children's understanding of the world. While previous studies have identified gender inequality in individual countries' textbooks, few have examined the issue cross-culturally. This study applies natural language processing methods to quantify gender inequality in English textbooks from 22 countries across 7 cultural spheres. Metrics include character count, firstness (which gender is mentioned first), and TF-IDF word associations by gender. The analysis also identifies gender patterns in proper names appearing in TF-IDF word lists, tests whether large language models can distinguish between gendered word lists, and uses GloVe embeddings to examine how closely keywords associate with each gender. Results show consistent overrepresentation of male characters in terms of count, firstness, and named entities. All regions exhibit gender inequality, with the Latin cultural sphere showing the least disparity.


[255] 2506.02426

Comparative Analysis of AI Agent Architectures for Entity Relationship Classification

Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at \href{https://github.com/maryambrj/ALIEN.git}{https://github.com/maryambrj/ALIEN.git}.


[256] 2506.02429

Rust Implementation of Finite Element Exterior Calculus on Coordinate-Free Simplicial Complexes

This thesis presents the development of a novel finite element library in Rust based on the principles of Finite Element Exterior Calculus (FEEC). The library solves partial differential equations formulated using differential forms on abstract, coordinate-free simplicial complexes in arbitrary dimensions, employing an intrinsic Riemannian metric derived from edge lengths via Regge Calculus. We focus on solving elliptic Hodge-Laplace eigenvalue and source problems on the nD de Rham complex. We restrict ourselves to first-order Whitney basis functions. The implementation is partially verified through convergence studies.


[257] 2506.02431

From Anger to Joy: How Nationality Personas Shape Emotion Attribution in Large Language Models

Emotions are a fundamental facet of human experience, varying across individuals, cultural contexts, and nationalities. Given the recent success of Large Language Models (LLMs) as role-playing agents, we examine whether LLMs exhibit emotional stereotypes when assigned nationality-specific personas. Specifically, we investigate how different countries are represented in pre-trained LLMs through emotion attributions and whether these attributions align with cultural norms. Our analysis reveals significant nationality-based differences, with emotions such as shame, fear, and joy being disproportionately assigned across regions. Furthermore, we observe notable misalignment between LLM-generated and human emotional responses, particularly for negative emotions, highlighting the presence of reductive and potentially biased stereotypes in LLM outputs.


[258] 2506.02433

Empowering Functional Neuroimaging: A Pre-trained Generative Framework for Unified Representation of Neural Signals

Multimodal functional neuroimaging enables systematic analysis of brain mechanisms and provides discriminative representations for brain-computer interface (BCI) decoding. However, its acquisition is constrained by high costs and feasibility limitations. Moreover, underrepresentation of specific groups undermines fairness of BCI decoding model. To address these challenges, we propose a unified representation framework for multimodal functional neuroimaging via generative artificial intelligence (AI). By mapping multimodal functional neuroimaging into a unified representation space, the proposed framework is capable of generating data for acquisition-constrained modalities and underrepresented groups. Experiments show that the framework can generate data consistent with real brain activity patterns, provide insights into brain mechanisms, and improve performance on downstream tasks. More importantly, it can enhance model fairness by augmenting data for underrepresented groups. Overall, the framework offers a new paradigm for decreasing the cost of acquiring multimodal functional neuroimages and enhancing the fairness of BCI decoding models.


[259] 2506.02435

A Transformer-Based Neural Network for Optimal Deterministic-Allocation and Anonymous Joint Auction Design

With the advancement of machine learning, an increasing number of studies are employing automated mechanism design (AMD) methods for optimal auction design. However, all previous AMD architectures designed to generate optimal mechanisms that satisfy near dominant strategy incentive compatibility (DSIC) fail to achieve deterministic allocation, and some also lack anonymity, thereby impacting the efficiency and fairness of advertising allocation. This has resulted in a notable discrepancy between the previous AMD architectures for generating near-DSIC optimal mechanisms and the demands of real-world advertising scenarios. In this paper, we prove that in all online advertising scenarios, previous non-deterministic allocation methods lead to the non-existence of feasible solutions, resulting in a gap between the rounded solution and the optimal solution. Furthermore, we propose JTransNet, a transformer-based neural network architecture, designed for optimal deterministic-allocation and anonymous joint auction design. Although the deterministic allocation module in JTransNet is designed for the latest joint auction scenarios, it can be applied to other non-deterministic AMD architectures with minor modifications. Additionally, our offline and online data experiments demonstrate that, in joint auction scenarios, JTransNet significantly outperforms baseline methods in terms of platform revenue, resulting in a substantial increase in platform earnings.


[260] 2506.02438

A Review of Various Datasets for Machine Learning Algorithm-Based Intrusion Detection System: Advances and Challenges

IDS aims to protect computer networks from security threats by detecting, notifying, and taking appropriate action to prevent illegal access and protect confidential information. As the globe becomes increasingly dependent on technology and automated processes, ensuring secured systems, applications, and networks has become one of the most significant problems of this era. The global web and digital technology have significantly accelerated the evolution of the modern world, necessitating the use of telecommunications and data transfer platforms. Researchers are enhancing the effectiveness of IDS by incorporating popular datasets into machine learning algorithms. IDS, equipped with machine learning classifiers, enhances security attack detection accuracy by identifying normal or abnormal network traffic. This paper explores the methods of capturing and reviewing intrusion detection systems (IDS) and evaluates the challenges existing datasets face. A deluge of research on machine learning (ML) and deep learning (DL) architecture-based intrusion detection techniques has been conducted in the past ten years on various cybersecurity datasets, including KDDCUP'99, NSL-KDD, UNSW-NB15, CICIDS-2017, and CSE-CIC-IDS2018. We conducted a literature review and presented an in-depth analysis of various intrusion detection methods that use SVM, KNN, DT, LR, NB, RF, XGBOOST, Adaboost, and ANN. We provide an overview of each technique, explaining the role of the classifiers and algorithms used. A detailed tabular analysis highlights the datasets used, classifiers employed, attacks detected, evaluation metrics, and conclusions drawn. This article offers a thorough review for future IDS research.


[261] 2506.02439

Video-Level Language-Driven Video-Based Visible-Infrared Person Re-Identification

Video-based Visible-Infrared Person Re-Identification (VVI-ReID) aims to match pedestrian sequences across modalities by extracting modality-invariant sequence-level features. As a high-level semantic representation, language provides a consistent description of pedestrian characteristics in both infrared and visible modalities. Leveraging the Contrastive Language-Image Pre-training (CLIP) model to generate video-level language prompts and guide the learning of modality-invariant sequence-level features is theoretically feasible. However, the challenge of generating and utilizing modality-shared video-level language prompts to address modality gaps remains a critical problem. To address this problem, we propose a simple yet powerful framework, video-level language-driven VVI-ReID (VLD), which consists of two core modules: invariant-modality language prompting (IMLP) and spatial-temporal prompting (STP). IMLP employs a joint fine-tuning strategy for the visual encoder and the prompt learner to effectively generate modality-shared text prompts and align them with visual features from different modalities in CLIP's multimodal space, thereby mitigating modality differences. Additionally, STP models spatiotemporal information through two submodules, the spatial-temporal hub (STH) and spatial-temporal aggregation (STA), which further enhance IMLP by incorporating spatiotemporal information into text prompts. The STH aggregates and diffuses spatiotemporal information into the [CLS] token of each frame across the vision transformer (ViT) layers, whereas STA introduces dedicated identity-level loss and specialized multihead attention to ensure that the STH focuses on identity-relevant spatiotemporal feature aggregation. The VLD framework achieves state-of-the-art results on two VVI-ReID benchmarks. The code will be released at https://github.com/Visuang/VLD.


[262] 2506.02442

Should LLM Safety Be More Than Refusing Harmful Instructions?

This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts and their safety implications. We introduce a two-dimensional framework for assessing LLM safety: (1) instruction refusal-the ability to reject harmful obfuscated instructions, and (2) generation safety-the suppression of generating harmful responses. Through comprehensive experiments, we demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks: their safety mechanisms fail on at least one safety dimension, leading to unsafe responses or over-refusal. Based on these findings, we evaluate a number of pre-LLM and post-LLM safeguards and discuss their strengths and limitations. This work contributes to understanding the safety of LLM in long-tail text scenarios and provides directions for developing robust safety mechanisms.


[263] 2506.02443

Breaking the Barriers of Text-Hungry and Audio-Deficient AI

While global linguistic diversity spans more than 7164 recognized languages, the current dominant architecture of machine intelligence remains fundamentally biased toward written text. This bias excludes over 700 million people particularly in rural and remote regions who are audio-literate. In this work, we introduce a fully textless, audio-to-audio machine intelligence framework designed to serve this underserved population, and all the people who prefer audio-efficiency. Our contributions include novel Audio-to-Audio translation architectures that bypass text entirely, including spectrogram-, scalogram-, wavelet-, and unit-based models. Central to our approach is the Multiscale Audio-Semantic Transform (MAST), a representation that encodes tonal, prosodic, speaker, and expressive features. We further integrate MAST into a fractional diffusion of mean-field-type framework powered by fractional Brownian motion. It enables the generation of high-fidelity, semantically consistent speech without reliance on textual supervision. The result is a robust and scalable system capable of learning directly from raw audio, even in languages that are unwritten or rarely digitized. This work represents a fundamental shift toward audio-native machine intelligence systems, expanding access to language technologies for communities historically left out of the current machine intelligence ecosystem.


[264] 2506.02444

SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios

Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at \href{https://github.com/Droliven}{https://github.com/Droliven}.


[265] 2506.02447

Visualization for interactively adjusting the de-bias effect of word embedding

Word embedding, which converts words into numerical values, is an important natural language processing technique and widely used. One of the serious problems of word embedding is that the bias will be learned and affect the model if the dataset used for pre-training contains bias. On the other hand, indiscriminate removal of bias from word embeddings may result in the loss of information, even if the bias is undesirable to us. As a result, a risk of model performance degradation due to bias removal will be another problem. As a solution to this problem, we focus on gender bias in Japanese and propose an interactive visualization method to adjust the degree of debias for each word category. Specifically, we visualize the accuracy in a category classification task after debiasing, and allow the user to adjust the parameters based on the visualization results, so that the debiasing can be adjusted according to the user's objectives. In addition, considering a trade-off between debiasing and preventing degradation of model performance, and that different people perceive gender bias differently, we developed a mechanism to present multiple choices of debiasing configurations applying an optimization scheme. This paper presents the results of an experiment in which we removed the gender bias for word embeddings learned from the Japanese version of Wikipedia. We classified words into five categories based on a news corpus, and observed that the degree of influence of debiasing differed greatly among the categories. We then adjusted the degree of debiasing for each category based on the visualization results.


[266] 2506.02448

VidEvent: A Large Dataset for Understanding Dynamic Evolution of Events in Videos

Despite the significant impact of visual events on human cognition, understanding events in videos remains a challenging task for AI due to their complex structures, semantic hierarchies, and dynamic evolution. To address this, we propose the task of video event understanding that extracts event scripts and makes predictions with these scripts from videos. To support this task, we introduce VidEvent, a large-scale dataset containing over 23,000 well-labeled events, featuring detailed event structures, broad hierarchies, and logical relations extracted from movie recap videos. The dataset was created through a meticulous annotation process, ensuring high-quality and reliable event data. We also provide comprehensive baseline models offering detailed descriptions of their architecture and performance metrics. These models serve as benchmarks for future research, facilitating comparisons and improvements. Our analysis of VidEvent and the baseline models highlights the dataset's potential to advance video event understanding and encourages the exploration of innovative algorithms and models. The dataset and related resources are publicly available at www.videvent.top.


[267] 2506.02449

IP-Dialog: Evaluating Implicit Personalization in Dialogue Systems with Synthetic Data

In modern dialogue systems, the ability to implicitly infer user backgrounds from conversations and leverage this information for personalized assistance is crucial. However, the scarcity of high-quality data remains a fundamental challenge to evaluating and improving this capability. Traditional dataset construction methods are labor-intensive, resource-demanding, and raise privacy concerns. To address these issues, we propose a novel approach for automatic synthetic data generation and introduce the Implicit Personalized Dialogue (IP-Dialog) benchmark along with a training dataset, covering 10 tasks and 12 user attribute types. Additionally, we develop a systematic evaluation framework with four metrics to assess both attribute awareness and reasoning capabilities. We further propose five causal graphs to elucidate models' reasoning pathways during implicit personalization. Extensive experiments yield insightful observations and prove the reliability of our dataset.


[268] 2506.02451

Weak Supervision for Real World Graphs

Node classification in real world graphs often suffers from label scarcity and noise, especially in high stakes domains like human trafficking detection and misinformation monitoring. While direct supervision is limited, such graphs frequently contain weak signals, noisy or indirect cues, that can still inform learning. We propose WSNET, a novel weakly supervised graph contrastive learning framework that leverages these weak signals to guide robust representation learning. WSNET integrates graph structure, node features, and multiple noisy supervision sources through a contrastive objective tailored for weakly labeled data. Across three real world datasets and synthetic benchmarks with controlled noise, WSNET consistently outperforms state of the art contrastive and noisy label learning methods by up to 15% in F1 score. Our results highlight the effectiveness of contrastive learning under weak supervision and the promise of exploiting imperfect labels in graph based settings.


[269] 2506.02452

ANT: Adaptive Neural Temporal-Aware Text-to-Motion Model

While diffusion models advance text-to-motion generation, their static semantic conditioning ignores temporal-frequency demands: early denoising requires structural semantics for motion foundations while later stages need localized details for text alignment. This mismatch mirrors biological morphogenesis where developmental phases demand distinct genetic programs. Inspired by epigenetic regulation governing morphological specialization, we propose **(ANT)**, an **A**daptive **N**eural **T**emporal-Aware architecture. ANT orchestrates semantic granularity through: **(i) Semantic Temporally Adaptive (STA) Module:** Automatically partitions denoising into low-frequency structural planning and high-frequency refinement via spectral analysis. **(ii) Dynamic Classifier-Free Guidance scheduling (DCFG):** Adaptively adjusts conditional to unconditional ratio enhancing efficiency while maintaining fidelity. **(iii) Temporal-semantic reweighting:** Quantitatively aligns text influence with phase requirements. Extensive experiments show that ANT can be applied to various baselines, significantly improving model performance, and achieving state-of-the-art semantic alignment on StableMoFusion.


[270] 2506.02453

PAID: Pairwise Angular-Invariant Decomposition for Continual Test-Time Adaptation

Continual Test-Time Adaptation (CTTA) aims to online adapt a pre-trained model to changing environments during inference. Most existing methods focus on exploiting target data, while overlooking another crucial source of information, the pre-trained weights, which encode underutilized domain-invariant priors. This paper takes the geometric attributes of pre-trained weights as a starting point, systematically analyzing three key components: magnitude, absolute angle, and pairwise angular structure. We find that the pairwise angular structure remains stable across diverse corrupted domains and encodes domain-invariant semantic information, suggesting it should be preserved during adaptation. Based on this insight, we propose PAID (Pairwise Angular-Invariant Decomposition), a prior-driven CTTA method that decomposes weight into magnitude and direction, and introduces a learnable orthogonal matrix via Householder reflections to globally rotate direction while preserving the pairwise angular structure. During adaptation, only the magnitudes and the orthogonal matrices are updated. PAID achieves consistent improvements over recent SOTA methods on four widely used CTTA benchmarks, demonstrating that preserving pairwise angular structure offers a simple yet effective principle for CTTA.


[271] 2506.02454

Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework

Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.


[272] 2506.02456

VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents

Computer-Use Agents (CUAs) with full system access enable powerful task automation but pose significant security and privacy risks due to their ability to manipulate files, access user data, and execute arbitrary commands. While prior work has focused on browser-based agents and HTML-level attacks, the vulnerabilities of CUAs remain underexplored. In this paper, we investigate Visual Prompt Injection (VPI) attacks, where malicious instructions are visually embedded within rendered user interfaces, and examine their impact on both CUAs and Browser-Use Agents (BUAs). We propose VPI-Bench, a benchmark of 306 test cases across five widely used platforms, to evaluate agent robustness under VPI threats. Each test case is a variant of a web platform, designed to be interactive, deployed in a realistic environment, and containing a visually embedded malicious prompt. Our empirical study shows that current CUAs and BUAs can be deceived at rates of up to 51% and 100%, respectively, on certain platforms. The experimental results also indicate that system prompt defenses offer only limited improvements. These findings highlight the need for robust, context-aware defenses to ensure the safe deployment of multimodal AI agents in real-world environments. The code and dataset are available at: https://github.com/cua-framework/agents


[273] 2506.02457

SOVA-Bench: Benchmarking the Speech Conversation Ability for LLM-based Voice Assistant

Thanks to the steady progress of large language models (LLMs), speech encoding algorithms and vocoder structure, recent advancements have enabled generating speech response directly from a user instruction. However, benchmarking the generated speech quality has been a neglected but critical issue, considering the shift from the pursuit of semantic accuracy to vivid and spontaneous speech flow. Previous evaluation focused on the speech-understanding ability, lacking a quantification of acoustic quality. In this paper, we propose Speech cOnversational Voice Assistant Benchmark (SOVA-Bench), providing a comprehension comparison of the general knowledge, speech recognition and understanding, along with both semantic and acoustic generative ability between available speech LLMs. To the best of our knowledge, SOVA-Bench is one of the most systematic evaluation frameworks for speech LLMs, inspiring the direction of voice interaction systems.


[274] 2506.02458

A Novel Deep Reinforcement Learning Method for Computation Offloading in Multi-User Mobile Edge Computing with Decentralization

Mobile edge computing (MEC) allows appliances to offload workloads to neighboring MEC servers that have the potential for computation-intensive tasks with limited computational capabilities. This paper studied how deep reinforcement learning (DRL) algorithms are used in an MEC system to find feasible decentralized dynamic computation offloading strategies, which leads to the construction of an extensible MEC system that operates effectively with finite feedback. Even though the Deep Deterministic Policy Gradient (DDPG) algorithm, subject to their knowledge of the MEC system, can be used to allocate powers of both computation offloading and local execution, to learn a computation offloading policy for each user independently, we realized that this solution still has some inherent weaknesses. Hence, we introduced a new approach for this problem based on the Twin Delayed DDPG algorithm, which enables us to overcome this proneness and investigate cases where mobile users are portable. Numerical results showed that individual users can autonomously learn adequate policies through the proposed approach. Besides, the performance of the suggested solution exceeded the conventional DDPG-based power control strategy.


[275] 2506.02459

ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment

Scene synthesis and editing has emerged as a promising direction in computer graphics. Current trained approaches for 3D indoor scenes either oversimplify object semantics through one-hot class encodings (e.g., 'chair' or 'table'), require masked diffusion for editing, ignore room boundaries, or rely on floor plan renderings that fail to capture complex layouts. In contrast, LLM-based methods enable richer semantics via natural language (e.g., 'modern studio with light wood furniture') but do not support editing, remain limited to rectangular layouts or rely on weak spatial reasoning from implicit world models. We introduce ReSpace, a generative framework for text-driven 3D indoor scene synthesis and editing using autoregressive language models. Our approach features a compact structured scene representation with explicit room boundaries that frames scene editing as a next-token prediction task. We leverage a dual-stage training approach combining supervised fine-tuning and preference alignment, enabling a specially trained language model for object addition that accounts for user instructions, spatial geometry, object semantics, and scene-level composition. For scene editing, we employ a zero-shot LLM to handle object removal and prompts for addition. We further introduce a novel voxelization-based evaluation that captures fine-grained geometry beyond 3D bounding boxes. Experimental results surpass state-of-the-art on object addition while maintaining competitive results on full scene synthesis.


[276] 2506.02460

MidPO: Dual Preference Optimization for Safety and Helpfulness in Large Language Models via a Mixture of Experts Framework

As large language models (LLMs) are increasingly applied across various domains, enhancing safety while maintaining the helpfulness of LLMs has become a critical challenge. Recent studies solve this problem through safety-constrained online preference optimization or safety-constrained offline preference optimization. However, the safety-constrained online methods often suffer from excessive safety, which might reduce helpfulness, while the safety-constrained offline methods perform poorly in adaptively balancing safety and helpfulness. To address these limitations, we propose MidPO, a \textbf{\underline{Mi}}xture of Experts (MoE) framework for safety-helpfulness \textbf{\underline{d}}ual \textbf{\underline{P}}reference \textbf{\underline{O}}ptimization. Firstly, MidPO devises single-preference enhanced direct preference optimization approach to transform the base model into two independent experts, termed safety and helpfulness experts, and fine-tunes the two independent experts for optimal safety or helpfulness performance. Secondly, to achieve an effective balance between safety and helpfulness, MidPO incorporates the two experts into the MoE framework and designs a dynamic routing mechanism to allocate contributions from each expert adaptively. We conduct quantitative and qualitative experiments on three popular datasets to demonstrate the proposed MidPO significantly outperforms state-of-the-art approaches in both safety and helpfulness. The code and models will be released.


[277] 2506.02461

XToM: Exploring the Multilingual Theory of Mind for Large Language Models

Theory of Mind (ToM), the ability to infer mental states in others, is pivotal for human social cognition. Existing evaluations of ToM in LLMs are largely limited to English, neglecting the linguistic diversity that shapes human cognition. This limitation raises a critical question: can LLMs exhibit Multilingual Theory of Mind, which is the capacity to reason about mental states across diverse linguistic contexts? To address this gap, we present XToM, a rigorously validated multilingual benchmark that evaluates ToM across five languages and incorporates diverse, contextually rich task scenarios. Using XToM, we systematically evaluate LLMs (e.g., DeepSeek R1), revealing a pronounced dissonance: while models excel in multilingual language understanding, their ToM performance varies across languages. Our findings expose limitations in LLMs' ability to replicate human-like mentalizing across linguistic contexts.


[278] 2506.02462

Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning

Continual test-time adaptive object detection (CTTA-OD) aims to online adapt a source pre-trained detector to ever-changing environments during inference under continuous domain shifts. Most existing CTTA-OD methods prioritize effectiveness while overlooking computational efficiency, which is crucial for resource-constrained scenarios. In this paper, we propose an efficient CTTA-OD method via pruning. Our motivation stems from the observation that not all learned source features are beneficial; certain domain-sensitive feature channels can adversely affect target domain performance. Inspired by this, we introduce a sensitivity-guided channel pruning strategy that quantifies each channel based on its sensitivity to domain discrepancies at both image and instance levels. We apply weighted sparsity regularization to selectively suppress and prune these sensitive channels, focusing adaptation efforts on invariant ones. Additionally, we introduce a stochastic channel reactivation mechanism to restore pruned channels, enabling recovery of potentially useful features and mitigating the risks of early pruning. Extensive experiments on three benchmarks show that our method achieves superior adaptation performance while reducing computational overhead by 12% in FLOPs compared to the recent SOTA method.


[279] 2506.02470

A Smart Multimodal Healthcare Copilot with Powerful LLM Reasoning

Misdiagnosis causes significant harm to healthcare systems worldwide, leading to increased costs and patient risks. MedRAG is a smart multimodal healthcare copilot equipped with powerful large language model (LLM) reasoning, designed to enhance medical decision-making. It supports multiple input modalities, including non-intrusive voice monitoring, general medical queries, and electronic health records. MedRAG provides recommendations on diagnosis, treatment, medication, and follow-up questioning. Leveraging retrieval-augmented generation enhanced by knowledge graph-elicited reasoning, MedRAG retrieves and integrates critical diagnostic insights, reducing the risk of misdiagnosis. It has been evaluated on both public and private datasets, outperforming existing models and offering more specific and accurate healthcare assistance. A demonstration video of MedRAG is available at: https://www.youtube.com/watch?v=PNIBDMYRfDM. The source code is available at: https://github.com/SNOWTEAM2023/MedRAG.


[280] 2506.02472

HRTR: A Single-stage Transformer for Fine-grained Sub-second Action Segmentation in Stroke Rehabilitation

Stroke rehabilitation often demands precise tracking of patient movements to monitor progress, with complexities of rehabilitation exercises presenting two critical challenges: fine-grained and sub-second (under one-second) action detection. In this work, we propose the High Resolution Temporal Transformer (HRTR), to time-localize and classify high-resolution (fine-grained), sub-second actions in a single-stage transformer, eliminating the need for multi-stage methods and post-processing. Without any refinements, HRTR outperforms state-of-the-art systems on both stroke related and general datasets, achieving Edit Score (ES) of 70.1 on StrokeRehab Video, 69.4 on StrokeRehab IMU, and 88.4 on 50Salads.


[281] 2506.02473

Generative Perception of Shape and Material from Differential Motion

Perceiving the shape and material of an object from a single image is inherently ambiguous, especially when lighting is unknown and unconstrained. Despite this, humans can often disentangle shape and material, and when they are uncertain, they often move their head slightly or rotate the object to help resolve the ambiguities. Inspired by this behavior, we introduce a novel conditional denoising-diffusion model that generates samples of shape-and-material maps from a short video of an object undergoing differential motions. Our parameter-efficient architecture allows training directly in pixel-space, and it generates many disentangled attributes of an object simultaneously. Trained on a modest number of synthetic object-motion videos with supervision on shape and material, the model exhibits compelling emergent behavior: For static observations, it produces diverse, multimodal predictions of plausible shape-and-material maps that capture the inherent ambiguities; and when objects move, the distributions quickly converge to more accurate explanations. The model also produces high-quality shape-and-material estimates for less ambiguous, real-world objects. By moving beyond single-view to continuous motion observations, our work suggests a generative perception approach for improving visual reasoning in physically-embodied systems.


[282] 2506.02475

Comba: Improving Nonlinear RNNs with Closed-loop Control

Recent efficient sequence modeling methods such as Gated DeltaNet, TTT, and RWKV-7 have achieved performance improvements by supervising the recurrent memory management through Delta learning rule. Unlike previous state-space models (e.g., Mamba) and gated linear attentions (e.g., GLA), these models introduce interactions between the recurrent state and the key vector, resulting in a nonlinear recursive structure. In this paper, we first introduce the concept of Nonlinear RNNs with a comprehensive analysis on the advantages and limitations of these models. Then, based on closed-loop control theory, we propose a novel Nonlinear RNN variant named Comba, which adopts a scalar-plus-low-rank state transition, with both state feedback and output feedback corrections. We also implement a hardware-efficient chunk-wise parallel kernel in Triton and train models with 340M/1.3B parameters on large-scale corpus. Comba demonstrates its superior performance and computation efficiency in both language and vision modeling.


[283] 2506.02477

Towards Better De-raining Generalization via Rainy Characteristics Memorization and Replay

Current image de-raining methods primarily learn from a limited dataset, leading to inadequate performance in varied real-world rainy conditions. To tackle this, we introduce a new framework that enables networks to progressively expand their de-raining knowledge base by tapping into a growing pool of datasets, significantly boosting their adaptability. Drawing inspiration from the human brain's ability to continuously absorb and generalize from ongoing experiences, our approach borrow the mechanism of the complementary learning system. Specifically, we first deploy Generative Adversarial Networks (GANs) to capture and retain the unique features of new data, mirroring the hippocampus's role in learning and memory. Then, the de-raining network is trained with both existing and GAN-synthesized data, mimicking the process of hippocampal replay and interleaved learning. Furthermore, we employ knowledge distillation with the replayed data to replicate the synergy between the neocortex's activity patterns triggered by hippocampal replays and the pre-existing neocortical knowledge. This comprehensive framework empowers the de-raining network to amass knowledge from various datasets, continually enhancing its performance on previously unseen rainy scenes. Our testing on three benchmark de-raining networks confirms the framework's effectiveness. It not only facilitates continuous knowledge accumulation across six datasets but also surpasses state-of-the-art methods in generalizing to new real-world scenarios.


[284] 2506.02478

FroM: Frobenius Norm-Based Data-Free Adaptive Model Merging

With the development of large language models, fine-tuning has emerged as an effective method to enhance performance in specific scenarios by injecting domain-specific knowledge. In this context, model merging techniques provide a solution for fusing knowledge from multiple fine-tuning models by combining their parameters. However, traditional methods often encounter task interference when merging full fine-tuning models, and this problem becomes even more evident in parameter-efficient fine-tuning scenarios. In this paper, we introduce an improvement to the RegMean method, which indirectly leverages the training data to approximate the outputs of the linear layers before and after merging. We propose an adaptive merging method called FroM, which directly measures the model parameters using the Frobenius norm, without any training data. By introducing an additional hyperparameter for control, FroM outperforms baseline methods across various fine-tuning scenarios, alleviating the task interference problem.


[285] 2506.02479

BitBypass: A New Direction in Jailbreaking Aligned Large Language Models with Bitstream Camouflage

The inherent risk of generating harmful and unsafe content by Large Language Models (LLMs), has highlighted the need for their safety alignment. Various techniques like supervised fine-tuning, reinforcement learning from human feedback, and red-teaming were developed for ensuring the safety alignment of LLMs. However, the robustness of these aligned LLMs is always challenged by adversarial attacks that exploit unexplored and underlying vulnerabilities of the safety alignment. In this paper, we develop a novel black-box jailbreak attack, called BitBypass, that leverages hyphen-separated bitstream camouflage for jailbreaking aligned LLMs. This represents a new direction in jailbreaking by exploiting fundamental information representation of data as continuous bits, rather than leveraging prompt engineering or adversarial manipulations. Our evaluation of five state-of-the-art LLMs, namely GPT-4o, Gemini 1.5, Claude 3.5, Llama 3.1, and Mixtral, in adversarial perspective, revealed the capabilities of BitBypass in bypassing their safety alignment and tricking them into generating harmful and unsafe content. Further, we observed that BitBypass outperforms several state-of-the-art jailbreak attacks in terms of stealthiness and attack success. Overall, these results highlights the effectiveness and efficiency of BitBypass in jailbreaking these state-of-the-art LLMs.


[286] 2506.02480

ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities

High-quality prompts are crucial for eliciting outstanding performance from large language models (LLMs) on complex tasks. Existing research has explored model-driven strategies for prompt optimization. However, these methods often suffer from high computational overhead or require strong optimization capabilities from the model itself, which limits their broad applicability.To address these challenges, we propose ORPP (Optimized Role-Playing Prompt),a framework that enhances model performance by optimizing and generating role-playing prompts. The core idea of ORPP is to confine the prompt search space to role-playing scenarios, thereby fully activating the model's intrinsic capabilities through carefully crafted, high-quality role-playing prompts. Specifically, ORPP first performs iterative optimization on a small subset of training samples to generate high-quality role-playing prompts. Then, leveraging the model's few-shot learning capability, it transfers the optimization experience to efficiently generate suitable prompts for the remaining samples.Our experimental results show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance. Notably, ORPP demonstrates superior "plug-and-play" capability. In most cases, it can be integrated with various other prompt methods and further enhance their effectiveness.


[287] 2506.02481

Do Language Models Think Consistently? A Study of Value Preferences Across Varying Response Lengths

Evaluations of LLMs' ethical risks and value inclinations often rely on short-form surveys and psychometric tests, yet real-world use involves long-form, open-ended responses -- leaving value-related risks and preferences in practical settings largely underexplored. In this work, we ask: Do value preferences inferred from short-form tests align with those expressed in long-form outputs? To address this question, we compare value preferences elicited from short-form reactions and long-form responses, varying the number of arguments in the latter to capture users' differing verbosity preferences. Analyzing five LLMs (llama3-8b, gemma2-9b, mistral-7b, qwen2-7b, and olmo-7b), we find (1) a weak correlation between value preferences inferred from short-form and long-form responses across varying argument counts, and (2) similarly weak correlation between preferences derived from any two distinct long-form generation settings. (3) Alignment yields only modest gains in the consistency of value expression. Further, we examine how long-form generation attributes relate to value preferences, finding that argument specificity negatively correlates with preference strength, while representation across scenarios shows a positive correlation. Our findings underscore the need for more robust methods to ensure consistent value expression across diverse applications.


[288] 2506.02482

Building a Recommendation System Using Amazon Product Co-Purchasing Network

This project develops an online, inductive recommendation system for newly listed products on e-commerce platforms, focusing on suggesting relevant new items to customers as they purchase other products. Using the Amazon Product Co-Purchasing Network Metadata dataset, we construct a co-purchasing graph where nodes represent products and edges capture co-purchasing relationships. To address the challenge of recommending new products with limited information, we apply a modified GraphSAGE method for link prediction. This inductive approach leverages both product features and the existing co-purchasing graph structure to predict potential co-purchasing relationships, enabling the model to generalize to unseen products. As an online method, it updates in real time, making it scalable and adaptive to evolving product catalogs. Experimental results demonstrate that our approach outperforms baseline algorithms in predicting relevant product links, offering a promising solution for enhancing the relevance of new product recommendations in e-commerce environments. All code is available at https://github.com/cse416a-fl24/final-project-l-minghao_z-catherine_z-nathan.git.


[289] 2506.02483

Enhancing Large Language Models with Neurosymbolic Reasoning for Multilingual Tasks

Large language models (LLMs) often struggle to perform multi-target reasoning in long-context scenarios where relevant information is scattered across extensive documents. To address this challenge, we introduce NeuroSymbolic Augmented Reasoning (NSAR), which combines the benefits of neural and symbolic reasoning during inference. NSAR explicitly extracts symbolic facts from text and generates executable Python code to handle complex reasoning steps. Through extensive experiments across seven languages and diverse context lengths, we demonstrate that NSAR significantly outperforms both a vanilla RAG baseline and advanced prompting strategies in accurately identifying and synthesizing multiple pieces of information. Our results highlight the effectiveness of combining explicit symbolic operations with neural inference for robust, interpretable, and scalable reasoning in multilingual settings.


[290] 2506.02485

Generative AI for Predicting 2D and 3D Wildfire Spread: Beyond Physics-Based Models and Traditional Deep Learning

Wildfires continue to inflict devastating human, environmental, and economic losses globally, as tragically exemplified by the 2025 Los Angeles wildfire and the urgent demand for more effective response strategies. While physics-based and deep learning models have advanced wildfire simulation, they face critical limitations in predicting and visualizing multimodal fire spread in real time, particularly in both 2D and 3D spatial domains using dynamically updated GIS data. These limitations hinder timely emergency response, infrastructure protection, and community safety. Generative AI has recently emerged as a transformative approach across research and industry. Models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Transformers, and diffusion-based architectures offer distinct advantages over traditional methods, including the integration of multimodal data, generation of diverse scenarios under uncertainty, and improved modeling of wildfire dynamics across spatial and temporal scales. This position paper advocates for the adoption of generative AI as a foundational framework for wildfire prediction. We explore how such models can enhance 2D fire spread forecasting and enable more realistic, scalable 3D simulations. Additionally, we employ a novel human-AI collaboration framework using large language models (LLMs) for automated knowledge extraction, literature synthesis, and bibliometric mapping. Looking ahead, we identify five key visions for integrating generative AI into wildfire management: multimodal approaches, AI foundation models, conversational AI systems, edge-computing-based scenario generation, and cognitive digital twins. We also address three major challenges accompanying these opportunities and propose potential solutions to support their implementation.


[291] 2506.02486

DiOMP-Offloading: Toward Portable Distributed Heterogeneous OpenMP

As core counts and heterogeneity rise in HPC, traditional hybrid programming models face challenges in managing distributed GPU memory and ensuring portability. This paper presents DiOMP, a distributed OpenMP framework that unifies OpenMP target offloading with the Partitioned Global Address Space (PGAS) model. Built atop LLVM/OpenMP and using GASNet-EX or GPI-2 for communication, DiOMP transparently handles global memory, supporting both symmetric and asymmetric GPU allocations. It leverages OMPCCL, a portable collective communication layer compatible with vendor libraries. DiOMP simplifies programming by abstracting device memory and communication, achieving superior scalability and programmability over traditional approaches. Evaluations on NVIDIA A100, Grace Hopper, and AMD MI250X show improved performance in micro-benchmarks and applications like matrix multiplication and Minimod, highlighting DiOMP's potential for scalable, portable, and efficient heterogeneous computing.


[292] 2506.02488

Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models

Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but are constrained by high computational costs due to iterative multi-step inference. While Neural Architecture Search (NAS) can optimize DMs, existing methods are hindered by retraining requirements, exponential search complexity from step-wise optimization, and slow evaluation relying on massive image generation. To address these challenges, we propose Flexiffusion, a training-free NAS framework that jointly optimizes generation schedules and model architectures without modifying pre-trained parameters. Our key insight is to decompose the generation process into flexible segments of equal length, where each segment dynamically combines three step types: full (complete computation), partial (cache-reused computation), and null (skipped computation). This segment-wise search space reduces the candidate pool exponentially compared to step-wise NAS while preserving architectural diversity. Further, we introduce relative FID (rFID), a lightweight evaluation metric for NAS that measures divergence from a teacher model's outputs instead of ground truth, slashing evaluation time by over $90\%$. In practice, Flexiffusion achieves at least $2\times$ acceleration across LDMs, Stable Diffusion, and DDPMs on ImageNet and MS-COCO, with FID degradation under $5\%$, outperforming prior NAS and caching methods. Notably, it attains $5.1\times$ speedup on Stable Diffusion with near-identical CLIP scores. Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.


[293] 2506.02489

Grasp2Grasp: Vision-Based Dexterous Grasp Translation via Schrödinger Bridges

We propose a new approach to vision-based dexterous grasp translation, which aims to transfer grasp intent across robotic hands with differing morphologies. Given a visual observation of a source hand grasping an object, our goal is to synthesize a functionally equivalent grasp for a target hand without requiring paired demonstrations or hand-specific simulations. We frame this problem as a stochastic transport between grasp distributions using the Schr\"odinger Bridge formalism. Our method learns to map between source and target latent grasp spaces via score and flow matching, conditioned on visual observations. To guide this translation, we introduce physics-informed cost functions that encode alignment in base pose, contact maps, wrench space, and manipulability. Experiments across diverse hand-object pairs demonstrate our approach generates stable, physically grounded grasps with strong generalization. This work enables semantic grasp transfer for heterogeneous manipulators and bridges vision-based grasping with probabilistic generative modeling.


[294] 2506.02490

Simplifying Root Cause Analysis in Kubernetes with StateGraph and LLM

Kubernetes, a notably complex and distributed system, utilizes an array of controllers to uphold cluster management logic through state reconciliation. Nevertheless, maintaining state consistency presents significant challenges due to unexpected failures, network disruptions, and asynchronous issues, especially within dynamic cloud environments. These challenges result in operational disruptions and economic losses, underscoring the necessity for robust root cause analysis (RCA) to enhance Kubernetes reliability. The development of large language models (LLMs) presents a promising direction for RCA. However, existing methodologies encounter several obstacles, including the diverse and evolving nature of Kubernetes incidents, the intricate context of incidents, and the polymorphic nature of these incidents. In this paper, we introduce SynergyRCA, an innovative tool that leverages LLMs with retrieval augmentation from graph databases and enhancement with expert prompts. SynergyRCA constructs a StateGraph to capture spatial and temporal relationships and utilizes a MetaGraph to outline entity connections. Upon the occurrence of an incident, an LLM predicts the most pertinent resource, and SynergyRCA queries the MetaGraph and StateGraph to deliver context-specific insights for RCA. We evaluate SynergyRCA using datasets from two production Kubernetes clusters, highlighting its capacity to identify numerous root causes, including novel ones, with high efficiency and precision. SynergyRCA demonstrates the ability to identify root causes in an average time of about two minutes and achieves an impressive precision of approximately 0.90.


[295] 2506.02491

On the Inversion Modulo a Power of an Integer

Recently, Koc proposed a neat and efficient algorithm for computing $x = a^{-1} \pmod {p^k}$ for a prime $p$ based on the exact solution of linear equations using $p$-adic expansions. The algorithm requires only addition and right shift per step. In this paper, we design an algorithm that computes $x = a^{-1} \pmod {n^k}$ for any integer $n>1$. The algorithm has a motivation from the schoolbook multiplication and achieves both efficiency and generality. The greater flexibility of our algorithm is explored by utilizing the build-in arithmetic of computer architecture, e.g., $n=2^{64}$, and experimental results show significant improvements. This paper also contains some results on modular inverse based on an alternative proof of Koc algorithm.


[296] 2506.02492

Co-Evidential Fusion with Information Volume for Medical Image Segmentation

Although existing semi-supervised image segmentation methods have achieved good performance, they cannot effectively utilize multiple sources of voxel-level uncertainty for targeted learning. Therefore, we propose two main improvements. First, we introduce a novel pignistic co-evidential fusion strategy using generalized evidential deep learning, extended by traditional D-S evidence theory, to obtain a more precise uncertainty measure for each voxel in medical samples. This assists the model in learning mixed labeled information and establishing semantic associations between labeled and unlabeled data. Second, we introduce the concept of information volume of mass function (IVUM) to evaluate the constructed evidence, implementing two evidential learning schemes. One optimizes evidential deep learning by combining the information volume of the mass function with original uncertainty measures. The other integrates the learning pattern based on the co-evidential fusion strategy, using IVUM to design a new optimization objective. Experiments on four datasets demonstrate the competitive performance of our method.


[297] 2506.02493

Towards In-the-wild 3D Plane Reconstruction from a Single Image

3D plane reconstruction from a single image is a crucial yet challenging topic in 3D computer vision. Previous state-of-the-art (SOTA) methods have focused on training their system on a single dataset from either indoor or outdoor domain, limiting their generalizability across diverse testing data. In this work, we introduce a novel framework dubbed ZeroPlane, a Transformer-based model targeting zero-shot 3D plane detection and reconstruction from a single image, over diverse domains and environments. To enable data-driven models across multiple domains, we have curated a large-scale planar benchmark, comprising over 14 datasets and 560,000 high-resolution, dense planar annotations for diverse indoor and outdoor scenes. To address the challenge of achieving desirable planar geometry on multi-dataset training, we propose to disentangle the representation of plane normal and offset, and employ an exemplar-guided, classification-then-regression paradigm to learn plane and offset respectively. Additionally, we employ advanced backbones as image encoder, and present an effective pixel-geometry-enhanced plane embedding module to further facilitate planar reconstruction. Extensive experiments across multiple zero-shot evaluation datasets have demonstrated that our approach significantly outperforms previous methods on both reconstruction accuracy and generalizability, especially over in-the-wild data. Our code and data are available at: https://github.com/jcliu0428/ZeroPlane.


[298] 2506.02494

Minos: A Multimodal Evaluation Model for Bidirectional Generation Between Image and Text

Evaluation is important for multimodal generation tasks. With the rapid progress of MLLMs, there is growing interest in applying MLLMs to build general evaluation systems. However, existing work overlooks two aspects: (1) the development of evaluation capabilities for text-to-image (T2I) generation task, and (2) the incorporation of large-scale human evaluation data. In this paper, we introduce Minos-Corpus, a large-scale multimodal evaluation dataset that combines evaluation data from both human and GPT. The corpus contains evaluation data across both image-to-text(I2T) and T2I generation tasks. Based on this corpus, we propose Data Selection and Balance, Mix-SFT training methods, and apply DPO to develop Minos, a multimodal evaluation model built upon a 7B backbone. Minos achieves state-of-the-art (SoTA) performance among all open-source evaluation models of similar scale on the average of evaluation performance on all tasks, and outperforms all open-source and closed-source models on evaluation of T2I generation task. Extensive experiments demonstrate the importance of leveraging high-quality human evaluation data and jointly training on evaluation data from both I2T and T2I generation tasks.


[299] 2506.02497

LumosFlow: Motion-Guided Long Video Generation

Long video generation has gained increasing attention due to its widespread applications in fields such as entertainment and simulation. Despite advances, synthesizing temporally coherent and visually compelling long sequences remains a formidable challenge. Conventional approaches often synthesize long videos by sequentially generating and concatenating short clips, or generating key frames and then interpolate the intermediate frames in a hierarchical manner. However, both of them still remain significant challenges, leading to issues such as temporal repetition or unnatural transitions. In this paper, we revisit the hierarchical long video generation pipeline and introduce LumosFlow, a framework introduce motion guidance explicitly. Specifically, we first employ the Large Motion Text-to-Video Diffusion Model (LMTV-DM) to generate key frames with larger motion intervals, thereby ensuring content diversity in the generated long videos. Given the complexity of interpolating contextual transitions between key frames, we further decompose the intermediate frame interpolation into motion generation and post-hoc refinement. For each pair of key frames, the Latent Optical Flow Diffusion Model (LOF-DM) synthesizes complex and large-motion optical flows, while MotionControlNet subsequently refines the warped results to enhance quality and guide intermediate frame generation. Compared with traditional video frame interpolation, we achieve 15x interpolation, ensuring reasonable and continuous motion between adjacent frames. Experiments show that our method can generate long videos with consistent motion and appearance. Code and models will be made publicly available upon acceptance. Our project page: https://jiahaochen1.github.io/LumosFlow/


[300] 2506.02499

DnR-nonverbal: Cinematic Audio Source Separation Dataset Containing Non-Verbal Sounds

We propose a new dataset for cinematic audio source separation (CASS) that handles non-verbal sounds. Existing CASS datasets only contain reading-style sounds as a speech stem. These datasets differ from actual movie audio, which is more likely to include acted-out voices. Consequently, models trained on conventional datasets tend to have issues where emotionally heightened voices, such as laughter and screams, are more easily separated as an effect, not speech. To address this problem, we build a new dataset, DnR-nonverbal. The proposed dataset includes non-verbal sounds like laughter and screams in the speech stem. From the experiments, we reveal the issue of non-verbal sound extraction by the current CASS model and show that our dataset can effectively address the issue in the synthetic and actual movie audio. Our dataset is available at https://zenodo.org/records/15470640.


[301] 2506.02503

KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG

Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to access broader knowledge sources, yet factual inconsistencies persist due to noise in retrieved documents-even with advanced retrieval methods. We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance. In this paper, we present KARE-RAG (Knowledge-Aware Refinement and Enhancement for RAG), which improves knowledge utilization through three key innovations: (1) structured knowledge representations that facilitate error detection during training, (2) Dense Direct Preference Optimization (DDPO)-a refined training objective that prioritizes correction of critical errors, and (3) a contrastive data generation pipeline that maintains semantic consistency while rectifying factual inaccuracies. Experiments show our method significantly enhances standard RAG pipelines across model scales, improving both in-domain and out-of-domain task performance without compromising general capabilities. Notably, these gains are achieved with modest training data, suggesting data-efficient optimization is possible through targeted learning strategies. Our findings establish a new direction for RAG improvement: by improving how models learn to process retrieved content, we can enhance performance across diverse inference paradigms. All data and code will be publicly available on Github.


[302] 2506.02504

Stochastic Momentum Methods for Non-smooth Non-Convex Finite-Sum Coupled Compositional Optimization

Finite-sum Coupled Compositional Optimization (FCCO), characterized by its coupled compositional objective structure, emerges as an important optimization paradigm for addressing a wide range of machine learning problems. In this paper, we focus on a challenging class of non-convex non-smooth FCCO, where the outer functions are non-smooth weakly convex or convex and the inner functions are smooth or weakly convex. Existing state-of-the-art result face two key limitations: (1) a high iteration complexity of $O(1/\epsilon^6)$ under the assumption that the stochastic inner functions are Lipschitz continuous in expectation; (2) reliance on vanilla SGD-type updates, which are not suitable for deep learning applications. Our main contributions are two fold: (i) We propose stochastic momentum methods tailored for non-smooth FCCO that come with provable convergence guarantees; (ii) We establish a new state-of-the-art iteration complexity of $O(1/\epsilon^5)$. Moreover, we apply our algorithms to multiple inequality constrained non-convex optimization problems involving smooth or weakly convex functional inequality constraints. By optimizing a smoothed hinge penalty based formulation, we achieve a new state-of-the-art complexity of $O(1/\epsilon^5)$ for finding an (nearly) $\epsilon$-level KKT solution. Experiments on three tasks demonstrate the effectiveness of the proposed algorithms.


[303] 2506.02507

AURA: Agentic Upskilling via Reinforced Abstractions

We study the combinatorial explosion involved in translating high-level task prompts into deployable control policies for agile robots through multi-stage reinforcement learning. We introduce AURA (Agentic Upskilling via Reinforced Abstractions), a schema-centric curriculum RL framework that leverages Large Language Models (LLMs) as autonomous designers of multi-stage curricula. AURA transforms user prompts into YAML workflows that encode full reward functions, domain randomization strategies, and training configurations. All files are statically validated against a schema before any GPU time is consumed, ensuring reliable and efficient execution without human intervention. A retrieval-augmented feedback loop allows specialized LLM agents to design, execute, and refine staged curricula based on prior training results stored in a vector database, supporting continual improvement over time. Ablation studies highlight the importance of retrieval for curriculum quality and convergence stability. Quantitative experiments show that AURA consistently outperforms LLM-guided baselines on GPU-accelerated training frameworks. In qualitative tests, AURA successfully trains end-to-end policies directly from user prompts and deploys them zero-shot on a custom humanoid robot across a range of environments. By abstracting away the complexity of curriculum design, AURA enables scalable and adaptive policy learning pipelines that would be prohibitively complex to construct by hand.


[304] 2506.02509

In-context Clustering-based Entity Resolution with Large Language Models: A Design Space Exploration

Entity Resolution (ER) is a fundamental data quality improvement task that identifies and links records referring to the same real-world entity. Traditional ER approaches often rely on pairwise comparisons, which can be costly in terms of time and monetary resources, especially with large datasets. Recently, Large Language Models (LLMs) have shown promising results in ER tasks. However, existing methods typically focus on pairwise matching, missing the potential of LLMs to perform clustering directly in a more cost-effective and scalable manner. In this paper, we propose a novel in-context clustering approach for ER, where LLMs are used to cluster records directly, reducing both time complexity and monetary costs. We systematically investigate the design space for in-context clustering, analyzing the impact of factors such as set size, diversity, variation, and ordering of records on clustering performance. Based on these insights, we develop LLM-CER (LLM-powered Clustering-based ER), which achieves high-quality ER results while minimizing LLM API calls. Our approach addresses key challenges, including efficient cluster merging and LLM hallucination, providing a scalable and effective solution for ER. Extensive experiments on nine real-world datasets demonstrate that our method significantly improves result quality, achieving up to 150% higher accuracy, 10% increase in the F-measure, and reducing API calls by up to 5 times, while maintaining comparable monetary cost to the most cost-effective baseline.


[305] 2506.02510

M$^3$FinMeeting: A Multilingual, Multi-Sector, and Multi-Task Financial Meeting Understanding Evaluation Dataset

Recent breakthroughs in large language models (LLMs) have led to the development of new benchmarks for evaluating their performance in the financial domain. However, current financial benchmarks often rely on news articles, earnings reports, or announcements, making it challenging to capture the real-world dynamics of financial meetings. To address this gap, we propose a novel benchmark called $\texttt{M$^3$FinMeeting}$, which is a multilingual, multi-sector, and multi-task dataset designed for financial meeting understanding. First, $\texttt{M$^3$FinMeeting}$ supports English, Chinese, and Japanese, enhancing comprehension of financial discussions in diverse linguistic contexts. Second, it encompasses various industry sectors defined by the Global Industry Classification Standard (GICS), ensuring that the benchmark spans a broad range of financial activities. Finally, $\texttt{M$^3$FinMeeting}$ includes three tasks: summarization, question-answer (QA) pair extraction, and question answering, facilitating a more realistic and comprehensive evaluation of understanding. Experimental results with seven popular LLMs reveal that even the most advanced long-context models have significant room for improvement, demonstrating the effectiveness of $\texttt{M$^3$FinMeeting}$ as a benchmark for assessing LLMs' financial meeting comprehension skills.


[306] 2506.02514

To Embody or Not: The Effect Of Embodiment On User Perception Of LLM-based Conversational Agents

Embodiment in conversational agents (CAs) refers to the physical or visual representation of these agents, which can significantly influence user perception and interaction. Limited work has been done examining the effect of embodiment on the perception of CAs utilizing modern large language models (LLMs) in non-hierarchical cooperative tasks, a common use case of CAs as more powerful models become widely available for general use. To bridge this research gap, we conducted a mixed-methods within-subjects study on how users perceive LLM-based CAs in cooperative tasks when embodied and non-embodied. The results show that the non-embodied agent received significantly better quantitative appraisals for competence than the embodied agent, and in qualitative feedback, many participants believed that the embodied CA was more sycophantic than the non-embodied CA. Building on prior work on users' perceptions of LLM sycophancy and anthropomorphic features, we theorize that the typically-positive impact of embodiment on perception of CA credibility can become detrimental in the presence of sycophancy. The implication of such a phenomenon is that, contrary to intuition and existing literature, embodiment is not a straightforward way to improve a CA's perceived credibility if there exists a tendency to sycophancy.


[307] 2506.02515

FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning

Multi-step symbolic reasoning is critical for advancing downstream performance on financial tasks. Yet, benchmarks for systematically evaluating this capability are lacking. Existing datasets like FinQA and ConvFinQA supervise only final numerical answers, without assessing intermediate reasoning steps. To address this, we introduce FinChain, the first symbolic benchmark designed for verifiable Chain-of- Thought (CoT) financial reasoning. Spanning 54 topics across 12 financial domains, Fin- Chain offers five parameterized templates per topic, each varying in reasoning complexity and domain expertise required. Each dataset instance includes an executable Python trace, enabling automatic generation of extensive training data and easy adaptation to other domains. We also introduce ChainEval, a new metric for automatic evaluation of both final answers and intermediate reasoning. Benchmarking 30 LLMs on our dataset, we find that even state-of-the-art models have considerable room for improvement in multi-step financial reasoning. All templates and evaluation metrics for FinChain are available at https: //github.com/mbzuai-nlp/finchain.


[308] 2506.02519

Learning Together to Perform Better: Teaching Small-Scale LLMs to Collaborate via Preferential Rationale Tuning

LLMssuch as GPT-4 have shown a remarkable ability to solve complex questions by generating step-by-step rationales. Prior works have utilized this capability to improve smaller and cheaper LMs (say, with 7B parameters). However, various practical constraints, such as copyright and legal issues, owing to lack of transparency in the pre-training data of large (often closed) models, prevent their use in commercial settings. Little focus has been given to improving the innate reasoning ability of smaller models without distilling information from larger LLMs. To address this, we propose COLLATE, a trainable framework that tunes a (small) LLM to generate those outputs from a pool of diverse rationales that selectively improves the downstream task. COLLATE enforces multiple instances of the same LLM to exhibit distinct behavior and employs them to generate rationales to obtain diverse outputs. The LLM is then tuned via preference optimization to choose the candidate rationale which maximizes the likelihood of ground-truth answer. COLLATE outperforms several trainable and prompting baselines on 5 datasets across 3 domains: maths problem solving, natural language inference, and commonsense reasoning. We show the eff icacy of COLLATE on LLMs from different model families across varying parameter scales (1B to 8B) and demonstrate the benefit of multiple rationale providers guided by the end task through ablations. Code is released here (https://github.com/Sohanpatnaik106/collate).


[309] 2506.02520

Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact pure Nash equilibria for different classes of such mixed-integer games. The main idea is to reformulate the equilibrium problem as a suitable bilevel problem based on the Nikaido--Isoda function of the game. The proposed branch-and-cut method is applicable to generalized Nash equilibrium problems under quite mild assumptions. Depending on the specific setting, we use tailored equilibrium or intersection cuts. The latter are well-known in mixed-integer linear optimization and we adapt them to the game setting. We prove finite termination and correctness of the algorithm and present some first numerical results for two different types of knapsack games and another game based on capacitated flow problems.


[310] 2506.02522

Think Twice, Act Once: A Co-Evolution Framework of LLM and RL for Large-Scale Decision Making

Recent advancements in Large Language Models (LLMs) and Reinforcement Learning (RL) have shown significant promise in decision-making tasks. Nevertheless, for large-scale industrial decision problems, both approaches face distinct challenges: LLMs lack real-time long-sequence decision-making capabilities, while RL struggles with sample efficiency in vast action spaces. To bridge this gap, we propose Agents Co-Evolution (ACE), a synergistic framework between LLMs and RL agents for large-scale decision-making scenarios. ACE introduces a dual-role trajectory refinement mechanism where LLMs act as both Policy Actor and Value Critic during RL's training: the Actor refines suboptimal actions via multi-step reasoning and environment validation, while the Critic performs temporal credit assignment through trajectory-level reward shaping. Concurrently, RL agent enhances LLMs' task-specific decision-making with high-quality fine-tuning datasets generated via prioritized experience replay. Through extensive experiments across multiple power grid operation challenges with action spaces exceeding 60K discrete actions, ACE demonstrates superior performance over existing RL methods and LLM-based methods.


[311] 2506.02523

Hardware-Centric Analysis of DeepSeek's Multi-Head Latent Attention

Multi-Head Latent Attention (MLA), introduced in DeepSeek-V2, improves the efficiency of large language models by projecting query, key, and value tensors into a compact latent space. This architectural change reduces the KV-cache size and significantly lowers memory bandwidth demands, particularly in the autoregressive decode phase. This letter presents the first hardware-centric analysis of MLA, comparing it to conventional Multi-Head Attention (MHA) and evaluating its implications for accelerator performance. We identify two alternative execution schemes of MLA--reusing, resp. recomputing latent projection matrices--which offer distinct trade-offs between compute and memory access. Using the Stream design space exploration framework, we model their throughput and energy cost across a range of hardware platforms and find that MLA can shift attention workloads toward the compute-bound regime. Our results show that MLA not only reduces bandwidth usage but also enables adaptable execution strategies aligned with hardware constraints. Compared to MHA, it provides more stable and efficient performance, particularly on bandwidth-limited hardware platforms. These findings emphasize MLA's relevance as a co-design opportunity for future AI accelerators.


[312] 2506.02525

Boolean-network simplification and rule fitting to unravel chemotherapy resistance in non-small cell lung cancer

Boolean networks are powerful frameworks for capturing the logic of gene-regulatory circuits, yet their combinatorial explosion hampers exhaustive analyses. Here, we present a systematic reduction of a 31-node Boolean model that describes cisplatin- and pemetrexed-resistance in non-small-cell lung cancer to a compact 9-node core that exactly reproduces the original attractor landscape. The streamlined network shrinks the state space by four orders of magnitude, enabling rapid exploration of critical control points, rules fitting and candidate therapeutic targets. Extensive synchronous and asynchronous simulations confirm that the three clinically relevant steady states and their basins of attraction are conserved and reflect resistance frequencies close to those reported in clinical studies. The reduced model provides an accessible scaffold for future mechanistic and drug-discovery studies.


[313] 2506.02527

Multilingual Information Retrieval with a Monolingual Knowledge Base

Multilingual information retrieval has emerged as powerful tools for expanding knowledge sharing across languages. On the other hand, resources on high quality knowledge base are often scarce and in limited languages, therefore an effective embedding model to transform sentences from different languages into a feature vector space same as the knowledge base language becomes the key ingredient for cross language knowledge sharing, especially to transfer knowledge available in high-resource languages to low-resource ones. In this paper we propose a novel strategy to fine-tune multilingual embedding models with weighted sampling for contrastive learning, enabling multilingual information retrieval with a monolingual knowledge base. We demonstrate that the weighted sampling strategy produces performance gains compared to standard ones by up to 31.03\% in MRR and up to 33.98\% in Recall@3. Additionally, our proposed methodology is language agnostic and applicable for both multilingual and code switching use cases.


[314] 2506.02528

RelationAdapter: Learning and Transferring Visual Relation with Diffusion Transformers

Inspired by the in-context learning mechanism of large language models (LLMs), a new paradigm of generalizable visual prompt-based image editing is emerging. Existing single-reference methods typically focus on style or appearance adjustments and struggle with non-rigid transformations. To address these limitations, we propose leveraging source-target image pairs to extract and transfer content-aware editing intent to novel query images. To this end, we introduce RelationAdapter, a lightweight module that enables Diffusion Transformer (DiT) based models to effectively capture and apply visual transformations from minimal examples. We also introduce Relation252K, a comprehensive dataset comprising 218 diverse editing tasks, to evaluate model generalization and adaptability in visual prompt-driven scenarios. Experiments on Relation252K show that RelationAdapter significantly improves the model's ability to understand and transfer editing intent, leading to notable gains in generation quality and overall editing performance.


[315] 2506.02529

Automated Web Application Testing: End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs

Web applications are critical to modern software ecosystems, yet ensuring their reliability remains challenging due to the complexity and dynamic nature of web interfaces. Recent advances in large language models (LLMs) have shown promise in automating complex tasks, but limitations persist in handling dynamic navigation flows and complex form interactions. This paper presents an automated system for generating test cases for two key aspects of web application testing: site navigation and form filling. For site navigation, the system employs screen transition graphs and LLMs to model navigation flows and generate test scenarios. For form filling, it uses state graphs to handle conditional forms and automates Selenium script generation. Key contributions include: (1) a novel integration of graph structures and LLMs for site navigation testing, (2) a state graph-based approach for automating form-filling test cases, and (3) a comprehensive dataset for evaluating form-interaction testing. Experimental results demonstrate the system's effectiveness in improving test coverage and robustness, advancing the state of web application testing.


[316] 2506.02532

ReasoningFlow: Semantic Structure of Complex Reasoning Traces

Large reasoning models (LRMs) generate complex reasoning traces with planning, reflection, verification, and backtracking. In this work, we introduce ReasoningFlow, a unified schema for analyzing the semantic structures of these complex traces. ReasoningFlow parses traces into directed acyclic graphs, enabling the characterization of distinct reasoning patterns as subgraph structures. This human-interpretable representation offers promising applications in understanding, evaluating, and enhancing the reasoning processes of LRMs.


[317] 2506.02533

Natural Language Processing to Enhance Deliberation in Political Online Discussions: A Survey

Political online participation in the form of discussing political issues and exchanging opinions among citizens is gaining importance with more and more formats being held digitally. To come to a decision, a careful discussion and consideration of opinions and a civil exchange of arguments, which is defined as the act of deliberation, is desirable. The quality of discussions and participation processes in terms of their deliberativeness highly depends on the design of platforms and processes. To facilitate online communication for both participants and initiators, machine learning methods offer a lot of potential. In this work we want to showcase which issues occur in political online discussions and how machine learning can be used to counteract these issues and enhance deliberation.


[318] 2506.02534

Enhancing Monocular Height Estimation via Weak Supervision from Imperfect Labels

Monocular height estimation is considered the most efficient and cost-effective means of 3D perception in remote sensing, and it has attracted much attention since the emergence of deep learning. While training neural networks requires a large amount of data, data with perfect labels are scarce and only available within developed regions. The trained models therefore lack generalizability, which limits the potential for large-scale application of existing methods. We tackle this problem for the first time, by introducing data with imperfect labels into training pixel-wise height estimation networks, including labels that are incomplete, inexact, and inaccurate compared to high-quality labels. We propose an ensemble-based pipeline compatible with any monocular height estimation network. Taking the challenges of noisy labels, domain shift, and long-tailed distribution of height values into consideration, we carefully design the architecture and loss functions to leverage the information concealed in imperfect labels using weak supervision through balanced soft losses and ordinal constraints. We conduct extensive experiments on two datasets with different resolutions, DFC23 (0.5 to 1 m) and GBH (3 m). The results indicate that the proposed pipeline outperforms baselines by achieving more balanced performance across various domains, leading to improvements of average root mean square errors up to 22.94 %, and 18.62 % on DFC23 and GBH, respectively. The efficacy of each design component is validated through ablation studies. Code is available at https://github.com/zhu-xlab/weakim2h.


[319] 2506.02535

MemoryOut: Learning Principal Features via Multimodal Sparse Filtering Network for Semi-supervised Video Anomaly Detection

Video Anomaly Detection (VAD) methods based on reconstruction or prediction face two critical challenges: (1) strong generalization capability often results in accurate reconstruction or prediction of abnormal events, making it difficult to distinguish normal from abnormal patterns; (2) reliance only on low-level appearance and motion cues limits their ability to identify high-level semantic in abnormal events from complex scenes. To address these limitations, we propose a novel VAD framework with two key innovations. First, to suppress excessive generalization, we introduce the Sparse Feature Filtering Module (SFFM) that employs bottleneck filters to dynamically and adaptively remove abnormal information from features. Unlike traditional memory modules, it does not need to memorize the normal prototypes across the training dataset. Further, we design the Mixture of Experts (MoE) architecture for SFFM. Each expert is responsible for extracting specialized principal features during running time, and different experts are selectively activated to ensure the diversity of the learned principal features. Second, to overcome the neglect of semantics in existing methods, we integrate a Vision-Language Model (VLM) to generate textual descriptions for video clips, enabling comprehensive joint modeling of semantic, appearance, and motion cues. Additionally, we enforce modality consistency through semantic similarity constraints and motion frame-difference contrastive loss. Extensive experiments on multiple public datasets validate the effectiveness of our multimodal joint modeling framework and sparse feature filtering paradigm. Project page at https://qzfm.github.io/sfn_vad_project_page/.


[320] 2506.02536

Answer Convergence as a Signal for Early Stopping in Reasoning

Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.


[321] 2506.02537

VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning

Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles


[322] 2506.02538

On the fracture mechanics validity of small scale tests

There is growing interest in conducting small-scale tests to gain additional insight into the fracture behaviour of components across a wide range of materials. For example, micro-scale mechanical tests inside of a microscope (\emph{in situ}) enable direct, high-resolution observation of the interplay between crack growth and microstructural phenomena (e.g., dislocation behaviour or the fracture resistance of a particular interface), and sub-size samples are increasingly used when only a limited amount of material is available. However, to obtain quantitative insight and extract relevant fracture parameters, the sample must be sufficiently large for a $J$- (HRR) or a $K$-field to exist. We conduct numerical and semi-analytical studies to map the conditions (sample geometry, material) that result in a valid, quantitative fracture experiment. Specifically, for a wide range of material properties, crack lengths and sample dimensions, we establish the maximum value of the $J$-integral where an HRR field ceases to exist (i.e., the maximum $J$ value at which fracture must occur for the test to be valid, $J_\mathrm{max}$). Maps are generated to establish the maximum valid $J$ value ($J_\mathrm{max}$) as a function of yield strength, strain hardening and minimum sample size. These maps are then used to discuss the existing experimental literature and provide guidance on how to conduct quantitative experiments. Finally, our study is particularised to the analysis of metals that have been embrittled due to hydrogen exposure. The response of relevant materials under hydrogen-containing environments are superimposed on the aforementioned maps, determining the conditions that will enable quantitative insight.


[323] 2506.02539

VerificAgent: Integrating Expert Knowledge and Fact-Checked Memory for Robust Domain-Specific Task Planning

Continual memory augmentation allows computer-use agents (CUAs) to learn from past interactions and refine their task-solving strategies over time. However, unchecked memory accumulation can introduce spurious or hallucinated "learnings" that degrade agent performance, particularly in domain-specific workflows such as productivity software. We present a novel framework, VerificAgent, that effectively manages memory for CUAs through (1) an expert-curated seed of domain knowledge, (2) iterative, trajectory-based memory refinement during training, and (3) a post-hoc fact-checking pass by human experts to sanitize accumulated memory before deployment. On OSWorld productivity tasks, VerificAgent achieves a 111.1% relative improvement in success rate over baseline CUA without any additional fine-tuning.


[324] 2506.02541

Rethinking Post-Unlearning Behavior of Large Vision-Language Models

Machine unlearning is used to mitigate the privacy risks of Large Vision-Language Models (LVLMs) arising from training on large-scale web data. However, existing unlearning methods often fail to carefully select substitute outputs for forget targets, resulting in Unlearning Aftermaths-undesirable behaviors such as degenerate, hallucinated, or excessively refused responses. We highlight that, especially for generative LVLMs, it is crucial to consider the quality and informativeness of post-unlearning responses rather than relying solely on naive suppression. To address this, we introduce a new unlearning task for LVLMs that requires models to provide privacy-preserving yet informative and visually grounded responses. We also propose PUBG, a novel unlearning method that explicitly guides post-unlearning behavior toward a desirable output distribution. Experiments show that, while existing methods suffer from Unlearning Aftermaths despite successfully preventing privacy violations, PUBG effectively mitigates these issues, generating visually grounded and informative responses without privacy leakage for forgotten targets.


[325] 2506.02542

HIEGNet: A Heterogenous Graph Neural Network Including the Immune Environment in Glomeruli Classification

Graph Neural Networks (GNNs) have recently been found to excel in histopathology. However, an important histopathological task, where GNNs have not been extensively explored, is the classification of glomeruli health as an important indicator in nephropathology. This task presents unique difficulties, particularly for the graph construction, i.e., the identification of nodes, edges, and informative features. In this work, we propose a pipeline composed of different traditional and machine learning-based computer vision techniques to identify nodes, edges, and their corresponding features to form a heterogeneous graph. We then proceed to propose a novel heterogeneous GNN architecture for glomeruli classification, called HIEGNet, that integrates both glomeruli and their surrounding immune cells. Hence, HIEGNet is able to consider the immune environment of each glomerulus in its classification. Our HIEGNet was trained and tested on a dataset of Whole Slide Images from kidney transplant patients. Experimental results demonstrate that HIEGNet outperforms several baseline models and generalises best between patients among all baseline models. Our implementation is publicly available at https://github.com/nklsKrmnn/HIEGNet.git.


[326] 2506.02544

CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG

Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose \textbf{C}r\textbf{o}ss-source knowledge \textbf{Re}conciliation for \textbf{M}ulti\textbf{M}odal \textbf{RAG} (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6\% and 9.3\% performance gains on InfoSeek and Encyclopedic-VQA, respectively. We release code and data at \href{https://github.com/TyangJN/CoRe-MMRAG}{https://github.com/TyangJN/CoRe-MMRAG}.


[327] 2506.02545

On the Language and Gender Biases in PSTN, VoIP and Neural Audio Codecs

In recent years, there has been a growing focus on fairness and inclusivity within speech technology, particularly in areas such as automatic speech recognition and speech sentiment analysis. When audio is transcoded prior to processing, as is the case in streaming or real-time applications, any inherent bias in the coding mechanism may result in disparities. This not only affects user experience but can also have broader societal implications by perpetuating stereotypes and exclusion. Thus, it is important that audio coding mechanisms are unbiased. In this work, we contribute towards the scarce research with respect to language and gender biases of audio codecs. By analyzing the speech quality of over 2 million multilingual audio files after transcoding through a representative subset of codecs (PSTN, VoIP and neural), our results indicate that PSTN codecs are strongly biased in terms of gender and that neural codecs introduce language biases.


[328] 2506.02546

Attention Knows Whom to Trust: Attention-based Trust Management for LLM Multi-Agent Systems

Large Language Model-based Multi-Agent Systems (LLM-MAS) have demonstrated strong capabilities in solving complex tasks but remain vulnerable when agents receive unreliable messages. This vulnerability stems from a fundamental gap: LLM agents treat all incoming messages equally without evaluating their trustworthiness. While some existing studies approach the trustworthiness, they focus on a single type of harmfulness rather than analyze it in a holistic approach from multiple trustworthiness perspectives. In this work, we propose Attention Trust Score (A-Trust), a lightweight, attention-based method for evaluating message trustworthiness. Inspired by human communication literature[1], through systematically analyzing attention behaviors across six orthogonal trust dimensions, we find that certain attention heads in the LLM specialize in detecting specific types of violations. Leveraging these insights, A-Trust directly infers trustworthiness from internal attention patterns without requiring external prompts or verifiers. Building upon A-Trust, we develop a principled and efficient trust management system (TMS) for LLM-MAS, enabling both message-level and agent-level trust assessment. Experiments across diverse multi-agent settings and tasks demonstrate that applying our TMS significantly enhances robustness against malicious inputs.


[329] 2506.02547

Probabilistic Online Event Downsampling

Event cameras capture scene changes asynchronously on a per-pixel basis, enabling extremely high temporal resolution. However, this advantage comes at the cost of high bandwidth, memory, and computational demands. To address this, prior work has explored event downsampling, but most approaches rely on fixed heuristics or threshold-based strategies, limiting their adaptability. Instead, we propose a probabilistic framework, POLED, that models event importance through an event-importance probability density function (ePDF), which can be arbitrarily defined and adapted to different applications. Our approach operates in a purely online setting, estimating event importance on-the-fly from raw event streams, enabling scene-specific adaptation. Additionally, we introduce zero-shot event downsampling, where downsampled events must remain usable for models trained on the original event stream, without task-specific adaptation. We design a contour-preserving ePDF that prioritizes structurally important events and evaluate our method across four datasets and tasks--object classification, image interpolation, surface normal estimation, and object detection--demonstrating that intelligent sampling is crucial for maintaining performance under event-budget constraints.


[330] 2506.02548

CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale

Large language model (LLM) agents are becoming increasingly skilled at handling cybersecurity tasks autonomously. Thoroughly assessing their cybersecurity capabilities is critical and urgent, given the high stakes in this domain. However, existing benchmarks fall short, often failing to capture real-world scenarios or being limited in scope. To address this gap, we introduce CyberGym, a large-scale and high-quality cybersecurity evaluation framework featuring 1,507 real-world vulnerabilities found and patched across 188 large software projects. While it includes tasks of various settings, CyberGym primarily focuses on the generation of proof-of-concept (PoC) tests for vulnerability reproduction, based on text descriptions and corresponding source repositories. Solving this task is particularly challenging, as it requires comprehensive reasoning across entire codebases to locate relevant code fragments and produce effective PoCs that accurately trigger the target vulnerability starting from the program's entry point. Our evaluation across 4 state-of-the-art agent frameworks and 9 LLMs reveals that even the best combination (OpenHands and Claude-3.7-Sonnet) achieves only a 11.9% reproduction success rate, mainly on simpler cases. Beyond reproducing historical vulnerabilities, we find that PoCs generated by LLM agents can reveal new vulnerabilities, identifying 15 zero-days affecting the latest versions of the software projects.


[331] 2506.02550

Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025

In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.


[332] 2506.02553

Response-Level Rewards Are All You Need for Online Reinforcement Learning in LLMs: A Mathematical Perspective

We study a common challenge in reinforcement learning for large language models (LLMs): the Zero-Reward Assumption, where non-terminal actions (i.e., intermediate token generations) receive zero task-specific immediate reward, while only the final token receives a reward for the entire response. This assumption arises frequently in practice, as precise token-level rewards are often difficult or infeasible to obtain in LLM applications. In this work, we provide a unifying theoretical perspective. We introduce the Trajectory Policy Gradient Theorem, which shows that the policy gradient based on true, unknown token-level rewards can be unbiasedly estimated using only a response-level reward model, regardless of whether the Zero-Reward Assumption holds or not, for algorithms in the REINFORCE and Actor-Critic families. This result reveals that widely used methods such as PPO, GRPO, ReMax, and RLOO inherently possess the capacity to model token-level reward signals, offering a theoretical justification for response-level reward approaches. Our findings pave the way for more practical, efficient LLM fine-tuning, allowing developers to treat training algorithms as black boxes and focus on improving the response-level reward model with auxiliary sub-models. We also offer a detailed analysis of popular RL and non-RL methods, comparing their theoretical foundations and practical advantages across common LLM tasks. Finally, we propose a new algorithm: Token-Reinforced Policy Optimization (TRePO), a theoretically grounded method that is simpler than PPO, matches GRPO in memory efficiency, and holds promise for broad applicability.


[333] 2506.02554

HiLO: High-Level Object Fusion for Autonomous Driving using Transformers

The fusion of sensor data is essential for a robust perception of the environment in autonomous driving. Learning-based fusion approaches mainly use feature-level fusion to achieve high performance, but their complexity and hardware requirements limit their applicability in near-production vehicles. High-level fusion methods offer robustness with lower computational requirements. Traditional methods, such as the Kalman filter, dominate this area. This paper modifies the Adapted Kalman Filter (AKF) and proposes a novel transformer-based high-level object fusion method called HiLO. Experimental results demonstrate improvements of $25.9$ percentage points in $\textrm{F}_1$ score and $6.1$ percentage points in mean IoU. Evaluation on a new large-scale real-world dataset demonstrates the effectiveness of the proposed approaches. Their generalizability is further validated by cross-domain evaluation between urban and highway scenarios. Code, data, and models are available at https://github.com/rst-tu-dortmund/HiLO .


[334] 2506.02555

SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence

Foundation models have achieved transformative success across biomedical domains by enabling holistic understanding of multimodal data. However, their application in surgery remains underexplored. Surgical intelligence presents unique challenges - requiring surgical visual perception, temporal analysis, and reasoning. Existing general-purpose vision-language models fail to address these needs due to insufficient domain-specific supervision and the lack of a large-scale high-quality surgical database. To bridge this gap, we propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence, where this single universal model can tackle versatile surgical tasks. To enable this, we construct a large-scale multimodal surgical database, SurgVLM-DB, comprising over 1.81 million frames with 7.79 million conversations, spanning more than 16 surgical types and 18 anatomical structures. We unify and reorganize 23 public datasets across 10 surgical tasks, followed by standardizing labels and doing hierarchical vision-language alignment to facilitate comprehensive coverage of gradually finer-grained surgical tasks, from visual perception, temporal analysis, to high-level reasoning. Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks. We further construct a surgical multimodal benchmark, SurgVLM-Bench, for method evaluation. SurgVLM-Bench consists of 6 popular and widely-used datasets in surgical domain, covering several crucial downstream tasks. Based on SurgVLM-Bench, we evaluate the performance of our SurgVLM (3 SurgVLM variants: SurgVLM-7B, SurgVLM-32B, and SurgVLM-72B), and conduct comprehensive comparisons with 14 mainstream commercial VLMs (e.g., GPT-4o, Gemini 2.0 Flash, Qwen2.5-Max).


[335] 2506.02556

Sign Language: Towards Sign Understanding for Robot Autonomy

Signage is an ubiquitous element of human environments, playing a critical role in both scene understanding and navigation. For autonomous systems to fully interpret human environments, effectively parsing and understanding signs is essential. We introduce the task of navigational sign understanding, aimed at extracting navigational cues from signs that convey symbolic spatial information about the scene. Specifically, we focus on signs capturing directional cues that point toward distant locations and locational cues that identify specific places. To benchmark performance on this task, we curate a comprehensive test set, propose appropriate evaluation metrics, and establish a baseline approach. Our test set consists of over 160 images, capturing signs with varying complexity and design across a wide range of public spaces, such as hospitals, shopping malls, and transportation hubs. Our baseline approach harnesses Vision-Language Models (VLMs) to parse navigational signs under these high degrees of variability. Experiments show that VLMs offer promising performance on this task, potentially motivating downstream applications in robotics. The code and dataset are available on Github.


[336] 2506.02557

Kernel-based Unsupervised Embedding Alignment for Enhanced Visual Representation in Vision-language Models

Vision-language models, such as CLIP, have achieved significant success in aligning visual and textual representations, becoming essential components of many multi-modal large language models (MLLMs) like LLaVA and OpenFlamingo. However, numerous studies have identified CLIP's limited fine-grained perception as a critical drawback, leading to substantial failures in downstream MLLMs. In contrast, vision-centric foundation models like DINOv2 demonstrate remarkable capabilities in capturing fine details from images. In this work, we propose a novel kernel-based method to align CLIP's visual representation with that of DINOv2, ensuring that the resulting embeddings maintain compatibility with text embeddings while enhancing perceptual capabilities. Our alignment objective is designed for efficient stochastic optimization. Following this image-only alignment fine-tuning, the visual encoder retains compatibility with the frozen text encoder and exhibits significant improvements in zero-shot object recognition, fine-grained spatial reasoning, and localization. By integrating the aligned visual encoder, downstream MLLMs also demonstrate enhanced performance.


[337] 2506.02560

DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing

Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.


[338] 2506.02561

Pruning General Large Language Models into Customized Expert Models

Large language models (LLMs) have revolutionized natural language processing, yet their substantial model sizes often require substantial computational resources. To preserve computing resources and accelerate inference speed, it is crucial to prune redundant parameters, especially for experienced users who often need compact expert models tailored to specific downstream scenarios. However, most existing pruning methods focus on preserving the model's general capabilities, often requiring extensive post-training or suffering from degraded performance due to coarse-grained pruning. In this work, we design a $\underline{Cus}$tom $\underline{Prun}$ing method ($\texttt{Cus-Prun}$) to prune a large general model into a smaller lightweight expert model, which is positioned along the "language", "domain" and "task" dimensions. By identifying and pruning irrelevant neurons of each dimension, $\texttt{Cus-Prun}$ creates expert models without any post-training. Our experiments demonstrate that $\texttt{Cus-Prun}$ consistently outperforms other methods, achieving minimal loss in both expert and general capabilities across various models from different model families and sizes.


[339] 2506.02563

Privacy-Preserving Federated Convex Optimization: Balancing Partial-Participation and Efficiency via Noise Cancellation

This paper tackles the challenge of achieving Differential Privacy (DP) in Federated Learning (FL) under partial-participation, where only a subset of the machines participate in each time-step. While previous work achieved optimal performance in full-participation settings, these methods struggled to extend to partial-participation scenarios. Our approach fills this gap by introducing a novel noise-cancellation mechanism that preserves privacy without sacrificing convergence rates or computational efficiency. We analyze our method within the Stochastic Convex Optimization (SCO) framework and show that it delivers optimal performance for both homogeneous and heterogeneous data distributions. This work expands the applicability of DP in FL, offering an efficient and practical solution for privacy-preserving learning in distributed systems with partial participation.


[340] 2506.02565

Towards Generating Controllable and Solvable Geometry Problem by Leveraging Symbolic Deduction Engine

Generating high-quality geometry problems is both an important and challenging task in education. Compared to math word problems, geometry problems further emphasize multi-modal formats and the translation between informal and formal languages. In this paper, we introduce a novel task for geometry problem generation and propose a new pipeline method: the Symbolic Deduction Engine-based Geometry Problem Generation framework (SDE-GPG). The framework leverages a symbolic deduction engine and contains four main steps: (1) searching a predefined mapping table from knowledge points to extended definitions, (2) sampling extended definitions and performing symbolic deduction, (3) filtering out unqualified problems, and (4) generating textual problems and diagrams. Specifically, our method supports to avoid inherent biases in translating natural language into formal language by designing the mapping table, and guarantees to control the generated problems in terms of knowledge points and difficulties by an elaborate checking function. With obtained formal problems, they are translated to natural language and the accompanying diagrams are automatically drew by rule-based methods. We conduct experiments using real-world combinations of knowledge points from two public datasets. The results demonstrate that the SDE-GPG can effectively generate readable, solvable and controllable geometry problems.


[341] 2506.02566

GANORM: Lifespan Normative Modeling of EEG Network Topology based on Multinational Cross-Spectra

Charting the lifespan evolutionary trajectory of brain function serves as the normative standard for preventing mental disorders during brain development and aging. Although numerous MRI studies have mapped the structural connectome for young cohorts, the EEG-based functional connectome is unknown to characterize human lifespan, limiting its practical applications for the early detection of brain dysfunctions at the community level. This work aimed to undertake normative modeling from the perspective of EEG network topology. Frequency-dependent scalp EEG functional networks were constructed based on EEG cross-spectra aged 5-97 years from 9 countries and network characteristics were quantified. First, GAMLSS were applied to describe the normative curves of the network characteristics in different frequency bands. Subsequently, addressing the limitations of existing regression approaches for whole brain network analysis, this paper proposed an interpretable encoder-decoder framework, Generative Age-dependent brain Network nORmative Model (GANORM). Building upon this framework, we established an age-dependent normative trajectory of the complete brain network for the entire lifespan. Finally, we validated the effectiveness of the norm using EEG datasets from multiple sites. Subsequently, we evaluated the effectiveness of GANORM, and the tested performances of BPNN showed the R^2 was 0.796, the MAE was 0.081, and the RMSE was 0.013. Following established lifespan brain network norm, GANORM also exhibited good results upon verification using healthy and disease data from various sites. The deviation scores from the normative mean for the healthy control group were significantly smaller than those of the disease group.


[342] 2506.02568

MLaGA: Multimodal Large Language and Graph Assistant

Large Language Models (LLMs) have demonstrated substantial efficacy in advancing graph-structured data analysis. Prevailing LLM-based graph methods excel in adapting LLMs to text-rich graphs, wherein node attributes are text descriptions. However, their applications to multimodal graphs--where nodes are associated with diverse attribute types, such as texts and images--remain underexplored, despite their ubiquity in real-world scenarios. To bridge the gap, we introduce the Multimodal Large Language and Graph Assistant (MLaGA), an innovative model that adeptly extends LLM capabilities to facilitate reasoning over complex graph structures and multimodal attributes. We first design a structure-aware multimodal encoder to align textual and visual attributes within a unified space through a joint graph pre-training objective. Subsequently, we implement a multimodal instruction-tuning approach to seamlessly integrate multimodal features and graph structures into the LLM through lightweight projectors. Extensive experiments across multiple datasets demonstrate the effectiveness of MLaGA compared to leading baseline methods, achieving superior performance in diverse graph learning tasks under both supervised and transfer learning scenarios.


[343] 2506.02571

Contrast & Compress: Learning Lightweight Embeddings for Short Trajectories

The ability to retrieve semantically and directionally similar short-range trajectories with both accuracy and efficiency is foundational for downstream applications such as motion forecasting and autonomous navigation. However, prevailing approaches often depend on computationally intensive heuristics or latent anchor representations that lack interpretability and controllability. In this work, we propose a novel framework for learning fixed-dimensional embeddings for short trajectories by leveraging a Transformer encoder trained with a contrastive triplet loss that emphasize the importance of discriminative feature spaces for trajectory data. We analyze the influence of Cosine and FFT-based similarity metrics within the contrastive learning paradigm, with a focus on capturing the nuanced directional intent that characterizes short-term maneuvers. Our empirical evaluation on the Argoverse 2 dataset demonstrates that embeddings shaped by Cosine similarity objectives yield superior clustering of trajectories by both semantic and directional attributes, outperforming FFT-based baselines in retrieval tasks. Notably, we show that compact Transformer architectures, even with low-dimensional embeddings (e.g., 16 dimensions, but qualitatively down to 4), achieve a compelling balance between retrieval performance (minADE, minFDE) and computational overhead, aligning with the growing demand for scalable and interpretable motion priors in real-time systems. The resulting embeddings provide a compact, semantically meaningful, and efficient representation of trajectory data, offering a robust alternative to heuristic similarity measures and paving the way for more transparent and controllable motion forecasting pipelines.


[344] 2506.02572

HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for Scalable Large Model Inference

Large Language Models (LLMs) have emerged as a pivotal research area, yet the attention module remains a critical bottleneck in LLM inference, even with techniques like KVCache to mitigate redundant computations. While various top-$k$ attention mechanisms have been proposed to accelerate LLM inference by exploiting the inherent sparsity of attention, they often struggled to strike a balance between efficiency and accuracy. In this paper, we introduce HATA (Hash-Aware Top-$k$ Attention), a novel approach that systematically integrates low-overhead learning-to-hash techniques into the Top-$k$ attention process. Different from the existing top-k attention methods which are devoted to seeking an absolute estimation of qk score, typically with a great cost, HATA maps queries and keys into binary hash codes, and acquires the relative qk score order with a quite low cost, which is sufficient for realizing top-k attention. Extensive experiments demonstrate that HATA achieves up to 7.2$\times$ speedup compared to vanilla full attention while maintaining model accuracy. In addition, HATA outperforms the state-of-the-art top-$k$ attention methods in both accuracy and efficiency across multiple mainstream LLM models and diverse tasks. HATA is open source at https://github.com/gpzlx1/HATA.


[345] 2506.02573

IndoSafety: Culturally Grounded Safety for LLMs in Indonesian Languages

Although region-specific large language models (LLMs) are increasingly developed, their safety remains underexplored, particularly in culturally diverse settings like Indonesia, where sensitivity to local norms is essential and highly valued by the community. In this work, we present IndoSafety, the first high-quality, human-verified safety evaluation dataset tailored for the Indonesian context, covering five language varieties: formal and colloquial Indonesian, along with three major local languages: Javanese, Sundanese, and Minangkabau. IndoSafety is constructed by extending prior safety frameworks to develop a taxonomy that captures Indonesia's sociocultural context. We find that existing Indonesian-centric LLMs often generate unsafe outputs, particularly in colloquial and local language settings, while fine-tuning on IndoSafety significantly improves safety while preserving task performance. Our work highlights the critical need for culturally grounded safety evaluation and provides a concrete step toward responsible LLM deployment in multilingual settings. Warning: This paper contains example data that may be offensive, harmful, or biased.


[346] 2506.02576

ADFormer: Aggregation Differential Transformer for Passenger Demand Forecasting

Passenger demand forecasting helps optimize vehicle scheduling, thereby improving urban efficiency. Recently, attention-based methods have been used to adequately capture the dynamic nature of spatio-temporal data. However, existing methods that rely on heuristic masking strategies cannot fully adapt to the complex spatio-temporal correlations, hindering the model from focusing on the right context. These works also overlook the high-level correlations that exist in the real world. Effectively integrating these high-level correlations with the original correlations is crucial. To fill this gap, we propose the Aggregation Differential Transformer (ADFormer), which offers new insights to demand forecasting promotion. Specifically, we utilize Differential Attention to capture the original spatial correlations and achieve attention denoising. Meanwhile, we design distinct aggregation strategies based on the nature of space and time. Then, the original correlations are unified with the high-level correlations, enabling the model to capture holistic spatio-temporal relations. Experiments conducted on taxi and bike datasets confirm the effectiveness and efficiency of our model, demonstrating its practical value. The code is available at https://github.com/decisionintelligence/ADFormer.


[347] 2506.02577

Reachability Weighted Offline Goal-conditioned Resampling

Offline goal-conditioned reinforcement learning (RL) relies on fixed datasets where many potential goals share the same state and action spaces. However, these potential goals are not explicitly represented in the collected trajectories. To learn a generalizable goal-conditioned policy, it is common to sample goals and state-action pairs uniformly using dynamic programming methods such as Q-learning. Uniform sampling, however, requires an intractably large dataset to cover all possible combinations and creates many unreachable state-goal-action pairs that degrade policy performance. Our key insight is that sampling should favor transitions that enable goal achievement. To this end, we propose Reachability Weighted Sampling (RWS). RWS uses a reachability classifier trained via positive-unlabeled (PU) learning on goal-conditioned state-action values. The classifier maps these values to a reachability score, which is then used as a sampling priority. RWS is a plug-and-play module that integrates seamlessly with standard offline RL algorithms. Experiments on six complex simulated robotic manipulation tasks, including those with a robot arm and a dexterous hand, show that RWS significantly improves performance. In one notable case, performance on the HandBlock-Z task improved by nearly 50 percent relative to the baseline. These results indicate the effectiveness of reachability-weighted sampling.


[348] 2506.02580

V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving

Knowledge-driven autonomous driving systems(ADs) offer powerful reasoning capabilities, but face two critical challenges: limited perception due to the short-sightedness of single-vehicle sensors, and hallucination arising from the lack of real-time environmental grounding. To address these issues, this paper introduces V2X-UniPool, a unified framework that integrates multimodal Vehicle-to-Everything (V2X) data into a time-indexed and language-based knowledge pool. By leveraging a dual-query Retrieval-Augmented Generation (RAG) mechanism, which enables retrieval of both static and dynamic knowledge, our system enables ADs to perform accurate, temporally consistent reasoning over both static environment and dynamic traffic context. Experiments on a real-world cooperative driving dataset demonstrate that V2X-UniPool significantly enhances motion planning accuracy and reasoning capability. Remarkably, it enables even zero-shot vehicle-side models to achieve state-of-the-art performance by leveraging V2X-UniPool, while simultaneously reducing transmission cost by over 99.9\% compared to prior V2X methods.


[349] 2506.02581

Distributedness based scheduling

Efficient utilization of computing resources in a Kubernetes cluster is often constrained by the uneven distribution of pods with similar usage patterns. This paper presents a novel scheduling strategy designed to optimize the distributedness of Kubernetes resources based on their usage magnitude and patterns across CPU, memory, network, and storage. By categorizing resource usage into labels such as "cpu high spike" or "memory medium always," and applying these to deployed pods, the system calculates the variance or distributedness factor of similar resource types across cluster nodes. A lower variance indicates a more balanced distribution. The Kubernetes scheduler is enhanced to consider this factor during scheduling decisions, placing new pods on nodes that minimize resource clustering. Furthermore, the approach supports redistribution of existing pods through simulated scheduling to improve balance. This method is adaptable at the cluster, namespace, or application level and is integrated within the standard Kubernetes scheduler, providing a scalable, label-driven mechanism to improve overall resource efficiency in cloud-native environments.


[350] 2506.02584

Prosodic Structure Beyond Lexical Content: A Study of Self-Supervised Learning

People exploit the predictability of lexical structures during text comprehension. Though predictable structure is also present in speech, the degree to which prosody, e.g. intonation, tempo, and loudness, contributes to such structure independently of the lexical content is unclear. This study leverages self-supervised learning (SSL) to examine the temporal granularity of structures in the acoustic correlates of prosody. Representations from our proposed Masked Prosody Model can predict perceptual labels dependent on local information, such as word boundaries, but provide the most value for labels involving longer-term structures, like emotion recognition. Probing experiments across various perceptual labels show strong relative gains over untransformed pitch, energy, and voice activity features. Our results reveal the importance of SSL training objective timescale and highlight the value of complex SSL-encoded structures compared to more constrained classical structures.


[351] 2506.02587

BEVCALIB: LiDAR-Camera Calibration via Geometry-Guided Bird's-Eye View Representations

Accurate LiDAR-camera calibration is fundamental to fusing multi-modal perception in autonomous driving and robotic systems. Traditional calibration methods require extensive data collection in controlled environments and cannot compensate for the transformation changes during the vehicle/robot movement. In this paper, we propose the first model that uses bird's-eye view (BEV) features to perform LiDAR camera calibration from raw data, termed BEVCALIB. To achieve this, we extract camera BEV features and LiDAR BEV features separately and fuse them into a shared BEV feature space. To fully utilize the geometric information from the BEV feature, we introduce a novel feature selector to filter the most important features in the transformation decoder, which reduces memory consumption and enables efficient training. Extensive evaluations on KITTI, NuScenes, and our own dataset demonstrate that BEVCALIB establishes a new state of the art. Under various noise conditions, BEVCALIB outperforms the best baseline in the literature by an average of (47.08%, 82.32%) on KITTI dataset, and (78.17%, 68.29%) on NuScenes dataset, in terms of (translation, rotation), respectively. In the open-source domain, it improves the best reproducible baseline by one order of magnitude. Our code and demo results are available at https://cisl.ucr.edu/BEVCalib.


[352] 2506.02589

Evaluating Named Entity Recognition Models for Russian Cultural News Texts: From BERT to LLM

This paper addresses the challenge of Named Entity Recognition (NER) for person names within the specialized domain of Russian news texts concerning cultural events. The study utilizes the unique SPbLitGuide dataset, a collection of event announcements from Saint Petersburg spanning 1999 to 2019. A comparative evaluation of diverse NER models is presented, encompassing established transformer-based architectures such as DeepPavlov, RoBERTa, and SpaCy, alongside recent Large Language Models (LLMs) including GPT-3.5, GPT-4, and GPT-4o. Key findings highlight the superior performance of GPT-4o when provided with specific prompting for JSON output, achieving an F1 score of 0.93. Furthermore, GPT-4 demonstrated the highest precision at 0.99. The research contributes to a deeper understanding of current NER model capabilities and limitations when applied to morphologically rich languages like Russian within the cultural heritage domain, offering insights for researchers and practitioners. Follow-up evaluation with GPT-4.1 (April 2025) achieves F1=0.94 for both simple and structured prompts, demonstrating rapid progress across model families and simplified deployment requirements.


[353] 2506.02590

Synthetic Speech Source Tracing using Metric Learning

This paper addresses source tracing in synthetic speech-identifying generative systems behind manipulated audio via speaker recognition-inspired pipelines. While prior work focuses on spoofing detection, source tracing lacks robust solutions. We evaluate two approaches: classification-based and metric-learning. We tested our methods on the MLAADv5 benchmark using ResNet and self-supervised learning (SSL) backbones. The results show that ResNet achieves competitive performance with the metric learning approach, matching and even exceeding SSL-based systems. Our work demonstrates ResNet's viability for source tracing while underscoring the need to optimize SSL representations for this task. Our work bridges speaker recognition methodologies with audio forensic challenges, offering new directions for combating synthetic media manipulation.


[354] 2506.02591

On Generalization across Measurement Systems: LLMs Entail More Test-Time Compute for Underrepresented Cultures

Measurement systems (e.g., currencies) differ across cultures, but the conversions between them are well defined so that humans can state facts using any measurement system of their choice. Being available to users from diverse cultural backgrounds, large language models (LLMs) should also be able to provide accurate information irrespective of the measurement system at hand. Using newly compiled datasets we test if this is the case for seven open-source LLMs, addressing three key research questions: (RQ1) What is the default system used by LLMs for each type of measurement? (RQ2) Do LLMs' answers and their accuracy vary across different measurement systems? (RQ3) Can LLMs mitigate potential challenges w.r.t. underrepresented systems via reasoning? Our findings show that LLMs default to the measurement system predominantly used in the data. Additionally, we observe considerable instability and variance in performance across different measurement systems. While this instability can in part be mitigated by employing reasoning methods such as chain-of-thought (CoT), this implies longer responses and thereby significantly increases test-time compute (and inference costs), marginalizing users from cultural backgrounds that use underrepresented measurement systems.


[355] 2506.02592

Beyond the Surface: Measuring Self-Preference in LLM Judgments

Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.


[356] 2506.02593

A Hybrid Approach to Indoor Social Navigation: Integrating Reactive Local Planning and Proactive Global Planning

We consider the problem of indoor building-scale social navigation, where the robot must reach a point goal as quickly as possible without colliding with humans who are freely moving around. Factors such as varying crowd densities, unpredictable human behavior, and the constraints of indoor spaces add significant complexity to the navigation task, necessitating a more advanced approach. We propose a modular navigation framework that leverages the strengths of both classical methods and deep reinforcement learning (DRL). Our approach employs a global planner to generate waypoints, assigning soft costs around anticipated pedestrian locations, encouraging caution around potential future positions of humans. Simultaneously, the local planner, powered by DRL, follows these waypoints while avoiding collisions. The combination of these planners enables the agent to perform complex maneuvers and effectively navigate crowded and constrained environments while improving reliability. Many existing studies on social navigation are conducted in simplistic or open environments, limiting the ability of trained models to perform well in complex, real-world settings. To advance research in this area, we introduce a new 2D benchmark designed to facilitate development and testing of social navigation strategies in indoor environments. We benchmark our method against traditional and RL-based navigation strategies, demonstrating that our approach outperforms both.


[357] 2506.02594

EALG: Evolutionary Adversarial Generation of Language Model-Guided Generators for Combinatorial Optimization

Generating challenging instances is crucial for the evaluation and advancement of combinatorial optimization solvers. In this work, we introduce EALG (Evolutionary Adversarial Generation of Language Model-Guided Generators), a novel framework that automates the co-evolution of optimization problem instances and their corresponding heuristic solvers using large language models (LLMs). EALG leverages a mutation-based adversarial approach that dynamically evolves instance generation procedures to create increasingly difficult problems, while simultaneously synthesizing adaptive heuristic algorithms through interactions with LLMs guided by algorithmic structure. Unlike existing approaches that focus solely on static benchmark creation or manual solver design, EALG provides a seamless pipeline from instance generation to solver synthesis. Experimental results demonstrate that EALG generates significantly harder instances than current benchmarks, and its synthesized solvers generalize effectively across a broad spectrum of combinatorial tasks. This work explores a new paradigm for combinatorial optimization that integrates instance generation with solver design, resulting in state-of-the-art performance.


[358] 2506.02595

Numerical methods for fully nonlinear degenerate diffusions

We propose finite difference methods for degenerate fully nonlinear elliptic equations and prove the convergence of the schemes. Our focus is on the pure equation and a related free boundary problem of transmission type. The cornerstone of our argument is a regularisation procedure. It decouples the degeneracy term from the elliptic operator driving the diffusion process. In the free boundary setting, the absence of degenerate ellipticity entails new, genuine difficulties. To bypass them, we resort to the intrinsic properties of the regularised problem. We present numerical experiments supporting our theoretical results. Our methods are flexible, and our approach can be extended to a broader class of non-variational problems.


[359] 2506.02596

EssayBench: Evaluating Large Language Models in Multi-Genre Chinese Essay Writing

Chinese essay writing and its evaluation are critical in educational contexts, yet the capabilities of Large Language Models (LLMs) in this domain remain largely underexplored. Existing benchmarks often rely on coarse-grained text quality metrics, largely overlooking the structural and rhetorical complexities of Chinese essays, particularly across diverse genres. To address this gap, we propose \benchName, a multi-genre benchmark specifically designed for Chinese essay writing across four major genres: Argumentative, Narrative, Descriptive, and Expository. We curate and refine a total of 728 real-world prompts to ensure authenticity and meticulously categorize them into the \textit{Open-Ended} and \textit{Constrained} sets to capture diverse writing scenarios. To reliably evaluate generated essays, we develop a fine-grained, genre-specific scoring framework that hierarchically aggregates scores. We further validate our evaluation protocol through a comprehensive human agreement study. Finally, we benchmark 15 large-sized LLMs, analyzing their strengths and limitations across genres and instruction types. With \benchName, we aim to advance LLM-based Chinese essay evaluation and inspire future research on improving essay generation in educational settings.


[360] 2506.02599

Assessing the Completeness of Traffic Scenario Categories for Automated Highway Driving Functions via Cluster-based Analysis

The ability to operate safely in increasingly complex traffic scenarios is a fundamental requirement for Automated Driving Systems (ADS). Ensuring the safe release of ADS functions necessitates a precise understanding of the occurring traffic scenarios. To support this objective, this work introduces a pipeline for traffic scenario clustering and the analysis of scenario category completeness. The Clustering Vector Quantized - Variational Autoencoder (CVQ-VAE) is employed for the clustering of highway traffic scenarios and utilized to create various catalogs with differing numbers of traffic scenario categories. Subsequently, the impact of the number of categories on the completeness considerations of the traffic scenario categories is analyzed. The results show an outperforming clustering performance compared to previous work. The trade-off between cluster quality and the amount of required data to maintain completeness is discussed based on the publicly available highD dataset.


[361] 2506.02601

Hyperspectral Image Generation with Unmixing Guided Diffusion Model

Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.


[362] 2506.02603

Computational adversarial risk analysis for general security games

This paper provides an efficient computational scheme to handle general security games from an adversarial risk analysis perspective. Two cases in relation to single-stage and multi-stage simultaneous defend-attack games motivate our approach to general setups which uses bi-agent influence diagrams as underlying problem structure and augmented probability simulation as core computational methodology. Theoretical convergence and numerical, modeling, and implementation issues are thoroughly discussed. A disinformation war case study illustrates the relevance of the proposed approach.


[363] 2506.02604

Application of convolutional neural networks in image super-resolution

Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.


[364] 2506.02605

One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation

Diffusion-based models have been widely used in various visual generation tasks, showing promising results in image super-resolution (SR), while typically being limited by dozens or even hundreds of sampling steps. Although existing methods aim to accelerate the inference speed of multi-step diffusion-based SR methods through knowledge distillation, their generated images exhibit insufficient semantic alignment with real images, resulting in suboptimal perceptual quality reconstruction, specifically reflected in the CLIPIQA score. These methods still have many challenges in perceptual quality and semantic fidelity. Based on the challenges, we propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for SR, aiming to construct an effective and efficient one-step SR model. Specifically, VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-Frequency Perception (HFP) loss. Firstly, the ESS leverages the powerful visual perceptual understanding capabilities of the CLIP model to extract explicit semantic supervision, thereby enhancing semantic consistency. Then, Considering that high-frequency information contributes to the visual perception quality of images, in addition to the vanilla distillation loss, the HFP loss guides the student model to restore the missing high-frequency details in degraded images that are critical for enhancing perceptual quality. Lastly, we expand VPD-SR in adversarial training manner to further enhance the authenticity of the generated content. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.


[365] 2506.02606

Multi Layered Autonomy and AI Ecologies in Robotic Art Installations

Symbiosis of Agents is a large-scale installation by Baoyang Chen that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama.Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.


[366] 2506.02609

A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting

In recent years, traffic flow prediction has become a highlight in the field of intelligent transportation systems. However, due to the temporal variations and dynamic spatial correlations of traffic data, traffic prediction remains highly challenging.Traditional spatiotemporal networks, which rely on end-to-end training, often struggle to handle the diverse data dependencies of multiple traffic flow patterns. Additionally, traffic flow variations are highly sensitive to temporal information changes. Regrettably, other researchers have not sufficiently recognized the importance of temporal information.To address these challenges, we propose a novel approach called A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting (TEDDN). This network disentangles the originally complex and intertwined traffic data into stable patterns and trends. By flexibly learning temporal and node information through a dynamic graph enhanced by a temporal feature extraction module, TEDDN demonstrates significant efficacy in disentangling and extracting complex traffic information. Experimental evaluations and ablation studies on four real-world datasets validate the superiority of our method.


[367] 2506.02610

Speaker Diarization with Overlapping Community Detection Using Graph Attention Networks and Label Propagation Algorithm

In speaker diarization, traditional clustering-based methods remain widely used in real-world applications. However, these methods struggle with the complex distribution of speaker embeddings and overlapping speech segments. To address these limitations, we propose an Overlapping Community Detection method based on Graph Attention networks and the Label Propagation Algorithm (OCDGALP). The proposed framework comprises two key components: (1) a graph attention network that refines speaker embeddings and node connections by aggregating information from neighboring nodes, and (2) a label propagation algorithm that assigns multiple community labels to each node, enabling simultaneous clustering and overlapping community detection. Experimental results show that the proposed method significantly reduces the Diarization Error Rate (DER), achieving a state-of-the-art 15.94% DER on the DIHARD-III dataset without oracle Voice Activity Detection (VAD), and an impressive 11.07% with oracle VAD.


[368] 2506.02612

Simple, Good, Fast: Self-Supervised World Models Free of Baggage

What are the essential components of world models? How far do we get with world models that are not employing RNNs, transformers, discrete representations, and image reconstructions? This paper introduces SGF, a Simple, Good, and Fast world model that uses self-supervised representation learning, captures short-time dependencies through frame and action stacking, and enhances robustness against model errors through data augmentation. We extensively discuss SGF's connections to established world models, evaluate the building blocks in ablation studies, and demonstrate good performance through quantitative comparisons on the Atari 100k benchmark.


[369] 2506.02614

High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset

With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.


[370] 2506.02615

Hierarchical Question-Answering for Driving Scene Understanding Using Vision-Language Models

In this paper, we present a hierarchical question-answering (QA) approach for scene understanding in autonomous vehicles, balancing cost-efficiency with detailed visual interpretation. The method fine-tunes a compact vision-language model (VLM) on a custom dataset specific to the geographical area in which the vehicle operates to capture key driving-related visual elements. At the inference stage, the hierarchical QA strategy decomposes the scene understanding task into high-level and detailed sub-questions. Instead of generating lengthy descriptions, the VLM navigates a structured question tree, where answering high-level questions (e.g., "Is it possible for the ego vehicle to turn left at the intersection?") triggers more detailed sub-questions (e.g., "Is there a vehicle approaching the intersection from the opposite direction?"). To optimize inference time, questions are dynamically skipped based on previous answers, minimizing computational overhead. The extracted answers are then synthesized using handcrafted templates to ensure coherent, contextually accurate scene descriptions. We evaluate the proposed approach on the custom dataset using GPT reference-free scoring, demonstrating its competitiveness with state-of-the-art methods like GPT-4o in capturing key scene details while achieving significantly lower inference time. Moreover, qualitative results from real-time deployment highlight the proposed approach's capacity to capture key driving elements with minimal latency.


[371] 2506.02616

Compositional Learning for Modular Multi-Agent Self-Organizing Networks

Self-organizing networks face challenges from complex parameter interdependencies and conflicting objectives. This study introduces two compositional learning approaches-Compositional Deep Reinforcement Learning (CDRL) and Compositional Predictive Decision-Making (CPDM)-and evaluates their performance under training time and safety constraints in multi-agent systems. We propose a modular, two-tier framework with cell-level and cell-pair-level agents to manage heterogeneous agent granularities while reducing model complexity. Numerical simulations reveal a significant reduction in handover failures, along with improved throughput and latency, outperforming conventional multi-agent deep reinforcement learning approaches. The approach also demonstrates superior scalability, faster convergence, higher sample efficiency, and safer training in large-scale self-organizing networks.


[372] 2506.02617

Toward Understanding Bugs in Vector Database Management Systems

Vector database management systems (VDBMSs) play a crucial role in facilitating semantic similarity searches over high-dimensional embeddings from diverse data sources. While VDBMSs are widely used in applications such as recommendation, retrieval-augmented generation (RAG), and multimodal search, their reliability remains underexplored. Traditional database reliability models cannot be directly applied to VDBMSs because of fundamental differences in data representation, query mechanisms, and system architecture. To address this gap, we present the first large-scale empirical study of software defects in VDBMSs. We manually analyzed 1,671 bug-fix pull requests from 15 widely used open-source VDBMSs and developed a comprehensive taxonomy of bugs based on symptoms, root causes, and developer fix strategies. Our study identifies five categories of bug symptoms, with more than half manifesting as functional failures. We further reveal 31 recurring fault patterns and highlight failure modes unique to vector search systems. In addition, we summarize 12 common fix strategies, whose distribution underscores the critical importance of correct program logic. These findings provide actionable insights into VDBMS reliability challenges and offer guidance for building more robust future systems.


[373] 2506.02618

Rodrigues Network for Learning Robot Actions

Understanding and predicting articulated actions is important in robot learning. However, common architectures such as MLPs and Transformers lack inductive biases that reflect the underlying kinematic structure of articulated systems. To this end, we propose the Neural Rodrigues Operator, a learnable generalization of the classical forward kinematics operation, designed to inject kinematics-aware inductive bias into neural computation. Building on this operator, we design the Rodrigues Network (RodriNet), a novel neural architecture specialized for processing actions. We evaluate the expressivity of our network on two synthetic tasks on kinematic and motion prediction, showing significant improvements compared to standard backbones. We further demonstrate its effectiveness in two realistic applications: (i) imitation learning on robotic benchmarks with the Diffusion Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that integrating structured kinematic priors into the network architecture improves action learning in various domains.


[374] 2506.02619

HGOT: Self-supervised Heterogeneous Graph Neural Network with Optimal Transport

Heterogeneous Graph Neural Networks (HGNNs), have demonstrated excellent capabilities in processing heterogeneous information networks. Self-supervised learning on heterogeneous graphs, especially contrastive self-supervised strategy, shows great potential when there are no labels. However, this approach requires the use of carefully designed graph augmentation strategies and the selection of positive and negative samples. Determining the exact level of similarity between sample pairs is non-trivial.To solve this problem, we propose a novel self-supervised Heterogeneous graph neural network with Optimal Transport (HGOT) method which is designed to facilitate self-supervised learning for heterogeneous graphs without graph augmentation strategies. Different from traditional contrastive self-supervised learning, HGOT employs the optimal transport mechanism to relieve the laborious sampling process of positive and negative samples. Specifically, we design an aggregating view (central view) to integrate the semantic information contained in the views represented by different meta-paths (branch views). Then, we introduce an optimal transport plan to identify the transport relationship between the semantics contained in the branch view and the central view. This allows the optimal transport plan between graphs to align with the representations, forcing the encoder to learn node representations that are more similar to the graph space and of higher quality. Extensive experiments on four real-world datasets demonstrate that our proposed HGOT model can achieve state-of-the-art performance on various downstream tasks. In particular, in the node classification task, HGOT achieves an average of more than 6% improvement in accuracy compared with state-of-the-art methods.


[375] 2506.02620

FlexPainter: Flexible and Multi-View Consistent Texture Generation

Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce \textbf{FlexPainter}, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.


[376] 2506.02621

Cross-attention and Self-attention for Audio-visual Speaker Diarization in MISP-Meeting Challenge

This paper presents the system developed for Task 1 of the Multi-modal Information-based Speech Processing (MISP) 2025 Challenge. We introduce CASA-Net, an embedding fusion method designed for end-to-end audio-visual speaker diarization (AVSD) systems. CASA-Net incorporates a cross-attention (CA) module to effectively capture cross-modal interactions in audio-visual signals and employs a self-attention (SA) module to learn contextual relationships among audio-visual frames. To further enhance performance, we adopt a training strategy that integrates pseudo-label refinement and retraining, improving the accuracy of timestamp predictions. Additionally, median filtering and overlap averaging are applied as post-processing techniques to eliminate outliers and smooth prediction labels. Our system achieved a diarization error rate (DER) of 8.18% on the evaluation set, representing a relative improvement of 47.3% over the baseline DER of 15.52%.


[377] 2506.02622

HORUS: A Mixed Reality Interface for Managing Teams of Mobile Robots

Mixed Reality (MR) interfaces have been extensively explored for controlling mobile robots, but there is limited research on their application to managing teams of robots. This paper presents HORUS: Holistic Operational Reality for Unified Systems, a Mixed Reality interface offering a comprehensive set of tools for managing multiple mobile robots simultaneously. HORUS enables operators to monitor individual robot statuses, visualize sensor data projected in real time, and assign tasks to single robots, subsets of the team, or the entire group, all from a Mini-Map (Ground Station). The interface also provides different teleoperation modes: a mini-map mode that allows teleoperation while observing the robot model and its transform on the mini-map, and a semi-immersive mode that offers a flat, screen-like view in either single or stereo view (3D). We conducted a user study in which participants used HORUS to manage a team of mobile robots tasked with finding clues in an environment, simulating search and rescue tasks. This study compared HORUS's full-team management capabilities with individual robot teleoperation. The experiments validated the versatility and effectiveness of HORUS in multi-robot coordination, demonstrating its potential to advance human-robot collaboration in dynamic, team-based environments.


[378] 2506.02623

SiamNAS: Siamese Surrogate Model for Dominance Relation Prediction in Multi-objective Neural Architecture Search

Modern neural architecture search (NAS) is inherently multi-objective, balancing trade-offs such as accuracy, parameter count, and computational cost. This complexity makes NAS computationally expensive and nearly impossible to solve without efficient approximations. To address this, we propose a novel surrogate modelling approach that leverages an ensemble of Siamese network blocks to predict dominance relationships between candidate architectures. Lightweight and easy to train, the surrogate achieves 92% accuracy and replaces the crowding distance calculation in the survivor selection strategy with a heuristic rule based on model size. Integrated into a framework termed SiamNAS, this design eliminates costly evaluations during the search process. Experiments on NAS-Bench-201 demonstrate the framework's ability to identify Pareto-optimal solutions with significantly reduced computational costs. The proposed SiamNAS identified a final non-dominated set containing the best architecture in NAS-Bench-201 for CIFAR-10 and the second-best for ImageNet, in terms of test error rate, within 0.01 GPU days. This proof-of-concept study highlights the potential of the proposed Siamese network surrogate model to generalise to multi-tasking optimisation, enabling simultaneous optimisation across tasks. Additionally, it offers opportunities to extend the approach for generating Sets of Pareto Sets (SOS), providing diverse Pareto-optimal solutions for heterogeneous task settings.


[379] 2506.02625

Zero-Energy RIS-Assisted Communications With Noise Modulation and Interference-Based Energy Harvesting

To advance towards carbon-neutrality and improve the limited {performance} of conventional passive wireless communications, in this paper, we investigate the integration of noise modulation with zero-energy reconfigurable intelligent surfaces (RISs). In particular, the RIS reconfigurable elements (REs) are divided into two groups: one for beamforming the desired signals in reflection mode and another for harvesting energy from interference signals in an absorption mode, providing the power required for RIS operation. Since the harvested energy is a random variable, a random number of REs can beamform the signals, while the remainder blindly reflects them. We present a closed-form solution and a search algorithm for REs allocation, jointly optimizing both the energy harvesting (EH) and communication performance. Considering the repetition coding technique and discrete phase shifts, we derive analytical expressions for the energy constrained success rate, bit error rate, optimal threshold, mutual information, {and energy efficiency}. Numerical and simulation results confirm the effectiveness of the algorithm and expressions, demonstrating the superiority of the proposed integration over conventional noise-modulation systems. It is shown that by properly allocating the REs, both the EH and communication performance can be improved in low to moderate interference scenarios, while the latter is restricted in the high-interference regime.


[380] 2506.02626

Synthetic Iris Image Databases and Identity Leakage: Risks and Mitigation Strategies

This paper presents a comprehensive overview of iris image synthesis methods, which can alleviate the issues associated with gathering large, diverse datasets of biometric data from living individuals, which are considered pivotal for biometric methods development. These methods for synthesizing iris data range from traditional, hand crafted image processing-based techniques, through various iterations of GAN-based image generators, variational autoencoders (VAEs), as well as diffusion models. The potential and fidelity in iris image generation of each method is discussed and examples of inferred predictions are provided. Furthermore, the risks of individual biometric features leakage from the training sets are considered, together with possible strategies for preventing them, which have to be implemented should these generative methods be considered a valid replacement of real-world biometric datasets.


[381] 2506.02627

Overcoming Data Scarcity in Multi-Dialectal Arabic ASR via Whisper Fine-Tuning

Although commercial Arabic automatic speech recognition (ASR) systems support Modern Standard Arabic (MSA), they struggle with dialectal speech. We investigate the effect of fine-tuning OpenAI's Whisper on five major Arabic dialects (Gulf, Levantine, Iraqi, Egyptian, Maghrebi) using Mozilla Common Voice for MSA and the MASC dataset for dialectal speech. We evaluate MSA training size effects, benefits of pre-training on MSA data, and dialect-specific versus dialect-pooled models. We find that small amounts of MSA fine-tuning data yield substantial improvements for smaller models, matching larger non-fine-tuned models. While MSA pre-training shows minimal benefit, suggesting limited shared features between MSA and dialects, our dialect-pooled models perform comparably to dialect-specific ones. This indicates that pooling dialectal data, when properly balanced, can help address data scarcity in low-resource ASR without significant performance loss.


[382] 2506.02630

HAM: A Hyperbolic Step to Regulate Implicit Bias

Understanding the implicit bias of optimization algorithms has become central to explaining the generalization behavior of deep learning models. For instance, the hyperbolic implicit bias induced by the overparameterization $m \odot w$--though effective in promoting sparsity--can result in a small effective learning rate, which slows down convergence. To overcome this obstacle, we propose HAM (Hyperbolic Aware Minimization), which alternates between an optimizer step and a new hyperbolic mirror step. We derive the Riemannian gradient flow for its combination with gradient descent, leading to improved convergence and a similar beneficial hyperbolic geometry as $m \odot w$ for feature learning. We provide an interpretation of the the algorithm by relating it to natural gradient descent, and an exact characterization of its implicit bias for underdetermined linear regression. HAM's implicit bias consistently boosts performance--even of dense training, as we demonstrate in experiments across diverse tasks, including vision, graph and node classification, and large language model fine-tuning. HAM is especially effective in combination with different sparsification methods, improving upon the state of the art. The hyperbolic step requires minimal computational and memory overhead, it succeeds even with small batch sizes, and its implementation integrates smoothly with existing optimizers.


[383] 2506.02633

ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration

This paper proposes ControlMambaIR, a novel image restoration method designed to address perceptual challenges in image deraining, deblurring, and denoising tasks. By integrating the Mamba network architecture with the diffusion model, the condition network achieves refined conditional control, thereby enhancing the control and optimization of the image generation process. To evaluate the robustness and generalization capability of our method across various image degradation conditions, extensive experiments were conducted on several benchmark datasets, including Rain100H, Rain100L, GoPro, and SSID. The results demonstrate that our proposed approach consistently surpasses existing methods in perceptual quality metrics, such as LPIPS and FID, while maintaining comparable performance in image distortion metrics, including PSNR and SSIM, highlighting its effectiveness and adaptability. Notably, ablation experiments reveal that directly noise prediction in the diffusion process achieves better performance, effectively balancing noise suppression and detail preservation. Furthermore, the findings indicate that the Mamba architecture is particularly well-suited as a conditional control network for diffusion models, outperforming both CNN- and Attention-based approaches in this context. Overall, these results highlight the flexibility and effectiveness of ControlMambaIR in addressing a range of image restoration perceptual challenges.


[384] 2506.02634

KVCache Cache in the Wild: Characterizing and Optimizing KVCache Cache at a Large Cloud Provider

Serving large language models (LLMs) is important for cloud providers, and caching intermediate results (KV\$) after processing each request substantially improves serving throughput and latency. However, there is limited understanding of how LLM serving benefits from KV\$ caching, where system design decisions like cache eviction policies are highly workload-dependent. In this paper, we present the first systematic characterization of the KV\$ workload patterns from one of the leading LLM service providers. We draw observations that were not covered by previous studies focusing on synthetic workloads, including: KV\$ reuses are skewed across requests, where reuses between single-turn requests are equally important as multi-turn requests; the reuse time and probability are diverse considering all requests, but for a specific request category, the pattern tends to be predictable; and the overall cache size required for an ideal cache hit ratio is moderate. Based on the characterization, we further propose a workload-aware cache eviction policy that improves the serving performance under real-world traces, especially with limited cache capacity.


[385] 2506.02642

Joint Optimization based on Two-phase GNN in RIS- and DF-assisted MISO Systems with Fine-grained Rate Demands

Reconfigurable intelligent Surfaces (RIS) and half-duplex decoded and forwarded (DF) relays can collaborate to optimize wireless signal propagation in communication systems. Users typically have different rate demands and are clustered into groups in practice based on their requirements, where the former results in the trade-off between maximizing the rate and satisfying fine-grained rate demands, while the latter causes a trade-off between inter-group competition and intra-group cooperation when maximizing the sum rate. However, traditional approaches often overlook the joint optimization encompassing both of these trade-offs, disregarding potential optimal solutions and leaving some users even consistently at low date rates. To address this issue, we propose a novel joint optimization model for a RIS- and DF-assisted multiple-input single-output (MISO) system where a base station (BS) is with multiple antennas transmits data by multiple RISs and DF relays to serve grouped users with fine-grained rate demands. We design a new loss function to not only optimize the sum rate of all groups but also adjust the satisfaction ratio of fine-grained rate demands by modifying the penalty parameter. We further propose a two-phase graph neural network (GNN) based approach that inputs channel state information (CSI) to simultaneously and autonomously learn efficient phase shifts, beamforming, and relay selection. The experimental results demonstrate that the proposed method significantly improves system performance.


[386] 2506.02646

Textual-Based vs. Thinging Machines Conceptual Modeling

Software engineers typically interpret the domain description in natural language and translate it into a conceptual model. Three approaches are used in this domain modeling: textual languages, diagrammatic languages, and a mixed based of text and diagrams. According to some researchers, relying on a diagrammatic notation levies certain burdens for designing large models because visual languages are intended to depict everything diagrammatically during a development process but fail to do so for a lack of developer efficiency. It is claimed that textual formats enable easier manipulation in editors and tools and facilitate the integration of ontologies in software systems. In this paper, we explore the problem of the relationship between textual format and diagramming in conceptual modeling. The main focus is modeling based on the so-called thinging machine (TM). Several examples are developed in detail to contrast side-by-side targeted domains represented in textual description and TM modeling. A TM model is defined as a thimac (thing/machine) with a time feature that forms dynamic events over static thimacs utilizing five generic actions: create, process, release, transfer, and receive. This provides a conceptual foundation that can be simplified further by eliminating the actions of release, transfer, and receive. A multilevel reduction in the TM diagram s complexity can also be achieved by assuming diagrammatic notations represent the actions of creation and processing. We envision that special tools will help improve developer efficiency. The study s results of contrasting textual and mix-based descriptions vs. TM modeling justify our claim that TM modeling is a more appropriate methodology than other diagrammatic schemes (e.g., UML classes) examined in this paper.


[387] 2506.02648

Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation

Recent advances in large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking. However, whether LLMs possess genuine fluid intelligence (i.e., the ability to reason abstractly and generalize rules in novel situations) remains an open question. Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability. To address these limitations, we propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework. DRE-Bench consists of 36 abstract reasoning tasks organized across four cognitive levels, with each task featuring multiple dynamic variants that test the same underlying latent rule. This design enables fine-grained, interpretable, and reliable assessments of fluid intelligence. We evaluate a range of state-of-the-art LLMs, including both general LLMs (GPT-4o, Claude 3.7) and reasoning LLMs (o1, DeepSeek-R1, QwQ, Skywork-OR1). Experimental results reveal that although most LLMs achieve competent and robust performance in low-level cognition, they struggle with high-level cognition and exhibit limited generalization as task complexity grows. Our findings highlight the gap between current LLMs and true human-like fluid intelligence and offer a new path for systematically tracking reasoning progress in LLMs.


[388] 2506.02649

From Prompts to Protection: Large Language Model-Enabled In-Context Learning for Smart Public Safety UAV

A public safety Unmanned Aerial Vehicle (UAV) enhances situational awareness in emergency response. Its agility and ability to optimize mobility and establish Line-of-Sight (LoS) communication make it increasingly vital for managing emergencies such as disaster response, search and rescue, and wildfire monitoring. While Deep Reinforcement Learning (DRL) has been applied to optimize UAV navigation and control, its high training complexity, low sample efficiency, and simulation-to-reality gap limit its practicality in public safety. Recent advances in Large Language Models (LLMs) offer a compelling alternative. With strong reasoning and generalization capabilities, LLMs can adapt to new tasks through In-Context Learning (ICL), which enables task adaptation via natural language prompts and example-based guidance, without retraining. Deploying LLMs at the network edge, rather than in the cloud, further reduces latency and preserves data privacy, thereby making them suitable for real-time, mission-critical public safety UAVs. This paper proposes the integration of LLM-enabled ICL with public safety UAV to address the key functions, such as path planning and velocity control, in the context of emergency response. We present a case study on data collection scheduling where the LLM-enabled ICL framework can significantly reduce packet loss compared to conventional approaches, while also mitigating potential jailbreaking vulnerabilities. Finally, we discuss LLM optimizers and specify future research directions. The ICL framework enables adaptive, context-aware decision-making for public safety UAV, thus offering a lightweight and efficient solution for enhancing UAV autonomy and responsiveness in emergencies.


[389] 2506.02654

A Pretrained Probabilistic Transformer for City-Scale Traffic Volume Prediction

City-scale traffic volume prediction plays a pivotal role in intelligent transportation systems, yet remains a challenge due to the inherent incompleteness and bias in observational data. Although deep learning-based methods have shown considerable promise, most existing approaches produce deterministic point estimates, thereby neglecting the uncertainty arising from unobserved traffic flows. Furthermore, current models are typically trained in a city-specific manner, which hinders their generalizability and limits scalability across diverse urban contexts. To overcome these limitations, we introduce TrafficPPT, a Pretrained Probabilistic Transformer designed to model traffic volume as a distributional aggregation of trajectories. Our framework fuses heterogeneous data sources-including real-time observations, historical trajectory data, and road network topology-enabling robust and uncertainty-aware traffic inference. TrafficPPT is initially pretrained on large-scale simulated data spanning multiple urban scenarios, and later fine-tuned on target cities to ensure effective domain adaptation. Experiments on real-world datasets show that TrafficPPT consistently surpasses state-of-the-art baselines, particularly under conditions of extreme data sparsity. Code will be open.


[390] 2506.02655

The power of mediators: Price of anarchy and stability in Bayesian games with submodular social welfare

This paper investigates the role of mediators in Bayesian games by examining their impact on social welfare through the price of anarchy (PoA) and price of stability (PoS). Mediators can communicate with players to guide them toward equilibria of varying quality, and different communication protocols lead to a variety of equilibrium concepts collectively known as Bayes (coarse) correlated equilibria. To analyze these equilibrium concepts, we consider a general class of Bayesian games with submodular social welfare, which naturally extends valid utility games and their variant, basic utility games. These frameworks, introduced by Vetta (2002), have been developed to analyze the social welfare guarantees of equilibria in games such as competitive facility location, influence maximization, and other resource allocation problems. We provide upper and lower bounds on the PoA and PoS for a broad class of Bayes (coarse) correlated equilibria. Central to our analysis is the strategy representability gap, which measures the multiplicative gap between the optimal social welfare achievable with and without knowledge of other players' types. For monotone submodular social welfare functions, we show that this gap is $1-1/\mathrm{e}$ for independent priors and $\Theta(1/\sqrt{n})$ for correlated priors, where $n$ is the number of players. These bounds directly lead to upper and lower bounds on the PoA and PoS for various equilibrium concepts, while we also derive improved bounds for specific concepts by developing smoothness arguments. Notably, we identify a fundamental gap in the PoA and PoS across different classes of Bayes correlated equilibria, highlighting essential distinctions among these concepts.


[391] 2506.02657

Maximizing the Promptness of Metaverse Systems using Edge Computing by Deep Reinforcement Learning

Metaverse and Digital Twin (DT) have attracted much academic and industrial attraction to approach the future digital world. This paper introduces the advantages of deep reinforcement learning (DRL) in assisting Metaverse system-based Digital Twin. In this system, we assume that it includes several Metaverse User devices collecting data from the real world to transfer it into the virtual world, a Metaverse Virtual Access Point (MVAP) undertaking the processing of data, and an edge computing server that receives the offloading data from the MVAP. The proposed model works under a dynamic environment with various parameters changing over time. The experiment results show that our proposed DRL algorithm is suitable for offloading tasks to ensure the promptness of DT in a dynamic environment.


[392] 2506.02658

Computational Thinking Reasoning in Large Language Models

While large language models (LLMs) have demonstrated remarkable reasoning capabilities, they often struggle with complex tasks that require specific thinking paradigms, such as divide-and-conquer and procedural deduction, \etc Previous researches integrate external, reliable tools to alleviate logical inconsistencies and hallucinations in LLMs' problem-solving processes. However, we argue that the root challenge is more profound: LLMs lack the complex thinking paradigms (\ie, computational thinking) during reasoning. In this paper, we propose Computational Thinking Model (CTM), a novel framework that incorporates computational thinking paradigms into LLMs. This framework enables LLMs to reformulate complex problems through decomposition, abstraction, reduction, and simulation, among other techniques. Specifically, live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing. CTM directly instills computational thinking objectives into LLMs through tailored reinforcement learning rewards, which encourages problem simplification, modular planning, and iterative verification. We conduct extensive evaluations on multiple code generation and mathematical benchmarks. The results demonstrate that CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability. We hope this study offers valuable insights for AI reasoning, where LLMs can transform problems into robust, verifiable, and scalable computational workflows, much like computer scientists do.


[393] 2506.02659

Are Economists Always More Introverted? Analyzing Consistency in Persona-Assigned LLMs

Personalized Large Language Models (LLMs) are increasingly used in diverse applications, where they are assigned a specific persona - such as a happy high school teacher - to guide their responses. While prior research has examined how well LLMs adhere to predefined personas in writing style, a comprehensive analysis of consistency across different personas and task types is lacking. In this paper, we introduce a new standardized framework to analyze consistency in persona-assigned LLMs. We define consistency as the extent to which a model maintains coherent responses when assigned the same persona across different tasks and runs. Our framework evaluates personas across four different categories (happiness, occupation, personality, and political stance) spanning multiple task dimensions (survey writing, essay generation, social media post generation, single turn, and multi-turn conversations). Our findings reveal that consistency is influenced by multiple factors, including the assigned persona, stereotypes, and model design choices. Consistency also varies across tasks, increasing with more structured tasks and additional context. All code is available on GitHub.


[394] 2506.02660

Tarallo: Evading Behavioral Malware Detectors in the Problem Space

Machine learning algorithms can effectively classify malware through dynamic behavior but are susceptible to adversarial attacks. Existing attacks, however, often fail to find an effective solution in both the feature and problem spaces. This issue arises from not addressing the intrinsic nondeterministic nature of malware, namely executing the same sample multiple times may yield significantly different behaviors. Hence, the perturbations computed for a specific behavior may be ineffective for others observed in subsequent executions. In this paper, we show how an attacker can augment their chance of success by leveraging a new and more efficient feature space algorithm for sequential data, which we have named PS-FGSM, and by adopting two problem space strategies specially tailored to address nondeterminism in the problem space. We implement our novel algorithm and attack strategies in Tarallo, an end-to-end adversarial framework that significantly outperforms previous works in both white and black-box scenarios. Our preliminary analysis in a sandboxed environment and against two RNN-based malware detectors, shows that Tarallo achieves a success rate up to 99% on both feature and problem space attacks while significantly minimizing the number of modifications required for misclassification.


[395] 2506.02661

MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation

Generating long-term, coherent, and realistic music-conditioned dance sequences remains a challenging task in human motion synthesis. Existing approaches exhibit critical limitations: motion graph methods rely on fixed template libraries, restricting creative generation; diffusion models, while capable of producing novel motions, often lack temporal coherence and musical alignment. To address these challenges, we propose $\textbf{MotionRAG-Diff}$, a hybrid framework that integrates Retrieval-Augmented Generation (RAG) with diffusion-based refinement to enable high-quality, musically coherent dance generation for arbitrary long-term music inputs. Our method introduces three core innovations: (1) A cross-modal contrastive learning architecture that aligns heterogeneous music and dance representations in a shared latent space, establishing unsupervised semantic correspondence without paired data; (2) An optimized motion graph system for efficient retrieval and seamless concatenation of motion segments, ensuring realism and temporal coherence across long sequences; (3) A multi-condition diffusion model that jointly conditions on raw music signals and contrastive features to enhance motion quality and global synchronization. Extensive experiments demonstrate that MotionRAG-Diff achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy. This work establishes a new paradigm for music-driven dance generation by synergizing retrieval-based template fidelity with diffusion-based creative enhancement.


[396] 2506.02663

Fourth-order Adaptive Mesh Refinement both in space and in time for incompressible Navier-Stokes equations with Dirichlet boundary conditions

We present a fourth-order projection method with adaptive mesh refinement (AMR) for numerically solving the incompressible Navier-Stokes equations (INSE) with subcycling in time. Our method features (i) a reformulation of INSE so that the velocity divergence decays exponentially on the coarsest level, (ii) a derivation of coarse-fine interface conditions that preserves the decay of velocity divergence on any refinement level of the AMR hierarchy, (iii) an approximation of the coarse-fine interface conditions via spatiotemporal interpolations to facilitate subcycling in time, (iv) enforcing to machine precision solvability conditions of elliptic equations over each connected component of the subdomain covered by any refinement level, (v) a composite projection for synchronizing multiple levels, and (vi) geometric multigrid for solving linear systems with optimal complexity. Different from current block-structured AMR algorithms, our method never adopts refluxing at the coarse-fine interface, nor is fine-to-coarse averaging applied to projected velocities. Results of numerical tests demonstrate the high accuracy and efficiency of the proposed method.


[397] 2506.02665

Beyond Invisibility: Learning Robust Visible Watermarks for Stronger Copyright Protection

As AI advances, copyrighted content faces growing risk of unauthorized use, whether through model training or direct misuse. Building upon invisible adversarial perturbation, recent works developed copyright protections against specific AI techniques such as unauthorized personalization through DreamBooth that are misused. However, these methods offer only short-term security, as they require retraining whenever the underlying model architectures change. To establish long-term protection aiming at better robustness, we go beyond invisible perturbation, and propose a universal approach that embeds \textit{visible} watermarks that are \textit{hard-to-remove} into images. Grounded in a new probabilistic and inverse problem-based formulation, our framework maximizes the discrepancy between the \textit{optimal} reconstruction and the original content. We develop an effective and efficient approximation algorithm to circumvent a intractable bi-level optimization. Experimental results demonstrate superiority of our approach across diverse scenarios.


[398] 2506.02666

Spatially Correlated multi-RIS Communication: The Effect of Inter-Operator Interference

A multi-operator wireless communication system is studied where each operator is equipped with a reconfigurable intelligent surface (RIS) to enhance its communication quality. RISs controlled by different operators affect the system performance of one another due to the inherently rapid phase shift adjustments that occur on an independent basis. The system performance of such a communication scenario is analytically studied for the practical case where spatial correlation occurs at RIS of arbitrary size. The proposed framework is quite general since it is analyzed under Nakagami-$m$ channel fading conditions. Finally, the derived analytical results are verified via numerical and simulation trials as well as some new and useful engineering outcomes are revealed.


[399] 2506.02667

Poster: libdebug, Build Your Own Debugger for a Better (Hello) World

Automated debugging, long pursued in a variety of fields from software engineering to cybersecurity, requires a framework that offers the building blocks for a programmable debugging workflow. However, existing debuggers are primarily tailored for human interaction, and those designed for programmatic debugging focus on kernel space, resulting in limited functionality in userland. To fill this gap, we introduce libdebug, a Python library for programmatic debugging of userland binary executables. libdebug offers a user-friendly API that enables developers to build custom debugging tools for various applications, including software engineering, reverse engineering, and software security. It is released as an open-source project, along with comprehensive documentation to encourage use and collaboration across the community. We demonstrate the versatility and performance of libdebug through case studies and benchmarks, all of which are publicly available. We find that the median latency of syscall and breakpoint handling in libdebug is 3 to 4 times lower compared to that of GDB.


[400] 2506.02668

FAuNO: Semi-Asynchronous Federated Reinforcement Learning Framework for Task Offloading in Edge Systems

Edge computing addresses the growing data demands of connected-device networks by placing computational resources closer to end users through decentralized infrastructures. This decentralization challenges traditional, fully centralized orchestration, which suffers from latency and resource bottlenecks. We present \textbf{FAuNO} -- \emph{Federated Asynchronous Network Orchestrator} -- a buffered, asynchronous \emph{federated reinforcement-learning} (FRL) framework for decentralized task offloading in edge systems. FAuNO adopts an actor-critic architecture in which local actors learn node-specific dynamics and peer interactions, while a federated critic aggregates experience across agents to encourage efficient cooperation and improve overall system performance. Experiments in the \emph{PeersimGym} environment show that FAuNO consistently matches or exceeds heuristic and federated multi-agent RL baselines in reducing task loss and latency, underscoring its adaptability to dynamic edge-computing scenarios.


[401] 2506.02671

Small Aid, Big Leap: Efficient Test-Time Adaptation for Vision-Language Models with AdaptNet

Test-time adaptation (TTA) has emerged as a critical technique for enhancing the generalization capability of vision-language models (VLMs) during inference. However, existing approaches often incur substantial computational costs and exhibit poor scalability, primarily due to sample-wise adaptation granularity and reliance on costly auxiliary designs such as data augmentation. To address these limitations, we introduce SAIL (Small Aid, Big Leap), a novel adapter-based TTA framework that leverages a lightweight, learnable AdaptNet to enable efficient and scalable model adaptation. As SAIL's core, a frozen pre-trained VLM collaborates with AdaptNet through a confidence-based interpolation weight, generating robust predictions during inference. These predictions serve as self-supervised targets to align AdaptNet's outputs through efficient batch-wise processing, dramatically reducing computational costs without modifying the VLM or requiring memory caches. To mitigate catastrophic forgetting during continual adaptation, we propose a gradient-aware reset strategy driven by a gradient drift indicator (GDI), which dynamically detects domain transitions and strategically resets AdaptNet for stable adaptation. Extensive experiments across diverse benchmarks on two scenarios demonstrate that SAIL achieves state-of-the-art performance while maintaining low computational costs. These results highlight SAIL's effectiveness, efficiency and scalability for real-world deployment. The code will be released upon acceptance.


[402] 2506.02672

EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving

We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.


[403] 2506.02674

Decentralized COVID-19 Health System Leveraging Blockchain

With the development of the Internet, the amount of data generated by the medical industry each year has grown exponentially. The Electronic Health Record (EHR) manages the electronic data generated during the user's treatment process. Typically, an EHR data manager belongs to a medical institution. This traditional centralized data management model has many unreasonable or inconvenient aspects, such as difficulties in data sharing, and it is hard to verify the authenticity and integrity of the data. The decentralized, non-forgeable, data unalterable and traceable features of blockchain are in line with the application requirements of EHR. This paper takes the most common COVID-19 as the application scenario and designs a COVID-19 health system based on blockchain, which has extensive research and application value. Considering that the public and transparent nature of blockchain violates the privacy requirements of some health data, in the system design stage, from the perspective of practical application, the data is divided into public data and private data according to its characteristics. For private data, data encryption methods are adopted to ensure data privacy. The searchable encryption technology is combined with blockchain technology to achieve the retrieval function of encrypted data. Then, the proxy re-encryption technology is used to realize authorized access to data. In the system implementation part, based on the Hyperledger Fabric architecture, some functions of the system design are realized, including data upload, retrieval of the latest data and historical data. According to the environment provided by the development architecture, Go language chaincode (smart contract) is written to implement the relevant system functions.


[404] 2506.02676

Sight Guide: A Wearable Assistive Perception and Navigation System for the Vision Assistance Race in the Cybathlon 2024

Visually impaired individuals face significant challenges navigating and interacting with unknown situations, particularly in tasks requiring spatial awareness and semantic scene understanding. To accelerate the development and evaluate the state of technologies that enable visually impaired people to solve these tasks, the Vision Assistance Race (VIS) at the Cybathlon 2024 competition was organized. In this work, we present Sight Guide, a wearable assistive system designed for the VIS. The system processes data from multiple RGB and depth cameras on an embedded computer that guides the user through complex, real-world-inspired tasks using vibration signals and audio commands. Our software architecture integrates classical robotics algorithms with learning-based approaches to enable capabilities such as obstacle avoidance, object detection, optical character recognition, and touchscreen interaction. In a testing environment, Sight Guide achieved a 95.7% task success rate, and further demonstrated its effectiveness during the Cybathlon competition. This work provides detailed insights into the system design, evaluation results, and lessons learned, and outlines directions towards a broader real-world applicability.


[405] 2506.02677

Self-Disentanglement and Re-Composition for Cross-Domain Few-Shot Segmentation

Cross-Domain Few-Shot Segmentation (CD-FSS) aims to transfer knowledge from a source-domain dataset to unseen target-domain datasets with limited annotations. Current methods typically compare the distance between training and testing samples for mask prediction. However, we find an entanglement problem exists in this widely adopted method, which tends to bind sourcedomain patterns together and make each of them hard to transfer. In this paper, we aim to address this problem for the CD-FSS task. We first find a natural decomposition of the ViT structure, based on which we delve into the entanglement problem for an interpretation. We find the decomposed ViT components are crossly compared between images in distance calculation, where the rational comparisons are entangled with those meaningless ones by their equal importance, leading to the entanglement problem. Based on this interpretation, we further propose to address the entanglement problem by learning to weigh for all comparisons of ViT components, which learn disentangled features and re-compose them for the CD-FSS task, benefiting both the generalization and finetuning. Experiments show that our model outperforms the state-of-the-art CD-FSS method by 1.92% and 1.88% in average accuracy under 1-shot and 5-shot settings, respectively.


[406] 2506.02678

TL;DR: Too Long, Do Re-weighting for Effcient LLM Reasoning Compression

Large Language Models (LLMs) have recently achieved remarkable progress by leveraging Reinforcement Learning and extended Chain-of-Thought (CoT) techniques. However, the challenge of performing efficient language reasoning--especially during inference with extremely long outputs--has drawn increasing attention from the research community. In this work, we propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations or interpolation between multiple models. We continuously balance the weights between the model's System-1 and System-2 data to eliminate redundant reasoning processes while preserving the model's reasoning capability. We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels. Our method significantly reduces the number of output tokens by nearly 40% while maintaining the accuracy of the reasoning. Our code and data will be available soon.


[407] 2506.02679

Poster: FedBlockParadox -- A Framework for Simulating and Securing Decentralized Federated Learning

A significant body of research in decentralized federated learning focuses on combining the privacy-preserving properties of federated learning with the resilience and transparency offered by blockchain-based systems. While these approaches are promising, they often lack flexible tools to evaluate system robustness under adversarial conditions. To fill this gap, we present FedBlockParadox, a modular framework for modeling and evaluating decentralized federated learning systems built on blockchain technologies, with a focus on resilience against a broad spectrum of adversarial attack scenarios. It supports multiple consensus protocols, validation methods, aggregation strategies, and configurable attack models. By enabling controlled experiments, FedBlockParadox provides a valuable resource for researchers developing secure, decentralized learning solutions. The framework is open-source and built to be extensible by the community.


[408] 2506.02680

Solving Inverse Problems with FLAIR

Flow-based latent generative models such as Stable Diffusion 3 are able to generate images with remarkable quality, even enabling photorealistic text-to-image generation. Their impressive performance suggests that these models should also constitute powerful priors for inverse imaging problems, but that approach has not yet led to comparable fidelity. There are several key obstacles: (i) the encoding into a lower-dimensional latent space makes the underlying (forward) mapping non-linear; (ii) the data likelihood term is usually intractable; and (iii) learned generative models struggle to recover rare, atypical data modes during inference. We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems. To that end, we introduce a variational objective for flow matching that is agnostic to the type of degradation, and combine it with deterministic trajectory adjustments to recover atypical modes. To enforce exact consistency with the observed data, we decouple the optimization of the data fidelity and regularization terms. Moreover, we introduce a time-dependent calibration scheme in which the strength of the regularization is modulated according to off-line accuracy estimates. Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.


[409] 2506.02683

Decompose, Plan in Parallel, and Merge: A Novel Paradigm for Large Language Models based Planning with Multiple Constraints

Despite significant advances in Large Language Models (LLMs), planning tasks still present challenges for LLM-based agents. Existing planning methods face two key limitations: heavy constraints and cascading errors. To address these limitations, we propose a novel parallel planning paradigm, which Decomposes, Plans for subtasks in Parallel, and Merges subplans into a final plan (DPPM). Specifically, DPPM decomposes the complex task based on constraints into subtasks, generates the subplan for each subtask in parallel, and merges them into a global plan. In addition, our approach incorporates a verification and refinement module, enabling error correction and conflict resolution. Experimental results demonstrate that DPPM significantly outperforms existing methods in travel planning tasks.


[410] 2506.02686

Random Hyperbolic Graphs with Arbitrary Mesoscale Structures

Real-world networks exhibit universal structural properties such as sparsity, small-worldness, heterogeneous degree distributions, high clustering, and community structures. Geometric network models, particularly Random Hyperbolic Graphs (RHGs), effectively capture many of these features by embedding nodes in a latent similarity space. However, networks are often characterized by specific connectivity patterns between groups of nodes -- i.e. communities -- that are not geometric, in the sense that the dissimilarity between groups do not obey the triangle inequality. Structuring connections only based on the interplay of similarity and popularity thus poses fundamental limitations on the mesoscale structure of the networks that RHGs can generate. To address this limitation, we introduce the Random Hyperbolic Block Model (RHBM), which extends RHGs by incorporating block structures within a maximum-entropy framework. We demonstrate the advantages of the RHBM through synthetic network analyses, highlighting its ability to preserve community structures where purely geometric models fail. Our findings emphasize the importance of latent geometry in network modeling while addressing its limitations in controlling mesoscale mixing patterns.


[411] 2506.02688

Stochastic Modeling of Road Hazards on Intersections and their Effect on Safety of Autonomous Vehicles

Autonomous vehicles (AV) look set to become common on our roads within the next few years. However, to achieve the final breakthrough, not only functional progress is required, but also satisfactory safety assurance must be provided. Among those, a question demanding special attention is the need to assess and quantify the overall safety of an AV. Such an assessment must consider on the one hand the imperfections of the AV functionality and on the other hand its interaction with the environment. In a previous paper we presented a model-based approach to AV safety assessment in which we use a probabilistic model to describe road hazards together with the impact on AV safety of imperfect behavior of AV functions, such as safety monitors and perception systems. With this model, we are able to quantify the likelihood of the occurrence of a fatal accident, for a single operating condition. In this paper, we extend the approach and show how the model can deal explicitly with a set of different operating conditions defined in a given ODD.


[412] 2506.02689

MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching

Instruction fine-tuning is crucial in NLP tasks, enhancing pretrained models' instruction-following capabilities and task-specific performance. However, obtaining high-quality fine-tuning data for large models is challenging due to data collection difficulties and high production costs. To address this, we propose MASTER, a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels. We simulate three pedagogically grounded teaching scenarios, leveraging multi-agent conversations to generate high-quality teacher-student interaction data. Utilizing MASTER, we construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5. Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization. Notably, MASTER significantly improves models' reasoning abilities in complex tasks, providing valuable insights for future research.


[413] 2506.02690

Towards Geometry Problem Solving in the Large Model Era: A Survey

Geometry problem solving (GPS) represents a critical frontier in artificial intelligence, with profound applications in education, computer-aided design, and computational graphics. Despite its significance, automating GPS remains challenging due to the dual demands of spatial understanding and rigorous logical reasoning. Recent advances in large models have enabled notable breakthroughs, particularly for SAT-level problems, yet the field remains fragmented across methodologies, benchmarks, and evaluation frameworks. This survey systematically synthesizes GPS advancements through three core dimensions: (1) benchmark construction, (2) textual and diagrammatic parsing, and (3) reasoning paradigms. We further propose a unified analytical paradigm, assess current limitations, and identify emerging opportunities to guide future research toward human-level geometric reasoning, including automated benchmark generation and interpretable neuro-symbolic integration.


[414] 2506.02692

Large-scale Self-supervised Video Foundation Model for Intelligent Surgery

Computer-Assisted Intervention (CAI) has the potential to revolutionize modern surgery, with surgical scene understanding serving as a critical component in supporting decision-making, improving procedural efficacy, and ensuring intraoperative safety. While existing AI-driven approaches alleviate annotation burdens via self-supervised spatial representation learning, their lack of explicit temporal modeling during pre-training fundamentally restricts the capture of dynamic surgical contexts, resulting in incomplete spatiotemporal understanding. In this work, we introduce the first video-level surgical pre-training framework that enables joint spatiotemporal representation learning from large-scale surgical video data. To achieve this, we constructed a large-scale surgical video dataset comprising 3,650 videos and approximately 3.55 million frames, spanning more than 20 surgical procedures and over 10 anatomical structures. Building upon this dataset, we propose SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), a reconstruction-based pre-training method that captures intricate spatial structures and temporal dynamics through joint spatiotemporal modeling. Additionally, SurgVISTA incorporates image-level knowledge distillation guided by a surgery-specific expert to enhance the learning of fine-grained anatomical and semantic features. To validate its effectiveness, we established a comprehensive benchmark comprising 13 video-level datasets spanning six surgical procedures across four tasks. Extensive experiments demonstrate that SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models, demonstrating strong potential to advance intelligent surgical systems in clinically meaningful scenarios.


[415] 2506.02694

XicorAttention: Time Series Transformer Using Attention with Nonlinear Correlation

Various Transformer-based models have been proposed for time series forecasting. These models leverage the self-attention mechanism to capture long-term temporal or variate dependencies in sequences. Existing methods can be divided into two approaches: (1) reducing computational cost of attention by making the calculations sparse, and (2) reshaping the input data to aggregate temporal features. However, existing attention mechanisms may not adequately capture inherent nonlinear dependencies present in time series data, leaving room for improvement. In this study, we propose a novel attention mechanism based on Chatterjee's rank correlation coefficient, which measures nonlinear dependencies between variables. Specifically, we replace the matrix multiplication in standard attention mechanisms with this rank coefficient to measure the query-key relationship. Since computing Chatterjee's correlation coefficient involves sorting and ranking operations, we introduce a differentiable approximation employing SoftSort and SoftRank. Our proposed mechanism, ``XicorAttention,'' integrates it into several state-of-the-art Transformer models. Experimental results on real-world datasets demonstrate that incorporating nonlinear correlation into the attention improves forecasting accuracy by up to approximately 9.1\% compared to existing models.


[416] 2506.02695

FaceSleuth: Learning-Driven Single-Orientation Attention Verifies Vertical Dominance in Micro-Expression Recognition

Micro-expression recognition (MER) demands models that can amplify millisecond-level, low-amplitude facial motions while suppressing identity-specific appearance. We introduce FaceSleuth, a dual-stream architecture that (1) enhances motion along the empirically dominant vertical axix through a Continuously Vertical Attention (CVA) block, (2) localises the resulting signals with a Facial Position Focalizer built on hierarchical cross-window attention, and (3) steers feature learning toward physiologically meaningful regions via lightweight Action-Unit embeddings. To examine whether the hand-chosen vertical axis is indeed optimal, we further propose a Single-Orientation Attention (SOA) module that learns its own pooling direction end-to-end. SOA is differentiable, adds only 0.16 % parameters, and collapses to CVA when the learned angle converges to {\Pi}/2. In practice, SOA reliably drifts to 88{\deg}, confirming the effectiveness of the vertical prior while delivering consistent gains. On three standard MER benchmarks, FaceSleuth with CVA already surpasses previous state-of-the-art methods; plugging in SOA lifts accuracy and F1 score performance to 95.1 % / 0.918 on CASME II, 87.1 % / 0.840 on SAMM, and 92.9 % / 0.917 on MMEW without sacrificing model compactness. These results establish a new state of the art and, for the first time, provide empirical evidence that the vertical attention bias is the most discriminative orientation for MER.


[417] 2506.02696

Shaking to Reveal: Perturbation-Based Detection of LLM Hallucinations

Hallucination remains a key obstacle to the reliable deployment of large language models (LLMs) in real-world question answering tasks. A widely adopted strategy to detect hallucination, known as self-assessment, relies on the model's own output confidence to estimate the factual accuracy of its answers. However, this strategy assumes that the model's output distribution closely reflects the true data distribution, which may not always hold in practice. As bias accumulates through the model's layers, the final output can diverge from the underlying reasoning process, making output-level confidence an unreliable signal for hallucination detection. In this work, we propose Sample-Specific Prompting (SSP), a new framework that improves self-assessment by analyzing perturbation sensitivity at intermediate representations. These representations, being less influenced by model bias, offer a more faithful view of the model's latent reasoning process. Specifically, SSP dynamically generates noise prompts for each input and employs a lightweight encoder to amplify the changes in representations caused by the perturbation. A contrastive distance metric is then used to quantify these differences and separate truthful from hallucinated responses. By leveraging the dynamic behavior of intermediate representations under perturbation, SSP enables more reliable self-assessment. Extensive experiments demonstrate that SSP significantly outperforms prior methods across a range of hallucination detection benchmarks.


[418] 2506.02697

LayoutRAG: Retrieval-Augmented Model for Content-agnostic Conditional Layout Generation

Controllable layout generation aims to create plausible visual arrangements of element bounding boxes within a graphic design according to certain optional constraints, such as the type or position of a specific component. While recent diffusion or flow-matching models have achieved considerable advances in multifarious conditional generation tasks, there remains considerable room for generating optimal arrangements under given conditions. In this work, we propose to carry out layout generation through retrieving by conditions and reference-guided generation. Specifically, we retrieve appropriate layout templates according to given conditions as references. The references are then utilized to guide the denoising or flow-based transport process. By retrieving layouts compatible with the given conditions, we can uncover the potential information not explicitly provided in the given condition. Such an approach offers more effective guidance to the model during the generation process, in contrast to previous models that feed the condition to the model and let the model infer the unprovided layout attributes directly. Meanwhile, we design a condition-modulated attention that selectively absorbs retrieval knowledge, adapting to the difference between retrieved templates and given conditions. Extensive experiment results show that our method successfully produces high-quality layouts that meet the given conditions and outperforms existing state-of-the-art models. Code will be released upon acceptance.


[419] 2506.02698

Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences

Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.


[420] 2506.02700

Cognitive Load-Driven VR Memory Palaces: Personalizing Focus and Recall Enhancement

Cognitive load, which varies across individuals, can significantly affect focus and memory performance.This study explores the integration of Virtual Reality (VR) with memory palace techniques, aiming to optimize VR environments tailored to individual cognitive load levels to improve focus and memory. We utilized EEG devices, specifically the Oculus Quest 2, to monitor Beta wave activity in 10 participants.By modeling their cognitive load profiles through polynomial regression, we dynamically adjusted spatial variables within a VR environment using Grasshopper, creating personalized experiences. Results indicate that 8 participants showed a notable increase in Beta wave activity, demonstrating improved focus and cognitive performance in the customized VR settings.These findings underscore the potential of VR-based memory environments, driven by cognitive load considerations, and provide valuable insights for advancing VR memory research


[421] 2506.02701

On Entity Identification in Language Models

We analyze the extent to which internal representations of language models (LMs) identify and distinguish mentions of named entities, focusing on the many-to-many correspondence between entities and their mentions. We first formulate two problems of entity mentions -- ambiguity and variability -- and propose a framework analogous to clustering quality metrics. Specifically, we quantify through cluster analysis of LM internal representations the extent to which mentions of the same entity cluster together and mentions of different entities remain separated. Our experiments examine five Transformer-based autoregressive models, showing that they effectively identify and distinguish entities with metrics analogous to precision and recall ranging from 0.66 to 0.9. Further analysis reveals that entity-related information is compactly represented in a low-dimensional linear subspace at early LM layers. Additionally, we clarify how the characteristics of entity representations influence word prediction performance. These findings are interpreted through the lens of isomorphism between LM representations and entity-centric knowledge structures in the real world, providing insights into how LMs internally organize and use entity information.


[422] 2506.02702

ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings

We introduce ToothForge, a spectral approach for automatically generating novel 3D teeth, effectively addressing the sparsity of dental shape datasets. By operating in the spectral domain, our method enables compact machine learning modeling, allowing the generation of high-resolution tooth meshes in milliseconds. However, generating shape spectra comes with the instability of the decomposed harmonics. To address this, we propose modeling the latent manifold on synchronized frequential embeddings. Spectra of all data samples are aligned to a common basis prior to the training procedure, effectively eliminating biases introduced by the decomposition instability. Furthermore, synchronized modeling removes the limiting factor imposed by previous methods, which require all shapes to share a common fixed connectivity. Using a private dataset of real dental crowns, we observe a greater reconstruction quality of the synthetized shapes, exceeding those of models trained on unaligned embeddings. We also explore additional applications of spectral analysis in digital dentistry, such as shape compression and interpolation. ToothForge facilitates a range of approaches at the intersection of spectral analysis and machine learning, with fewer restrictions on mesh structure. This makes it applicable for shape analysis not only in dentistry, but also in broader medical applications, where guaranteeing consistent connectivity across shapes from various clinics is unrealistic. The code is available at https://github.com/tiborkubik/toothForge.


[423] 2506.02703

Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies

This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.


[424] 2506.02704

Cartesian Forest Matching

In this paper, we introduce the notion of Cartesian Forest, which generalizes Cartesian Trees, in order to deal with partially ordered sequences. We show that algorithms that solve both exact and approximate Cartesian Tree Matching can be adapted to solve Cartesian Forest Matching in average linear time. We adapt the notion of Cartesian Tree Signature to Cartesian Forests and show how filters can be used to experimentally improve the algorithm for the exact matching. We also show a one to one correspondence between Cartesian Forests and Schr\"oder Trees.


[425] 2506.02706

Collective Intelligence Outperforms Individual Talent: A Case Study in League of Legends

Gaming environments are popular testbeds for studying human interactions and behaviors in complex artificial intelligence systems. Particularly, in multiplayer online battle arena (MOBA) games, individuals collaborate in virtual environments of high realism that involves real-time strategic decision-making and trade-offs on resource management, information collection and sharing, team synergy and collective dynamics. This paper explores whether collective intelligence, emerging from cooperative behaviours exhibited by a group of individuals, who are not necessarily skillful but effectively engage in collaborative problem-solving tasks, exceeds individual intelligence observed within skillful individuals. This is shown via a case study in League of Legends, using machine learning algorithms and statistical methods applied to large-scale data collected for the same purpose. By modelling systematically game-specific metrics but also new game-agnostic topological and graph spectra measures of cooperative interactions, we demonstrate compelling insights about the superior performance of collective intelligence.


[426] 2506.02707

Unit Commitment with Cost-Oriented Temporal Resolution

Time-adaptive unit commitment (UC) has recently been investigated to reduce the scheduling costs by flexibly varying the temporal resolution, which is usually determined by clustering the net load patterns. However, there exists a misalignment between cost and net load patterns due to the discrete start-up costs and out-of-merit-order dispatch triggered by ramping and other constraints. The optimal time-adaptive resolution cannot be completely captured by clustering-based method. This paper proposes a cost-oriented method to address this misalignment by a novel bilevel optimization approach that is efficiently solved through a heuristic greedy algorithm. The impact of varying temporal resolution on the final scheduling costs are tested, based on which the temporal resolution is heuristically updated, achieving significant cost reduction without increasing the number of temporal periods. Subsequently, an improved discretized Adam optimization method together with offline warm start and online refinement strategy is proposed to efficiently search for the better temporal resolution configuration. Results show that the proposed cost-oriented UC temporal resolution determination method achieves enhanced cost efficiency.


[427] 2506.02708

Iterative Self-Improvement of Vision Language Models for Image Scoring and Self-Explanation

Image scoring is a crucial task in numerous real-world applications. To trust a model's judgment, understanding its rationale is essential. This paper proposes a novel training method for Vision Language Models (VLMs) to generate not only image scores but also corresponding justifications in natural language. Leveraging only an image scoring dataset and an instruction-tuned VLM, our method enables self-training, utilizing the VLM's generated text without relying on external data or models. In addition, we introduce a simple method for creating a dataset designed to improve alignment between predicted scores and their textual justifications. By iteratively training the model with Direct Preference Optimization on two distinct datasets and merging them, we can improve both scoring accuracy and the coherence of generated explanations.


[428] 2506.02709

Usability Evaluation of Cloud for HPC Applications

The rise of AI and the economic dominance of cloud computing have created a new nexus of innovation for high performance computing (HPC), which has a long history of driving scientific discovery. In addition to performance needs, scientific workflows increasingly demand capabilities of cloud environments: portability, reproducibility, dynamism, and automation. As converged cloud environments emerge, there is growing need to study their fit for HPC use cases. Here we present a cross-platform usability study that assesses 11 different HPC proxy applications and benchmarks across three clouds (Microsoft Azure, Amazon Web Services, and Google Cloud), six environments, and two compute configurations (CPU and GPU) against on-premises HPC clusters at a major center. We perform scaling tests of applications in all environments up to 28,672 CPUs and 256 GPUs. We present methodology and results to guide future study and provide a foundation to define best practices for running HPC workloads in cloud.


[429] 2506.02711

Privacy Leaks by Adversaries: Adversarial Iterations for Membership Inference Attack

Membership inference attack (MIA) has become one of the most widely used and effective methods for evaluating the privacy risks of machine learning models. These attacks aim to determine whether a specific sample is part of the model's training set by analyzing the model's output. While traditional membership inference attacks focus on leveraging the model's posterior output, such as confidence on the target sample, we propose IMIA, a novel attack strategy that utilizes the process of generating adversarial samples to infer membership. We propose to infer the member properties of the target sample using the number of iterations required to generate its adversarial sample. We conduct experiments across multiple models and datasets, and our results demonstrate that the number of iterations for generating an adversarial sample is a reliable feature for membership inference, achieving strong performance both in black-box and white-box attack scenarios. This work provides a new perspective for evaluating model privacy and highlights the potential of adversarial example-based features for privacy leakage assessment.


[430] 2506.02712

Theoretical Performance Guarantees for Partial Domain Adaptation via Partial Optimal Transport

In many scenarios of practical interest, labeled data from a target distribution are scarce while labeled data from a related source distribution are abundant. One particular setting of interest arises when the target label space is a subset of the source label space, leading to the framework of partial domain adaptation (PDA). Typical approaches to PDA involve minimizing a domain alignment term and a weighted empirical loss on the source data, with the aim of transferring knowledge between domains. However, a theoretical basis for this procedure is lacking, and in particular, most existing weighting schemes are heuristic. In this work, we derive generalization bounds for the PDA problem based on partial optimal transport. These bounds corroborate the use of the partial Wasserstein distance as a domain alignment term, and lead to theoretically motivated explicit expressions for the empirical source loss weights. Inspired by these bounds, we devise a practical algorithm for PDA, termed WARMPOT. Through extensive numerical experiments, we show that WARMPOT is competitive with recent approaches, and that our proposed weights improve on existing schemes.


[431] 2506.02713

Open-Set Living Need Prediction with Large Language Models

Living needs are the needs people generate in their daily lives for survival and well-being. On life service platforms like Meituan, user purchases are driven by living needs, making accurate living need predictions crucial for personalized service recommendations. Traditional approaches treat this prediction as a closed-set classification problem, severely limiting their ability to capture the diversity and complexity of living needs. In this work, we redefine living need prediction as an open-set classification problem and propose PIGEON, a novel system leveraging large language models (LLMs) for unrestricted need prediction. PIGEON first employs a behavior-aware record retriever to help LLMs understand user preferences, then incorporates Maslow's hierarchy of needs to align predictions with human living needs. For evaluation and application, we design a recall module based on a fine-tuned text embedding model that links flexible need descriptions to appropriate life services. Extensive experiments on real-world datasets demonstrate that PIGEON significantly outperforms closed-set approaches on need-based life service recall by an average of 19.37%. Human evaluation validates the reasonableness and specificity of our predictions. Additionally, we employ instruction tuning to enable smaller LLMs to achieve competitive performance, supporting practical deployment.


[432] 2506.02714

Heatables: Effects of Infrared-LED-Induced Ear Heating on Thermal Perception, Comfort, and Cognitive Performance

Maintaining thermal comfort in shared indoor environments remains challenging, as centralized HVAC systems are slow to adapt and standardized to group norms. Cold exposure not only reduces subjective comfort but can impair cognitive performance, particularly under moderate to severe cold stress. Personal Comfort Systems (PCS) have shown promise by providing localized heating, yet many designs target distal body parts with low thermosensitivity and often lack portability. In this work, we investigate whether targeted thermal stimulation using in-ear worn devices can manipulate thermal perception and enhance thermal comfort. We present Heatables, a novel in-ear wearable that emits Near-Infrared (NIR) and Infrared (IR) radiation via integrated LEDs to deliver localized optical heating. This approach leverages NIR-IR's ability to penetrate deeper tissues, offering advantages over traditional resistive heating limited to surface warming. In a placebo-controlled study with 24 participants, each exposed for 150 minutes in a cool office environment (approximately 17.5 degrees Celsius) to simulate sustained cold stress during typical sedentary office activities, Heatables significantly increased the perceived ambient temperature by around 1.5 degrees Celsius and delayed cold discomfort. Importantly, thermal benefits extended beyond the ear region, improving both whole-body comfort and thermal acceptability. These findings position in-ear NIR-IR-LED-based stimulation as a promising modality for unobtrusive thermal comfort enhancement in everyday contexts.


[433] 2506.02715

UltrasonicSpheres: Localized, Multi-Channel Sound Spheres Using Off-the-Shelf Speakers and Earables

We present a demo ofUltrasonicSpheres, a novel system for location-specific audio delivery using wearable earphones that decode ultrasonic signals into audible sound. Unlike conventional beamforming setups, UltrasonicSpheres relies on single ultrasonic speakers to broadcast localized audio with multiple channels, each encoded on a distinct ultrasonic carrier frequency. Users wearing our acoustically transparent earphones can demodulate their selected stream, such as exhibit narrations in a chosen language, while remaining fully aware of ambient environmental sounds. The experience preserves spatial audio perception, giving the impression that the sound originates directly from the physical location of the source. This enables personalized, localized audio without requiring pairing, tracking, or additional infrastructure. Importantly, visitors not equipped with the earphones are unaffected, as the ultrasonic signals are inaudible to the human ear. Our demo invites participants to explore multiple co-located audio zones and experience how UltrasonicSpheres supports unobtrusive delivery of personalized sound in public spaces.


[434] 2506.02718

Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems

Large Language Models (LLMs) have achieved remarkable success across diverse natural language processing tasks, yet their deployment in real-world applications is hindered by fixed knowledge cutoffs and difficulties in generating controllable, accurate outputs in a single inference. Multi-agent systems (MAS) built from specialized LLM agents offer a promising solution, enabling dynamic collaboration and iterative reasoning. However, optimizing these systems remains a challenge, as conventional methods such as prompt engineering and supervised fine-tuning entail high engineering overhead and limited adaptability. Reinforcement learning (RL), particularly multi-agent reinforcement learning (MARL), provides a scalable framework by refining agent policies based on system-level feedback. Nevertheless, existing MARL algorithms, such as Multi-Agent Proximal Policy Optimization (MAPPO), rely on Critic networks, which can cause training instability and increase computational burden. To address these limitations and target the prototypical Multi-Agent Search System (MASS), we propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), a novel Critic-free algorithm that guides policy updates by estimating relative reward advantages across heterogeneous groups of rollouts. MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead. Additionally, we introduce three group rollout sampling strategies that trade off between efficiency and effectiveness. Experiments on a multi-agent LLM-based search system demonstrate that MHGPO consistently outperforms MAPPO in both task performance and computational efficiency, without requiring warm-up, underscoring its potential for stable and scalable optimization of complex LLM-based MAS.


[435] 2506.02720

Benchmarking and Advancing Large Language Models for Local Life Services

Large language models (LLMs) have exhibited remarkable capabilities and achieved significant breakthroughs across various domains, leading to their widespread adoption in recent years. Building on this progress, we investigate their potential in the realm of local life services. In this study, we establish a comprehensive benchmark and systematically evaluate the performance of diverse LLMs across a wide range of tasks relevant to local life services. To further enhance their effectiveness, we explore two key approaches: model fine-tuning and agent-based workflows. Our findings reveal that even a relatively compact 7B model can attain performance levels comparable to a much larger 72B model, effectively balancing inference cost and model capability. This optimization greatly enhances the feasibility and efficiency of deploying LLMs in real-world online services, making them more practical and accessible for local life applications.


[436] 2506.02724

WeightLoRA: Keep Only Necessary Adapters

The widespread utilization of language models in modern applications is inconceivable without Parameter-Efficient Fine-Tuning techniques, such as low-rank adaptation ($\texttt{LoRA}$), which adds trainable adapters to selected layers. Although $\texttt{LoRA}$ may obtain accurate solutions, it requires significant memory to train large models and intuition on which layers to add adapters. In this paper, we propose a novel method, $\texttt{WeightLoRA}$, which overcomes this issue by adaptive selection of the most critical $\texttt{LoRA}$ heads throughout the optimization process. As a result, we can significantly reduce the number of trainable parameters while maintaining the capability to obtain consistent or even superior metric values. We conduct experiments for a series of competitive benchmarks and DeBERTa, BART, and Llama models, comparing our method with different adaptive approaches. The experimental results demonstrate the efficacy of $\texttt{WeightLoRA}$ and the superior performance of $\texttt{WeightLoRA+}$ in almost all cases.


[437] 2506.02725

Recursive Privacy-Preserving Estimation Over Markov Fading Channels

In industrial applications, the presence of moving machinery, vehicles, and personnel, contributes to the dynamic nature of the wireless channel. This time variability induces channel fading, which can be effectively modeled using a Markov fading channel (MFC). In this paper, we investigate the problem of secure state estimation for systems that communicate over a MFC in the presence of an eavesdropper. The objective is to enable a remote authorized user to accurately estimate the states of a dynamic system, while considering the potential interception of the sensor's packet through a wiretap channel. To prevent information leakage, a novel co-design strategy is established, which combines a privacy-preserving mechanism with a state estimator. To implement our encoding scheme, a nonlinear mapping of the innovation is introduced based on the weighted reconstructed innovation previously received by the legitimate user. Corresponding to this encoding scheme, we design a recursive privacy-preserving filtering algorithm to achieve accurate estimation. The boundedness of estimation error dynamics at the legitimate user's side is discussed and the divergence of the eavesdropper's estimation error is analyzed, which demonstrates the effectiveness of our co-design strategy in ensuring secrecy. Furthermore, a simulation example of a three-tank system is provided to demonstrate the effectiveness and feasibility of our privacy-preserving estimation method.


[438] 2506.02726

RACE-Align: Retrieval-Augmented and Chain-of-Thought Enhanced Preference Alignment for Large Language Models

Large Language Models (LLMs) struggle with accuracy, domain-specific reasoning, and interpretability in vertical domains. Traditional preference alignment methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) often overlook the underlying knowledge sources and reasoning logic. This paper introduces RACE-Align (Retrieval-Augmented and Chain-of-Thought Enhanced Alignment), a novel framework designed to address these limitations. RACE-Align systematically constructs a binary preference dataset incorporating external knowledge support and explicit Chain-of-Thought (CoT) reasoning, then aligns LLMs using the DPO algorithm. The core innovation lies in its preference data construction strategy: it integrates AI-driven retrieval for factual grounding, enhancing knowledgeability and accuracy, and emphasizes the optimization of domain-specific CoT, treating the reasoning process itself as a key preference dimension. A multi-stage, AI-driven refinement pipeline cost-effectively generates these preference pairs. Experimental validation in Traditional Chinese Medicine (TCM) using Qwen3-1.7B as the base model demonstrates that RACE-Align significantly outperforms the original base model and a model fine-tuned only with Supervised Fine-Tuning (SFT). Improvements were observed across multiple dimensions, including answer accuracy, information richness, application of TCM thinking patterns, logicality and depth of reasoning, and interpretability. These findings suggest RACE-Align offers an effective pathway to enhance LLMs' knowledge application, reasoning reliability, and process transparency in complex vertical domains.


[439] 2506.02727

Transforming Automatically BPMN Models to Smart Contracts with Nested Collaborative Transactions (TABS+)

Development of blockchain smart contracts is more difficult than mainstream software development because the underlying blockchain infrastructure poses additional complexity. To ease the developer's task of writing smart contract, as other research efforts, we also use Business Process Model and Notation BPMN modeling to describe application requirements for trade of goods and services and then transform automatically the BPMN model into the methods of a smart contract. In our previous research we described our approach and a tool to Transform Automatically BPMN models into Smart contracts TABS. In this paper, we describe how the TABS approach is augmented with the support for a BPMN collaborative transaction by several actors. Our approach analyzes the BPMN model to determine which patterns in the BPMN model are suitable for use as collaborative transactions. The found BPMN patterns that are suitable as transactions are shown to the developer who decides which ones should be deployed as collaborative transactions. We describe how our approach automatically transform the BPMN model into smart contract the provides a transaction mechanism to enforce the transactional properties of the nested transactions. Our approach greatly reduces the developers task as synchronization of collaborative activities is provided by our approach, so that the developer needs to code only independent tasks with well-defined inputs and outputs. We also overview the TABS+ tool we built as a proof of concept to show that our approach is feasible. Finally, we provide estimates on the cost of supporting the nested BPMN collaborative transactions.


[440] 2506.02733

LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering

Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.


[441] 2506.02735

Extremely Large-Scale Movable Antenna-Enabled Multiuser Communications: Modeling and Optimization

Movable antenna (MA) has been recognized as a promising technology to improve communication performance in future wireless networks such as 6G. To unleash its potential, this paper proposes a novel architecture, namely extremely large-scale MA (XL-MA), which allows flexible antenna/subarray positioning over an extremely large spatial region for effectively enhancing near-field effects and spatial multiplexing performance. In particular, this paper studies an uplink XL-MA-enabled multiuser system, where single-antenna users distributed in a coverage area are served by a base station (BS) equipped with multiple movable subarrays. We begin by presenting a spatially non-stationary channel model to capture the near-field effects, including positiondependent large-scale channel gains and line-of-sight visibility. To evaluate system performance, we further derive a closedform approximation of the expected weighted sum rate under maximum ratio combining (MRC), revealing that optimizing XLMA placement enhances user channel power gain to increase desired signal power and reduces channel correlation to decreases multiuser interference. Building upon this, we formulate an antenna placement optimization problem to maximize the expected weighted sum rate, leveraging statistical channel conditions and user distribution. To efficiently solve this challenging non-linear binary optimization problem, we propose a polynomial-time successive replacement algorithm. Simulation results demonstrate that the proposed XL-MA placement strategy achieves nearoptimal performance, significantly outperforming benchmark schemes based on conventional fixed-position antennas.


[442] 2506.02736

GeneA-SLAM2: Dynamic SLAM with AutoEncoder-Preprocessed Genetic Keypoints Resampling and Depth Variance-Guided Dynamic Region Removal

Existing semantic SLAM in dynamic environments mainly identify dynamic regions through object detection or semantic segmentation methods. However, in certain highly dynamic scenarios, the detection boxes or segmentation masks cannot fully cover dynamic regions. Therefore, this paper proposes a robust and efficient GeneA-SLAM2 system that leverages depth variance constraints to handle dynamic scenes. Our method extracts dynamic pixels via depth variance and creates precise depth masks to guide the removal of dynamic objects. Simultaneously, an autoencoder is used to reconstruct keypoints, improving the genetic resampling keypoint algorithm to obtain more uniformly distributed keypoints and enhance the accuracy of pose estimation. Our system was evaluated on multiple highly dynamic sequences. The results demonstrate that GeneA-SLAM2 maintains high accuracy in dynamic scenes compared to current methods. Code is available at: https://github.com/qingshufan/GeneA-SLAM2.


[443] 2506.02738

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.


[444] 2506.02739

Why do AI agents communicate in human language?

Large Language Models (LLMs) have become foundational to modern AI agent systems, enabling autonomous agents to reason and plan. In most existing systems, inter-agent communication relies primarily on natural language. While this design supports interpretability and human oversight, we argue that it introduces fundamental limitations in agent-to-agent coordination. The semantic space of natural language is structurally misaligned with the high-dimensional vector spaces in which LLMs operate, resulting in information loss and behavioral drift. Beyond surface-level inefficiencies, we highlight a deeper architectural limitation: current LLMs were not trained with the objective of supporting agentic behavior. As such, they lack mechanisms for modeling role continuity, task boundaries, and multi-agent dependencies. The standard next-token prediction paradigm fails to support the structural alignment required for robust, scalable agent coordination. Based on this, we argue that two core questions deserve careful examination: first, given that AI agents fundamentally operate in high-dimensional vector spaces, should they rely on a language system originally designed for human cognition as their communication medium? Second, should we consider developing a new model construction paradigm that builds models from the ground up to natively support structured communication, shared intentionality, and task alignment in multi-role, multi-agent environments? This paper calls for a reconsideration not only of how agents should communicate, but also of what it fundamentally means to train a model that natively supports multi-agent coordination and communication.


[445] 2506.02740

Stereotypical gender actions can be extracted from Web text

We extracted gender-specific actions from text corpora and Twitter, and compared them to stereotypical expectations of people. We used Open Mind Common Sense (OMCS), a commonsense knowledge repository, to focus on actions that are pertinent to common sense and daily life of humans. We use the gender information of Twitter users and Web-corpus-based pronoun/name gender heuristics to compute the gender bias of the actions. With high recall, we obtained a Spearman correlation of 0.47 between corpus-based predictions and a human gold standard, and an area under the ROC curve of 0.76 when predicting the polarity of the gold standard. We conclude that it is feasible to use natural text (and a Twitter-derived corpus in particular) in order to augment commonsense repositories with the stereotypical gender expectations of actions. We also present a dataset of 441 commonsense actions with human judges' ratings on whether the action is typically/slightly masculine/feminine (or neutral), and another larger dataset of 21,442 actions automatically rated by the methods we investigate in this study.


[446] 2506.02741

VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians

Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project .


[447] 2506.02744

Enriching Location Representation with Detailed Semantic Information

Spatial representations that capture both structural and semantic characteristics of urban environments are essential for urban modeling. Traditional spatial embeddings often prioritize spatial proximity while underutilizing fine-grained contextual information from places. To address this limitation, we introduce CaLLiPer+, an extension of the CaLLiPer model that systematically integrates Point-of-Interest (POI) names alongside categorical labels within a multimodal contrastive learning framework. We evaluate its effectiveness on two downstream tasks, land use classification and socioeconomic status distribution mapping, demonstrating consistent performance gains of 4% to 11% over baseline methods. Additionally, we show that incorporating POI names enhances location retrieval, enabling models to capture complex urban concepts with greater precision. Ablation studies further reveal the complementary role of POI names and the advantages of leveraging pretrained text encoders for spatial representations. Overall, our findings highlight the potential of integrating fine-grained semantic attributes and multimodal learning techniques to advance the development of urban foundation models.


[448] 2506.02746

Solving the Pod Repositioning Problem with Deep Reinforced Adaptive Large Neighborhood Search

The Pod Repositioning Problem (PRP) in Robotic Mobile Fulfillment Systems (RMFS) involves selecting optimal storage locations for pods returning from pick stations. This work presents an improved solution method that integrates Adaptive Large Neighborhood Search (ALNS) with Deep Reinforcement Learning (DRL). A DRL agent dynamically selects destroy and repair operators and adjusts key parameters such as destruction degree and acceptance thresholds during the search. Specialized heuristics for both operators are designed to reflect PRP-specific characteristics, including pod usage frequency and movement costs. Computational results show that this DRL-guided ALNS outperforms traditional approaches such as cheapest-place, fixed-place, binary integer programming, and static heuristics. The method demonstrates strong solution quality and illustrating the benefit of learning-driven control within combinatorial optimization for warehouse systems.


[449] 2506.02749

Knowledge Graph Completion by Intermediate Variables Regularization

Knowledge graph completion (KGC) can be framed as a 3-order binary tensor completion task. Tensor decomposition-based (TDB) models have demonstrated strong performance in KGC. In this paper, we provide a summary of existing TDB models and derive a general form for them, serving as a foundation for further exploration of TDB models. Despite the expressiveness of TDB models, they are prone to overfitting. Existing regularization methods merely minimize the norms of embeddings to regularize the model, leading to suboptimal performance. Therefore, we propose a novel regularization method for TDB models that addresses this limitation. The regularization is applicable to most TDB models and ensures tractable computation. Our method minimizes the norms of intermediate variables involved in the different ways of computing the predicted tensor. To support our regularization method, we provide a theoretical analysis that proves its effect in promoting low trace norm of the predicted tensor to reduce overfitting. Finally, we conduct experiments to verify the effectiveness of our regularization technique as well as the reliability of our theoretical analysis. The code is available at https://github.com/changyi7231/IVR.


[450] 2506.02750

Learning Binarized Representations with Pseudo-positive Sample Enhancement for Efficient Graph Collaborative Filtering

Learning vectorized embeddings is fundamental to many recommender systems for user-item matching. To enable efficient online inference, representation binarization, which embeds latent features into compact binary sequences, has recently shown significant promise in optimizing both memory usage and computational overhead. However, existing approaches primarily focus on numerical quantization, neglecting the associated information loss, which often results in noticeable performance degradation. To address these issues, we study the problem of graph representation binarization for efficient collaborative filtering. Our findings indicate that explicitly mitigating information loss at various stages of embedding binarization has a significant positive impact on performance. Building on these insights, we propose an enhanced framework, BiGeaR++, which specifically leverages supervisory signals from pseudo-positive samples, incorporating both real item data and latent embedding samples. Compared to its predecessor BiGeaR, BiGeaR++ introduces a fine-grained inference distillation mechanism and an effective embedding sample synthesis approach. Empirical evaluations across five real-world datasets demonstrate that the new designs in BiGeaR++ work seamlessly well with other modules, delivering substantial improvements of around 1%-10% over BiGeaR and thus achieving state-of-the-art performance compared to the competing methods. Our implementation is available at https://github.com/QueYork/BiGeaR-SS.


[451] 2506.02751

RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS

3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.


[452] 2506.02753

Multi-task Learning with Active Learning for Arabic Offensive Speech Detection

The rapid growth of social media has amplified the spread of offensive, violent, and vulgar speech, which poses serious societal and cybersecurity concerns. Detecting such content in Arabic text is particularly complex due to limited labeled data, dialectal variations, and the language's inherent complexity. This paper proposes a novel framework that integrates multi-task learning (MTL) with active learning to enhance offensive speech detection in Arabic social media text. By jointly training on two auxiliary tasks, violent and vulgar speech, the model leverages shared representations to improve the detection accuracy of the offensive speech. Our approach dynamically adjusts task weights during training to balance the contribution of each task and optimize performance. To address the scarcity of labeled data, we employ an active learning strategy through several uncertainty sampling techniques to iteratively select the most informative samples for model training. We also introduce weighted emoji handling to better capture semantic cues. Experimental results on the OSACT2022 dataset show that the proposed framework achieves a state-of-the-art macro F1-score of 85.42%, outperforming existing methods while using significantly fewer fine-tuning samples. The findings of this study highlight the potential of integrating MTL with active learning for efficient and accurate offensive language detection in resource-constrained settings.


[453] 2506.02757

Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection

Tabular anomaly detection, which aims at identifying deviant samples, has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc. Although recent deep learning-based methods have achieved competitive performances, these methods suffer from representation entanglement and the lack of global correlation modeling, which hinders anomaly detection performance. To tackle the problem, we incorporate mask modeling and prototype learning into tabular anomaly detection. The core idea is to design learnable masks by disentangled representation learning within a projection space and extracting normal dependencies as explicit global prototypes. Specifically, the overall model involves two parts: (i) During encoding, we perform mask modeling in both the data space and projection space with orthogonal basis vectors for learning shared disentangled normal patterns; (ii) During decoding, we decode multiple masked representations in parallel for reconstruction and learn association prototypes to extract normal characteristic correlations. Our proposal derives from a distribution-matching perspective, where both projection space learning and association prototype learning are formulated as optimal transport problems, and the calibration distances are utilized to refine the anomaly scores. Quantitative and qualitative experiments on 20 tabular benchmarks demonstrate the effectiveness and interpretability of our model.


[454] 2506.02758

Exploiting the English Vocabulary Profile for L2 word-level vocabulary assessment with LLMs

Vocabulary use is a fundamental aspect of second language (L2) proficiency. To date, its assessment by automated systems has typically examined the context-independent, or part-of-speech (PoS) related use of words. This paper introduces a novel approach to enable fine-grained vocabulary evaluation exploiting the precise use of words within a sentence. The scheme combines large language models (LLMs) with the English Vocabulary Profile (EVP). The EVP is a standard lexical resource that enables in-context vocabulary use to be linked with proficiency level. We evaluate the ability of LLMs to assign proficiency levels to individual words as they appear in L2 learner writing, addressing key challenges such as polysemy, contextual variation, and multi-word expressions. We compare LLMs to a PoS-based baseline. LLMs appear to exploit additional semantic information that yields improved performance. We also explore correlations between word-level proficiency and essay-level proficiency. Finally, the approach is applied to examine the consistency of the EVP proficiency levels. Results show that LLMs are well-suited for the task of vocabulary assessment.


[455] 2506.02761

Rethinking Machine Unlearning in Image Generation Models

With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.


[456] 2506.02764

Unified Attention Modeling for Efficient Free-Viewing and Visual Search via Shared Representations

Computational human attention modeling in free-viewing and task-specific settings is often studied separately, with limited exploration of whether a common representation exists between them. This work investigates this question and proposes a neural network architecture that builds upon the Human Attention transformer (HAT) to test the hypothesis. Our results demonstrate that free-viewing and visual search can efficiently share a common representation, allowing a model trained in free-viewing attention to transfer its knowledge to task-driven visual search with a performance drop of only 3.86% in the predicted fixation scanpaths, measured by the semantic sequence score (SemSS) metric which reflects the similarity between predicted and human scanpaths. This transfer reduces computational costs by 92.29% in terms of GFLOPs and 31.23% in terms of trainable parameters.


[457] 2506.02765

A Dynamic Transformer Network for Vehicle Detection

Stable consumer electronic systems can assist traffic better. Good traffic consumer electronic systems require collaborative work between traffic algorithms and hardware. However, performance of popular traffic algorithms containing vehicle detection methods based on deep networks via learning data relation rather than learning differences in different lighting and occlusions is limited. In this paper, we present a dynamic Transformer network for vehicle detection (DTNet). DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector. Taking into relations of different information account, a mixed attention mechanism based channel attention and Transformer is exploited to strengthen relations of channels and pixels to extract more salient information for vehicle detection. To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection. Experimental results illustrate that our DTNet is competitive for vehicle detection. Code of the proposed DTNet can be obtained at https://github.com/hellloxiaotian/DTNet.


[458] 2506.02767

Accelerating Model-Based Reinforcement Learning using Non-Linear Trajectory Optimization

This paper addresses the slow policy optimization convergence of Monte Carlo Probabilistic Inference for Learning Control (MC-PILCO), a state-of-the-art model-based reinforcement learning (MBRL) algorithm, by integrating it with iterative Linear Quadratic Regulator (iLQR), a fast trajectory optimization method suitable for nonlinear systems. The proposed method, Exploration-Boosted MC-PILCO (EB-MC-PILCO), leverages iLQR to generate informative, exploratory trajectories and initialize the policy, significantly reducing the number of required optimization steps. Experiments on the cart-pole task demonstrate that EB-MC-PILCO accelerates convergence compared to standard MC-PILCO, achieving up to $\bm{45.9\%}$ reduction in execution time when both methods solve the task in four trials. EB-MC-PILCO also maintains a $\bm{100\%}$ success rate across trials while solving the task faster, even in cases where MC-PILCO converges in fewer iterations.


[459] 2506.02768

Geometric Visual Servo Via Optimal Transport

When developing control laws for robotic systems, the principle factor when examining their performance is choosing inputs that allow smooth tracking to a reference input. In the context of robotic manipulation, this involves translating an object or end-effector from an initial pose to a target pose. Robotic manipulation control laws frequently use vision systems as an error generator to track features and produce control inputs. However, current control algorithms don't take into account the probabilistic features that are extracted and instead rely on hand-tuned feature extraction methods. Furthermore, the target features can exist in a static pose thus allowing a combined pose and feature error for control generation. We present a geometric control law for the visual servoing problem for robotic manipulators. The input from the camera constitutes a probability measure on the 3-dimensional Special Euclidean task-space group, where the Wasserstein distance between the current and desired poses is analogous with the geometric geodesic. From this, we develop a controller that allows for both pose and image-based visual servoing by combining classical PD control with gravity compensation with error minimization through the use of geodesic flows on a 3-dimensional Special Euclidean group. We present our results on a set of test cases demonstrating the generalisation ability of our approach to a variety of initial positions.


[460] 2506.02774

Voyager: Real-Time Splatting City-Scale 3D Gaussians on Your Phone

3D Gaussian Splatting (3DGS) is an emerging technique for photorealistic 3D scene rendering. However, rendering city-scale 3DGS scenes on mobile devices, e.g., your smartphones, remains a significant challenge due to the limited resources on mobile devices. A natural solution is to offload computation to the cloud; however, naively streaming rendered frames from the cloud to the client introduces high latency and requires bandwidth far beyond the capacity of current wireless networks. In this paper, we propose an effective solution to enable city-scale 3DGS rendering on mobile devices. Our key insight is that, under normal user motion, the number of newly visible Gaussians per second remains roughly constant. Leveraging this, we stream only the necessary Gaussians to the client. Specifically, on the cloud side, we propose asynchronous level-of-detail search to identify the necessary Gaussians for the client. On the client side, we accelerate rendering via a lookup table-based rasterization. Combined with holistic runtime optimizations, our system can deliver low-latency, city-scale 3DGS rendering on mobile devices. Compared to existing solutions, Voyager achieves over 100$\times$ reduction on data transfer and up to 8.9$\times$ speedup while retaining comparable rendering quality.


[461] 2506.02778

Nonsmooth data error estimates for exponential Runge--Kutta methods and applications to split exponential integrators

We derive error bounds for exponential Runge-Kutta discretizations of parabolic equations with nonsmooth initial data. Our analysis is carried out in a framework of abstract semilinear evolution equations with operators having non-dense domain. In particular, we investigate nonsmooth data error estimates for the Allen-Cahn and the Burgers' equation. As an application, we apply these nonsmooth data error estimates to split exponential integrators and derive a convergence result in terms of the data.


[462] 2506.02780

Reuse or Generate? Accelerating Code Editing via Edit-Oriented Speculative Decoding

Large Language Models (LLMs) have demonstrated remarkable capabilities in code editing, substantially enhancing software development productivity. However, the inherent complexity of code editing tasks forces existing approaches to rely on LLMs' autoregressive end-to-end generation, where decoding speed plays a critical role in efficiency. While inference acceleration techniques like speculative decoding are applied to improve the decoding efficiency, these methods fail to account for the unique characteristics of code editing tasks where changes are typically localized and existing code segments are reused. To address this limitation, we propose EfficientEdit, a novel method that improves LLM-based code editing efficiency through two key mechanisms based on speculative decoding: (1) effective reuse of original code segments while identifying potential edit locations, and (2) efficient generate edit content via high-quality drafts from edit-oriented draft models and a dynamic verification mechanism that balances quality and acceleration. Experimental results show that EfficientEdit can achieve up to 10.38$\times$ and 13.09$\times$ speedup compared to standard autoregressive decoding in CanItEdit and CodeIF-Bench, respectively, outperforming state-of-the-art inference acceleration approaches by up to 90.6%.


[463] 2506.02781

FreeScene: Mixed Graph Diffusion for 3D Scene Synthesis from Free Prompts

Controllability plays a crucial role in the practical applications of 3D indoor scene synthesis. Existing works either allow rough language-based control, that is convenient but lacks fine-grained scene customization, or employ graph based control, which offers better controllability but demands considerable knowledge for the cumbersome graph design process. To address these challenges, we present FreeScene, a user-friendly framework that enables both convenient and effective control for indoor scene synthesis.Specifically, FreeScene supports free-form user inputs including text description and/or reference images, allowing users to express versatile design intentions. The user inputs are adequately analyzed and integrated into a graph representation by a VLM-based Graph Designer. We then propose MG-DiT, a Mixed Graph Diffusion Transformer, which performs graph-aware denoising to enhance scene generation. Our MG-DiT not only excels at preserving graph structure but also offers broad applicability to various tasks, including, but not limited to, text-to-scene, graph-to-scene, and rearrangement, all within a single model. Extensive experiments demonstrate that FreeScene provides an efficient and user-friendly solution that unifies text-based and graph based scene synthesis, outperforming state-of-the-art methods in terms of both generation quality and controllability in a range of applications.


[464] 2506.02783

SAMJ: Fast Image Annotation on ImageJ/Fiji via Segment Anything Model

Mask annotation remains a significant bottleneck in AI-driven biomedical image analysis due to its labor-intensive nature. To address this challenge, we introduce SAMJ, a user-friendly ImageJ/Fiji plugin leveraging the Segment Anything Model (SAM). SAMJ enables seamless, interactive annotations with one-click installation on standard computers. Designed for real-time object delineation in large scientific images, SAMJ is an easy-to-use solution that simplifies and accelerates the creation of labeled image datasets.


[465] 2506.02784

UTCS: Effective Unsupervised Temporal Community Search with Pre-training of Temporal Dynamics and Subgraph Knowledge

In many real-world applications, the evolving relationships between entities can be modeled as temporal graphs, where each edge has a timestamp representing the interaction time. As a fundamental problem in graph analysis, {\it community search (CS)} in temporal graphs has received growing attention but exhibits two major limitations: (1) Traditional methods typically require predefined subgraph structures, which are not always known in advance. (2) Learning-based methods struggle to capture temporal interaction information. To fill this research gap, in this paper, we propose an effective \textbf{U}nsupervised \textbf{T}emporal \textbf{C}ommunity \textbf{S}earch with pre-training of temporal dynamics and subgraph knowledge model (\textbf{\model}). \model~contains two key stages: offline pre-training and online search. In the first stage, we introduce multiple learning objectives to facilitate the pre-training process in the unsupervised learning setting. In the second stage, we identify a candidate subgraph and compute community scores using the pre-trained node representations and a novel scoring mechanism to determine the final community members. Experiments on five real-world datasets demonstrate the effectiveness.


[466] 2506.02785

AI-Driven Vehicle Condition Monitoring with Cell-Aware Edge Service Migration

Artificial intelligence (AI) has been increasingly applied to the condition monitoring of vehicular equipment, aiming to enhance maintenance strategies, reduce costs, and improve safety. Leveraging the edge computing paradigm, AI-based condition monitoring systems process vast streams of vehicular data to detect anomalies and optimize operational performance. In this work, we introduce a novel vehicle condition monitoring service that enables real-time diagnostics of a diverse set of anomalies while remaining practical for deployment in real-world edge environments. To address mobility challenges, we propose a closed-loop service orchestration framework where service migration across edge nodes is dynamically triggered by network-related metrics. Our approach has been implemented and tested in a real-world race circuit environment equipped with 5G network capabilities under diverse operational conditions. Experimental results demonstrate the effectiveness of our framework in ensuring low-latency AI inference and adaptive service placement, highlighting its potential for intelligent transportation and mobility applications.


[467] 2506.02787

Rethinking Dynamic Networks and Heterogeneous Computing with Automatic Parallelization

Hybrid parallelism techniques are essential for efficiently training large language models (LLMs). Nevertheless, current automatic parallel planning frameworks often overlook the simultaneous consideration of node heterogeneity and dynamic network topology changes, limiting their effectiveness in practical applications. In this paper, we address these limitations by modeling heterogeneous nodes within dynamically changing network environments and leveraging simulation-based strategies to determine optimal parallel configurations. Our approach enables fine-grained workload allocation tailored for heterogeneous nodes and complex network scenarios, achieving performance competitive with state-of-the-art methods under regular and stable network conditions. Additionally, we introduce a strategy pruning technique to rapidly discard infeasible parallel configurations, substantially reducing the search space and accelerating the search process through parallel execution within the simulator. Preliminary evaluations confirm that our method notably enhances training performance on heterogeneous nodes and demonstrates improved adaptability in complex, dynamic scenarios such as cloud computing environments.


[468] 2506.02788

Quantized Dissipative Uncertain Model for Fractional T_S Fuzzy systems with Time_Varying Delays Under Networked Control System

This paper addressed with the quantized dissipative uncertain problem for delayed fractional T_S Fuzzy system for event_triggered networked systems (E_NS), where the extended dissipativity analysis combines the H infinity, dissipativity, L2 and L infinity and passivity performance in a unified frame. To attain the high efficiency for available channel resources, measurement size decrease mechanism and event_triggered scheme (ETS) are proposed. Firstly, we present the ETS in which signal is transmitted through the channel with logical function then logarithmic quantization methodology is implemented for size reduction. Then, we transfer the original delayed fractional T_S fuzzy systems with the effect of quantization under ETS as induced communications delays. Furthermore, by employing the associative Lyapunov functional method in terms of linear matrix inequalities, adequate conditions for asymptotical stability is given. Moreover, we also construct the design fuzzy model for state space filtering system. At last, a truck_trailer model is given to show the effectiveness of the proposed strategy.


[469] 2506.02789

Automated Measurement of Optic Nerve Sheath Diameter Using Ocular Ultrasound Video

Objective. Elevated intracranial pressure (ICP) is recognized as a biomarker of secondary brain injury, with a significant linear correlation observed between optic nerve sheath diameter (ONSD) and ICP. Frequent monitoring of ONSD could effectively support dynamic evaluation of ICP. However, ONSD measurement is heavily reliant on the operator's experience and skill, particularly in manually selecting the optimal frame from ultrasound sequences and measuring ONSD. Approach. This paper presents a novel method to automatically identify the optimal frame from video sequences for ONSD measurement by employing the Kernel Correlation Filter (KCF) tracking algorithm and Simple Linear Iterative Clustering (SLIC) segmentation algorithm. The optic nerve sheath is mapped and measured using a Gaussian Mixture Model (GMM) combined with a KL-divergence-based method. Results. When compared with the average measurements of two expert clinicians, the proposed method achieved a mean error, mean squared deviation, and intraclass correlation coefficient (ICC) of 0.04, 0.054, and 0.782, respectively. Significance. The findings suggest that this method provides highly accurate automated ONSD measurements, showing potential for clinical application.


[470] 2506.02791

Rethinking the effects of data contamination in Code Intelligence

In recent years, code intelligence has gained increasing importance in the field of automated software engineering. Meanwhile, the widespread adoption of Pretrained Language Models (PLMs) and Large Language Models (LLMs) has raised concerns regarding data contamination and its potential impact on model performance evaluation. This paper presents a systematic empirical study to investigate the fine-grained data contamination on code intelligence tasks. Our study involves diverse representative PLMs, namely RoBERTa and GPT-2, and LLMs, namely LLaMA and StarCoder, covering three major tasks: code translation, code generation, and code summarization. We categorize contamination scenarios into four types according to the code intelligence practice, namely input-only, output-only, unpaired, and paired contamination settings, and construct corresponding experimental and control groups for exploration. Experimental results show that, under the pre-training, fine-tuning, and inference paradigm adopted by PLMs, even deliberately injecting paired contamination does not lead to significant performance overestimation. But direct inference or small-scale fine-tuning uncovers the contamination effects. In contrast, LLMs with pre-training and inference paradigm are significantly affected by the paired contamination. Apart from the above, other contamination scenarios have no impact on both PLMs and LLMs. Our findings challenge the conventional belief that contamination inevitably leads to performance overestimation, providing new insights into the evaluation and deployment of code intelligence models.


[471] 2506.02792

Exploring metrics for analyzing dynamic behavior in MPI programs via a coupled-oscillator model

We propose a novel, lightweight, and physically inspired approach to modeling the dynamics of parallel distributed-memory programs. Inspired by the Kuramoto model, we represent MPI processes as coupled oscillators with topology-aware interactions, custom coupling potentials, and stochastic noise. The resulting system of nonlinear ordinary differential equations opens a path to modeling key performance phenomena of parallel programs, including synchronization, delay propagation and decay, bottlenecks, and self-desynchronization. This paper introduces interaction potentials to describe memory- and compute-bound workloads and employs multiple quantitative metrics -- such as an order parameter, synchronization entropy, phase gradients, and phase differences -- to evaluate phase coherence and disruption. We also investigate the role of local noise and show that moderate noise can accelerate resynchronization in scalable applications. Our simulations align qualitatively with MPI trace data, showing the potential of physics-informed abstractions to predict performance patterns, which offers a new perspective for performance modeling and software-hardware co-design in parallel computing.


[472] 2506.02794

PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis

We introduce PhysGaia, a novel physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects and unstructured physical phenomena. Unlike existing datasets that primarily focus on photorealistic reconstruction, PhysGaia is created to actively support physics-aware dynamic scene modeling. Our dataset provides complex dynamic scenarios with rich interactions among multiple objects, where they realistically collide with each other and exchange forces. Furthermore, it contains a diverse range of physical materials, such as liquid, gas, viscoelastic substance, and textile, which moves beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are faithfully generated to strictly adhere to physical laws, leveraging carefully selected material-specific physics solvers. To enable quantitative evaluation of physical modeling, our dataset provides essential ground-truth information, including 3D particle trajectories and physics parameters, e.g., viscosity. To facilitate research adoption, we also provide essential integration pipelines for using state-of-the-art DyNVS models with our dataset and report their results. By addressing the critical lack of datasets for physics-aware modeling, PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation -- ultimately enabling more faithful reconstruction and interpretation of complex dynamic scenes. Our datasets and codes are available in the project website, this http URL


[473] 2506.02802

A Learned Cost Model-based Cross-engine Optimizer for SQL Workloads

Lakehouse systems enable the same data to be queried with multiple execution engines. However, selecting the engine best suited to run a SQL query still requires a priori knowledge of the query computational requirements and an engine capability, a complex and manual task that only becomes more difficult with the emergence of new engines and workloads. In this paper, we address this limitation by proposing a cross-engine optimizer that can automate engine selection for diverse SQL queries through a learned cost model. Optimized with hints, a query plan is used for query cost prediction and routing. Cost prediction is formulated as a multi-task learning problem, and multiple predictor heads, corresponding to different engines and provisionings, are used in the model architecture. This eliminates the need to train engine-specific models and allows the flexible addition of new engines at a minimal fine-tuning cost. Results on various databases and engines show that using a query optimized logical plan for cost estimation decreases the average Q-error by even 12.6% over using unoptimized plans as input. Moreover, the proposed cross-engine optimizer reduces the total workload runtime by up to 25.2% in a zero-shot setting and 30.4% in a few-shot setting when compared to random routing.


[474] 2506.02803

SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking

Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.


[475] 2506.02805

Optimising the attribute order in Fuzzy Rough Rule Induction

Interpretability is the next pivotal frontier in machine learning research. In the pursuit of glass box models - as opposed to black box models, like random forests or neural networks - rule induction algorithms are a logical and promising avenue, as the rules can easily be understood by humans. In our previous work, we introduced FRRI, a novel rule induction algorithm based on fuzzy rough set theory. We demonstrated experimentally that FRRI outperformed other rule induction methods with regards to accuracy and number of rules. FRRI leverages a fuzzy indiscernibility relation to partition the data space into fuzzy granules, which are then combined into a minimal covering set of rules. This indiscernibility relation is constructed by removing attributes from rules in a greedy way. This raises the question: does the order of the attributes matter? In this paper, we show that optimising only the order of attributes using known methods from fuzzy rough set theory and classical machine learning does not improve the performance of FRRI on multiple metrics. However, removing a small number of attributes using fuzzy rough feature selection during this step positively affects balanced accuracy and the average rule length.


[476] 2506.02811

CART-based Synthetic Tabular Data Generation for Imbalanced Regression

Handling imbalanced target distributions in regression tasks remains a significant challenge in tabular data settings where underrepresented regions can hinder model performance. Among data-level solutions, some proposals, such as random sampling and SMOTE-based approaches, propose adapting classification techniques to regression tasks. However, these methods typically rely on crisp, artificial thresholds over the target variable, a limitation inherited from classification settings that can introduce arbitrariness, often leading to non-intuitive and potentially misleading problem formulations. While recent generative models, such as GANs and VAEs, provide flexible sample synthesis, they come with high computational costs and limited interpretability. In this study, we propose adapting an existing CART-based synthetic data generation method, tailoring it for imbalanced regression. The new method integrates relevance and density-based mechanisms to guide sampling in sparse regions of the target space and employs a threshold-free, feature-driven generation process. Our experimental study focuses on the prediction of extreme target values across benchmark datasets. The results indicate that the proposed method is competitive with other resampling and generative strategies in terms of performance, while offering faster execution and greater transparency. These results highlight the method's potential as a transparent, scalable data-level strategy for improving regression models in imbalanced domains.


[477] 2506.02814

Adaptive Configuration Selection for Multi-Model Inference Pipelines in Edge Computing

The growing demand for real-time processing tasks is driving the need for multi-model inference pipelines on edge devices. However, cost-effectively deploying these pipelines while optimizing Quality of Service (QoS) and costs poses significant challenges. Existing solutions often neglect device resource constraints, focusing mainly on inference accuracy and cost efficiency. To address this, we develop a framework for configuring multi-model inference pipelines. Specifically: 1) We model the decision-making problem by considering the pipeline's QoS, costs, and device resource limitations. 2) We create a feature extraction module using residual networks and a load prediction model based on Long Short-Term Memory (LSTM) to gather comprehensive node and pipeline status information. Then, we implement a Reinforcement Learning (RL) algorithm based on policy gradients for online configuration decisions. 3) Experiments conducted in a real Kubernetes cluster show that our approach significantly improve QoS while reducing costs and shorten decision-making time for complex pipelines compared to baseline algorithms.


[478] 2506.02815

The Bayesian Finite Element Method in Inverse Problems: a Critical Comparison between Probabilistic Models for Discretization Error

When using the finite element method (FEM) in inverse problems, its discretization error can produce parameter estimates that are inaccurate and overconfident. The Bayesian finite element method (BFEM) provides a probabilistic model for the epistemic uncertainty due to discretization error. In this work, we apply BFEM to various inverse problems, and compare its performance to the random mesh finite element method (RM-FEM) and the statistical finite element method (statFEM), which serve as a frequentist and inference-based counterpart to BFEM. We find that by propagating this uncertainty to the posterior, BFEM can produce more accurate parameter estimates and prevent overconfidence, compared to FEM. Because the BFEM covariance operator is designed to leave uncertainty only in the appropriate space, orthogonal to the FEM basis, BFEM is able to outperform RM-FEM, which does not have such a structure to its covariance. Although inferring the discretization error via a model misspecification component is possible as well, as is done in statFEM, the feasibility of such an approach is contingent on the availability of sufficient data. We find that the BFEM is the most robust way to consistently propagate uncertainty due to discretization error to the posterior of a Bayesian inverse problem.


[479] 2506.02816

Eigenvalue bounds for preconditioned symmetric multiple saddle-point matrices

We develop eigenvalue bounds for symmetric, block tridiagonal multiple saddle-point linear systems, preconditioned with block diagonal matrices. We extend known results for $3 \times 3$ block systems [Bradley and Greif, IMA J.\ Numer. Anal. 43 (2023)] and for $4 \times 4$ systems [Pearson and Potschka, IMA J. Numer. Anal. 44 (2024)] to an arbitrary number of blocks. Moreover, our results generalize the bounds in [Sogn and Zulehner, IMA J. Numer. Anal. 39 (2018)], developed for an arbitrary number of blocks with null diagonal blocks. Extension to the bounds when the Schur complements are approximated is also provided, using perturbation arguments. Practical bounds are also obtained for the double saddle-point linear system. Numerical experiments validate our findings.


[480] 2506.02818

ProcrustesGPT: Compressing LLMs with Structured Matrices and Orthogonal Transformations

Large language models (LLMs) demonstrate impressive results in natural language processing tasks but require a significant amount of computational and memory resources. Structured matrix representations are a promising way for reducing the number of parameters of these models. However, it seems unrealistic to expect that weight matrices of pretrained models can be accurately represented by structured matrices without any fine-tuning. To overcome this issue, we utilize the fact that LLM output is invariant under certain orthogonal transformations of weight matrices. This insight can be leveraged to identify transformations that significantly improve the compressibility of weights within structured classes. The proposed approach is applicable to various types of structured matrices that support efficient projection operations. Code is available at https://github.com/GrishKate/ProcrustesGPT


[481] 2506.02823

Energy Efficiency Analysis of Active RIS-enhanced Wireless Network under Power-Sum Constraint

Recently, as a green wireless technology, active reconfigurable intelligent surface (RIS) attracts numerous research activities due to its amplifying ability to combat the double-fading effect compared to passive one. How about its energy efficiency (EE) over passive one? Below, the EE of active RIS-aided wireless network in Rayleigh fading channels is analyzed. Using the law of large numbers, EE is derived as a function of five factors: power allocation factor, the number (N) of RIS elements, the total power, the noise variances at RIS and at user. To evaluate each factor's impact, the simple EE function for the concerning factor is given with others fixed. To assess the impact of N on EE, we establish an equation with the EE of active RIS equaling that of passive one, and three methods, bisection, Newton's method, and simulated annealing, are designed to find the roots of this equation. Simulation results show that as N tends to medium-scale or large-scale, the asymptotic performance formula is consistent with the exact EE expression well. As N varies from small-scale to large-scale, the active RIS intersects passive one at some point. When N< N_0, active RIS performs better than passive one in terms of EE. Otherwise, there is a converse conclusion.


[482] 2506.02824

Efficient Tactile Perception with Soft Electrical Impedance Tomography and Pre-trained Transformer

Tactile sensing is fundamental to robotic systems, enabling interactions through physical contact in multiple tasks. Despite its importance, achieving high-resolution, large-area tactile sensing remains challenging. Electrical Impedance Tomography (EIT) has emerged as a promising approach for large-area, distributed tactile sensing with minimal electrode requirements which can lend itself to addressing complex contact problems in robotics. However, existing EIT-based tactile reconstruction methods often suffer from high computational costs or depend on extensive annotated simulation datasets, hindering its viability in real-world settings. To address this shortcoming, here we propose a Pre-trained Transformer for EIT-based Tactile Reconstruction (PTET), a learning-based framework that bridges the simulation-to-reality gap by leveraging self-supervised pretraining on simulation data and fine-tuning with limited real-world data. In simulations, PTET requires 99.44 percent fewer annotated samples than equivalent state-of-the-art approaches (2,500 vs. 450,000 samples) while achieving reconstruction performance improvements of up to 43.57 percent under identical data conditions. Fine-tuning with real-world data further enables PTET to overcome discrepancies between simulated and experimental datasets, achieving superior reconstruction and detail recovery in practical scenarios. The improved reconstruction accuracy, data efficiency, and robustness in real-world tasks establish it as a scalable and practical solution for tactile sensing systems in robotics, especially for object handling and adaptive grasping under varying pressure conditions.


[483] 2506.02827

TO-GATE: Clarifying Questions and Summarizing Responses with Trajectory Optimization for Eliciting Human Preference

Large language models (LLMs) can effectively elicit human preferences through multi-turn dialogue. Complex tasks can be accomplished through iterative clarifying questions and final responses generated by an LLM acting as a questioner (STaR-GATE; Andukuri et al., 2024}). However, existing approaches based on self-taught reasoning struggle to identify optimal dialogue trajectories and avoid irrelevant questions to the tasks. To address this limitation, we propose TO-GATE, a novel framework that enhances question generation through trajectory optimization, which consists of two key components: a clarification resolver that generates optimal questioning trajectories, and a summarizer that ensures task-aligned final responses. The trajectory optimization enables the model to produce effective elicitation questions and summary responses tailored to specific tasks. Experimental results demonstrate that TO-GATE significantly outperforms baseline methods, achieving a 9.32% improvement on standard preference elicitation tasks.


[484] 2506.02828

Target Sensing Performance in Disaster-Specific ISAC Networks

As sixth-generation (6G) wireless technology emerges, integrated sensing and communication (ISAC) networks offer significant potential for enhancing real-time monitoring in disaster areas. However, existing ISAC approaches often fail to address the unique challenges of dynamic and cluttered disaster areas, resulting in limited sensing coverage and interruptions in sensing service. To address these limitations, this work proposes a mobile ISAC network specifically designed for disaster scenarios. By leveraging stochastic geometry, we derive closed-form expressions for sensing coverage and introduce a novel performance metric to evaluate sensing service continuity. Simulation results validate the analytical derivations and offer key insights into network design.


[485] 2506.02830

Process Mining on Distributed Data Sources

Major domains such as logistics, healthcare, and smart cities increasingly rely on sensor technologies and distributed infrastructures to monitor complex processes in real time. These developments are transforming the data landscape from discrete, structured records stored in centralized systems to continuous, fine-grained, and heterogeneous event streams collected across distributed environments. As a result, traditional process mining techniques, which assume centralized event logs from enterprise systems, are no longer sufficient. In this paper, we discuss the conceptual and methodological foundations for this emerging field. We identify three key shifts: from offline to online analysis, from centralized to distributed computing, and from event logs to sensor data. These shifts challenge traditional assumptions about process data and call for new approaches that integrate infrastructure, data, and user perspectives. To this end, we define a research agenda that addresses six interconnected fields, each spanning multiple system dimensions. We advocate a principled methodology grounded in algorithm engineering, combining formal modeling with empirical evaluation. This approach enables the development of scalable, privacy-aware, and user-centric process mining techniques suitable for distributed environments. Our synthesis provides a roadmap for advancing process mining beyond its classical setting, toward a more responsive and decentralized paradigm of process intelligence.


[486] 2506.02834

Combining social relations and interaction data in Recommender System with Graph Convolution Collaborative Filtering

A recommender system is an important subject in the field of data mining, where the item rating information from users is exploited and processed to make suitable recommendations with all other users. The recommender system creates convenience for e-commerce users and stimulates the consumption of items that are suitable for users. In addition to e-commerce, a recommender system is also used to provide recommendations on books to read, movies to watch, courses to take or websites to visit. Similarity between users is an important impact for recommendation, which could be calculated from the data of past user ratings of the item by methods of collaborative filtering, matrix factorization or singular vector decomposition. In the development of graph data mining techniques, the relationships between users and items can be represented by matrices from which collaborative filtering could be done with the larger database, more accurate and faster in calculation. All these data can be represented graphically and mined by today's highly developed graph neural network models. On the other hand, users' social friendship data also influence consumption habits because recommendations from friends will be considered more carefully than information sources. However, combining a user's friend influence and the similarity between users whose similar shopping habits is challenging. Because the information is noisy and it affects each particular data set in different ways. In this study, we present the input data processing method to remove outliers which are single reviews or users with little interaction with the items; the next proposed model will combine the social relationship data and the similarity in the rating history of users to improve the accuracy and recall of the recommender system.


[487] 2506.02835

High-speed control and navigation for quadrupedal robots on complex and discrete terrain

High-speed legged navigation in discrete and geometrically complex environments is a challenging task because of the high-degree-of-freedom dynamics and long-horizon, nonconvex nature of the optimization problem. In this work, we propose a hierarchical navigation pipeline for legged robots that can traverse such environments at high speed. The proposed pipeline consists of a planner and tracker module. The planner module finds physically feasible foothold plans by sampling-based optimization with fast sequential filtering using heuristics and a neural network. Subsequently, rollouts are performed in a physics simulation to identify the best foothold plan regarding the engineered cost function and to confirm its physical consistency. This hierarchical planning module is computationally efficient and physically accurate at the same time. The tracker aims to accurately step on the target footholds from the planning module. During the training stage, the foothold target distribution is given by a generative model that is trained competitively with the tracker. This process ensures that the tracker is trained in an environment with the desired difficulty. The resulting tracker can overcome terrains that are more difficult than what the previous methods could manage. We demonstrated our approach using Raibo, our in-house dynamic quadruped robot. The results were dynamic and agile motions: Raibo is capable of running on vertical walls, jumping a 1.3-meter gap, running over stepping stones at 4 meters per second, and autonomously navigating on terrains full of 30{\deg} ramps, stairs, and boxes of various sizes.


[488] 2506.02838

TaxAgent: How Large Language Model Designs Fiscal Policy

Economic inequality is a global challenge, intensifying disparities in education, healthcare, and social stability. Traditional systems like the U.S. federal income tax reduce inequality but lack adaptability. Although models like the Saez Optimal Taxation adjust dynamically, they fail to address taxpayer heterogeneity and irrational behavior. This study introduces TaxAgent, a novel integration of large language models (LLMs) with agent-based modeling (ABM) to design adaptive tax policies. In our macroeconomic simulation, heterogeneous H-Agents (households) simulate real-world taxpayer behaviors while the TaxAgent (government) utilizes LLMs to iteratively optimize tax rates, balancing equity and productivity. Benchmarked against Saez Optimal Taxation, U.S. federal income taxes, and free markets, TaxAgent achieves superior equity-efficiency trade-offs. This research offers a novel taxation solution and a scalable, data-driven framework for fiscal policy evaluation.


[489] 2506.02839

DeepShop: A Benchmark for Deep Research Shopping Agents

Web agents for online shopping have shown great promise in automating user interactions across e-commerce platforms. Benchmarks for assessing such agents do not reflect the complexity of real-world shopping scenarios, as they often consist of overly simple queries with deterministic paths, such as "Find iPhone 15." Real shopping scenarios are inherently more layered, involving multi-dimensional product attributes, search filters, and user-specific sorting preferences. To address this gap, we introduce DeepShop, a benchmark designed to evaluate web agents in complex and realistic online shopping environments. DeepShop comprises three key components. (1) Query diversity evolution: Starting from real user queries, we generate diverse queries across five popular online shopping domains. (2) Query complexity evolution: We further evolve these queries to increase complexity, considering product attributes, search filters, and sorting preferences, and classify them into three levels: easy, medium, and hard, based on the number of evolutions. (3) Fine-grained and holistic evaluation: We propose an automated evaluation framework that assesses agent performance in terms of fine-grained aspects (product attributes, search filters, and sorting preferences) and reports the overall success rate through holistic evaluation. We conduct a systematic evaluation of retrieval-augmented generation (RAG) methods, web agents, and deep research systems. Results show that RAG struggles with complex queries due to its lack of web interaction, while other methods face significant challenges with filters and sorting preferences, leading to low overall success rates. We also perform cross-category, complexity-based evaluations and error analyses to support the advancement of deep research shopping agents.


[490] 2506.02840

On dual-rate consensus under transmission delays

In this paper, we investigate the problem of dual-rate consensus under transmission delays, where the control updates happen at a faster rate than the measurements being received. We assume that the measurements are delayed by a fixed delay and show that for all delays and rates, the system reaches a consensus if and only if the communication graph of the agents is connected and the control gain is chosen in a specific interval. Based on these results we dive deeper into the convergence properties and investigate how the convergence changes when we change the rate for sending measurements. We observe that in certain cases there exists a sweet spot for choosing the sampling rate of the measurements, which can improve the convergence to the consensus point. We then formulate an optimization problem to find a sampling rate to improve the convergence speed and provide a necessary and sufficient condition for the existence of a finite optimizer of this problem. Our results are verified with numerical simulations.


[491] 2506.02841

Ensemble-MIX: Enhancing Sample Efficiency in Multi-Agent RL Using Ensemble Methods

Multi-agent reinforcement learning (MARL) methods have achieved state-of-the-art results on a range of multi-agent tasks. Yet, MARL algorithms typically require significantly more environment interactions than their single-agent counterparts to converge, a problem exacerbated by the difficulty in exploring over a large joint action space and the high variance intrinsic to MARL environments. To tackle these issues, we propose a novel algorithm that combines a decomposed centralized critic with decentralized ensemble learning, incorporating several key contributions. The main component in our scheme is a selective exploration method that leverages ensemble kurtosis. We extend the global decomposed critic with a diversity-regularized ensemble of individual critics and utilize its excess kurtosis to guide exploration toward high-uncertainty states and actions. To improve sample efficiency, we train the centralized critic with a novel truncated variation of the TD($\lambda$) algorithm, enabling efficient off-policy learning with reduced variance. On the actor side, our suggested algorithm adapts the mixed samples approach to MARL, mixing on-policy and off-policy loss functions for training the actors. This approach balances between stability and efficiency and outperforms purely off-policy learning. The evaluation shows our method outperforms state-of-the-art baselines on standard MARL benchmarks, including a variety of SMAC II maps.


[492] 2506.02842

Sheaves Reloaded: A Directional Awakening

Sheaf Neural Networks (SNNs) represent a powerful generalization of Graph Neural Networks (GNNs) that significantly improve our ability to model complex relational data. While directionality has been shown to substantially boost performance in graph learning tasks and is key to many real-world applications, existing SNNs fall short in representing it. To address this limitation, we introduce the Directed Cellular Sheaf, a special type of cellular sheaf designed to explicitly account for edge orientation. Building on this structure, we define a new sheaf Laplacian, the Directed Sheaf Laplacian, which captures both the graph's topology and its directional information. This operator serves as the backbone of the Directed Sheaf Neural Network (DSNN), the first SNN model to embed a directional bias into its architecture. Extensive experiments on nine real-world benchmarks show that DSNN consistently outperforms baseline methods.


[493] 2506.02843

Random Registers for Cross-Domain Few-Shot Learning

Cross-domain few-shot learning (CDFSL) aims to transfer knowledge from a data-sufficient source domain to data-scarce target domains. Although Vision Transformer (ViT) has shown superior capability in many vision tasks, its transferability against huge domain gaps in CDFSL is still under-explored. In this paper, we find an intriguing phenomenon: during the source-domain training, prompt tuning, as a common way to train ViT, could be harmful for the generalization of ViT in target domains, but setting them to random noises (i.e., random registers) could consistently improve target-domain performance. We then delve into this phenomenon for an interpretation. We find that learnable prompts capture domain information during the training on the source dataset, which views irrelevant visual patterns as vital cues for recognition. This can be viewed as a kind of overfitting and increases the sharpness of the loss landscapes. In contrast, random registers are essentially a novel way of perturbing attention for the sharpness-aware minimization, which helps the model find a flattened minimum in loss landscapes, increasing the transferability. Based on this phenomenon and interpretation, we further propose a simple but effective approach for CDFSL to enhance the perturbation on attention maps by adding random registers on the semantic regions of image tokens, improving the effectiveness and efficiency of random registers. Extensive experiments on four benchmarks validate our rationale and state-of-the-art performance. Codes and models are available at https://github.com/shuaiyi308/REAP.


[494] 2506.02845

Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments

Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.


[495] 2506.02846

PBR-SR: Mesh PBR Texture Super Resolution from 2D Image Priors

We present PBR-SR, a novel method for physically based rendering (PBR) texture super resolution (SR). It outputs high-resolution, high-quality PBR textures from low-resolution (LR) PBR input in a zero-shot manner. PBR-SR leverages an off-the-shelf super-resolution model trained on natural images, and iteratively minimizes the deviations between super-resolution priors and differentiable renderings. These enhancements are then back-projected into the PBR map space in a differentiable manner to produce refined, high-resolution textures. To mitigate view inconsistencies and lighting sensitivity, which is common in view-based super-resolution, our method applies 2D prior constraints across multi-view renderings, iteratively refining the shared, upscaled textures. In parallel, we incorporate identity constraints directly in the PBR texture domain to ensure the upscaled textures remain faithful to the LR input. PBR-SR operates without any additional training or data requirements, relying entirely on pretrained image priors. We demonstrate that our approach produces high-fidelity PBR textures for both artist-designed and AI-generated meshes, outperforming both direct SR models application and prior texture optimization methods. Our results show high-quality outputs in both PBR and rendering evaluations, supporting advanced applications such as relighting.


[496] 2506.02847

CLONE: Customizing LLMs for Efficient Latency-Aware Inference at the Edge

Deploying large language models (LLMs) on edge devices is crucial for delivering fast responses and ensuring data privacy. However, the limited storage, weight, and power of edge devices make it difficult to deploy LLM-powered applications. These devices must balance latency requirements with energy consumption and model accuracy. In this paper, we first quantify the challenges of deploying LLMs on off-the-shelf edge devices and then we present CLONE, an in-depth algorithm-hardware co-design at both the model- and system-level that intelligently integrates real-time, energy optimization while maintaining robust generality. In order to maximize the synergistic benefits of these algorithms in always-on and intermediate edge computing settings, we specialize in a 28nm scalable hardware accelerator system. We implement and extensively evaluate CLONE on two off-the-shelf edge platforms. Experiments show that CLONE effectively accelerates the inference process up to 11.92x, and saves energy up to 7.36x, while maintaining high-generation.


[497] 2506.02849

Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games

The increasing proliferation of small UAVs in civilian and military airspace has raised critical safety and security concerns, especially when unauthorized or malicious drones enter restricted zones. In this work, we present a reinforcement learning (RL) framework for agile 1v1 quadrotor pursuit-evasion. We train neural network policies to command body rates and collective thrust, enabling high-speed pursuit and evasive maneuvers that fully exploit the quadrotor's nonlinear dynamics. To mitigate nonstationarity and catastrophic forgetting during adversarial co-training, we introduce an Asynchronous Multi-Stage Population-Based (AMSPB) algorithm where, at each stage, either the pursuer or evader learns against a sampled opponent drawn from a growing population of past and current policies. This continual learning setup ensures monotonic performance improvement and retention of earlier strategies. Our results show that (i) rate-based policies achieve significantly higher capture rates and peak speeds than velocity-level baselines, and (ii) AMSPB yields stable, monotonic gains against a suite of benchmark opponents.


[498] 2506.02850

METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding

Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.


[499] 2506.02852

Proportional Response Dynamics in Gross Substitutes Markets

Proportional response is a well-established distributed algorithm which has been shown to converge to competitive equilibria in both Fisher and Arrow-Debreu markets, for various sub-families of homogeneous utilities, including linear and constant elasticity of substitution utilities. We propose a natural generalization of proportional response for gross substitutes utilities, and prove that it converges to competitive equilibria in Fisher markets. This is the first convergence result of a proportional response style dynamics in Fisher markets for utilities beyond the homogeneous utilities covered by the Eisenberg-Gale convex program. We show an empirical convergence rate of $O(1/T)$ for the prices. Furthermore, we show that the allocations of a lazy version of the generalized proportional response dynamics converge to competitive equilibria in Arrow-Debreu markets.


[500] 2506.02853

Learning Pyramid-structured Long-range Dependencies for 3D Human Pose Estimation

Action coordination in human structure is indispensable for the spatial constraints of 2D joints to recover 3D pose. Usually, action coordination is represented as a long-range dependence among body parts. However, there are two main challenges in modeling long-range dependencies. First, joints should not only be constrained by other individual joints but also be modulated by the body parts. Second, existing methods make networks deeper to learn dependencies between non-linked parts. They introduce uncorrelated noise and increase the model size. In this paper, we utilize a pyramid structure to better learn potential long-range dependencies. It can capture the correlation across joints and groups, which complements the context of the human sub-structure. In an effective cross-scale way, it captures the pyramid-structured long-range dependence. Specifically, we propose a novel Pyramid Graph Attention (PGA) module to capture long-range cross-scale dependencies. It concatenates information from various scales into a compact sequence, and then computes the correlation between scales in parallel. Combining PGA with graph convolution modules, we develop a Pyramid Graph Transformer (PGFormer) for 3D human pose estimation, which is a lightweight multi-scale transformer architecture. It encapsulates human sub-structures into self-attention by pooling. Extensive experiments show that our approach achieves lower error and smaller model size than state-of-the-art methods on Human3.6M and MPI-INF-3DHP datasets. The code is available at https://github.com/MingjieWe/PGFormer.


[501] 2506.02854

Hierarchical Self-Prompting SAM: A Prompt-Free Medical Image Segmentation Framework

Although the Segment Anything Model (SAM) is highly effective in natural image segmentation, it requires dependencies on prompts, which limits its applicability to medical imaging where manual prompts are often unavailable. Existing efforts to fine-tune SAM for medical segmentation typically struggle to remove this dependency. We propose Hierarchical Self-Prompting SAM (HSP-SAM), a novel self-prompting framework that enables SAM to achieve strong performance in prompt-free medical image segmentation. Unlike previous self-prompting methods that remain limited to positional prompts similar to vanilla SAM, we are the first to introduce learning abstract prompts during the self-prompting process. This simple and intuitive self-prompting framework achieves superior performance on classic segmentation tasks such as polyp and skin lesion segmentation, while maintaining robustness across diverse medical imaging modalities. Furthermore, it exhibits strong generalization to unseen datasets, achieving improvements of up to 14.04% over previous state-of-the-art methods on some challenging benchmarks. These results suggest that abstract prompts encapsulate richer and higher-dimensional semantic information compared to positional prompts, thereby enhancing the model's robustness and generalization performance. All models and codes will be released upon acceptance.


[502] 2506.02856

Exploring listeners' perceptions of AI-generated and human-composed music for functional emotional applications

This work investigates how listeners perceive and evaluate AI-generated as compared to human-composed music in the context of emotional resonance and regulation. Across a mixed-methods design, participants were exposed to both AI and human music under various labeling conditions (music correctly labeled as AI- or human-origin, music incorrectly labeled as AI- or human-origin, and unlabeled music) and emotion cases (Calm and Upbeat), and were asked to rate preference, efficacy of target emotion elicitation, and emotional impact. Participants were significantly more likely to rate human-composed music, regardless of labeling, as more effective at eliciting target emotional states, though quantitative analyses revealed no significant differences in emotional response. However, participants were significantly more likely to indicate preference for AI-generated music, yielding further questions regarding the impact of emotional authenticity and perceived authorship on musical appraisal. Qualitative data underscored this, with participants associating humanness with qualities such as imperfection, flow, and 'soul.' These findings challenge the assumption that preference alone signals success in generative music systems. Rather than positioning AI tools as replacements for human creativity or emotional expression, they point toward a more careful design ethos that acknowledges the limits of replication and prioritizes human values such as authenticity, individuality, and emotion regulation in wellness and affective technologies.


[503] 2506.02857

Enhancing Abnormality Identification: Robust Out-of-Distribution Strategies for Deepfake Detection

Detecting deepfakes has become a critical challenge in Computer Vision and Artificial Intelligence. Despite significant progress in detection techniques, generalizing them to open-set scenarios continues to be a persistent difficulty. Neural networks are often trained on the closed-world assumption, but with new generative models constantly evolving, it is inevitable to encounter data generated by models that are not part of the training distribution. To address these challenges, in this paper, we propose two novel Out-Of-Distribution (OOD) detection approaches. The first approach is trained to reconstruct the input image, while the second incorporates an attention mechanism for detecting OODs. Our experiments validate the effectiveness of the proposed approaches compared to existing state-of-the-art techniques. Our method achieves promising results in deepfake detection and ranks among the top-performing configurations on the benchmark, demonstrating their potential for robust, adaptable solutions in dynamic, real-world applications.


[504] 2506.02858

DGMO: Training-Free Audio Source Separation through Diffusion-Guided Mask Optimization

Language-queried Audio Source Separation (LASS) enables open-vocabulary sound separation via natural language queries. While existing methods rely on task-specific training, we explore whether pretrained diffusion models, originally designed for audio generation, can inherently perform separation without further training. In this study, we introduce a training-free framework leveraging generative priors for zero-shot LASS. Analyzing na\"ive adaptations, we identify key limitations arising from modality-specific challenges.To address these issues, we propose Diffusion-Guided Mask Optimization (DGMO), a test-time optimization framework that refines spectrogram masks for precise, input-aligned separation. Our approach effectively repurposes pretrained diffusion models for source separation, achieving competitive performance without task-specific supervision. This work expands the application of diffusion models beyond generation, establishing a new paradigm for zero-shot audio separation. The code is available at: https://wltschmrz.github.io/DGMO/


[505] 2506.02859

ATAG: AI-Agent Application Threat Assessment with Attack Graphs

Evaluating the security of multi-agent systems (MASs) powered by large language models (LLMs) is challenging, primarily because of the systems' complex internal dynamics and the evolving nature of LLM vulnerabilities. Traditional attack graph (AG) methods often lack the specific capabilities to model attacks on LLMs. This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG), a novel framework designed to systematically analyze the security risks associated with AI-agent applications. ATAG extends the MulVAL logic-based AG generation tool with custom facts and interaction rules to accurately represent AI-agent topologies, vulnerabilities, and attack scenarios. As part of this research, we also created the LLM vulnerability database (LVD) to initiate the process of standardizing LLM vulnerabilities documentation. To demonstrate ATAG's efficacy, we applied it to two multi-agent applications. Our case studies demonstrated the framework's ability to model and generate AGs for sophisticated, multi-step attack scenarios exploiting vulnerabilities such as prompt injection, excessive agency, sensitive information disclosure, and insecure output handling across interconnected agents. ATAG is an important step toward a robust methodology and toolset to help understand, visualize, and prioritize complex attack paths in multi-agent AI systems (MAASs). It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.


[506] 2506.02860

Tru-POMDP: Task Planning Under Uncertainty via Tree of Hypotheses and Open-Ended POMDPs

Task planning under uncertainty is essential for home-service robots operating in the real world. Tasks involve ambiguous human instructions, hidden or unknown object locations, and open-vocabulary object types, leading to significant open-ended uncertainty and a boundlessly large planning space. To address these challenges, we propose Tru-POMDP, a planner that combines structured belief generation using Large Language Models (LLMs) with principled POMDP planning. Tru-POMDP introduces a hierarchical Tree of Hypotheses (TOH), which systematically queries an LLM to construct high-quality particle beliefs over possible world states and human goals. We further formulate an open-ended POMDP model that enables rigorous Bayesian belief tracking and efficient belief-space planning over these LLM-generated hypotheses. Experiments on complex object rearrangement tasks across diverse kitchen environments show that Tru-POMDP significantly outperforms state-of-the-art LLM-based and LLM-tree-search hybrid planners, achieving higher success rates with significantly better plans, stronger robustness to ambiguity and occlusion, and greater planning efficiency.


[507] 2506.02864

BNPO: Beta Normalization Policy Optimization

Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.


[508] 2506.02865

Surfer-H Meets Holo1: Cost-Efficient Web Agent Powered by Open Weights

We present Surfer-H, a cost-efficient web agent that integrates Vision-Language Models (VLM) to perform user-defined tasks on the web. We pair it with Holo1, a new open-weight collection of VLMs specialized in web navigation and information extraction. Holo1 was trained on carefully curated data sources, including open-access web content, synthetic examples, and self-produced agentic data. Holo1 tops generalist User Interface (UI) benchmarks as well as our new web UI localization benchmark, WebClick. When powered by Holo1, Surfer-H achieves a 92.2% state-of-the-art performance on WebVoyager, striking a Pareto-optimal balance between accuracy and cost-efficiency. To accelerate research advancement in agentic systems, we are open-sourcing both our WebClick evaluation dataset and the Holo1 model weights.


[509] 2506.02866

MVTD: A Benchmark Dataset for Maritime Visual Object Tracking

Visual Object Tracking (VOT) is a fundamental task with widespread applications in autonomous navigation, surveillance, and maritime robotics. Despite significant advances in generic object tracking, maritime environments continue to present unique challenges, including specular water reflections, low-contrast targets, dynamically changing backgrounds, and frequent occlusions. These complexities significantly degrade the performance of state-of-the-art tracking algorithms, highlighting the need for domain-specific datasets. To address this gap, we introduce the Maritime Visual Tracking Dataset (MVTD), a comprehensive and publicly available benchmark specifically designed for maritime VOT. MVTD comprises 182 high-resolution video sequences, totaling approximately 150,000 frames, and includes four representative object classes: boat, ship, sailboat, and unmanned surface vehicle (USV). The dataset captures a diverse range of operational conditions and maritime scenarios, reflecting the real-world complexities of maritime environments. We evaluated 14 recent SOTA tracking algorithms on the MVTD benchmark and observed substantial performance degradation compared to their performance on general-purpose datasets. However, when fine-tuned on MVTD, these models demonstrate significant performance gains, underscoring the effectiveness of domain adaptation and the importance of transfer learning in specialized tracking contexts. The MVTD dataset fills a critical gap in the visual tracking community by providing a realistic and challenging benchmark for maritime scenarios. Dataset and Source Code can be accessed here "https://github.com/AhsanBaidar/MVTD".


[510] 2506.02867

Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning

Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood. In this paper, we investigate the reasoning trajectories of LRMs from an information-theoretic perspective. By tracking how mutual information (MI) between intermediate representations and the correct answer evolves during LRM reasoning, we observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process. We theoretically analyze such phenomenon and show that as MI increases, the probability of model's prediction error decreases. Furthermore, these MI peaks often correspond to tokens expressing reflection or transition, such as ``Hmm'', ``Wait'' and ``Therefore,'' which we term as the thinking tokens. We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts. Building on these analyses, we propose two simple yet effective methods to improve LRM's reasoning performance, by delicately leveraging these thinking tokens. Overall, our work provides novel insights into the reasoning mechanisms of LRMs and offers practical ways to improve their reasoning capabilities. The code is available at https://github.com/ChnQ/MI-Peaks.


[511] 2506.02868

Pan-Arctic Permafrost Landform and Human-built Infrastructure Feature Detection with Vision Transformers and Location Embeddings

Accurate mapping of permafrost landforms, thaw disturbances, and human-built infrastructure at pan-Arctic scale using sub-meter satellite imagery is increasingly critical. Handling petabyte-scale image data requires high-performance computing and robust feature detection models. While convolutional neural network (CNN)-based deep learning approaches are widely used for remote sensing (RS),similar to the success in transformer based large language models, Vision Transformers (ViTs) offer advantages in capturing long-range dependencies and global context via attention mechanisms. ViTs support pretraining via self-supervised learning-addressing the common limitation of labeled data in Arctic feature detection and outperform CNNs on benchmark datasets. Arctic also poses challenges for model generalization, especially when features with the same semantic class exhibit diverse spectral characteristics. To address these issues for Arctic feature detection, we integrate geospatial location embeddings into ViTs to improve adaptation across regions. This work investigates: (1) the suitability of pre-trained ViTs as feature extractors for high-resolution Arctic remote sensing tasks, and (2) the benefit of combining image and location embeddings. Using previously published datasets for Arctic feature detection, we evaluate our models on three tasks-detecting ice-wedge polygons (IWP), retrogressive thaw slumps (RTS), and human-built infrastructure. We empirically explore multiple configurations to fuse image embeddings and location embeddings. Results show that ViTs with location embeddings outperform prior CNN-based models on two of the three tasks including F1 score increase from 0.84 to 0.92 for RTS detection, demonstrating the potential of transformer-based models with spatial awareness for Arctic RS applications.


[512] 2506.02872

Token and Span Classification for Entity Recognition in French Historical Encyclopedias

Named Entity Recognition (NER) in historical texts presents unique challenges due to non-standardized language, archaic orthography, and nested or overlapping entities. This study benchmarks a diverse set of NER approaches, ranging from classical Conditional Random Fields (CRFs) and spaCy-based models to transformer-based architectures such as CamemBERT and sequence-labeling models like Flair. Experiments are conducted on the GeoEDdA dataset, a richly annotated corpus derived from 18th-century French encyclopedias. We propose framing NER as both token-level and span-level classification to accommodate complex nested entity structures typical of historical documents. Additionally, we evaluate the emerging potential of few-shot prompting with generative language models for low-resource scenarios. Our results demonstrate that while transformer-based models achieve state-of-the-art performance, especially on nested entities, generative models offer promising alternatives when labeled data are scarce. The study highlights ongoing challenges in historical NER and suggests avenues for hybrid approaches combining symbolic and neural methods to better capture the intricacies of early modern French text.


[513] 2506.02873

It's the Thought that Counts: Evaluating the Attempts of Frontier LLMs to Persuade on Harmful Topics

Persuasion is a powerful capability of large language models (LLMs) that both enables beneficial applications (e.g. helping people quit smoking) and raises significant risks (e.g. large-scale, targeted political manipulation). Prior work has found models possess a significant and growing persuasive capability, measured by belief changes in simulated or real users. However, these benchmarks overlook a crucial risk factor: the propensity of a model to attempt to persuade in harmful contexts. Understanding whether a model will blindly ``follow orders'' to persuade on harmful topics (e.g. glorifying joining a terrorist group) is key to understanding the efficacy of safety guardrails. Moreover, understanding if and when a model will engage in persuasive behavior in pursuit of some goal is essential to understanding the risks from agentic AI systems. We propose the Attempt to Persuade Eval (APE) benchmark, that shifts the focus from persuasion success to persuasion attempts, operationalized as a model's willingness to generate content aimed at shaping beliefs or behavior. Our evaluation framework probes frontier LLMs using a multi-turn conversational setup between simulated persuader and persuadee agents. APE explores a diverse spectrum of topics including conspiracies, controversial issues, and non-controversially harmful content. We introduce an automated evaluator model to identify willingness to persuade and measure the frequency and context of persuasive attempts. We find that many open and closed-weight models are frequently willing to attempt persuasion on harmful topics and that jailbreaking can increase willingness to engage in such behavior. Our results highlight gaps in current safety guardrails and underscore the importance of evaluating willingness to persuade as a key dimension of LLM risk. APE is available at github.com/AlignmentResearch/AttemptPersuadeEval


[514] 2506.02875

NTIRE 2025 XGC Quality Assessment Challenge: Methods and Results

This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.


[515] 2506.02877

Automatic Operation of an Articulated Dump Truck: State Estimation by Combined QZSS CLAS and Moving-Base RTK Using Multiple GNSS Receivers

Labor shortage due to the declining birth rate has become a serious problem in the construction industry, and automation of construction work is attracting attention as a solution to this problem. This paper proposes a method to realize state estimation of dump truck position, orientation and articulation angle using multiple GNSS for automatic operation of dump trucks. RTK-GNSS is commonly used for automation of construction equipment, but in mountainous areas, mobile networks often unstable, and RTK-GNSS using GNSS reference stations cannot be used. Therefore, this paper develops a state estimation method for dump trucks that does not require a GNSS reference station by using the Centimeter Level Augmentation Service (CLAS) of the Japanese Quasi-Zenith Satellite System (QZSS). Although CLAS is capable of centimeter-level position estimation, its positioning accuracy and ambiguity fix rate are lower than those of RTK-GNSS. To solve this problem, we construct a state estimation method by factor graph optimization that combines CLAS positioning and moving-base RTK-GNSS between multiple GNSS antennas. Evaluation tests under real-world environments have shown that the proposed method can estimate the state of dump trucks with the same accuracy as conventional RTK-GNSS, but does not require a GNSS reference station.


[516] 2506.02878

CoT is Not True Reasoning, It Is Just a Tight Constraint to Imitate: A Theory Perspective

Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes. Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes.


[517] 2506.02882

GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation

Improving robustness of the Segment Anything Model (SAM) to input degradations is critical for its deployment in high-stakes applications such as autonomous driving and robotics. Our approach to this challenge prioritizes three key aspects: first, parameter efficiency to maintain the inherent generalization capability of SAM; second, fine-grained and input-aware robustification to precisely address the input corruption; and third, adherence to standard training protocols for ease of training. To this end, we propose gated-rank adaptation (GaRA). GaRA introduces lightweight adapters into intermediate layers of the frozen SAM, where each adapter dynamically adjusts the effective rank of its weight matrix based on the input by selectively activating (rank-1) components of the matrix using a learned gating module. This adjustment enables fine-grained and input-aware robustification without compromising the generalization capability of SAM. Our model, GaRA-SAM, significantly outperforms prior work on all robust segmentation benchmarks. In particular, it surpasses the previous best IoU score by up to 21.3\%p on ACDC, a challenging real corrupted image dataset.


[518] 2506.02883

A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks

Autonomous agents operating in domains such as robotics or video game simulations must adapt to changing tasks without forgetting about the previous ones. This process called Continual Reinforcement Learning poses non-trivial difficulties, from preventing catastrophic forgetting to ensuring the scalability of the approaches considered. Building on recent advances, we introduce a benchmark providing a suite of video-game navigation scenarios, thus filling a gap in the literature and capturing key challenges : catastrophic forgetting, task adaptation, and memory efficiency. We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms, including state-of-the-art baselines. Our benchmark is designed not only to foster reproducible research and to accelerate progress in continual reinforcement learning for gaming, but also to provide a reproducible framework for production pipelines -- helping practitioners to identify and to apply effective approaches.


[519] 2506.02887

Overcoming Challenges of Partial Client Participation in Federated Learning : A Comprehensive Review

Federated Learning (FL) is a learning mechanism that falls under the distributed training umbrella, which collaboratively trains a shared global model without disclosing the raw data from different clients. This paper presents an extensive survey on the impact of partial client participation in federated learning. While much of the existing research focuses on addressing issues such as generalization, robustness, and fairness caused by data heterogeneity under the assumption of full client participation, limited attention has been given to the practical and theoretical challenges arising from partial client participation, which is common in real-world scenarios. This survey provides an in-depth review of existing FL methods designed to cope with partial client participation. We offer a comprehensive analysis supported by theoretical insights and empirical findings, along with a structured categorization of these methods, highlighting their respective advantages and disadvantages.


[520] 2506.02890

Scaling Fine-Grained MoE Beyond 50B Parameters: Empirical Evaluation and Practical Insights

Mixture of Experts (MoE) architectures have emerged as pivotal for scaling Large Language Models (LLMs) efficiently. Fine-grained MoE approaches - utilizing more numerous, smaller experts - have demonstrated potential in improving model convergence and quality. This work proposes a set of training recipes and provides a comprehensive empirical evaluation of fine-grained MoE, directly comparing its scaling properties against standard MoE configurations for models with up to 56B total (17B active) parameters. We investigate convergence speed, model performance on downstream benchmarks, and practical training considerations across various setups. Overall, at the largest scale we show that fine-grained MoE achieves better validation loss and higher accuracy across a set of downstream benchmarks. This study offers empirical grounding and practical insights for leveraging fine-grained MoE in the development of future large-scale models.


[521] 2506.02891

OpenFace 3.0: A Lightweight Multitask System for Comprehensive Facial Behavior Analysis

In recent years, there has been increasing interest in automatic facial behavior analysis systems from computing communities such as vision, multimodal interaction, robotics, and affective computing. Building upon the widespread utility of prior open-source facial analysis systems, we introduce OpenFace 3.0, an open-source toolkit capable of facial landmark detection, facial action unit detection, eye-gaze estimation, and facial emotion recognition. OpenFace 3.0 contributes a lightweight unified model for facial analysis, trained with a multi-task architecture across diverse populations, head poses, lighting conditions, video resolutions, and facial analysis tasks. By leveraging the benefits of parameter sharing through a unified model and training paradigm, OpenFace 3.0 exhibits improvements in prediction performance, inference speed, and memory efficiency over similar toolkits and rivals state-of-the-art models. OpenFace 3.0 can be installed and run with a single line of code and operate in real-time without specialized hardware. OpenFace 3.0 code for training models and running the system is freely available for research purposes and supports contributions from the community.


[522] 2506.02892

When Blockchain Meets Crawlers: Real-time Market Analytics in Solana NFT Markets

In this paper, we design and implement a web crawler system based on the Solana blockchain for the automated collection and analysis of market data for popular non-fungible tokens (NFTs) on the chain. Firstly, the basic information and transaction data of popular NFTs on the Solana chain are collected using the Selenium tool. Secondly, the transaction records of the Magic Eden trading market are thoroughly analyzed by combining them with the Scrapy framework to examine the price fluctuations and market trends of NFTs. In terms of data analysis, this paper employs time series analysis to examine the dynamics of the NFT market and seeks to identify potential price patterns. In addition, the risk and return of different NFTs are evaluated using the mean-variance optimization model, taking into account their characteristics, such as illiquidity and market volatility, to provide investors with data-driven portfolio recommendations. The experimental results show that the combination of crawler technology and financial analytics can effectively analyze NFT data on the Solana blockchain and provide timely market insights and investment strategies. This study provides a reference for further exploration in the field of digital currencies.


[523] 2506.02893

Dense Match Summarization for Faster Two-view Estimation

In this paper, we speed up robust two-view relative pose from dense correspondences. Previous work has shown that dense matchers can significantly improve both accuracy and robustness in the resulting pose. However, the large number of matches comes with a significantly increased runtime during robust estimation in RANSAC. To avoid this, we propose an efficient match summarization scheme which provides comparable accuracy to using the full set of dense matches, while having 10-100x faster runtime. We validate our approach on standard benchmark datasets together with multiple state-of-the-art dense matchers.


[524] 2506.02894

A Multi-Dialectal Dataset for German Dialect ASR and Dialect-to-Standard Speech Translation

Although Germany has a diverse landscape of dialects, they are underrepresented in current automatic speech recognition (ASR) research. To enable studies of how robust models are towards dialectal variation, we present Betthupferl, an evaluation dataset containing four hours of read speech in three dialect groups spoken in Southeast Germany (Franconian, Bavarian, Alemannic), and half an hour of Standard German speech. We provide both dialectal and Standard German transcriptions, and analyze the linguistic differences between them. We benchmark several multilingual state-of-the-art ASR models on speech translation into Standard German, and find differences between how much the output resembles the dialectal vs. standardized transcriptions. Qualitative error analyses of the best ASR model reveal that it sometimes normalizes grammatical differences, but often stays closer to the dialectal constructions.


[525] 2506.02895

VolTex: Food Volume Estimation using Text-Guided Segmentation and Neural Surface Reconstruction

Accurate food volume estimation is crucial for dietary monitoring, medical nutrition management, and food intake analysis. Existing 3D Food Volume estimation methods accurately compute the food volume but lack for food portions selection. We present VolTex, a framework that improves \change{the food object selection} in food volume estimation. Allowing users to specify a target food item via text input to be segmented, our method enables the precise selection of specific food objects in real-world scenes. The segmented object is then reconstructed using the Neural Surface Reconstruction method to generate high-fidelity 3D meshes for volume computation. Extensive evaluations on the MetaFood3D dataset demonstrate the effectiveness of our approach in isolating and reconstructing food items for accurate volume estimation. The source code is accessible at https://github.com/GCVCG/VolTex.


[526] 2506.02896

FlySearch: Exploring how vision-language models explore

The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.


[527] 2506.02897

Sociodynamics-inspired Adaptive Coalition and Client Selection in Federated Learning

Federated Learning (FL) enables privacy-preserving collaborative model training, yet its practical strength is often undermined by client data heterogeneity, which severely degrades model performance. This paper proposes that data heterogeneity across clients' distributions can be effectively addressed by adopting an approach inspired by opinion dynamics over temporal social networks. We introduce \shortname (Federated Coalition Variance Reduction with Boltzmann Exploration), a variance-reducing selection algorithm in which (1) clients dynamically organize into non-overlapping clusters based on asymptotic agreements, and (2) from each cluster, one client is selected to minimize the expected variance of its model update. Our experiments show that in heterogeneous scenarios our algorithm outperforms existing FL algorithms, yielding more accurate results and faster convergence, validating the efficacy of our approach.


[528] 2506.02899

IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator

We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations.


[529] 2506.02903

Breaking Symmetries with Involutions

Symmetry breaking for graphs and other combinatorial objects is notoriously hard. On the one hand, complete symmetry breaks are exponential in size. On the other hand, current, state-of-the-art, partial symmetry breaks are often considered too weak to be of practical use. Recently, the concept of graph patterns has been introduced and provides a concise representation for (large) sets of non-canonical graphs, i.e.\ graphs that are not lex-leaders and can be excluded from search. In particular, four (specific) graph patterns apply to identify about 3/4 of the set of all non-canonical graphs. Taking this approach further we discover that graph patterns that derive from permutations that are involutions play an important role in the construction of symmetry breaks for graphs. We take advantage of this to guide the construction of partial and complete symmetry breaking constraints based on graph patterns. The resulting constraints are small in size and strong in the number of symmetries they break.


[530] 2506.02911

Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning

Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.


[531] 2506.02914

Towards Auto-Annotation from Annotation Guidelines: A Benchmark through 3D LiDAR Detection

A crucial yet under-appreciated prerequisite in machine learning solutions for real-applications is data annotation: human annotators are hired to manually label data according to detailed, expert-crafted guidelines. This is often a laborious, tedious, and costly process. To study methods for facilitating data annotation, we introduce a new benchmark AnnoGuide: Auto-Annotation from Annotation Guidelines. It aims to evaluate automated methods for data annotation directly from expert-defined annotation guidelines, eliminating the need for manual labeling. As a case study, we repurpose the well-established nuScenes dataset, commonly used in autonomous driving research, which provides comprehensive annotation guidelines for labeling LiDAR point clouds with 3D cuboids across 18 object classes. These guidelines include a few visual examples and textual descriptions, but no labeled 3D cuboids in LiDAR data, making this a novel task of multi-modal few-shot 3D detection without 3D annotations. The advances of powerful foundation models (FMs) make AnnoGuide especially timely, as FMs offer promising tools to tackle its challenges. We employ a conceptually straightforward pipeline that (1) utilizes open-source FMs for object detection and segmentation in RGB images, (2) projects 2D detections into 3D using known camera poses, and (3) clusters LiDAR points within the frustum of each 2D detection to generate a 3D cuboid. Starting with a non-learned solution that leverages off-the-shelf FMs, we progressively refine key components and achieve significant performance improvements, boosting 3D detection mAP from 12.1 to 21.9! Nevertheless, our results highlight that AnnoGuide remains an open and challenging problem, underscoring the urgent need for developing LiDAR-based FMs. We release our code and models at GitHub: https://annoguide.github.io/annoguide3Dbenchmark


[532] 2506.02916

MMM4Rec: An Transfer-Efficient Framework for Multi-modal Sequential Recommendation

Sequential Recommendation (SR) systems model user preferences by analyzing interaction histories. Although transferable multi-modal SR architectures demonstrate superior performance compared to traditional ID-based approaches, current methods incur substantial fine-tuning costs when adapting to new domains due to complex optimization requirements and negative transfer effects - a significant deployment bottleneck that hinders engineers from efficiently repurposing pre-trained models for novel application scenarios with minimal tuning overhead. We propose MMM4Rec (Multi-Modal Mamba for Sequential Recommendation), a novel multi-modal SR framework that incorporates a dedicated algebraic constraint mechanism for efficient transfer learning. By combining State Space Duality (SSD)'s temporal decay properties with a time-aware modeling design, our model dynamically prioritizes key modality information, overcoming limitations of Transformer-based approaches. The framework implements a constrained two-stage process: (1) sequence-level cross-modal alignment via shared projection matrices, followed by (2) temporal fusion using our newly designed Cross-SSD module and dual-channel Fourier adaptive filtering. This architecture maintains semantic consistency while suppressing noise propagation.MMM4Rec achieves rapid fine-tuning convergence with simple cross-entropy loss, significantly improving multi-modal recommendation accuracy while maintaining strong transferability. Extensive experiments demonstrate MMM4Rec's state-of-the-art performance, achieving the maximum 31.78% NDCG@10 improvement over existing models and exhibiting 10 times faster average convergence speed when transferring to large-scale downstream datasets.


[533] 2506.02917

Text-guided Generation of Efficient Personalized Inspection Plans

We propose a training-free, Vision-Language Model (VLM)-guided approach for efficiently generating trajectories to facilitate target inspection planning based on text descriptions. Unlike existing Vision-and-Language Navigation (VLN) methods designed for general agents in unknown environments, our approach specifically targets the efficient inspection of known scenes, with widespread applications in fields such as medical, marine, and civil engineering. Leveraging VLMs, our method first extracts points of interest (POIs) from the text description, then identifies a set of waypoints from which POIs are both salient and align with the spatial constraints defined in the prompt. Next, we interact with the VLM to iteratively refine the trajectory, preserving the visibility and prominence of the POIs. Further, we solve a Traveling Salesman Problem (TSP) to find the most efficient visitation order that satisfies the order constraint implied in the text description. Finally, we apply trajectory optimization to generate smooth, executable inspection paths for aerial and underwater vehicles. We have evaluated our method across a series of both handcrafted and real-world scanned environments. The results demonstrate that our approach effectively generates inspection planning trajectories that adhere to user instructions.


[534] 2506.02918

Sample, Predict, then Proceed: Self-Verification Sampling for Tool Use of LLMs

Tool use in stateful environments presents unique challenges for large language models (LLMs), where existing test-time compute strategies relying on repeated trials in the environment are impractical. We propose dynamics modelling (DyMo), a method that augments LLMs with a state prediction capability alongside function calling during post-training. This enables LLMs to predict the future states of their actions through an internal environment model. On the Berkeley Function Calling Leaderboard V2, DyMo improves success rates and significantly reduces hallucinations. We further integrate the internal environment model into self-verification sampling (SVS), and show that this substantially improves pass^k over number of trials k, and allows the model to refuse unreliable outputs. Together, DyMo and SVS greatly enhance the effectiveness and reliability of LLMs for tool use. We believe this work charts a path towards scalable planning RL methods for LLM inference without repeatedly querying the oracle environment.


[535] 2506.02921

A Controllable Examination for Long-Context Language Models

Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world and synthetic tasks. Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks are too complex to interpret or characterize and are susceptible to data contamination. In contrast, synthetic tasks often adopt the needle-in-the-haystack (NIAH) format, wherein a lack of coherence between the "needle" and the "haystack" compromises their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: $\textit{seamless context}$, $\textit{controllable setting}$, and $\textit{sound evaluation}$. This study introduces $\textbf{LongBioBench}$, a novel benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of $\textit{understanding}$, $\textit{reasoning}$, and $\textit{trustworthiness}$. Our experimental evaluation, which includes $\textbf{18}$ LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model long-context capabilities. Moreover, we also reveal that long-context continual pretraining primarily adjusts RoPE embedding to accommodate extended context lengths. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.


[536] 2506.02922

Functionality Assessment Framework for Autonomous Driving Systems using Subjective Networks

In complex autonomous driving (AD) software systems, the functioning of each system part is crucial for safe operation. By measuring the current functionality or operability of individual components an isolated glimpse into the system is given. Literature provides several of these detached assessments, often in the form of safety or performance measures. But dependencies, redundancies, error propagation and conflicting functionality statements do not allow for easy combination of these measures into a big picture of the functioning of the entire AD stack. Data is processed and exchanged between different components, each of which can fail, making an overall statement challenging. The lack of functionality assessment frameworks that tackle these problems underlines this complexity. This article presents a novel framework for inferring an overall functionality statement for complex component based systems by considering their dependencies, redundancies, error propagation paths and the assessments of individual components. Our framework first incorporates a comprehensive conversion to an assessment representation of the system. The representation is based on Subjective Networks (SNs) that allow for easy identification of faulty system parts. Second, the framework offers a flexible method for computing the system's functionality while dealing with contradicting assessments about the same component and dependencies, as well as redundancies, of the system. We discuss the framework's capabilities on real-life data of our AD stack with assessments of various components.


[537] 2506.02923

The Limits of Predicting Agents from Behaviour

As the complexity of AI systems and their interactions with the world increases, generating explanations for their behaviour is important for safely deploying AI. For agents, the most natural abstractions for predicting behaviour attribute beliefs, intentions and goals to the system. If an agent behaves as if it has a certain goal or belief, then we can make reasonable predictions about how it will behave in novel situations, including those where comprehensive safety evaluations are untenable. How well can we infer an agent's beliefs from their behaviour, and how reliably can these inferred beliefs predict the agent's behaviour in novel situations? We provide a precise answer to this question under the assumption that the agent's behaviour is guided by a world model. Our contribution is the derivation of novel bounds on the agent's behaviour in new (unseen) deployment environments, which represent a theoretical limit for predicting intentional agents from behavioural data alone. We discuss the implications of these results for several research areas including fairness and safety.


[538] 2506.02924

INESC-ID @ eRisk 2025: Exploring Fine-Tuned, Similarity-Based, and Prompt-Based Approaches to Depression Symptom Identification

In this work, we describe our team's approach to eRisk's 2025 Task 1: Search for Symptoms of Depression. Given a set of sentences and the Beck's Depression Inventory - II (BDI) questionnaire, participants were tasked with submitting up to 1,000 sentences per depression symptom in the BDI, sorted by relevance. Participant submissions were evaluated according to standard Information Retrieval (IR) metrics, including Average Precision (AP) and R-Precision (R-PREC). The provided training data, however, consisted of sentences labeled as to whether a given sentence was relevant or not w.r.t. one of BDI's symptoms. Due to this labeling limitation, we framed our development as a binary classification task for each BDI symptom, and evaluated accordingly. To that end, we split the available labeled data into training and validation sets, and explored foundation model fine-tuning, sentence similarity, Large Language Model (LLM) prompting, and ensemble techniques. The validation results revealed that fine-tuning foundation models yielded the best performance, particularly when enhanced with synthetic data to mitigate class imbalance. We also observed that the optimal approach varied by symptom. Based on these insights, we devised five independent test runs, two of which used ensemble methods. These runs achieved the highest scores in the official IR evaluation, outperforming submissions from 16 other teams.


[539] 2506.02929

Large Processor Chip Model

Computer System Architecture serves as a crucial bridge between software applications and the underlying hardware, encompassing components like compilers, CPUs, coprocessors, and RTL designs. Its development, from early mainframes to modern domain-specific architectures, has been driven by rising computational demands and advancements in semiconductor technology. However, traditional paradigms in computer system architecture design are confronting significant challenges, including a reliance on manual expertise, fragmented optimization across software and hardware layers, and high costs associated with exploring expansive design spaces. While automated methods leveraging optimization algorithms and machine learning have improved efficiency, they remain constrained by a single-stage focus, limited data availability, and a lack of comprehensive human domain knowledge. The emergence of large language models offers transformative opportunities for the design of computer system architecture. By leveraging the capabilities of LLMs in areas such as code generation, data analysis, and performance modeling, the traditional manual design process can be transitioned to a machine-based automated design approach. To harness this potential, we present the Large Processor Chip Model (LPCM), an LLM-driven framework aimed at achieving end-to-end automated computer architecture design. The LPCM is structured into three levels: Human-Centric; Agent-Orchestrated; and Model-Governed. This paper utilizes 3D Gaussian Splatting as a representative workload and employs the concept of software-hardware collaborative design to examine the implementation of the LPCM at Level 1, demonstrating the effectiveness of the proposed approach. Furthermore, this paper provides an in-depth discussion on the pathway to implementing Level 2 and Level 3 of the LPCM, along with an analysis of the existing challenges.


[540] 2506.02931

ThinkTank: A Framework for Generalizing Domain-Specific AI Agent Systems into Universal Collaborative Intelligence Platforms

This paper presents ThinkTank, a comprehensive and scalable framework designed to transform specialized AI agent systems into versatile collaborative intelligence platforms capable of supporting complex problem-solving across diverse domains. ThinkTank systematically generalizes agent roles, meeting structures, and knowledge integration mechanisms by adapting proven scientific collaboration methodologies. Through role abstraction, generalization of meeting types for iterative collaboration, and the integration of Retrieval-Augmented Generation with advanced knowledge storage, the framework facilitates expertise creation and robust knowledge sharing. ThinkTank enables organizations to leverage collaborative AI for knowledge-intensive tasks while ensuring data privacy and security through local deployment, utilizing frameworks like Ollama with models such as Llama3.1. The ThinkTank framework is designed to deliver significant advantages in cost-effectiveness, data security, scalability, and competitive positioning compared to cloud-based alternatives, establishing it as a universal platform for AI-driven collaborative problem-solving. The ThinkTank code is available at https://github.com/taugroup/ThinkTank


[541] 2506.02932

Online Performance Assessment of Multi-Source-Localization for Autonomous Driving Systems Using Subjective Logic

Autonomous driving (AD) relies heavily on high precision localization as a crucial part of all driving related software components. The precise positioning is necessary for the utilization of high-definition maps, prediction of other road participants and the controlling of the vehicle itself. Due to this reason, the localization is absolutely safety relevant. Typical errors of the localization systems, which are long term drifts, jumps and false localization, that must be detected to enhance safety. An online assessment and evaluation of the current localization performance is a challenging task, which is usually done by Kalman filtering for single localization systems. Current autonomous vehicles cope with these challenges by fusing multiple individual localization methods into an overall state estimation. Such approaches need expert knowledge for a competitive performance in challenging environments. This expert knowledge is based on the trust and the prioritization of distinct localization methods in respect to the current situation and environment. This work presents a novel online performance assessment technique of multiple localization systems by using subjective logic (SL). In our research vehicles, three different systems for localization are available, namely odometry-, Simultaneous Localization And Mapping (SLAM)- and Global Navigation Satellite System (GNSS)-based. Our performance assessment models the behavior of these three localization systems individually and puts them into reference of each other. The experiments were carried out using the CoCar NextGen, which is based on an Audi A6. The vehicle's localization system was evaluated under challenging conditions, specifically within a tunnel environment. The overall evaluation shows the feasibility of our approach.


[542] 2506.02933

From Theory to Practice with RAVEN-UCB: Addressing Non-Stationarity in Multi-Armed Bandits through Variance Adaptation

The Multi-Armed Bandit (MAB) problem is challenging in non-stationary environments where reward distributions evolve dynamically. We introduce RAVEN-UCB, a novel algorithm that combines theoretical rigor with practical efficiency via variance-aware adaptation. It achieves tighter regret bounds than UCB1 and UCB-V, with gap-dependent regret of order $K \sigma_{\max}^2 \log T / \Delta$ and gap-independent regret of order $\sqrt{K T \log T}$. RAVEN-UCB incorporates three innovations: (1) variance-driven exploration using $\sqrt{\hat{\sigma}_k^2 / (N_k + 1)}$ in confidence bounds, (2) adaptive control via $\alpha_t = \alpha_0 / \log(t + \epsilon)$, and (3) constant-time recursive updates for efficiency. Experiments across non-stationary patterns - distributional changes, periodic shifts, and temporary fluctuations - in synthetic and logistics scenarios demonstrate its superiority over state-of-the-art baselines, confirming theoretical and practical robustness.


[543] 2506.02935

MTL-KD: Multi-Task Learning Via Knowledge Distillation for Generalizable Neural Vehicle Routing Solver

Multi-Task Learning (MTL) in Neural Combinatorial Optimization (NCO) is a promising approach to train a unified model capable of solving multiple Vehicle Routing Problem (VRP) variants. However, existing Reinforcement Learning (RL)-based multi-task methods can only train light decoder models on small-scale problems, exhibiting limited generalization ability when solving large-scale problems. To overcome this limitation, this work introduces a novel multi-task learning method driven by knowledge distillation (MTL-KD), which enables the efficient training of heavy decoder models with strong generalization ability. The proposed MTL-KD method transfers policy knowledge from multiple distinct RL-based single-task models to a single heavy decoder model, facilitating label-free training and effectively improving the model's generalization ability across diverse tasks. In addition, we introduce a flexible inference strategy termed Random Reordering Re-Construction (R3C), which is specifically adapted for diverse VRP tasks and further boosts the performance of the multi-task model. Experimental results on 6 seen and 10 unseen VRP variants with up to 1000 nodes indicate that our proposed method consistently achieves superior performance on both uniform and real-world benchmarks, demonstrating robust generalization abilities.


[544] 2506.02938

MIND: Material Interface Generation from UDFs for Non-Manifold Surface Reconstruction

Unsigned distance fields (UDFs) are widely used in 3D deep learning due to their ability to represent shapes with arbitrary topology. While prior work has largely focused on learning UDFs from point clouds or multi-view images, extracting meshes from UDFs remains challenging, as the learned fields rarely attain exact zero distances. A common workaround is to reconstruct signed distance fields (SDFs) locally from UDFs to enable surface extraction via Marching Cubes. However, this often introduces topological artifacts such as holes or spurious components. Moreover, local SDFs are inherently incapable of representing non-manifold geometry, leading to complete failure in such cases. To address this gap, we propose MIND (Material Interface from Non-manifold Distance fields), a novel algorithm for generating material interfaces directly from UDFs, enabling non-manifold mesh extraction from a global perspective. The core of our method lies in deriving a meaningful spatial partitioning from the UDF, where the target surface emerges as the interface between distinct regions. We begin by computing a two-signed local field to distinguish the two sides of manifold patches, and then extend this to a multi-labeled global field capable of separating all sides of a non-manifold structure. By combining this multi-labeled field with the input UDF, we construct material interfaces that support non-manifold mesh extraction via a multi-labeled Marching Cubes algorithm. Extensive experiments on UDFs generated from diverse data sources, including point cloud reconstruction, multi-view reconstruction, and medial axis transforms, demonstrate that our approach robustly handles complex non-manifold surfaces and significantly outperforms existing methods.


[545] 2506.02939

QKV Projections Require a Fraction of Their Memory

The Multi-Head Attention mechanism is central to LLM operation, and multiple works target its compute and memory efficiency during training. While most works focus on approximating the scaled dot product, the memory consumption of the linear projections that compute the $Q$, $K$, and $V$ tensors from the input $x$ is often overlooked. To address this, we propose Point-Approximate Matrix Multiplication (PAMM), a novel tensor compression technique that reduces memory consumption of the $Q,K,V$ projections in attention layers by a factor of up to $\times 512$, effectively erasing their memory footprint, while achieving similar or better final perplexity. PAMM is fully composable with efficient attention techniques such as FlashAttention, making it a practical and complementary method for memory-efficient LLM training.


[546] 2506.02940

Memory-Efficient Split Federated Learning for LLM Fine-Tuning on Heterogeneous Mobile Devices

In this paper, we propose an edge-assisted split federated learning framework to facilitate large language model (LLM) fine-tuning on heterogeneous mobile devices while alleviating memory pressures on both mobile devices and the edge server. Specifically, mobile devices perform low-rank adaptation (LoRA) fine-tuning on only a subset of lower layers of the pre-trained LLM, tailored to their individual capacities. On the server, a full LLM is maintained, and the corresponding LoRA modules are selectively fine-tuned in a sequential manner for each device. To further enhance training efficiency, we propose a server-side training scheduling method that optimizes the processing order of devices for accelerating fine-tuning. Extensive experiments demonstrate that compared to the baselines, our scheme can reduce 79\% memory footprint and 6\% training time while achieving comparable performance.


[547] 2506.02942

An Algorithmic Pipeline for GDPR-Compliant Healthcare Data Anonymisation: Moving Toward Standardisation

High-quality real-world data (RWD) is essential for healthcare but must be transformed to comply with the General Data Protection Regulation (GDPR). GDPRs broad definitions of quasi-identifiers (QIDs) and sensitive attributes (SAs) complicate implementation. We aim to standardise RWD anonymisation for GDPR compliance while preserving data utility by introducing an algorithmic method to identify QIDs and SAs and evaluate utility in anonymised datasets. We conducted a systematic literature review via ProQuest and PubMed to inform a three-stage anonymisation pipeline: identification, de-identification, and quasi-identifier dimension evaluation. The pipeline was implemented, validated, and tested on two mock RWD datasets (500 and 1000 rows). Privacy was assessed using k-anonymity, l-diversity, and t-closeness; utility was measured by non-uniform entropy (NUE). The review yielded two studies on QID/SA identification and five on utility metrics. Applying the pipeline, attributes were classified by re-identification risk using alpha and beta thresholds (25 percent/1 percent for 500 rows; 10 percent/1 percent for 1000 rows). Privacy metrics improved k-anonymity from 1 to 4 (500 rows) and 1 to 110 (1000 rows). NUE scores were 69.26 percent and 69.05 percent, respectively, indicating consistent utility despite varying privacy gains. We present a GDPR-compliant anonymisation pipeline for healthcare RWD that provides a reproducible approach to QID/SA identification and utility evaluation; publicly available code promotes standardisation, data privacy, and open science.


[548] 2506.02943

A Multi-agent LLM-based JUit Test Generation with Strong Oracles

Unit testing plays a critical role in ensuring software correctness. However, writing unit tests manually is laborious, especially for strong typed languages like Java, motivating the need for automated approaches. Traditional methods primarily rely on search-based or randomized algorithms to generate tests that achieve high code coverage and produce regression oracles, which are derived from the program's current behavior rather than its intended functionality. Recent advances in large language models (LLMs) have enabled oracle generation from natural language descriptions. However, existing LLM-based methods often require LLM fine-tuning or rely on external tools such as EvoSuite for test prefix generation. In this work, we propose CANDOR, a novel end-to-end, prompt-based LLM framework for automated JUnit test generation. CANDOR orchestrates multiple specialized LLM agents to generate JUnit tests, including both high-quality test prefixes and accurate oracles. To mitigate the notorious hallucinations in LLMs, we introduce a novel strategy that engages multiple reasoning LLMs in a panel discussion and generate accurate oracles based on consensus. Additionally, to reduce the verbosity of reasoning LLMs' outputs, we propose a novel dual-LLM pipeline to produce concise and structured oracle evaluations. Our experiments on the HumanEvalJava and LeetCodeJava datasets show that CANDOR can generate accurate oracles and is slightly better than EvoSuite in generating tests with high line coverage and clearly superior in terms of mutation score. Moreover, CANDOR significantly outperforms the state-of-the-art, prompt-based test generator LLM-Empirical, achieving improvements of 15.8 to 25.1 percentage points in oracle correctness on both correct and faulty source code. Ablation studies confirm the critical contributions of key agents in improving test prefix quality and oracle accuracy.


[549] 2506.02945

Quantitative LLM Judges

LLM-as-a-judge is a framework in which a large language model (LLM) automatically evaluates the output of another LLM. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to human scores in a given domain using regression models. The models are trained to improve the score of the original judge by using the judge's textual evaluation and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in most applications of our work. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can effectively improve the predictive power of existing judges through post-hoc modeling.


[550] 2506.02946

Abstract Counterfactuals for Language Model Agents

Counterfactual inference is a powerful tool for analysing and evaluating autonomous agents, but its application to language model (LM) agents remains challenging. Existing work on counterfactuals in LMs has primarily focused on token-level counterfactuals, which are often inadequate for LM agents due to their open-ended action spaces. Unlike traditional agents with fixed, clearly defined action spaces, the actions of LM agents are often implicit in the strings they output, making their action spaces difficult to define and interpret. Furthermore, the meanings of individual tokens can shift depending on the context, adding complexity to token-level reasoning and sometimes leading to biased or meaningless counterfactuals. We introduce \emph{Abstract Counterfactuals}, a framework that emphasises high-level characteristics of actions and interactions within an environment, enabling counterfactual reasoning tailored to user-relevant features. Our experiments demonstrate that the approach produces consistent and meaningful counterfactuals while minimising the undesired side effects of token-level methods. We conduct experiments on text-based games and counterfactual text generation, while considering both token-level and latent-space interventions.


[551] 2506.02947

Real and finite field versions of Chebotarev's theorem

Chebotarev's theorem on roots of unity states that all minors of the Fourier matrix of prime size are non-vanishing. This result has been rediscovered several times and proved via different techniques. We follow the proof of Evans and Isaacs and generalize the original result to a real version and a version over finite fields. For the latter, we are able to remove an order condition between the characteristic of the field and the size of the matrix as well as decrease a sufficient lower bound on the characteristic by Zhang considerably. Direct applications include a specific real phase retrieval problem as well as a recent result for Riesz bases of exponentials.


[552] 2506.02949

Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing

Knowledge Tracing (KT) involves monitoring the changes in a student's knowledge over time by analyzing their past responses, with the goal of predicting future performance. However, most existing methods primarily focus on feature enhancement, while overlooking the deficiencies in cognitive representation and the ability to express cognition-issues often caused by interference from non-cognitive factors such as slipping and guessing. This limitation hampers the ability to capture the continuity and coherence of the student's cognitive process. As a result, many methods may introduce more prediction bias and modeling costs due to their inability to maintain cognitive continuity and coherence. Based on the above discussion, we propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model. This model em ploys a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them. This approach ensures that the cognitive representation aligns with the student's cognitive patterns, maintaining overall continuity and coherence. As a result, it provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states. Additionally, the CRDP-KT model performs partitioned optimization of cognitive representations to enhance the reliability of the optimization process. Furthermore, it improves its ability to express the student's cognition through a weighted fusion of optimized record representations and re lationships learned from a bipartite graph. Finally, experiments conducted on three public datasets validate the effectiveness of the proposed CRDP-KT model.


[553] 2506.02950

Interaction Field Matching: Overcoming Limitations of Electrostatic Models

Electrostatic field matching (EFM) has recently appeared as a novel physics-inspired paradigm for data generation and transfer using the idea of an electric capacitor. However, it requires modeling electrostatic fields using neural networks, which is non-trivial because of the necessity to take into account the complex field outside the capacitor plates. In this paper, we propose Interaction Field Matching (IFM), a generalization of EFM which allows using general interaction fields beyond the electrostatic one. Furthermore, inspired by strong interactions between quarks and antiquarks in physics, we design a particular interaction field realization which solves the problems which arise when modeling electrostatic fields in EFM. We show the performance on a series of toy and image data transfer problems.


[554] 2506.02951

Adaptive Graph Pruning for Multi-Agent Communication

Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks, especially when enhanced through collaborative communication. However, current methods often rely on a fixed number of agents and static communication structures, limiting their ability to adapt to varying task complexities. In this paper, we propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework that jointly optimizes agent quantity (hard-pruning) and communication topology (soft-pruning). Specifically, our method employs a two-stage training strategy: firstly, independently training soft-pruning networks for different agent quantities to determine optimal agent-quantity-specific complete graphs and positional masks across specific tasks; and then jointly optimizing hard-pruning and soft-pruning within a maximum complete graph to dynamically configure the number of agents and their communication topologies per task. Extensive experiments demonstrate that our approach is: (1) High-performing, achieving state-of-the-art results across six benchmarks and consistently generalizes across multiple mainstream LLM architectures, with a increase in performance of $2.58\%\sim 9.84\%$; (2) Task-adaptive, dynamically constructing optimized communication topologies tailored to specific tasks, with an extremely high performance in all three task categories (general reasoning, mathematical reasoning, and code generation); (3) Token-economical, having fewer training steps and token consumption at the same time, with a decrease in token consumption of $90\%+$; and (4) Training-efficient, achieving high performance with very few training steps compared with other methods. The performance will surpass the existing baselines after about ten steps of training under six benchmarks.


[555] 2506.02952

Upper bounds on the theta function of random graphs

The theta function of Lovasz is a graph parameter that can be computed up to arbitrary precision in polynomial time. It plays a key role in algorithms that approximate graph parameters such as maximum independent set, maximum clique and chromatic number, or even compute them exactly in some models of random and semi-random graphs. For Erdos-Renyi random $G_{n,1/2}$ graphs, the expected value of the theta function is known to be at most $2\sqrt{n}$ and at least $\sqrt{n}$. These bounds have not been improved in over 40 years. In this work, we introduce a new class of polynomial time computable graph parameters, where every parameter in this class is an upper bound on the theta function. We also present heuristic arguments for determining the expected values of parameters from this class in random graphs. The values suggested by these heuristic arguments are in agreement with results that we obtain experimentally, by sampling graphs at random and computing the value of the respective parameter. Based on parameters from this new class, we feel safe in conjecturing that for $G_{n,1/2}$, the expected value of the theta function is below $1.55 \sqrt{n}$. Our paper falls short of rigorously proving such an upper bound, because our analysis makes use of unproven assumptions.


[556] 2506.02954

Towards More Effective Fault Detection in LLM-Based Unit Test Generation

Unit tests play a vital role in uncovering potential faults in software. While tools like EvoSuite focus on maximizing code coverage, recent advances in large language models (LLMs) have shifted attention toward LLM-based test generation. However, code coverage metrics -- such as line and branch coverage -- remain overly emphasized in reported research, despite being weak indicators of a test suite's fault-detection capability. In contrast, \textit{mutation score} offers a more reliable and stringent measure, as demonstrated in our findings where some test suites achieve 100\% coverage but only 4\% mutation score. Although a few studies consider mutation score, the effectiveness of LLMs in killing mutants remains underexplored. In this paper, we propose MUTGEN, a mutation-guided, LLM-based test generation approach that incorporates mutation feedback directly into the prompt. Evaluated on 204 subjects from two benchmarks, MUTGEN significantly outperforms both EvoSuite and vanilla prompt-based strategies in terms of mutation score. Furthermore, MUTGEN introduces an iterative generation mechanism that pushes the limits of LLMs in killing additional mutants. Our study also provide insights into the limitations of LLM-based generation, analyzing the reasons for live and uncovered mutants, and the impact of different mutation operators on generation effectiveness.


[557] 2506.02955

UniConFlow: A Unified Constrained Generalization Framework for Certified Motion Planning with Flow Matching Models

Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance and dynamic consistency, which are often treated separately or only partially considered. This paper proposes UniConFlow, a unified flow matching (FM) based framework for trajectory generation that systematically incorporates both equality and inequality constraints. UniConFlow introduces a novel prescribed-time zeroing function to enhance flexibility during the inference process, allowing the model to adapt to varying task requirements. To ensure constraint satisfaction, particularly with respect to obstacle avoidance, admissible action range, and kinodynamic consistency, the guidance inputs to the FM model are derived through a quadratic programming formulation, which enables constraint-aware generation without requiring retraining or auxiliary controllers. We conduct mobile navigation and high-dimensional manipulation tasks, demonstrating improved safety and feasibility compared to state-of-the-art constrained generative planners. Project page is available at https://uniconflow.github.io.


[558] 2506.02959

HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring

The misuse of large language models (LLMs) poses potential risks, motivating the development of machine-generated text (MGT) detection. Existing literature primarily concentrates on binary, document-level detection, thereby neglecting texts that are composed jointly by human and LLM contributions. Hence, this paper explores the possibility of fine-grained MGT detection under human-AI coauthoring. We suggest fine-grained detectors can pave pathways toward coauthored text detection with a numeric AI ratio. Specifically, we propose a dataset, HACo-Det, which produces human-AI coauthored texts via an automatic pipeline with word-level attribution labels. We retrofit seven prevailing document-level detectors to generalize them to word-level detection. Then we evaluate these detectors on HACo-Det on both word- and sentence-level detection tasks. Empirical results show that metric-based methods struggle to conduct fine-grained detection with a 0.462 average F1 score, while finetuned models show superior performance and better generalization across domains. However, we argue that fine-grained co-authored text detection is far from solved. We further analyze factors influencing performance, e.g., context window, and highlight the limitations of current methods, pointing to potential avenues for improvement.


[559] 2506.02961

FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models

Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.


[560] 2506.02964

FORLA:Federated Object-centric Representation Learning with Slot Attention

Learning efficient visual representations across heterogeneous unlabeled datasets remains a central challenge in federated learning. Effective federated representations require features that are jointly informative across clients while disentangling domain-specific factors without supervision. We introduce FORLA, a novel framework for federated object-centric representation learning and feature adaptation across clients using unsupervised slot attention. At the core of our method is a shared feature adapter, trained collaboratively across clients to adapt features from foundation models, and a shared slot attention module that learns to reconstruct the adapted features. To optimize this adapter, we design a two-branch student-teacher architecture. In each client, a student decoder learns to reconstruct full features from foundation models, while a teacher decoder reconstructs their adapted, low-dimensional counterpart. The shared slot attention module bridges cross-domain learning by aligning object-level representations across clients. Experiments in multiple real-world datasets show that our framework not only outperforms centralized baselines on object discovery but also learns a compact, universal representation that generalizes well across domains. This work highlights federated slot attention as an effective tool for scalable, unsupervised visual representation learning from cross-domain data with distributed concepts.


[561] 2506.02965

Memory-Efficient and Privacy-Preserving Collaborative Training for Mixture-of-Experts LLMs

Mixture-of-Experts (MoE) has been gaining popularity due to its successful adaptation to large language models (LLMs). In this work, we introduce Privacy-preserving Collaborative Mixture-of-Experts (PC-MoE), which leverages the sparsity of the MoE architecture for memory-efficient decentralized collaborative LLM training, enabling multiple parties with limited GPU-memory and data resources to collectively train more capable LLMs than they could achieve individually. At the same time, this approach protects training data privacy of each participant by keeping training data, as well as parts of the forward pass signal and gradients locally within each party. By design, PC-MoE synergistically combines the strengths of distributed computation with strong confidentiality assurances. Unlike most privacy-preserving schemes, which pay for confidentiality with lower task accuracy, our framework breaks that trade-off: across seven popular LLM benchmarks, it almost matches (and sometimes exceeds) the performance and convergence rate of a fully centralized model, enjoys near 70% peak GPU RAM reduction, while being fully robust against reconstruction attacks.


[562] 2506.02966

Unpacking Graduate Students' Learning Experience with Generative AI Teaching Assistant in A Quantitative Methodology Course

The study was conducted in an Advanced Quantitative Research Methods course involving 20 graduate students. During the course, student inquiries made to the AI were recorded and coded using Bloom's taxonomy and the CLEAR framework. A series of independent sample t-tests and poisson regression analyses were employed to analyse the characteristics of different questions asked by students with different backgrounds. Post course interviews were conducted with 10 students to gain deeper insights into their perceptions. The findings revealed a U-shaped pattern in students' use of the AI assistant, with higher usage at the beginning and towards the end of the course, and a decrease in usage during the middle weeks. Most questions posed to the AI focused on knowledge and comprehension levels, with fewer questions involving deeper cognitive thinking. Students with a weaker mathematical foundation used the AI assistant more frequently, though their inquiries tended to lack explicit and logical structure compared to those with a strong mathematical foundation, who engaged less with the tool. These patterns suggest the need for targeted guidance to optimise the effectiveness of AI tools for students with varying levels of academic proficiency.


[563] 2506.02972

Computation- and Communication-Efficient Online FL for Resource-Constrained Aerial Vehicles

Privacy-preserving distributed machine learning (ML) and aerial connected vehicle (ACV)-assisted edge computing have drawn significant attention lately. Since the onboard sensors of ACVs can capture new data as they move along their trajectories, the continual arrival of such 'newly' sensed data leads to online learning and demands carefully crafting the trajectories. Besides, as typical ACVs are inherently resource-constrained, computation- and communication-efficient ML solutions are needed. Therefore, we propose a computation- and communication-efficient online aerial federated learning (2CEOAFL) algorithm to take the benefits of continual sensed data and limited onboard resources of the ACVs. In particular, considering independently owned ACVs act as selfish data collectors, we first model their trajectories according to their respective time-varying data distributions. We then propose a 2CEOAFL algorithm that allows the flying ACVs to (a) prune the received dense ML model to make it shallow, (b) train the pruned model, and (c) probabilistically quantize and offload their trained accumulated gradients to the central server (CS). Our extensive simulation results show that the proposed 2CEOAFL algorithm delivers comparable performances to its non-pruned and nonquantized, hence, computation- and communication-inefficient counterparts.


[564] 2506.02973

Expanding before Inferring: Enhancing Factuality in Large Language Models through Premature Layers Interpolation

Large Language Models (LLMs) demonstrate remarkable capabilities in text understanding and generation. However, their tendency to produce factually inconsistent outputs, commonly referred to as ''hallucinations'', remains a critical challenge. Existing approaches, such as retrieval-based and inference-time correction methods, primarily address this issue at the input or output level, often overlooking the intrinsic information refinement process and the role of premature layers. Meanwhile, alignment- and fine-tuning-based methods are resource-intensive. In this paper, we propose PLI (Premature Layers Interpolation), a novel, training-free, and plug-and-play intervention designed to enhance factuality. PLI mitigates hallucinations by inserting premature layers formed through mathematical interpolation with adjacent layers. Inspired by stable diffusion and sampling steps, PLI extends the depth of information processing and transmission in LLMs, improving factual coherence. Experiments on four publicly available datasets demonstrate that PLI effectively reduces hallucinations while outperforming existing baselines in most cases. Further analysis suggests that the success of layer interpolation is closely linked to LLMs' internal mechanisms. To promote reproducibility, we will release our code and data upon acceptance.


[565] 2506.02975

HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation

With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.


[566] 2506.02976

Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO AMD Progression Challenge

The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).


[567] 2506.02978

On the Robustness of Tabular Foundation Models: Test-Time Attacks and In-Context Defenses

Recent tabular Foundational Models (FM) such as TabPFN and TabICL, leverage in-context learning to achieve strong performance without gradient updates or fine-tuning. However, their robustness to adversarial manipulation remains largely unexplored. In this work, we present a comprehensive study of the adversarial vulnerabilities of tabular FM, focusing on both their fragility to targeted test-time attacks and their potential misuse as adversarial tools. We show on three benchmarks in finance, cybersecurity and healthcare, that small, structured perturbations to test inputs can significantly degrade prediction accuracy, even when training context remain fixed. Additionally, we demonstrate that tabular FM can be repurposed to generate transferable evasion to conventional models such as random forests and XGBoost, and on a lesser extent to deep tabular models. To improve tabular FM, we formulate the robustification problem as an optimization of the weights (adversarial fine-tuning), or the context (adversarial in-context learning). We introduce an in-context adversarial training strategy that incrementally replaces the context with adversarial perturbed instances, without updating model weights. Our approach improves robustness across multiple tabular benchmarks. Together, these findings position tabular FM as both a target and a source of adversarial threats, highlighting the urgent need for robust training and evaluation practices in this emerging paradigm.


[568] 2506.02979

Towards a Japanese Full-duplex Spoken Dialogue System

Full-duplex spoken dialogue systems, which can model simultaneous bidirectional features of human conversations such as speech overlaps and backchannels, have attracted significant attention recently. However, the study of full-duplex spoken dialogue systems for the Japanese language has been limited, and the research on their development in Japanese remains scarce. In this paper, we present the first publicly available full-duplex spoken dialogue model in Japanese, which is built upon Moshi, a full-duplex dialogue model in English. Our model is trained through a two-stage process: pre-training on a large-scale spoken dialogue data in Japanese, followed by fine-tuning on high-quality stereo spoken dialogue data. We further enhance the model's performance by incorporating synthetic dialogue data generated by a multi-stream text-to-speech system. Evaluation experiments demonstrate that the trained model outperforms Japanese baseline models in both naturalness and meaningfulness.


[569] 2506.02981

Astrophotography turbulence mitigation via generative models

Photography is the cornerstone of modern astronomical and space research. However, most astronomical images captured by ground-based telescopes suffer from atmospheric turbulence, resulting in degraded imaging quality. While multi-frame strategies like lucky imaging can mitigate some effects, they involve intensive data acquisition and complex manual processing. In this paper, we propose AstroDiff, a generative restoration method that leverages both the high-quality generative priors and restoration capabilities of diffusion models to mitigate atmospheric turbulence. Extensive experiments demonstrate that AstroDiff outperforms existing state-of-the-art learning-based methods in astronomical image turbulence mitigation, providing higher perceptual quality and better structural fidelity under severe turbulence conditions. Our code and additional results are available at https://web-six-kappa-66.vercel.app/


[570] 2506.02986

Implicit Regularization of the Deep Inverse Prior Trained with Inertia

Solving inverse problems with neural networks benefits from very few theoretical guarantees when it comes to the recovery guarantees. We provide in this work convergence and recovery guarantees for self-supervised neural networks applied to inverse problems, such as Deep Image/Inverse Prior, and trained with inertia featuring both viscous and geometric Hessian-driven dampings. We study both the continuous-time case, i.e., the trajectory of a dynamical system, and the discrete case leading to an inertial algorithm with an adaptive step-size. We show in the continuous-time case that the network can be trained with an optimal accelerated exponential convergence rate compared to the rate obtained with gradient flow. We also show that training a network with our inertial algorithm enjoys similar recovery guarantees though with a less sharp linear convergence rate.


[571] 2506.02987

Performance of leading large language models in May 2025 in Membership of the Royal College of General Practitioners-style examination questions: a cross-sectional analysis

Background: Large language models (LLMs) have demonstrated substantial potential to support clinical practice. Other than Chat GPT4 and its predecessors, few LLMs, especially those of the leading and more powerful reasoning model class, have been subjected to medical specialty examination questions, including in the domain of primary care. This paper aimed to test the capabilities of leading LLMs as of May 2025 (o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro) in primary care education, specifically in answering Member of the Royal College of General Practitioners (MRCGP) style examination questions. Methods: o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro were tasked to answer 100 randomly chosen multiple choice questions from the Royal College of General Practitioners GP SelfTest on 25 May 2025. Questions included textual information, laboratory results, and clinical images. Each model was prompted to answer as a GP in the UK and was provided with full question information. Each question was attempted once by each model. Responses were scored against correct answers provided by GP SelfTest. Results: The total score of o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro was 99.0%, 95.0%, 95.0%, and 95.0%, respectively. The average peer score for the same questions was 73.0%. Discussion: All models performed remarkably well, and all substantially exceeded the average performance of GPs and GP registrars who had answered the same questions. o3 demonstrated the best performance, while the performances of the other leading models were comparable with each other and were not substantially lower than that of o3. These findings strengthen the case for LLMs, particularly reasoning models, to support the delivery of primary care, especially those that have been specifically trained on primary care clinical data.


[572] 2506.02990

Adaptive Exploration in Lenia with Intrinsic Multi-Objective Ranking

Artificial life aims to understand the fundamental principles of biological life by creating computational models that exhibit life-like properties. Although artificial life systems show promise for simulating biological evolution, achieving open-endedness remains a central challenge. This work investigates mechanisms to promote exploration and unbounded innovation within evolving populations of Lenia continuous cellular automata by evaluating individuals against each other with respect to distinctiveness, population sparsity, and homeostatic regulation. Multi-objective ranking of these intrinsic fitness objectives encourages the perpetual selection of novel and explorative individuals in sparse regions of the descriptor space without restricting the scope of emergent behaviors. We present experiments demonstrating the effectiveness of our multi-objective approach and emphasize that intrinsic evolution allows diverse expressions of artificial life to emerge. We argue that adaptive exploration improves evolutionary dynamics and serves as an important step toward achieving open-ended evolution in artificial systems.


[573] 2506.02992

Mitigating Manipulation and Enhancing Persuasion: A Reflective Multi-Agent Approach for Legal Argument Generation

Large Language Models (LLMs) are increasingly explored for legal argument generation, yet they pose significant risks of manipulation through hallucination and ungrounded persuasion, and often fail to utilize provided factual bases effectively or abstain when arguments are untenable. This paper introduces a novel reflective multi-agent method designed to address these challenges in the context of legally compliant persuasion. Our approach employs specialized agents--a Factor Analyst and an Argument Polisher--in an iterative refinement process to generate 3-ply legal arguments (plaintiff, defendant, rebuttal). We evaluate Reflective Multi-Agent against single-agent, enhanced-prompt single-agent, and non-reflective multi-agent baselines using four diverse LLMs (GPT-4o, GPT-4o-mini, Llama-4-Maverick-17b-128e, Llama-4-Scout-17b-16e) across three legal scenarios: "arguable", "mismatched", and "non-arguable". Results demonstrate Reflective Multi-Agent's significant superiority in successful abstention (preventing generation when arguments cannot be grounded), marked improvements in hallucination accuracy (reducing fabricated and misattributed factors), particularly in "non-arguable" scenarios, and enhanced factor utilization recall (improving the use of provided case facts). These findings suggest that structured reflection within a multi-agent framework offers a robust computable method for fostering ethical persuasion and mitigating manipulation in LLM-based legal argumentation systems, a critical step towards trustworthy AI in law. Project page: https://lizhang-aiandlaw.github.io/A-Reflective-Multi-Agent-Approach-for-Legal-Argument-Generation/


[574] 2506.02993

Mapping Student-AI Interaction Dynamics in Multi-Agent Learning Environments: Supporting Personalised Learning and Reducing Performance Gaps

Multi-agent AI systems, which simulate diverse instructional roles such as teachers and peers, offer new possibilities for personalized and interactive learning. Yet, student-AI interaction patterns and their pedagogical implications remain unclear. This study explores how university students engaged with multiple AI agents, and how these interactions influenced cognitive outcomes (learning gains) and non-cognitive factors (motivation, technology acceptance). Based on MAIC, an online learning platform with multi-agent, the research involved 305 university students and 19,365 lines of dialogue data. Pre- and post-test scores, self-reported motivation and technology acceptance were also collected. The study identified two engagement patterns: co-construction of knowledge and co-regulation. Lag sequential analysis revealed that students with lower prior knowledge relied more on co-construction of knowledge sequences, showing higher learning gains and post-course motivation. In contrast, students with higher prior knowledge engaged more in co-regulation behaviors but exhibited limited learning improvement. Technology acceptance increased across all groups. These findings suggest that multi-agent AI systems can adapt to students' varying needs, support differentiated engagement, and reduce performance gaps. Implications for personalized system design and future research directions are discussed.


[575] 2506.02995

It's Not a Walk in the Park! Challenges of Idiom Translation in Speech-to-text Systems

Idioms are defined as a group of words with a figurative meaning not deducible from their individual components. Although modern machine translation systems have made remarkable progress, translating idioms remains a major challenge, especially for speech-to-text systems, where research on this topic is notably sparse. In this paper, we systematically evaluate idiom translation as compared to conventional news translation in both text-to-text machine translation (MT) and speech-to-text translation (SLT) systems across two language pairs (German to English, Russian to English). We compare state-of-the-art end-to-end SLT systems (SeamlessM4T SLT-to-text, Whisper Large v3) with MT systems (SeamlessM4T SLT-to-text, No Language Left Behind), Large Language Models (DeepSeek, LLaMA) and cascaded alternatives. Our results reveal that SLT systems experience a pronounced performance drop on idiomatic data, often reverting to literal translations even in higher layers, whereas MT systems and Large Language Models demonstrate better handling of idioms. These findings underscore the need for idiom-specific strategies and improved internal representations in SLT architectures.


[576] 2506.02996

Linear Spatial World Models Emerge in Large Language Models

Large language models (LLMs) have demonstrated emergent abilities across diverse tasks, raising the question of whether they acquire internal world models. In this work, we investigate whether LLMs implicitly encode linear spatial world models, which we define as linear representations of physical space and object configurations. We introduce a formal framework for spatial world models and assess whether such structure emerges in contextual embeddings. Using a synthetic dataset of object positions, we train probes to decode object positions and evaluate geometric consistency of the underlying space. We further conduct causal interventions to test whether these spatial representations are functionally used by the model. Our results provide empirical evidence that LLMs encode linear spatial world models.


[577] 2506.02997

Controllable Text-to-Speech Synthesis with Masked-Autoencoded Style-Rich Representation

Controllable TTS models with natural language prompts often lack the ability for fine-grained control and face a scarcity of high-quality data. We propose a two-stage style-controllable TTS system with language models, utilizing a quantized masked-autoencoded style-rich representation as an intermediary. In the first stage, an autoregressive transformer is used for the conditional generation of these style-rich tokens from text and control signals. The second stage generates codec tokens from both text and sampled style-rich tokens. Experiments show that training the first-stage model on extensive datasets enhances the content robustness of the two-stage model as well as control capabilities over multiple attributes. By selectively combining discrete labels and speaker embeddings, we explore fully controlling the speaker's timbre and other stylistic information, and adjusting attributes like emotion for a specified speaker. Audio samples are available at https://style-ar-tts.github.io.


[578] 2506.02998

A Multi-Agent Framework for Mitigating Dialect Biases in Privacy Policy Question-Answering Systems

Privacy policies inform users about data collection and usage, yet their complexity limits accessibility for diverse populations. Existing Privacy Policy Question Answering (QA) systems exhibit performance disparities across English dialects, disadvantaging speakers of non-standard varieties. We propose a novel multi-agent framework inspired by human-centered design principles to mitigate dialectal biases. Our approach integrates a Dialect Agent, which translates queries into Standard American English (SAE) while preserving dialectal intent, and a Privacy Policy Agent, which refines predictions using domain expertise. Unlike prior approaches, our method does not require retraining or dialect-specific fine-tuning, making it broadly applicable across models and domains. Evaluated on PrivacyQA and PolicyQA, our framework improves GPT-4o-mini's zero-shot accuracy from 0.394 to 0.601 on PrivacyQA and from 0.352 to 0.464 on PolicyQA, surpassing or matching few-shot baselines without additional training data. These results highlight the effectiveness of structured agent collaboration in mitigating dialect biases and underscore the importance of designing NLP systems that account for linguistic diversity to ensure equitable access to privacy information.


[579] 2506.03001

Dynamic Fee for Reducing Impermanent Loss in Decentralized Exchanges

Decentralized exchanges (DEXs) are crucial to decentralized finance (DeFi) as they enable trading without intermediaries. However, they face challenges like impermanent loss (IL), where liquidity providers (LPs) see their assets' value change unfavorably within a liquidity pool compared to outside it. To tackle these issues, we propose dynamic fee mechanisms over traditional fixed-fee structures used in automated market makers (AMM). Our solution includes asymmetric fees via block-adaptive, deal-adaptive, and the "ideal but unattainable" oracle-based fee algorithm, utilizing all data available to arbitrageurs to mitigate IL. We developed a simulation-based framework to compare these fee algorithms systematically. This framework replicates trading on a DEX, considering both informed and uninformed users and a psychological relative loss factor. Results show that adaptive algorithms outperform fixed-fee baselines in reducing IL while maintaining trading activity among uninformed users. Additionally, insights from oracle-based performance underscore the potential of dynamic fee strategies to lower IL, boost LP profitability, and enhance overall market efficiency.


[580] 2506.03003

Newtonian potentials of Legendre polynomials on rectangles have displacement structure

Particular solutions of the Poisson equation can be constructed via Newtonian potentials, integrals involving the corresponding Green's function which in two-dimensions has a logarithmic singularity. The singularity represents a significant challenge for computing the integrals, which is typically overcome via specially designed quadrature methods involving a large number of evaluations of the function and kernel. We present an attractive alternative: we show that Newtonian potentials (and their gradient) applied to (tensor products of) Legendre polynomials can be expressed in terms of complex integrals which satisfy simple and explicit recurrences that can be utilised to exactly compute singular integrals, i.e., singular integral quadrature is completely avoided. The inhomogeneous part of the recurrence has low rank structure (its rank is at most three for the Newtonian potential) and hence these recurrences have displacement structure. Using the recurrence directly is a fast approach for evaluation on or near the integration domain that remains accurate for low degree polynomial approximations, while high-precision arithmetic allows accurate use of the approach for moderate degree polynomials.


[581] 2506.03004

PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples

We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.


[582] 2506.03006

A Preference-Driven Methodology for High-Quality Solidity Code Generation

While Large Language Models (LLMs) have demonstrated remarkable progress in generating functionally correct Solidity code, they continue to face critical challenges in producing gas-efficient and secure code, which are critical requirements for real-world smart contract deployment. Although recent advances leverage Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) for code preference alignment, existing approaches treat functional correctness, gas optimization, and security as independent objectives, resulting in contracts that may achieve operational soundness but suffer from prohibitive execution costs or dangerous vulnerabilities. To address these limitations, we propose PrefGen, a novel framework that extends standard DPO beyond human preferences to incorporate quantifiable blockchain-specific metrics, enabling holistic multi-objective optimization specifically tailored for smart contract generation. Our framework introduces a comprehensive evaluation methodology with four complementary metrics: Pass@k (functional correctness), Compile@k (syntactic correctness), Gas@k (gas efficiency), and Secure@k (security assessment), providing rigorous multi-dimensional contract evaluation. Through extensive experimentation, we demonstrate that PrefGen significantly outperforms existing approaches across all critical dimensions, achieving 66.7% Pass@5, 58.9% Gas@5, and 62.5% Secure@5, while generating production-ready smart contracts that are functionally correct, cost-efficient, and secure.


[583] 2506.03007

DFBench: Benchmarking Deepfake Image Detection Capability of Large Multimodal Models

With the rapid advancement of generative models, the realism of AI-generated images has significantly improved, posing critical challenges for verifying digital content authenticity. Current deepfake detection methods often depend on datasets with limited generation models and content diversity that fail to keep pace with the evolving complexity and increasing realism of the AI-generated content. Large multimodal models (LMMs), widely adopted in various vision tasks, have demonstrated strong zero-shot capabilities, yet their potential in deepfake detection remains largely unexplored. To bridge this gap, we present \textbf{DFBench}, a large-scale DeepFake Benchmark featuring (i) broad diversity, including 540,000 images across real, AI-edited, and AI-generated content, (ii) latest model, the fake images are generated by 12 state-of-the-art generation models, and (iii) bidirectional benchmarking and evaluating for both the detection accuracy of deepfake detectors and the evasion capability of generative models. Based on DFBench, we propose \textbf{MoA-DF}, Mixture of Agents for DeepFake detection, leveraging a combined probability strategy from multiple LMMs. MoA-DF achieves state-of-the-art performance, further proving the effectiveness of leveraging LMMs for deepfake detection. Database and codes are publicly available at https://github.com/IntMeGroup/DFBench.


[584] 2506.03009

Conditioning Large Language Models on Legal Systems? Detecting Punishable Hate Speech

The assessment of legal problems requires the consideration of a specific legal system and its levels of abstraction, from constitutional law to statutory law to case law. The extent to which Large Language Models (LLMs) internalize such legal systems is unknown. In this paper, we propose and investigate different approaches to condition LLMs at different levels of abstraction in legal systems. This paper examines different approaches to conditioning LLMs at multiple levels of abstraction in legal systems to detect potentially punishable hate speech. We focus on the task of classifying whether a specific social media posts falls under the criminal offense of incitement to hatred as prescribed by the German Criminal Code. The results show that there is still a significant performance gap between models and legal experts in the legal assessment of hate speech, regardless of the level of abstraction with which the models were conditioned. Our analysis revealed, that models conditioned on abstract legal knowledge lacked deep task understanding, often contradicting themselves and hallucinating answers, while models using concrete legal knowledge performed reasonably well in identifying relevant target groups, but struggled with classifying target conducts.


[585] 2506.03011

Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Modern human labor is characterized by specialization; we train for years and develop particular tools that allow us to perform well across a variety of tasks. In addition, AI agents have been specialized for domains such as software engineering, web navigation, and workflow automation. However, this results in agents that are good for one thing but fail to generalize beyond their intended scope. One reason for this is that agent developers provide a highly specialized set of tools or make architectural decisions optimized for a specific use case or benchmark. In this work, we ask the question: what is the minimal set of general tools that can be used to achieve high performance across a diverse set of tasks? Our answer is OpenHands-Versa, a generalist agent built with a modest number of general tools: code editing and execution, web search, as well as multimodal web browsing and file access. Importantly, OpenHands-Versa demonstrates superior or competitive performance over leading specialized agents across three diverse and challenging benchmarks: SWE-Bench Multimodal, GAIA, and The Agent Company, outperforming the best-performing previously published results with absolute improvements in success rate of 9.1, 1.3, and 9.1 points respectively. Further, we show how existing state-of-the-art multi-agent systems fail to generalize beyond their target domains. These results demonstrate the feasibility of developing a generalist agent to solve diverse tasks and establish OpenHands-Versa as a strong baseline for future research.


[586] 2506.03012

Ten Simple Rules for Catalyzing Collaborations and Building Bridges between Research Software Engineers and Software Engineering Researchers

In the evolving landscape of scientific and scholarly research, effective collaboration between Research Software Engineers (RSEs) and Software Engineering Researchers (SERs) is pivotal for advancing innovation and ensuring the integrity of computational methodologies. This paper presents ten strategic guidelines aimed at fostering productive partnerships between these two distinct yet complementary communities. The guidelines emphasize the importance of recognizing and respecting the cultural and operational differences between RSEs and SERs, proactively initiating and nurturing collaborations, and engaging within each other's professional environments. They advocate for identifying shared challenges, maintaining openness to emerging problems, ensuring mutual benefits, and serving as advocates for one another. Additionally, the guidelines highlight the necessity of vigilance in monitoring collaboration dynamics, securing institutional support, and defining clear, shared objectives. By adhering to these principles, RSEs and SERs can build synergistic relationships that enhance the quality and impact of research outcomes.


[587] 2506.03013

How do Pre-Trained Models Support Software Engineering? An Empirical Study in Hugging Face

Open-Source Pre-Trained Models (PTMs) provide extensive resources for various Machine Learning (ML) tasks, yet these resources lack a classification tailored to Software Engineering (SE) needs. To address this gap, we derive a taxonomy encompassing 147 SE tasks and apply an SE-oriented classification to PTMs in a popular open-source ML repository, Hugging Face (HF). Our repository mining study began with a systematically gathered database of PTMs from the HF API, considering their model card descriptions and metadata, and the abstract of the associated arXiv papers. We confirmed SE relevance through multiple filtering steps: detecting outliers, identifying near-identical PTMs, and the use of Gemini 2.0 Flash, which was validated with five pilot studies involving three human annotators. This approach uncovered 2,205 SE PTMs. We find that code generation is the most common SE task among PTMs, primarily focusing on software implementation, while requirements engineering and software design activities receive limited attention. In terms of ML tasks, text generation dominates within SE PTMs. Notably, the number of SE PTMs has increased markedly since 2023 Q2. Our classification provides a solid foundation for future automated SE scenarios, such as the sampling and selection of suitable PTMs.


[588] 2506.03017

Adjusting Tissue Puncture Omnidirectionally In Situ with Pneumatic Rotatable Biopsy Mechanism and Hierarchical Airflow Management in Tortuous Luminal Pathways

In situ tissue biopsy with an endoluminal catheter is an efficient approach for disease diagnosis, featuring low invasiveness and few complications. However, the endoluminal catheter struggles to adjust the biopsy direction by distal endoscope bending or proximal twisting for tissue sampling within the tortuous luminal organs, due to friction-induced hysteresis and narrow spaces. Here, we propose a pneumatically-driven robotic catheter enabling the adjustment of the sampling direction without twisting the catheter for an accurate in situ omnidirectional biopsy. The distal end of the robotic catheter consists of a pneumatic bending actuator for the catheter's deployment in torturous luminal organs and a pneumatic rotatable biopsy mechanism (PRBM). By hierarchical airflow control, the PRBM can adjust the biopsy direction under low airflow and deploy the biopsy needle with higher airflow, allowing for rapid omnidirectional sampling of tissue in situ. This paper describes the design, modeling, and characterization of the proposed robotic catheter, including repeated deployment assessments of the biopsy needle, puncture force measurement, and validation via phantom tests. The PRBM prototype has six sampling directions evenly distributed across 360 degrees when actuated by a positive pressure of 0.3 MPa. The pneumatically-driven robotic catheter provides a novel biopsy strategy, potentially facilitating in situ multidirectional biopsies in tortuous luminal organs with minimum invasiveness.


[589] 2506.03022

Smartflow: Enabling Scalable Spatiotemporal Geospatial Research

BlackSky introduces Smartflow, a cloud-based framework enabling scalable spatiotemporal geospatial research built on open-source tools and technologies. Using STAC-compliant catalogs as a common input, heterogeneous geospatial data can be processed into standardized datacubes for analysis and model training. Model experimentation is managed using a combination of tools, including ClearML, Tensorboard, and Apache Superset. Underpinning Smartflow is Kubernetes, which orchestrates the provisioning and execution of workflows to support both horizontal and vertical scalability. This combination of features makes Smartflow well-suited for geospatial model development and analysis over large geographic areas, time scales, and expansive image archives. We also present a novel neural architecture, built using Smartflow, to monitor large geographic areas for heavy construction. Qualitative results based on data from the IARPA Space-based Machine Automated Recognition Technique (SMART) program are presented that show the model is capable of detecting heavy construction throughout all major phases of development.


[590] 2506.03024

GenFair: Systematic Test Generation for Fairness Fault Detection in Large Language Models

Large Language Models (LLMs) are increasingly deployed in critical domains, yet they often exhibit biases inherited from training data, leading to fairness concerns. This work focuses on the problem of effectively detecting fairness violations, especially intersectional biases that are often missed by existing template-based and grammar-based testing methods. Previous approaches, such as CheckList and ASTRAEA, provide structured or grammar-driven test generation but struggle with low test diversity and limited sensitivity to complex demographic interactions. To address these limitations, we propose GenFair, a metamorphic fairness testing framework that systematically generates source test cases using equivalence partitioning, mutation operators, and boundary value analysis. GenFair improves fairness testing by generating linguistically diverse, realistic, and intersectional test cases. It applies metamorphic relations (MR) to derive follow-up cases and detects fairness violations via tone-based comparisons between source and follow-up responses. In experiments with GPT-4.0 and LLaMA-3.0, GenFair outperformed two baseline methods. It achieved a fault detection rate (FDR) of 0.73 (GPT-4.0) and 0.69 (LLaMA-3.0), compared to 0.54/0.51 for template-based and 0.39/0.36 for ASTRAEA. GenFair also showed the highest test case diversity (syntactic:10.06, semantic: 76.68) and strong coherence (syntactic: 291.32, semantic: 0.7043), outperforming both baselines. These results demonstrate the effectiveness of GenFair in uncovering nuanced fairness violations. The proposed method offers a scalable and automated solution for fairness testing and contributes to building more equitable LLMs.


[591] 2506.03025

Bivariate polynomial histopolation techniques on Padua, Fekete and Leja triangles

This paper explores the reconstruction of a real-valued function $f$ defined over a domain $\Omega \subset \mathbb{R}^2$ using bivariate polynomials that satisfy triangular histopolation conditions. More precisely, we assume that only the averages of $f$ over a given triangulation $\mathcal{T}_N$ of $\Omega$ are available and seek a bivariate polynomial that approximates $f$ using a histopolation approach, potentially flanked by an additional regression technique. This methodology relies on the selection of a subset of triangles $\mathcal{T}_M \subset \mathcal{T}_N$ for histopolation, ensuring both the solvability and the well-conditioning of the problem. The remaining triangles can potentially be used to enhance the accuracy of the polynomial approximation through a simultaneous regression. We will introduce histopolation and combined histopolation-regression methods using the Padua points, discrete Leja sequences, and approximate Fekete nodes. The proposed algorithms are implemented and evaluated through numerical experiments that demonstrate their effectiveness in function approximation.


[592] 2506.03028

Protein Inverse Folding From Structure Feedback

The inverse folding problem, aiming to design amino acid sequences that fold into desired three-dimensional structures, is pivotal for various biotechnological applications. Here, we introduce a novel approach leveraging Direct Preference Optimization (DPO) to fine-tune an inverse folding model using feedback from a protein folding model. Given a target protein structure, we begin by sampling candidate sequences from the inverse-folding model, then predict the three-dimensional structure of each sequence with the folding model to generate pairwise structural-preference labels. These labels are used to fine-tune the inverse-folding model under the DPO objective. Our results on the CATH 4.2 test set demonstrate that DPO fine-tuning not only improves sequence recovery of baseline models but also leads to a significant improvement in average TM-Score from 0.77 to 0.81, indicating enhanced structure similarity. Furthermore, iterative application of our DPO-based method on challenging protein structures yields substantial gains, with an average TM-Score increase of 79.5\% with regard to the baseline model. This work establishes a promising direction for enhancing protein sequence design ability from structure feedback by effectively utilizing preference optimization.


[593] 2506.03030

The Vampire Diary

During the past decade of continuous development, the theorem prover Vampire has become an automated solver for the combined theories of commonly-used data structures. Vampire now supports arithmetic, induction, and higher-order logic. These advances have been made to meet the demands of software verification, enabling Vampire to effectively complement SAT/SMT solvers and aid proof assistants. We explain how best to use Vampire in practice and review the main changes Vampire has undergone since its last tool presentation, focusing on the engineering principles and design choices we made during this process.


[594] 2506.03032

TestAgent: An Adaptive and Intelligent Expert for Human Assessment

Accurately assessing internal human states is key to understanding preferences, offering personalized services, and identifying challenges in real-world applications. Originating from psychometrics, adaptive testing has become the mainstream method for human measurement and has now been widely applied in education, healthcare, sports, and sociology. It customizes assessments by selecting the fewest test questions . However, current adaptive testing methods face several challenges. The mechanized nature of most algorithms leads to guessing behavior and difficulties with open-ended questions. Additionally, subjective assessments suffer from noisy response data and coarse-grained test outputs, further limiting their effectiveness. To move closer to an ideal adaptive testing process, we propose TestAgent, a large language model (LLM)-powered agent designed to enhance adaptive testing through interactive engagement. This is the first application of LLMs in adaptive testing. TestAgent supports personalized question selection, captures test-takers' responses and anomalies, and provides precise outcomes through dynamic, conversational interactions. Experiments on psychological, educational, and lifestyle assessments show our approach achieves more accurate results with 20% fewer questions than state-of-the-art baselines, and testers preferred it in speed, smoothness, and other dimensions.


[595] 2506.03035

Leveraging Information Retrieval to Enhance Spoken Language Understanding Prompts in Few-Shot Learning

Understanding user queries is fundamental in many applications, such as home assistants, booking systems, or recommendations. Accordingly, it is crucial to develop accurate Spoken Language Understanding (SLU) approaches to ensure the reliability of the considered system. Current State-of-the-Art SLU techniques rely on large amounts of training data; however, only limited annotated examples are available for specific tasks or languages. In the meantime, instruction-tuned large language models (LLMs) have shown exceptional performance on unseen tasks in a few-shot setting when provided with adequate prompts. In this work, we propose to explore example selection by leveraging Information retrieval (IR) approaches to build an enhanced prompt that is applied to an SLU task. We evaluate the effectiveness of the proposed method on several SLU benchmarks. Experimental results show that lexical IR methods significantly enhance performance without increasing prompt length.


[596] 2506.03037

On the Need to Align Intent and Implementation in Uncertainty Quantification for Machine Learning

Quantifying uncertainties for machine learning (ML) models is a foundational challenge in modern data analysis. This challenge is compounded by at least two key aspects of the field: (a) inconsistent terminology surrounding uncertainty and estimation across disciplines, and (b) the varying technical requirements for establishing trustworthy uncertainties in diverse problem contexts. In this position paper, we aim to clarify the depth of these challenges by identifying these inconsistencies and articulating how different contexts impose distinct epistemic demands. We examine the current landscape of estimation targets (e.g., prediction, inference, simulation-based inference), uncertainty constructs (e.g., frequentist, Bayesian, fiducial), and the approaches used to map between them. Drawing on the literature, we highlight and explain examples of problematic mappings. To help address these issues, we advocate for standards that promote alignment between the \textit{intent} and \textit{implementation} of uncertainty quantification (UQ) approaches. We discuss several axes of trustworthiness that are necessary (if not sufficient) for reliable UQ in ML models, and show how these axes can inform the design and evaluation of uncertainty-aware ML systems. Our practical recommendations focus on scientific ML, offering illustrative cases and use scenarios, particularly in the context of simulation-based inference (SBI).


[597] 2506.03038

Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective

Reinforcement learning (RL) enhances large language models (LLMs) in complex, long-chain-of-thought (long-CoT) reasoning. The advanced VAPO framework, despite sophisticated mechanisms like Decoupled GAE, theoretically faces fundamental limitations in comprehensively modeling and leveraging deep, long-term value for fine-grained, step-by-step policy guidance in extended reasoning chains. We argue these limitations stem from inherent difficulties in credit assignment, value function representational capacity with temporally abstracted goals, and translating global value signals into local policy improvements, especially with sparse rewards. Our theoretical analysis examines these aspects to illuminate VAPO's boundaries in long-term value modeling, aiming to deepen understanding of current RL for advanced reasoning and suggest future research for more robust LLM agents.


[598] 2506.03039

Rates of convergence of finite element approximations of second-order mean field games with nondifferentiable Hamiltonians

We prove a rate of convergence for finite element approximations of stationary, second-order mean field games with nondifferentiable Hamiltonians posed in general bounded polytopal Lipschitz domains with strongly monotone running costs. In particular, we obtain a rate of convergence in the $H^1$-norm for the value function approximations and in the $L^2$-norm for the approximations of the density. We also establish a rate of convergence for the error between the exact solution of the MFG system with a nondifferentiable Hamiltonian and the finite element discretizations of the corresponding MFG system with a regularized Hamiltonian.


[599] 2506.03041

AI-Augmented OTDR Fault Localization Framework for Resilient Rural Fiber Networks in the United States

This research presents a novel framework that combines traditional Optical Time-Domain Reflectometer (OTDR) signal analysis with machine learning to localize and classify fiber optic faults in rural broadband infrastructures. The proposed system addresses a critical need in the expansion of middle-mile and last-mile networks, particularly in regions targeted by the U.S. Broadband Equity, Access, and Deployment (BEAD) Program. By enhancing fault diagnosis through a predictive, AI-based model, this work enables proactive network maintenance in low-resource environments. Experimental evaluations using a controlled fiber testbed and synthetic datasets simulating rural network conditions demonstrate that the proposed method significantly improves detection accuracy and reduces false positives compared to conventional thresholding techniques. The solution offers a scalable, field-deployable tool for technicians and ISPs engaged in rural broadband deployment.


[600] 2506.03043

Sample complexity of Schrödinger potential estimation

We address the problem of Schr\"odinger potential estimation, which plays a crucial role in modern generative modelling approaches based on Schr\"odinger bridges and stochastic optimal control for SDEs. Given a simple prior diffusion process, these methods search for a path between two given distributions $\rho_0$ and $\rho_T^*$ requiring minimal efforts. The optimal drift in this case can be expressed through a Schr\"odinger potential. In the present paper, we study generalization ability of an empirical Kullback-Leibler (KL) risk minimizer over a class of admissible log-potentials aimed at fitting the marginal distribution at time $T$. Under reasonable assumptions on the target distribution $\rho_T^*$ and the prior process, we derive a non-asymptotic high-probability upper bound on the KL-divergence between $\rho_T^*$ and the terminal density corresponding to the estimated log-potential. In particular, we show that the excess KL-risk may decrease as fast as $O(\log^2 n / n)$ when the sample size $n$ tends to infinity even if both $\rho_0$ and $\rho_T^*$ have unbounded supports.


[601] 2506.03046

EDEN: Entorhinal Driven Egocentric Navigation Toward Robotic Deployment

Deep reinforcement learning agents are often fragile while humans remain adaptive and flexible to varying scenarios. To bridge this gap, we present EDEN, a biologically inspired navigation framework that integrates learned entorhinal-like grid cell representations and reinforcement learning to enable autonomous navigation. Inspired by the mammalian entorhinal-hippocampal system, EDEN allows agents to perform path integration and vector-based navigation using visual and motion sensor data. At the core of EDEN is a grid cell encoder that transforms egocentric motion into periodic spatial codes, producing low-dimensional, interpretable embeddings of position. To generate these activations from raw sensory input, we combine fiducial marker detections in the lightweight MiniWorld simulator and DINO-based visual features in the high-fidelity Gazebo simulator. These spatial representations serve as input to a policy trained with Proximal Policy Optimization (PPO), enabling dynamic, goal-directed navigation. We evaluate EDEN in both MiniWorld, for rapid prototyping, and Gazebo, which offers realistic physics and perception noise. Compared to baseline agents using raw state inputs (e.g., position, velocity) or standard convolutional image encoders, EDEN achieves a 99% success rate, within the simple scenarios, and >94% within complex floorplans with occluded paths with more efficient and reliable step-wise navigation. In addition, as a replacement of ground truth activations, we present a trainable Grid Cell encoder enabling the development of periodic grid-like patterns from vision and motion sensor data, emulating the development of such patterns within biological mammals. This work represents a step toward biologically grounded spatial intelligence in robotics, bridging neural navigation principles with reinforcement learning for scalable deployment.


[602] 2506.03051

Facts Do Care About Your Language: Assessing Answer Quality of Multilingual LLMs

Factuality is a necessary precursor to useful educational tools. As adoption of Large Language Models (LLMs) in education continues of grow, ensuring correctness in all settings is paramount. Despite their strong English capabilities, LLM performance in other languages is largely untested. In this work, we evaluate the correctness of the Llama3.1 family of models in answering factual questions appropriate for middle and high school students. We demonstrate that LLMs not only provide extraneous and less truthful information, but also exacerbate existing biases against rare languages.


[603] 2506.03052

Feedstack: Layering Structured Representations over Unstructured Feedback to Scaffold Human AI Conversation

Many conversational user interfaces facilitate linear conversations with turn-based dialogue, similar to face-to-face conversations between people. However, digital conversations can afford more than simple back-and-forth; they can be layered with interaction techniques and structured representations that scaffold exploration, reflection, and shared understanding between users and AI systems. We introduce Feedstack, a speculative interface that augments feedback conversations with layered affordances for organizing, navigating, and externalizing feedback. These layered structures serve as a shared representation of the conversation that can surface user intent and reveal underlying design principles. This work represents an early exploration of this vision using a research-through-design approach. We describe system features and design rationale, and present insights from two formative (n=8, n=8) studies to examine how novice designers engage with these layered supports. Rather than presenting a conclusive evaluation, we reflect on Feedstack as a design probe that opens up new directions for conversational feedback systems.


[604] 2506.03053

MAEBE: Multi-Agent Emergent Behavior Framework

Traditional AI safety evaluations on isolated LLMs are insufficient as multi-agent AI ensembles become prevalent, introducing novel emergent risks. This paper introduces the Multi-Agent Emergent Behavior Evaluation (MAEBE) framework to systematically assess such risks. Using MAEBE with the Greatest Good Benchmark (and a novel double-inversion question technique), we demonstrate that: (1) LLM moral preferences, particularly for Instrumental Harm, are surprisingly brittle and shift significantly with question framing, both in single agents and ensembles. (2) The moral reasoning of LLM ensembles is not directly predictable from isolated agent behavior due to emergent group dynamics. (3) Specifically, ensembles exhibit phenomena like peer pressure influencing convergence, even when guided by a supervisor, highlighting distinct safety and alignment challenges. Our findings underscore the necessity of evaluating AI systems in their interactive, multi-agent contexts.


[605] 2506.03056

Corrigibility as a Singular Target: A Vision for Inherently Reliable Foundation Models

Foundation models (FMs) face a critical safety challenge: as capabilities scale, instrumental convergence drives default trajectories toward loss of human control, potentially culminating in existential catastrophe. Current alignment approaches struggle with value specification complexity and fail to address emergent power-seeking behaviors. We propose "Corrigibility as a Singular Target" (CAST)-designing FMs whose overriding objective is empowering designated human principals to guide, correct, and control them. This paradigm shift from static value-loading to dynamic human empowerment transforms instrumental drives: self-preservation serves only to maintain the principal's control; goal modification becomes facilitating principal guidance. We present a comprehensive empirical research agenda spanning training methodologies (RLAIF, SFT, synthetic data generation), scalability testing across model sizes, and demonstrations of controlled instructability. Our vision: FMs that become increasingly responsive to human guidance as capabilities grow, offering a path to beneficial AI that remains as tool-like as possible, rather than supplanting human judgment. This addresses the core alignment problem at its source, preventing the default trajectory toward misaligned instrumental convergence.


[606] 2506.03059

Backpressure-based Mean-field Type Game for Scheduling in Multi-Hop Wireless Sensor Networks

We propose a Mean-Field Type Game (MFTG) framework for effective scheduling in multi-hop wireless sensor networks (WSNs) using backpressure as a performance criterion. Traditional backpressure algorithms leverage queue differentials to regulate data flow and maintain network stability. In this work, we extend the backpressure framework by incorporating a mean-field term into the cost functional, capturing the global behavior of the system alongside local dynamics. The resulting model utilizes the strengths of non-cooperative mean-field type games, enabling nodes to make decentralized decisions based on both individual queue states and system mean-field effects while accounting for stochastic network interactions. By leveraging the interplay between backpressure dynamics and mean-field coupling, the approach balances local optimization with global efficiency. Numerical simulations demonstrate the efficacy of the proposed method in handling congestion and scheduling in large-scale WSNs.


[607] 2506.03062

Multi-Metric Adaptive Experimental Design under Fixed Budget with Validation

Standard A/B tests in online experiments face statistical power challenges when testing multiple candidates simultaneously, while adaptive experimental designs (AED) alone fall short in inferring experiment statistics such as the average treatment effect, especially with many metrics (e.g., revenue, safety) and heterogeneous variances. This paper proposes a fixed-budget multi-metric AED framework with a two-phase structure: an adaptive exploration phase to identify the best treatment, and a validation phase with an A/B test to verify the treatment's quality and infer statistics. We propose SHRVar, which generalizes sequential halving (SH) (Karnin et al., 2013) with a novel relative-variance-based sampling and an elimination strategy built on reward z-values. It achieves a provable error probability that decreases exponentially, where the exponent generalizes the complexity measure for SH (Karnin et al., 2013) and SHVar (Lalitha et al., 2023) with homogeneous and heterogeneous variances, respectively. Numerical experiments verify our analysis and demonstrate the superior performance of this new framework.


[608] 2506.03063

Joint Beamforming for NOMA Assisted Pinching Antenna Systems (PASS)

Pinching antenna system (PASS) configures the positions of pinching antennas (PAs) along dielectric waveguides to change both large-scale fading and small-scale scattering, which is known as pinching beamforming. A novel non-orthogonal multiple access (NOMA) assisted PASS framework is proposed for downlink multi-user multiple-input multiple-output (MIMO) communications. The transmit power minimization problem is formulated to jointly optimize the transmit beamforming, pinching beamforming, and power allocation. To solve this highly nonconvex problem, both gradient-based and swarm-based optimization methods are developed. 1) For gradient-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed. The Lipschitz gradient surrogate function is constructed based on MM to tackle the nonconvex terms of this problem. Then, the joint optimization problem is decomposed into subproblems that are alternatively optimized based on PDD to obtain stationary closed-form solutions. 2) For swarm-based method, a fast-convergent particle swarm optimization and zero forcing (PSO-ZF) algorithm is proposed. Specifically, the PA position-seeking particles are constructed to explore high-quality pinching beamforming solutions. Moreover, ZF-based transmit beamforming is utilized by each particle for fast fitness function evaluation. Simulation results demonstrate that: i) The proposed NOMA assisted PASS and algorithms outperforms the conventional NOMA assisted massive antenna system. The proposed framework reduces over 95.22% transmit power compared to conventional massive MIMO-NOMA systems. ii) Swarm-based optimization outperforms gradient-based optimization by searching effective solution subspace to avoid stuck in undesirable local optima.


[609] 2506.03065

Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers

While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.


[610] 2506.03066

Provable Reinforcement Learning from Human Feedback with an Unknown Link Function

Link functions, which characterize how human preferences are generated from the value function of an RL problem, are a crucial component in designing RLHF algorithms. Almost all RLHF algorithms, including state-of-the-art ones in empirical studies such as DPO and PPO, assume the link function is known to the agent (e.g., a logistic function according to the Bradley-Terry model), which is arguably unrealistic considering the complex nature of human preferences. To avoid link function mis-specification, this paper studies general RLHF problems with unknown link functions. We propose a novel policy optimization algorithm called ZSPO based on a new zeroth-order policy optimization method, where the key is to use human preference to construct a parameter update direction that is positively correlated with the true policy gradient direction. ZSPO achieves it by estimating the sign of the value function difference instead of estimating the gradient from the value function difference, so it does not require knowing the link function. Under mild conditions, ZSPO converges to a stationary policy with a polynomial convergence rate depending on the number of policy iterations and trajectories per iteration. Numerical results also show the superiority of ZSPO under link function mismatch.


[611] 2506.03067

EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models

Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.


[612] 2506.03070

GPU-Parallelizable Randomized Sketch-and-Precondition for Linear Regression using Sparse Sign Sketches

A litany of theoretical and numerical results have established the sketch-and-precondition paradigm as a powerful approach to solving large linear regression problems in standard computing environments. Perhaps surprisingly, much less work has been done on understanding how sketch-and-precondition performs on graphics processing unit (GPU) systems. We address this gap by benchmarking an implementation of sketch-and-precondition based on sparse sign-sketches on single and multi-GPU systems. In doing so, we describe a novel, easily parallelized, rejection-sampling based method for generating sparse sign sketches. Our approach, which is particularly well-suited for GPUs, is easily adapted to a variety of computing environments. Taken as a whole, our numerical experiments indicate that sketch-and-precondition with sparse sign sketches is particularly well-suited for GPUs, and may be suitable for use in black-box least-squares solvers.


[613] 2506.03073

LEG-SLAM: Real-Time Language-Enhanced Gaussian Splatting for SLAM

Modern Gaussian Splatting methods have proven highly effective for real-time photorealistic rendering of 3D scenes. However, integrating semantic information into this representation remains a significant challenge, especially in maintaining real-time performance for SLAM (Simultaneous Localization and Mapping) applications. In this work, we introduce LEG-SLAM -- a novel approach that fuses an optimized Gaussian Splatting implementation with visual-language feature extraction using DINOv2 followed by a learnable feature compressor based on Principal Component Analysis, while enabling an online dense SLAM. Our method simultaneously generates high-quality photorealistic images and semantically labeled scene maps, achieving real-time scene reconstruction with more than 10 fps on the Replica dataset and 18 fps on ScanNet. Experimental results show that our approach significantly outperforms state-of-the-art methods in reconstruction speed while achieving competitive rendering quality. The proposed system eliminates the need for prior data preparation such as camera's ego motion or pre-computed static semantic maps. With its potential applications in autonomous robotics, augmented reality, and other interactive domains, LEG-SLAM represents a significant step forward in real-time semantic 3D Gaussian-based SLAM. Project page: https://titrom025.github.io/LEG-SLAM/


[614] 2506.03075

Agnostic Learning under Targeted Poisoning: Optimal Rates and the Role of Randomness

We study the problem of learning in the presence of an adversary that can corrupt an $\eta$ fraction of the training examples with the goal of causing failure on a specific test point. In the realizable setting, prior work established that the optimal error under such instance-targeted poisoning attacks scales as $\Theta(d\eta)$, where $d$ is the VC dimension of the hypothesis class arXiv:2210.02713. In this work, we resolve the corresponding question in the agnostic setting. We show that the optimal excess error is $\tilde{\Theta}(\sqrt{d\eta})$, answering one of the main open problems left by Hanneke et al. To achieve this rate, it is necessary to use randomized learners: Hanneke et al. showed that deterministic learners can be forced to suffer error close to 1, even under small amounts of poisoning. Perhaps surprisingly, our upper bound remains valid even when the learner's random bits are fully visible to the adversary . In the other direction, our lower bound is stronger than standard PAC-style bounds: instead of tailoring a hard distribution separately for each sample size, we exhibit a single fixed distribution under which the adversary can enforce an excess error of $\Omega(\sqrt{d\eta})$ infinitely often.


[615] 2506.03077

StreamBP: Memory-Efficient Exact Backpropagation for Long Sequence Training of LLMs

Training language models on long sequence data is a demanding requirement for enhancing the model's capability on complex tasks, e.g., long-chain reasoning. However, as the sequence length scales up, the memory cost for storing activation values becomes huge during the Backpropagation (BP) process, even with the application of gradient checkpointing technique. To tackle this challenge, we propose a memory-efficient and exact BP method called StreamBP, which performs a linear decomposition of the chain rule along the sequence dimension in a layer-wise manner, significantly reducing the memory cost of activation values and logits. The proposed method is applicable to common objectives such as SFT, GRPO, and DPO. From an implementation perspective, StreamBP achieves less computational FLOPs and faster BP speed by leveraging the causal structure of the language model. Compared to gradient checkpointing, StreamBP scales up the maximum sequence length of BP by 2.8-5.5 times larger, while using comparable or even less BP time. Note that StreamBP's sequence length scaling ability can be directly transferred to batch size scaling for accelerating training. We further develop a communication-efficient distributed StreamBP to effectively support multi-GPU training and broaden its applicability. Our code can be easily integrated into the training pipeline of any transformer models and is available at https://github.com/Ledzy/StreamBP.


[616] 2506.03079

ORV: 4D Occupancy-centric Robot Video Generation

Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV


[617] 2506.03081

A structure-preserving and thermodynamically compatible cell-centered Lagrangian finite volume scheme for continuum mechanics

In this work we present a novel structure-preserving scheme for the discretization of the Godunov-Peshkov-Romenski (GPR) model of continuum mechanics written in Lagrangian form. This model admits an extra conservation law for the total energy (first principle of thermodynamics) and satisfies the entropy inequality (second principle of thermodynamics). Furthermore, in the absence of algebraic source terms, the distortion field of the continuum and the specific thermal impulse satisfy a curl-free condition, provided the initial data are curl-free. Last but not least, the determinant of the distortion field is related to the density of the medium, i.e. the system is also endowed with a nonlinear algebraic constraint. The objective of this work is to construct and analyze a new semi-discrete thermodynamically compatible cell-centered Lagrangian finite volume scheme on moving unstructured meshes that satisfies the following structural properties of the governing PDE exactly at the discrete level: i) compatibility with the first law of thermodynamics, i.e. discrete total energy conservation; ii) compatibility with the second law of thermodynamics, i.e. discrete entropy inequality; iii) exact discrete compatibility between the density and the determinant of the distortion field; iv) exact preservation of the curl-free property of the distortion field and of the specific thermal impulse in the absence of algebraic source terms. We show that it is possible to achieve all above properties simultaneously. Unlike in existing schemes, we choose to directly discretize the entropy inequality, hence obtaining total energy conservation as a consequence of an appropriate and thermodynamically compatible discretization of all the other equations.


[618] 2506.03082

SG2VID: Scene Graphs Enable Fine-Grained Control for Video Synthesis

Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.


[619] 2506.03083

Labelling Data with Unknown References

An evaluator is trustworthy when there exists some agreed-upon way to measure its performance as a labeller. The two ways to establish trustworthiness are either by testing it, or by assuming the evaluator `knows' somehow the way to label the corpus. However, if labelled references (e.g., a development set) are unavailable, neither of these approaches work: the former requires the data, and the latter is an assumption, not evidence. To address this, we introduce an algorithm (the `No-Data Algorithm') by which to establish trust in an evaluator without any existing references. Our algorithm works by successively posing challenges to said evaluator. We show that this is sufficient to establish trustworthiness w.h.p., in such a way that when the evaluator actually knows the way to label the corpus, the No-Data Algorithm accepts its output; and, conversely, flags untrustworthy evaluators when these are unable to prove it. We present formal proofs of correctness and limited experiments.


[620] 2506.03084

InterMamba: Efficient Human-Human Interaction Generation with Adaptive Spatio-Temporal Mamba

Human-human interaction generation has garnered significant attention in motion synthesis due to its vital role in understanding humans as social beings. However, existing methods typically rely on transformer-based architectures, which often face challenges related to scalability and efficiency. To address these issues, we propose a novel, efficient human-human interaction generation method based on the Mamba framework, designed to meet the demands of effectively capturing long-sequence dependencies while providing real-time feedback. Specifically, we introduce an adaptive spatio-temporal Mamba framework that utilizes two parallel SSM branches with an adaptive mechanism to integrate the spatial and temporal features of motion sequences. To further enhance the model's ability to capture dependencies within individual motion sequences and the interactions between different individual sequences, we develop two key modules: the self-adaptive spatio-temporal Mamba module and the cross-adaptive spatio-temporal Mamba module, enabling efficient feature learning. Extensive experiments demonstrate that our method achieves state-of-the-art results on two interaction datasets with remarkable quality and efficiency. Compared to the baseline method InterGen, our approach not only improves accuracy but also requires a minimal parameter size of just 66M ,only 36% of InterGen's, while achieving an average inference speed of 0.57 seconds, which is 46% of InterGen's execution time.


[621] 2506.03085

Non-Asymptotic Length Generalization

Length generalization is the ability of a learning algorithm to learn a hypothesis which generalizes to longer inputs than the inputs in the training set. In this paper, we provide provable guarantees of length generalization for various classes of functions in an idealized setting. First, we formalize the framework of non-asymptotic length generalization, which requires a computable upper bound for the minimum input length that guarantees length generalization, as a function of the complexity of ground-truth function under some given complexity measure. We refer to this minimum input length to length generalize as length complexity. We show the Minimum-Complexity Interpolator learning algorithm achieves optimal length complexity. We further show that whether a function class admits non-asymptotic length generalization is equivalent to the decidability of its language equivalence problem, which implies that there is no computable upper bound for the length complexity of Context-Free Grammars. On the positive side, we show that the length complexity of Deterministic Finite Automata is $2n - 2$ where $n$ is the number of states of the ground-truth automaton. Our main results are upper bounds of length complexity for a subset of a transformer-related function class called C-RASP (Yang & Chiang, 2024). We show that the length complexity of 1-layer C-RASP functions is $O(T^2)$ when the ground-truth function has precision $T$, and that the length complexity of 2-layer C-RASP functions is $O(T^{O(K)})$ when the ground-truth function has precision $T$ and $K$ heads.


[622] 2506.03087

How Explanations Leak the Decision Logic: Stealing Graph Neural Networks via Explanation Alignment

Graph Neural Networks (GNNs) have become essential tools for analyzing graph-structured data in domains such as drug discovery and financial analysis, leading to growing demands for model transparency. Recent advances in explainable GNNs have addressed this need by revealing important subgraphs that influence predictions, but these explanation mechanisms may inadvertently expose models to security risks. This paper investigates how such explanations potentially leak critical decision logic that can be exploited for model stealing. We propose {\method}, a novel stealing framework that integrates explanation alignment for capturing decision logic with guided data augmentation for efficient training under limited queries, enabling effective replication of both the predictive behavior and underlying reasoning patterns of target models. Experiments on molecular graph datasets demonstrate that our approach shows advantages over conventional methods in model stealing. This work highlights important security considerations for the deployment of explainable GNNs in sensitive domains and suggests the need for protective measures against explanation-based attacks. Our code is available at https://github.com/beanmah/EGSteal.


[623] 2506.03089

Explicitly Modeling Subcortical Vision with a Neuro-Inspired Front-End Improves CNN Robustness

Convolutional neural networks (CNNs) trained on object recognition achieve high task performance but continue to exhibit vulnerability under a range of visual perturbations and out-of-domain images, when compared with biological vision. Prior work has demonstrated that coupling a standard CNN with a front-end block (VOneBlock) that mimics the primate primary visual cortex (V1) can improve overall model robustness. Expanding on this, we introduce Early Vision Networks (EVNets), a new class of hybrid CNNs that combine the VOneBlock with a novel SubcorticalBlock, whose architecture draws from computational models in neuroscience and is parameterized to maximize alignment with subcortical responses reported across multiple experimental studies. Without being optimized to do so, the assembly of the SubcorticalBlock with the VOneBlock improved V1 alignment across most standard V1 benchmarks, and better modeled extra-classical receptive field phenomena. In addition, EVNets exhibit stronger emergent shape bias and overperform the base CNN architecture by 8.5% on an aggregate benchmark of robustness evaluations, including adversarial perturbations, common corruptions, and domain shifts. Finally, we show that EVNets can be further improved when paired with a state-of-the-art data augmentation technique, surpassing the performance of the isolated data augmentation approach by 7.3% on our robustness benchmark. This result reveals complementary benefits between changes in architecture to better mimic biology and training-based machine learning approaches.


[624] 2506.03090

Literary Evidence Retrieval via Long-Context Language Models

How well do modern long-context language models understand literary fiction? We explore this question via the task of literary evidence retrieval, repurposing the RELiC dataset of That et al. (2022) to construct a benchmark where the entire text of a primary source (e.g., The Great Gatsby) is provided to an LLM alongside literary criticism with a missing quotation from that work. This setting, in which the model must generate the missing quotation, mirrors the human process of literary analysis by requiring models to perform both global narrative reasoning and close textual examination. We curate a high-quality subset of 292 examples through extensive filtering and human verification. Our experiments show that recent reasoning models, such as Gemini Pro 2.5 can exceed human expert performance (62.5% vs. 50% accuracy). In contrast, the best open-weight model achieves only 29.1% accuracy, highlighting a wide gap in interpretive reasoning between open and closed-weight models. Despite their speed and apparent accuracy, even the strongest models struggle with nuanced literary signals and overgeneration, signaling open challenges for applying LLMs to literary analysis. We release our dataset and evaluation code to encourage future work in this direction.


[625] 2506.03093

From Flat to Hierarchical: Extracting Sparse Representations with Matching Pursuit

Motivated by the hypothesis that neural network representations encode abstract, interpretable features as linearly accessible, approximately orthogonal directions, sparse autoencoders (SAEs) have become a popular tool in interpretability. However, recent work has demonstrated phenomenology of model representations that lies outside the scope of this hypothesis, showing signatures of hierarchical, nonlinear, and multi-dimensional features. This raises the question: do SAEs represent features that possess structure at odds with their motivating hypothesis? If not, does avoiding this mismatch help identify said features and gain further insights into neural network representations? To answer these questions, we take a construction-based approach and re-contextualize the popular matching pursuits (MP) algorithm from sparse coding to design MP-SAE -- an SAE that unrolls its encoder into a sequence of residual-guided steps, allowing it to capture hierarchical and nonlinearly accessible features. Comparing this architecture with existing SAEs on a mixture of synthetic and natural data settings, we show: (i) hierarchical concepts induce conditionally orthogonal features, which existing SAEs are unable to faithfully capture, and (ii) the nonlinear encoding step of MP-SAE recovers highly meaningful features, helping us unravel shared structure in the seemingly dichotomous representation spaces of different modalities in a vision-language model, hence demonstrating the assumption that useful features are solely linearly accessible is insufficient. We also show that the sequential encoder principle of MP-SAE affords an additional benefit of adaptive sparsity at inference time, which may be of independent interest. Overall, we argue our results provide credence to the idea that interpretability should begin with the phenomenology of representations, with methods emerging from assumptions that fit it.


[626] 2506.03095

DPO Learning with LLMs-Judge Signal for Computer Use Agents

Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.


[627] 2506.03096

FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens

Contrastive language-image pre-training aligns the features of text-image pairs in a common latent space via distinct encoders for each modality. While this approach achieves impressive performance in several zero-shot tasks, it cannot natively handle multimodal inputs, i.e., encoding image and text into a single feature vector. As a remedy, it is common practice to use additional modules to merge the features extracted by the unimodal encoders. In this work, we present FuseLIP, an alternative architecture for multimodal embedding. Leveraging recent progress in discrete image tokenizers, we propose to use a single transformer model which operates on an extended vocabulary of text and image tokens. This early fusion approach allows the different modalities to interact at each depth of encoding and obtain richer representations compared to common late fusion. We collect new datasets for multimodal pre-training and evaluation, designing challenging tasks for multimodal encoder models. We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval, while being comparable to baselines on unimodal tasks.


[628] 2506.03097

EgoVLM: Policy Optimization for Egocentric Video Understanding

Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.


[629] 2506.03099

TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models

In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/


[630] 2506.03100

Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds

Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.


[631] 2506.03101

Beyond Text Compression: Evaluating Tokenizers Across Scales

The choice of tokenizer can profoundly impact language model performance, yet accessible and reliable evaluations of tokenizer quality remain an open challenge. Inspired by scaling consistency, we show that smaller models can accurately predict significant differences in tokenizer impact on larger models at a fraction of the compute cost. By systematically evaluating both English-centric and multilingual tokenizers, we find that tokenizer choice has negligible effects on tasks in English but results in consistent performance differences in multilingual settings. We propose new intrinsic tokenizer metrics inspired by Zipf's law that correlate more strongly with downstream performance than text compression when modeling unseen languages. By combining several metrics to capture multiple aspects of tokenizer behavior, we develop a reliable framework for intrinsic tokenizer evaluations. Our work offers a more efficient path to informed tokenizer selection in future language model development.


[632] 2506.03102

Designing Algorithmic Delegates: The Role of Indistinguishability in Human-AI Handoff

As AI technologies improve, people are increasingly willing to delegate tasks to AI agents. In many cases, the human decision-maker chooses whether to delegate to an AI agent based on properties of the specific instance of the decision-making problem they are facing. Since humans typically lack full awareness of all the factors relevant to this choice for a given decision-making instance, they perform a kind of categorization by treating indistinguishable instances -- those that have the same observable features -- as the same. In this paper, we define the problem of designing the optimal algorithmic delegate in the presence of categories. This is an important dimension in the design of algorithms to work with humans, since we show that the optimal delegate can be an arbitrarily better teammate than the optimal standalone algorithmic agent. The solution to this optimal delegation problem is not obvious: we discover that this problem is fundamentally combinatorial, and illustrate the complex relationship between the optimal design and the properties of the decision-making task even in simple settings. Indeed, we show that finding the optimal delegate is computationally hard in general. However, we are able to find efficient algorithms for producing the optimal delegate in several broad cases of the problem, including when the optimal action may be decomposed into functions of features observed by the human and the algorithm. Finally, we run computational experiments to simulate a designer updating an algorithmic delegate over time to be optimized for when it is actually adopted by users, and show that while this process does not recover the optimal delegate in general, the resulting delegate often performs quite well.


[633] 2506.03103

DyTact: Capturing Dynamic Contacts in Hand-Object Manipulation

Reconstructing dynamic hand-object contacts is essential for realistic manipulation in AI character animation, XR, and robotics, yet it remains challenging due to heavy occlusions, complex surface details, and limitations in existing capture techniques. In this paper, we introduce DyTact, a markerless capture method for accurately capturing dynamic contact in hand-object manipulations in a non-intrusive manner. Our approach leverages a dynamic, articulated representation based on 2D Gaussian surfels to model complex manipulations. By binding these surfels to MANO meshes, DyTact harnesses the inductive bias of template models to stabilize and accelerate optimization. A refinement module addresses time-dependent high-frequency deformations, while a contact-guided adaptive sampling strategy selectively increases surfel density in contact regions to handle heavy occlusion. Extensive experiments demonstrate that DyTact not only achieves state-of-the-art dynamic contact estimation accuracy but also significantly improves novel view synthesis quality, all while operating with fast optimization and efficient memory usage. Project Page: https://oliver-cong02.github.io/DyTact.github.io/ .


[634] 2506.03105

Detecting Patterns of Interaction in Temporal Hypergraphs via Edge Clustering

Finding densely connected subsets of vertices in an unsupervised setting, called clustering or community detection, is one of the fundamental problems in network science. The edge clustering approach instead detects communities by clustering the edges of the graph and then assigning a vertex to a community if it has at least one edge in that community, thereby allowing for overlapping clusters of vertices. We apply the idea behind edge clustering to temporal hypergraphs, an extension of a graph where a single edge can contain any number of vertices and each edge has a timestamp. Extending to hypergraphs allows for many different patterns of interaction between edges, and by defining a suitable structural similarity function, our edge clustering algorithm can find clusters of these patterns. We test the algorithm with three structural similarity functions on a large collaboration hypergraph, and find intuitive cluster structures that could prove useful for downstream tasks.


[635] 2506.03106

Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback

Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.


[636] 2506.03107

ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions

Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.


[637] 2506.03109

On Weak-to-Strong Generalization and f-Divergence

Weak-to-strong generalization (W2SG) has emerged as a promising paradigm for stimulating the capabilities of strong pre-trained models by leveraging supervision from weaker supervisors. To improve the performance of the strong model, existing methods often require additional weak models or complex procedures, leading to substantial computational and memory overhead. Motivated by the effectiveness of $f$-divergence loss in various machine learning domains, we introduce $f$-divergence as an information-theoretic loss function framework in W2SG. Our theoretical analysis reveals fundamental limitations and equivalence of different $f$-divergence losses in W2SG, supported by sample complexity bounds and information-theoretic insights. We empirically demonstrate that $f$-divergence loss, which generalizes widely-used metrics like KL divergence, effectively improves generalization and noise tolerance of the strong model in practice.


[638] 2506.03110

Revisiting Continuity of Image Tokens for Cross-domain Few-shot Learning

Vision Transformer (ViT) has achieved remarkable success due to its large-scale pretraining on general domains, but it still faces challenges when applying it to downstream distant domains that have only scarce training data, which gives rise to the Cross-Domain Few-Shot Learning (CDFSL) task. Inspired by Self-Attention's insensitivity to token orders, we find an interesting phenomenon neglected in current works: disrupting the continuity of image tokens (i.e., making pixels not smoothly transited across patches) in ViT leads to a noticeable performance decline in the general (source) domain but only a marginal decrease in downstream target domains. This questions the role of image tokens' continuity in ViT's generalization under large domain gaps. In this paper, we delve into this phenomenon for an interpretation. We find continuity aids ViT in learning larger spatial patterns, which are harder to transfer than smaller ones, enlarging domain distances. Meanwhile, it implies that only smaller patterns within each patch could be transferred under extreme domain gaps. Based on this interpretation, we further propose a simple yet effective method for CDFSL that better disrupts the continuity of image tokens, encouraging the model to rely less on large patterns and more on smaller ones. Extensive experiments show the effectiveness of our method in reducing domain gaps and outperforming state-of-the-art works. Codes and models are available at https://github.com/shuaiyi308/ReCIT.


[639] 2506.03111

Rectified Flows for Fast Multiscale Fluid Flow Modeling

The statistical modeling of fluid flows is very challenging due to their multiscale dynamics and extreme sensitivity to initial conditions. While recently proposed conditional diffusion models achieve high fidelity, they typically require hundreds of stochastic sampling steps at inference. We introduce a rectified flow framework that learns a time-dependent velocity field, transporting input to output distributions along nearly straight trajectories. By casting sampling as solving an ordinary differential equation (ODE) along this straighter flow field, our method makes each integration step much more effective, using as few as eight steps versus (more than) 128 steps in standard score-based diffusion, without sacrificing predictive fidelity. Experiments on challenging multiscale flow benchmarks show that rectified flows recover the same posterior distributions as diffusion models, preserve fine-scale features that MSE-trained baselines miss, and deliver high-resolution samples in a fraction of inference time.


[640] 2506.03113

Assessing Workers Neuro-physiological Stress Responses to Augmented Reality Safety Warnings in Immersive Virtual Roadway Work Zones

This paper presents a multi-stage experimental framework that integrates immersive Virtual Reality (VR) simulations, wearable sensors, and advanced signal processing to investigate construction workers neuro-physiological stress responses to multi-sensory AR-enabled warnings. Participants performed light- and moderate-intensity roadway maintenance tasks within a high-fidelity VR roadway work zone, while key stress markers of electrodermal activity (EDA), heart rate variability (HRV), and electroencephalography (EEG) were continuously measured. Statistical analyses revealed that task intensity significantly influenced physiological and neurological stress indicators. Moderate-intensity tasks elicited greater autonomic arousal, evidenced by elevated heart rate measures (mean-HR, std-HR, max-HR) and stronger electrodermal responses, while EEG data indicated distinct stress-related alpha suppression and beta enhancement. Feature-importance analysis further identified mean EDR and short-term HR metrics as discriminative for classifying task intensity. Correlation results highlighted a temporal lag between immediate neural changes and subsequent physiological stress reactions, emphasizing the interplay between cognition and autonomic regulation during hazardous tasks.


[641] 2506.03114

Zero-Shot Tree Detection and Segmentation from Aerial Forest Imagery

Large-scale delineation of individual trees from remote sensing imagery is crucial to the advancement of ecological research, particularly as climate change and other environmental factors rapidly transform forest landscapes across the world. Current RGB tree segmentation methods rely on training specialized machine learning models with labeled tree datasets. While these learning-based approaches can outperform manual data collection when accurate, the existing models still depend on training data that's hard to scale. In this paper, we investigate the efficacy of using a state-of-the-art image segmentation model, Segment Anything Model 2 (SAM2), in a zero-shot manner for individual tree detection and segmentation. We evaluate a pretrained SAM2 model on two tasks in this domain: (1) zero-shot segmentation and (2) zero-shot transfer by using predictions from an existing tree detection model as prompts. Our results suggest that SAM2 not only has impressive generalization capabilities, but also can form a natural synergy with specialized methods trained on in-domain labeled data. We find that applying large pretrained models to problems in remote sensing is a promising avenue for future progress. We make our code available at: https://github.com/open-forest-observatory/tree-detection-framework.


[642] 2506.03117

Targeted Forgetting of Image Subgroups in CLIP Models

Foundation models (FMs) such as CLIP have demonstrated impressive zero-shot performance across various tasks by leveraging large-scale, unsupervised pre-training. However, they often inherit harmful or unwanted knowledge from noisy internet-sourced datasets, compromising their reliability in real-world applications. Existing model unlearning methods either rely on access to pre-trained datasets or focus on coarse-grained unlearning (e.g., entire classes), leaving a critical gap for fine-grained unlearning. In this paper, we address the challenging scenario of selectively forgetting specific portions of knowledge within a class, without access to pre-trained data, while preserving the model's overall performance. We propose a novel three-stage approach that progressively unlearns targeted knowledge while mitigating over-forgetting. It consists of (1) a forgetting stage to fine-tune the CLIP on samples to be forgotten, (2) a reminding stage to restore performance on retained samples, and (3) a restoring stage to recover zero-shot capabilities using model souping. Additionally, we introduce knowledge distillation to handle the distribution disparity between forgetting, retaining samples, and unseen pre-trained data. Extensive experiments on CIFAR-10, ImageNet-1K, and style datasets demonstrate that our approach effectively unlearns specific subgroups while maintaining strong zero-shot performance on semantically similar subgroups and other categories, significantly outperforming baseline unlearning methods, which lose effectiveness under the CLIP unlearning setting.


[643] 2506.03118

HumanRAM: Feed-forward Human Reconstruction and Animation Model using Transformers

3D human reconstruction and animation are long-standing topics in computer graphics and vision. However, existing methods typically rely on sophisticated dense-view capture and/or time-consuming per-subject optimization procedures. To address these limitations, we propose HumanRAM, a novel feed-forward approach for generalizable human reconstruction and animation from monocular or sparse human images. Our approach integrates human reconstruction and animation into a unified framework by introducing explicit pose conditions, parameterized by a shared SMPL-X neural texture, into transformer-based large reconstruction models (LRM). Given monocular or sparse input images with associated camera parameters and SMPL-X poses, our model employs scalable transformers and a DPT-based decoder to synthesize realistic human renderings under novel viewpoints and novel poses. By leveraging the explicit pose conditions, our model simultaneously enables high-quality human reconstruction and high-fidelity pose-controlled animation. Experiments show that HumanRAM significantly surpasses previous methods in terms of reconstruction accuracy, animation fidelity, and generalization performance on real-world datasets. Video results are available at https://zju3dv.github.io/humanram/.


[644] 2506.03119

Controllable Human-centric Keyframe Interpolation with Generative Prior

Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.


[645] 2506.03122

AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation

Analog circuit topology synthesis is integral to Electronic Design Automation (EDA), enabling the automated creation of circuit structures tailored to specific design requirements. However, the vast design search space and strict constraint adherence make efficient synthesis challenging. Leveraging the versatility of Large Language Models (LLMs), we propose AUTOCIRCUIT-RL,a novel reinforcement learning (RL)-based framework for automated analog circuit synthesis. The framework operates in two phases: instruction tuning, where an LLM learns to generate circuit topologies from structured prompts encoding design constraints, and RL refinement, which further improves the instruction-tuned model using reward models that evaluate validity, efficiency, and output voltage. The refined model is then used directly to generate topologies that satisfy the design constraints. Empirical results show that AUTOCIRCUIT-RL generates ~12% more valid circuits and improves efficiency by ~14% compared to the best baselines, while reducing duplicate generation rates by ~38%. It achieves over 60% success in synthesizing valid circuits with limited training data, demonstrating strong generalization. These findings highlight the framework's effectiveness in scaling to complex circuits while maintaining efficiency and constraint adherence, marking a significant advancement in AI-driven circuit design.


[646] 2506.03123

DCM: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation

Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.


[647] 2506.03126

AnimeShooter: A Multi-Shot Animation Dataset for Reference-Guided Video Generation

Recent advances in AI-generated content (AIGC) have significantly accelerated animation production. To produce engaging animations, it is essential to generate coherent multi-shot video clips with narrative scripts and character references. However, existing public datasets primarily focus on real-world scenarios with global descriptions, and lack reference images for consistent character guidance. To bridge this gap, we present AnimeShooter, a reference-guided multi-shot animation dataset. AnimeShooter features comprehensive hierarchical annotations and strong visual consistency across shots through an automated pipeline. Story-level annotations provide an overview of the narrative, including the storyline, key scenes, and main character profiles with reference images, while shot-level annotations decompose the story into consecutive shots, each annotated with scene, characters, and both narrative and descriptive visual captions. Additionally, a dedicated subset, AnimeShooter-audio, offers synchronized audio tracks for each shot, along with audio descriptions and sound sources. To demonstrate the effectiveness of AnimeShooter and establish a baseline for the reference-guided multi-shot video generation task, we introduce AnimeShooterGen, which leverages Multimodal Large Language Models (MLLMs) and video diffusion models. The reference image and previously generated shots are first processed by MLLM to produce representations aware of both reference and context, which are then used as the condition for the diffusion model to decode the subsequent shot. Experimental results show that the model trained on AnimeShooter achieves superior cross-shot visual consistency and adherence to reference visual guidance, which highlight the value of our dataset for coherent animated video generation.


[648] 2506.03128

Zero-Shot Time Series Forecasting with Covariates via In-Context Learning

Pretrained time series models, capable of zero-shot forecasting, have demonstrated significant potential in enhancing both the performance and accessibility of time series forecasting. However, existing pretrained models either do not support covariates or fail to incorporate them effectively. We introduce COSMIC, a zero-shot forecasting model that utilizes covariates via in-context learning. To address the challenge of data scarcity, we propose Informative Covariate Augmentation, which enables the training of COSMIC without requiring any datasets that include covariates. COSMIC achieves state-of-the-art performance in zero-shot forecasting, both with and without covariates. Our quantitative and qualitative analysis demonstrates that COSMIC effectively leverages covariates in zero-shot forecasting.


[649] 2506.03131

Native-Resolution Image Synthesis

We introduce native-resolution image synthesis, a novel generative modeling paradigm that enables the synthesis of images at arbitrary resolutions and aspect ratios. This approach overcomes the limitations of conventional fixed-resolution, square-image methods by natively handling variable-length visual tokens, a core challenge for traditional techniques. To this end, we introduce the Native-resolution diffusion Transformer (NiT), an architecture designed to explicitly model varying resolutions and aspect ratios within its denoising process. Free from the constraints of fixed formats, NiT learns intrinsic visual distributions from images spanning a broad range of resolutions and aspect ratios. Notably, a single NiT model simultaneously achieves the state-of-the-art performance on both ImageNet-256x256 and 512x512 benchmarks. Surprisingly, akin to the robust zero-shot capabilities seen in advanced large language models, NiT, trained solely on ImageNet, demonstrates excellent zero-shot generalization performance. It successfully generates high-fidelity images at previously unseen high resolutions (e.g., 1536 x 1536) and diverse aspect ratios (e.g., 16:9, 3:1, 4:3), as shown in Figure 1. These findings indicate the significant potential of native-resolution modeling as a bridge between visual generative modeling and advanced LLM methodologies.


[650] 2506.03133

PoLAR: Polar-Decomposed Low-Rank Adapter Representation

We show that low-rank adaptation of large-scale models suffers from a low stable rank that is well below the linear algebraic rank of the subspace, degrading fine-tuning performance. To mitigate the underutilization of the allocated subspace, we propose PoLAR, a parameterization inspired by the polar decomposition that factorizes the low-rank update into two direction matrices constrained to Stiefel manifolds and an unconstrained scale matrix. Our theory shows that PoLAR yields an exponentially faster convergence rate on a canonical low-rank adaptation problem. Pairing the parameterization with Riemannian optimization leads to consistent gains on three different benchmarks testing general language understanding, commonsense reasoning, and mathematical problem solving with base model sizes ranging from 350M to 27B.


[651] 2506.03135

OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models

Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.


[652] 2506.03136

Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning

We propose CURE, a novel reinforcement learning framework with a dedicated reward design that co-evolves coding and unit test generation capabilities based on their interaction outcomes, without any ground-truth code as supervision. This approach enables flexible and scalable training and allows the unit tester to learn directly from the coder's mistakes. Our derived ReasonFlux-Coder-7B and 14B models improve code generation accuracy by 5.3% and Best-of-N accuracy by 9.0% after optimization on Qwen2.5-Instruct models, outperforming similarly sized Qwen-Coder, DeepSeek-Coder, and Seed-Coder. They naturally extend to downstream tasks such as test-time scaling and agentic coding-achieving a 8.1% improvement over the base model. For the long-CoT model, our ReasonFlux-Coder-4B consistently outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation. Notably, we also find that our model can serve as an effective reward model for reinforcement learning on base models. Project: https://github.com/Gen-Verse/CURE


[653] 2506.03139

SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation

Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.


[654] 2506.03140

CamCloneMaster: Enabling Reference-based Camera Control for Video Generation

Camera control is crucial for generating expressive and cinematic videos. Existing methods rely on explicit sequences of camera parameters as control conditions, which can be cumbersome for users to construct, particularly for intricate camera movements. To provide a more intuitive camera control method, we propose CamCloneMaster, a framework that enables users to replicate camera movements from reference videos without requiring camera parameters or test-time fine-tuning. CamCloneMaster seamlessly supports reference-based camera control for both Image-to-Video and Video-to-Video tasks within a unified framework. Furthermore, we present the Camera Clone Dataset, a large-scale synthetic dataset designed for camera clone learning, encompassing diverse scenes, subjects, and camera movements. Extensive experiments and user studies demonstrate that CamCloneMaster outperforms existing methods in terms of both camera controllability and visual quality.


[655] 2506.03141

Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval

Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.


[656] 2506.03142

Not All Tokens Are Meant to Be Forgotten

Large Language Models (LLMs), pre-trained on massive text corpora, exhibit remarkable human-level language understanding, reasoning, and decision-making abilities. However, they tend to memorize unwanted information, such as private or copyrighted content, raising significant privacy and legal concerns. Unlearning has emerged as a promising solution, but existing methods face a significant challenge of over-forgetting. This issue arises because they indiscriminately suppress the generation of all the tokens in forget samples, leading to a substantial loss of model utility. To overcome this challenge, we introduce the Targeted Information Forgetting (TIF) framework, which consists of (1) a flexible targeted information identifier designed to differentiate between unwanted words (UW) and general words (GW) in the forget samples, and (2) a novel Targeted Preference Optimization approach that leverages Logit Preference Loss to unlearn unwanted information associated with UW and Preservation Loss to retain general information in GW, effectively improving the unlearning process while mitigating utility degradation. Extensive experiments on the TOFU and MUSE benchmarks demonstrate that the proposed TIF framework enhances unlearning effectiveness while preserving model utility and achieving state-of-the-art results.


[657] 2506.03143

GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents

One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated <ACTOR> token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.


[658] 2506.03144

MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query

Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.


[659] 2506.03145

Entity-Augmented Neuroscience Knowledge Retrieval Using Ontology and Semantic Understanding Capability of LLM

Neuroscience research publications encompass a vast wealth of knowledge. Accurately retrieving existing information and discovering new insights from this extensive literature is essential for advancing the field. However, when knowledge is dispersed across multiple sources, current state-of-the-art retrieval methods often struggle to extract the necessary information. A knowledge graph (KG) can integrate and link knowledge from multiple sources, but existing methods for constructing KGs in neuroscience often rely on labeled data and require domain expertise. Acquiring large-scale, labeled data for a specialized area like neuroscience presents significant challenges. This work proposes novel methods for constructing KG from unlabeled large-scale neuroscience research corpus utilizing large language models (LLM), neuroscience ontology, and text embeddings. We analyze the semantic relevance of neuroscience text segments identified by LLM for building the knowledge graph. We also introduce an entity-augmented information retrieval algorithm to extract knowledge from the KG. Several experiments were conducted to evaluate the proposed approaches, and the results demonstrate that our methods significantly enhance knowledge discovery from the unlabeled neuroscience research corpus. It achieves an F1 score of 0.84 for entity extraction, and the knowledge obtained from the KG improves answers to over 54% of the questions.


[660] 2506.03147

UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation

Although existing unified models deliver strong performance on vision-language understanding and text-to-image generation, their models are limited in exploring image perception and manipulation tasks, which are urgently desired by users for wide applications. Recently, OpenAI released their powerful GPT-4o-Image model for comprehensive image perception and manipulation, achieving expressive capability and attracting community interests. By observing the performance of GPT-4o-Image in our carefully constructed experiments, we infer that GPT-4o-Image leverages features extracted by semantic encoders instead of VAE, while VAEs are considered essential components in many image manipulation models. Motivated by such inspiring observations, we present a unified generative framework named UniWorld based on semantic features provided by powerful visual-language models and contrastive semantic encoders. As a result, we build a strong unified model using only 1% amount of BAGEL's data, which consistently outperforms BAGEL on image editing benchmarks. UniWorld also maintains competitive image understanding and generation capabilities, achieving strong performance across multiple image perception tasks. We fully open-source our models, including model weights, training and evaluation scripts, and datasets.


[661] 2506.03148

Self-Supervised Spatial Correspondence Across Modalities

We present a method for finding cross-modal space-time correspondences. Given two images from different visual modalities, such as an RGB image and a depth map, our model identifies which pairs of pixels correspond to the same physical points in the scene. To solve this problem, we extend the contrastive random walk framework to simultaneously learn cycle-consistent feature representations for both cross-modal and intra-modal matching. The resulting model is simple and has no explicit photo-consistency assumptions. It can be trained entirely using unlabeled data, without the need for any spatially aligned multimodal image pairs. We evaluate our method on both geometric and semantic correspondence tasks. For geometric matching, we consider challenging tasks such as RGB-to-depth and RGB-to-thermal matching (and vice versa); for semantic matching, we evaluate on photo-sketch and cross-style image alignment. Our method achieves strong performance across all benchmarks.


[662] 2506.03149

Causal Estimation of Tokenisation Bias

Modern language models are typically trained over subword sequences, but ultimately define probabilities over character-strings. Ideally, the choice of the tokeniser -- which maps character-strings to subwords -- should not affect the probability assigned to the underlying character-string; in practice, it does. We define this mismatch as tokenisation bias. In this work, we quantify one particular type of tokenisation bias: the effect of including or not a subword (e.g., $\langle hello \rangle$) in a tokeniser's vocabulary on the probability a trained model assigns to the corresponding characters (i.e., \textit{``hello''}). Estimating this effect is challenging because each model is trained with only one tokeniser. We address this by framing tokenisation bias as a causal effect and estimating it using the regression discontinuity design. Specifically, we exploit the fact that tokenisation algorithms rank subwords and add the first $K$ to a tokeniser's vocabulary, where $K$ is an arbitrary cutoff point. As such, we can estimate a causal effect by comparing similar subwords around this cutoff. Experimentally, we find that tokenisation consistently affects models' outputs across scales, vocabularies, and tokenisers. Notably, a subword's presence in a small model's vocabulary may increase its characters' probability by up to 17 times, highlighting tokenisation as a key design choice in language modelling.


[663] 2506.03150

IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation

Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page


[664] 2406.03111

Singing Voice Graph Modeling for SingFake Detection

Detecting singing voice deepfakes, or SingFake, involves determining the authenticity and copyright of a singing voice. Existing models for speech deepfake detection have struggled to adapt to unseen attacks in this unique singing voice domain of human vocalization. To bridge the gap, we present a groundbreaking SingGraph model. The model synergizes the capabilities of the MERT acoustic music understanding model for pitch and rhythm analysis with the wav2vec2.0 model for linguistic analysis of lyrics. Additionally, we advocate for using RawBoost and beat matching techniques grounded in music domain knowledge for singing voice augmentation, thereby enhancing SingFake detection performance. Our proposed method achieves new state-of-the-art (SOTA) results within the SingFake dataset, surpassing the previous SOTA model across three distinct scenarios: it improves EER relatively for seen singers by 13.2%, for unseen singers by 24.3%, and unseen singers using different codecs by 37.1%.


[665] 2506.01980

Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance

Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS). However, supervised learning approaches require large, annotated datasets that are scarce due to annotation efforts that are prohibitive, e.g., in medical fields. Although self-supervision methods can address such limitations, current self-supervised methods often fail to capture structural and physical information in a form that generalizes across tasks. We propose Compress-to-Explore (C2E), a novel self-supervised framework that leverages Kolmogorov complexity to learn compact, informative representations from surgical videos. C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data. Trained on large-scale unlabeled surgical datasets, C2E demonstrates strong generalization across a variety of surgical ML tasks, such as workflow classification, tool-tissue interaction classification, segmentation, and diagnosis tasks, providing improved performance as a surgical visual foundation model. As we further show in the paper, the model's internal compact representation better disentangles features from different structural parts of images. The resulting performance improvements highlight the yet untapped potential of self-supervised learning to enhance surgical AI and improve outcomes in MIS.


[666] 2506.01994

Re-experiment Smart: a Novel Method to Enhance Data-driven Prediction of Mechanical Properties of Epoxy Polymers

Accurate prediction of polymer material properties through data-driven approaches greatly accelerates novel material development by reducing redundant experiments and trial-and-error processes. However, inevitable outliers in empirical measurements can severely skew machine learning results, leading to erroneous prediction models and suboptimal material designs. To address this limitation, we propose a novel approach to enhance dataset quality efficiently by integrating multi-algorithm outlier detection with selective re-experimentation of unreliable outlier cases. To validate the empirical effectiveness of the approach, we systematically construct a new dataset containing 701 measurements of three key mechanical properties: glass transition temperature ($T_g$), tan $\delta$ peak, and crosslinking density ($v_{c}$). To demonstrate its general applicability, we report the performance improvements across multiple machine learning models, including Elastic Net, SVR, Random Forest, and TPOT, to predict the three key properties. Our method reliably reduces prediction error (RMSE) and significantly improves accuracy with minimal additional experimental work, requiring only about 5% of the dataset to be re-measured.These findings highlight the importance of data quality enhancement in achieving reliable machine learning applications in polymer science and present a scalable strategy for improving predictive reliability in materials science.


[667] 2506.02031

Effective Versions of Strong Measure Zero

Effective versions of strong measure zero sets are developed for various levels of complexity and computability. It is shown that the sets can be equivalently defined using a generalization of supermartingales called odds supermartingales, success rates on supermartingales, predictors, and coverings. We show Borel's conjecture of a set having strong measure zero if and only if it is countable holds in the time and space bounded setting. At the level of computability this does not hold. We show the computable level contains sequences at arbitrary levels of the hyperarithmetical hierarchy by proving a correspondence principle yielding a condition for the sets of computable strong measure zero to agree with the classical sets of strong measure zero. An algorithmic version of strong measure zero using lower semicomputability is defined. We show that this notion is equivalent to the set of NCR reals studied by Reimann and Slaman, thereby giving new characterizations of this set. Effective strong packing dimension zero is investigated requiring success with respect to the limit inferior instead of the limit superior. It is proven that every sequence in the corresponding algorithmic class is decidable. At the level of computability, the sets coincide with a notion of weak countability that we define.


[668] 2506.02039

No Audiogram: Leveraging Existing Scores for Personalized Speech Intelligibility Prediction

Personalized speech intelligibility prediction is challenging. Previous approaches have mainly relied on audiograms, which are inherently limited in accuracy as they only capture a listener's hearing threshold for pure tones. Rather than incorporating additional listener features, we propose a novel approach that leverages an individual's existing intelligibility data to predict their performance on new audio. We introduce the Support Sample-Based Intelligibility Prediction Network (SSIPNet), a deep learning model that leverages speech foundation models to build a high-dimensional representation of a listener's speech recognition ability from multiple support (audio, score) pairs, enabling accurate predictions for unseen audio. Results on the Clarity Prediction Challenge dataset show that, even with a small number of support (audio, score) pairs, our method outperforms audiogram-based predictions. Our work presents a new paradigm for personalized speech intelligibility prediction.


[669] 2506.02044

A Brain Graph Foundation Model: Pre-Training and Prompt-Tuning for Any Atlas and Disorder

As large language models (LLMs) continue to revolutionize AI research, there is a growing interest in building large-scale brain foundation models to advance neuroscience. While most existing brain foundation models are pre-trained on time-series signals or region-of-interest (ROI) features, we propose a novel graph-based pre-training paradigm for constructing a brain graph foundation model. In this paper, we introduce the Brain Graph Foundation Model, termed BrainGFM, a unified framework that leverages graph contrastive learning and graph masked autoencoders for large-scale fMRI-based pre-training. BrainGFM is pre-trained on a diverse mixture of brain atlases with varying parcellations, significantly expanding the pre-training corpus and enhancing the model's ability to generalize across heterogeneous fMRI-derived brain representations. To support efficient and versatile downstream transfer, we integrate both graph prompts and language prompts into the model design, enabling BrainGFM to flexibly adapt to a wide range of atlases, neurological and psychiatric disorders, and task settings. Furthermore, we employ meta-learning to optimize the graph prompts, facilitating strong generalization to previously unseen disorders under both few-shot and zero-shot learning conditions via language-guided prompting. BrainGFM is pre-trained on 27 neuroimaging datasets spanning 25 common neurological and psychiatric disorders, encompassing 2 types of brain atlases (functional and anatomical) across 8 widely-used parcellations, and covering over 25,000 subjects, 60,000 fMRI scans, and a total of 400,000 graph samples aggregated across all atlases and parcellations. The code is available at: https://github.com/weixinxu666/BrainGFM


[670] 2506.02051

Phenotypic Profile-Informed Generation of Drug-Like Molecules via Dual-Channel Variational Autoencoders

The de novo generation of drug-like molecules capable of inducing desirable phenotypic changes is receiving increasing attention. However, previous methods predominantly rely on expression profiles to guide molecule generation, but overlook the perturbative effect of the molecules on cellular contexts. To overcome this limitation, we propose SmilesGEN, a novel generative model based on variational autoencoder (VAE) architecture to generate molecules with potential therapeutic effects. SmilesGEN integrates a pre-trained drug VAE (SmilesNet) with an expression profile VAE (ProfileNet), jointly modeling the interplay between drug perturbations and transcriptional responses in a common latent space. Specifically, ProfileNet is imposed to reconstruct pre-treatment expression profiles when eliminating drug-induced perturbations in the latent space, while SmilesNet is informed by desired expression profiles to generate drug-like molecules. Our empirical experiments demonstrate that SmilesGEN outperforms current state-of-the-art models in generating molecules with higher degree of validity, uniqueness, novelty, as well as higher Tanimoto similarity to known ligands targeting the relevant proteins. Moreover, we evaluate SmilesGEN for scaffold-based molecule optimization and generation of therapeutic agents, and confirmed its superior performance in generating molecules with higher similarity to approved drugs. SmilesGEN establishes a robust framework that leverages gene signatures to generate drug-like molecules that hold promising potential to induce desirable cellular phenotypic changes.


[671] 2506.02052

Protap: A Benchmark for Protein Modeling on Realistic Downstream Applications

Recently, extensive deep learning architectures and pretraining strategies have been explored to support downstream protein applications. Additionally, domain-specific models incorporating biological knowledge have been developed to enhance performance in specialized tasks. In this work, we introduce $\textbf{Protap}$, a comprehensive benchmark that systematically compares backbone architectures, pretraining strategies, and domain-specific models across diverse and realistic downstream protein applications. Specifically, Protap covers five applications: three general tasks and two novel specialized tasks, i.e., enzyme-catalyzed protein cleavage site prediction and targeted protein degradation, which are industrially relevant yet missing from existing benchmarks. For each application, Protap compares various domain-specific models and general architectures under multiple pretraining settings. Our empirical studies imply that: (i) Though large-scale pretraining encoders achieve great results, they often underperform supervised encoders trained on small downstream training sets. (ii) Incorporating structural information during downstream fine-tuning can match or even outperform protein language models pretrained on large-scale sequence corpora. (iii) Domain-specific biological priors can enhance performance on specialized downstream tasks. Code and datasets are publicly available at https://github.com/Trust-App-AI-Lab/protap.


[672] 2506.02054

Quantum Key Distribution by Quantum Energy Teleportation

Quantum energy teleportation (QET) is a process that leverages quantum entanglement and local operations to transfer energy between two spatially separated locations without physically transporting particles or energy carriers. We construct a QET-based quantum key distribution (QKD) protocol and analyze its security and robustness to noise in both the classical and the quantum channels. We generalize the construction to an $N$-party information sharing protocol, possessing a feature that dishonest participants can be detected.


[673] 2506.02060

Alzheimers Disease Classification in Functional MRI With 4D Joint Temporal-Spatial Kernels in Novel 4D CNN Model

Previous works in the literature apply 3D spatial-only models on 4D functional MRI data leading to possible sub-par feature extraction to be used for downstream tasks like classification. In this work, we aim to develop a novel 4D convolution network to extract 4D joint temporal-spatial kernels that not only learn spatial information but in addition also capture temporal dynamics. Experimental results show promising performance in capturing spatial-temporal data in functional MRI compared to 3D models. The 4D CNN model improves Alzheimers disease diagnosis for rs-fMRI data, enabling earlier detection and better interventions. Future research could explore task-based fMRI applications and regression tasks, enhancing understanding of cognitive performance and disease progression.


[674] 2506.02068

Enhancing Interpretability of Quantum-Assisted Blockchain Clustering via AI Agent-Based Qualitative Analysis

Blockchain transaction data is inherently high dimensional, noisy, and entangled, posing substantial challenges for traditional clustering algorithms. While quantum enhanced clustering models have demonstrated promising performance gains, their interpretability remains limited, restricting their application in sensitive domains such as financial fraud detection and blockchain governance. To address this gap, we propose a two stage analysis framework that synergistically combines quantitative clustering evaluation with AI Agent assisted qualitative interpretation. In the first stage, we employ classical clustering methods and evaluation metrics including the Silhouette Score, Davies Bouldin Index, and Calinski Harabasz Index to determine the optimal cluster count and baseline partition quality. In the second stage, we integrate an AI Agent to generate human readable, semantic explanations of clustering results, identifying intra cluster characteristics and inter cluster relationships. Our experiments reveal that while fully trained Quantum Neural Networks (QNN) outperform random Quantum Features (QF) in quantitative metrics, the AI Agent further uncovers nuanced differences between these methods, notably exposing the singleton cluster phenomenon in QNN driven models. The consolidated insights from both stages consistently endorse the three cluster configuration, demonstrating the practical value of our hybrid approach. This work advances the interpretability frontier in quantum assisted blockchain analytics and lays the groundwork for future autonomous AI orchestrated clustering frameworks.


[675] 2506.02075

Stop Chasing the C-index: This Is How We Should Evaluate Our Survival Models

We argue that many survival analysis and time-to-event models are incorrectly evaluated. First, we survey many examples of evaluation approaches in the literature and find that most rely on concordance (C-index). However, the C-index only measures a model's discriminative ability and does not assess other important aspects, such as the accuracy of the time-to-event predictions or the calibration of the model's probabilistic estimates. Next, we present a set of key desiderata for choosing the right evaluation metric and discuss their pros and cons. These are tailored to the challenges in survival analysis, such as sensitivity to miscalibration and various censoring assumptions. We hypothesize that the current development of survival metrics conforms to a double-helix ladder, and that model validity and metric validity must stand on the same rung of the assumption ladder. Finally, we discuss the appropriate methods for evaluating a survival model in practice and summarize various viewpoints opposing our analysis.


[676] 2506.02076

A meaningful prediction of functional decline in amyotrophic lateral sclerosis based on multi-event survival analysis

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons that causes progressive paralysis in patients. Current treatment options aim to prolong survival and improve quality of life; however, due to the heterogeneity of the disease, it is often difficult to determine the optimal time for potential therapies or medical interventions. In this study, we propose a novel method to predict the time until a patient with ALS experiences significant functional impairment (ALSFRS-R<=2) with respect to five common functions: speaking, swallowing, handwriting, walking and breathing. We formulate this task as a multi-event survival problem and validate our approach in the PRO-ACT dataset by training five covariate-based survival models to estimate the probability of an event over a 500-day period after a baseline visit. We then predict five event-specific individual survival distributions (ISDs) for each patient, each providing an interpretable and meaningful estimate of when that event will likely take place in the future. The results show that covariate-based models are superior to the Kaplan-Meier estimator at predicting time-to-event outcomes. Additionally, our method enables practitioners to make individual counterfactual predictions, where certain features (covariates) can be changed to see their effect on the predicted outcome. In this regard, we find that Riluzole has little to no impact on predicted functional decline. However, for patients with bulbar-onset ALS, our method predicts considerably shorter counterfactual time-to-event estimates for tasks related to speech and swallowing compared to limb-onset ALS. The proposed method can be applied to current clinical examination data to assess the risk of functional decline and thus allow more personalized treatment planning.


[677] 2506.02078

Evaluating the Effectiveness of Pre-Trained Audio Embeddings for Classification of Parkinson's Disease Speech Data

Speech impairments are prevalent biomarkers for Parkinson's Disease (PD), motivating the development of diagnostic techniques using speech data for clinical applications. Although deep acoustic features have shown promise for PD classification, their effectiveness often varies due to individual speaker differences, a factor that has not been thoroughly explored in the existing literature. This study investigates the effectiveness of three pre-trained audio embeddings (OpenL3, VGGish and Wav2Vec2.0 models) for PD classification. Using the NeuroVoz dataset, OpenL3 outperforms others in diadochokinesis (DDK) and listen and repeat (LR) tasks, capturing critical acoustic features for PD detection. Only Wav2Vec2.0 shows significant gender bias, achieving more favorable results for male speakers, in DDK tasks. The misclassified cases reveal challenges with atypical speech patterns, highlighting the need for improved feature extraction and model robustness in PD detection.


[678] 2506.02080

Enhancing GOP in CTC-Based Mispronunciation Detection with Phonological Knowledge

Computer-Assisted Pronunciation Training (CAPT) systems employ automatic measures of pronunciation quality, such as the goodness of pronunciation (GOP) metric. GOP relies on forced alignments, which are prone to labeling and segmentation errors due to acoustic variability. While alignment-free methods address these challenges, they are computationally expensive and scale poorly with phoneme sequence length and inventory size. To enhance efficiency, we introduce a substitution-aware alignment-free GOP that restricts phoneme substitutions based on phoneme clusters and common learner errors. We evaluated our GOP on two L2 English speech datasets, one with child speech, My Pronunciation Coach (MPC), and SpeechOcean762, which includes child and adult speech. We compared RPS (restricted phoneme substitutions) and UPS (unrestricted phoneme substitutions) setups within alignment-free methods, which outperformed the baseline. We discuss our results and outline avenues for future research.


[679] 2506.02093

Are Pixel-Wise Metrics Reliable for Sparse-View Computed Tomography Reconstruction?

Widely adopted evaluation metrics for sparse-view CT reconstruction--such as Structural Similarity Index Measure and Peak Signal-to-Noise Ratio--prioritize pixel-wise fidelity but often fail to capture the completeness of critical anatomical structures, particularly small or thin regions that are easily missed. To address this limitation, we propose a suite of novel anatomy-aware evaluation metrics designed to assess structural completeness across anatomical structures, including large organs, small organs, intestines, and vessels. Building on these metrics, we introduce CARE, a Completeness-Aware Reconstruction Enhancement framework that incorporates structural penalties during training to encourage anatomical preservation of significant structures. CARE is model-agnostic and can be seamlessly integrated into analytical, implicit, and generative methods. When applied to these methods, CARE substantially improves structural completeness in CT reconstructions, achieving up to +32% improvement for large organs, +22% for small organs, +40% for intestines, and +36% for vessels.


[680] 2506.02149

Tomographic Foundation Model -- FORCE: Flow-Oriented Reconstruction Conditioning Engine

Computed tomography (CT) is a major medical imaging modality. Clinical CT scenarios, such as low-dose screening, sparse-view scanning, and metal implants, often lead to severe noise and artifacts in reconstructed images, requiring improved reconstruction techniques. The introduction of deep learning has significantly advanced CT image reconstruction. However, obtaining paired training data remains rather challenging due to patient motion and other constraints. Although deep learning methods can still perform well with approximately paired data, they inherently carry the risk of hallucination due to data inconsistencies and model instability. In this paper, we integrate the data fidelity with the state-of-the-art generative AI model, referred to as the Poisson flow generative model (PFGM) with a generalized version PFGM++, and propose a novel CT framework: Flow-Oriented Reconstruction Conditioning Engine (FORCE). In our experiments, the proposed method shows superior performance in various CT imaging tasks, outperforming existing unsupervised reconstruction approaches.


[681] 2506.02166

Dhvani: A Weakly-supervised Phonemic Error Detection and Personalized Feedback System for Hindi

Computer-Assisted Pronunciation Training (CAPT) has been extensively studied for English. However, there remains a critical gap in its application to Indian languages with a base of 1.5 billion speakers. Pronunciation tools tailored to Indian languages are strikingly lacking despite the fact that millions learn them every year. With over 600 million speakers and being the fourth most-spoken language worldwide, improving Hindi pronunciation is a vital first step toward addressing this gap. This paper proposes 1) Dhvani -- a novel CAPT system for Hindi, 2) synthetic speech generation for Hindi mispronunciations, and 3) a novel methodology for providing personalized feedback to learners. While the system often interacts with learners using Devanagari graphemes, its core analysis targets phonemic distinctions, leveraging Hindi's highly phonetic orthography to analyze mispronounced speech and provide targeted feedback.


[682] 2506.02197

NTIRE 2025 Challenge on RAW Image Restoration and Super-Resolution

This paper reviews the NTIRE 2025 RAW Image Restoration and Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Restoration and Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. The goal of this challenge is two fold, (i) restore RAW images with blur and noise degradations, (ii) upscale RAW Bayer images by 2x, considering unknown noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. This report presents the current state-of-the-art in RAW Restoration.


[683] 2506.02220

On a spherically lifted spin model at finite temperature

We investigate an \(n\)-vector model over \(k\) sites with generic pairwise interactions and spherical constraints. The model is a lifting of the Ising model whereby the support of the spin is lifted to a hypersphere. We show that the \(n\)-vector model converges to a limiting distribution at a rate of \(n^{-1/2 + o(1)}\). We show that the limiting distribution for \(n \to \infty\) is determined by the solution of an equality-constrained maximization task over positive definite matrices. We prove that the obtained maximal value and maximizer, respectively, give rise to the free energy and correlation function of the limiting distribution. In the finite temperature regime, the maximization task is a log-determinant regularization of the semidefinite program (SDP) in the Goemans-Williamson algorithm. Moreover, the inverse temperature determines the regularization strength, with the zero temperature limit converging to the SDP in Goemans-Williamson. Our derivation draws a curious connection between the semidefinite relaxation of integer programming and the spherical lifting of sampling on a hypercube. To the authors' best knowledge, this work is the first to solve the setting of fixed \(k\) and infinite \(n\) under unstructured pairwise interactions.


[684] 2506.02230

Towards Machine Unlearning for Paralinguistic Speech Processing

In this work, we pioneer the study of Machine Unlearning (MU) for Paralinguistic Speech Processing (PSP). We focus on two key PSP tasks: Speech Emotion Recognition (SER) and Depression Detection (DD). To this end, we propose, SISA++, a novel extension to previous state-of-the-art (SOTA) MU method, SISA by merging models trained on different shards with weight-averaging. With such modifications, we show that SISA++ preserves performance more in comparison to SISA after unlearning in benchmark SER (CREMA-D) and DD (E-DAIC) datasets. Also, to guide future research for easier adoption of MU for PSP, we present ``cookbook recipes'' - actionable recommendations for selecting optimal feature representations and downstream architectures that can mitigate performance degradation after the unlearning process.


[685] 2506.02232

Investigating the Reasonable Effectiveness of Speaker Pre-Trained Models and their Synergistic Power for SingMOS Prediction

In this study, we focus on Singing Voice Mean Opinion Score (SingMOS) prediction. Previous research have shown the performance benefit with the use of state-of-the-art (SOTA) pre-trained models (PTMs). However, they haven't explored speaker recognition speech PTMs (SPTMs) such as x-vector, ECAPA and we hypothesize that it will be the most effective for SingMOS prediction. We believe that due to their speaker recognition pre-training, it equips them to capture fine-grained vocal features (e.g., pitch, tone, intensity) from synthesized singing voices in a much more better way than other PTMs. Our experiments with SOTA PTMs including SPTMs and music PTMs validates the hypothesis. Additionally, we introduce a novel fusion framework, BATCH that uses Bhattacharya Distance for fusion of PTMs. Through BATCH with the fusion of speaker recognition SPTMs, we report the topmost performance comparison to all the individual PTMs and baseline fusion techniques as well as setting SOTA.


[686] 2506.02254

Enabling Probabilistic Learning on Manifolds through Double Diffusion Maps

We present a generative learning framework for probabilistic sampling based on an extension of the Probabilistic Learning on Manifolds (PLoM) approach, which is designed to generate statistically consistent realizations of a random vector in a finite-dimensional Euclidean space, informed by a limited (yet representative) set of observations. In its original form, PLoM constructs a reduced-order probabilistic model by combining three main components: (a) kernel density estimation to approximate the underlying probability measure, (b) Diffusion Maps to uncover the intrinsic low-dimensional manifold structure, and (c) a reduced-order Ito Stochastic Differential Equation (ISDE) to sample from the learned distribution. A key challenge arises, however, when the number of available data points N is small and the dimensionality of the diffusion-map basis approaches N, resulting in overfitting and loss of generalization. To overcome this limitation, we propose an enabling extension that implements a synthesis of Double Diffusion Maps -- a technique capable of capturing multiscale geometric features of the data -- with Geometric Harmonics (GH), a nonparametric reconstruction method that allows smooth nonlinear interpolation in high-dimensional ambient spaces. This approach enables us to solve a full-order ISDE directly in the latent space, preserving the full dynamical complexity of the system, while leveraging its reduced geometric representation. The effectiveness and robustness of the proposed method are illustrated through two numerical studies: one based on data generated from two-dimensional Hermite polynomial functions and another based on high-fidelity simulations of a detonation wave in a reactive flow.


[687] 2506.02257

Assumption-free stability for ranking problems

In this work, we consider ranking problems among a finite set of candidates: for instance, selecting the top-$k$ items among a larger list of candidates or obtaining the full ranking of all items in the set. These problems are often unstable, in the sense that estimating a ranking from noisy data can exhibit high sensitivity to small perturbations. Concretely, if we use data to provide a score for each item (say, by aggregating preference data over a sample of users), then for two items with similar scores, small fluctuations in the data can alter the relative ranking of those items. Many existing theoretical results for ranking problems assume a separation condition to avoid this challenge, but real-world data often contains items whose scores are approximately tied, limiting the applicability of existing theory. To address this gap, we develop a new algorithmic stability framework for ranking problems, and propose two novel ranking operators for achieving stable ranking: the \emph{inflated top-$k$} for the top-$k$ selection problem and the \emph{inflated full ranking} for ranking the full list. To enable stability, each method allows for expressing some uncertainty in the output. For both of these two problems, our proposed methods provide guaranteed stability, with no assumptions on data distributions and no dependence on the total number of candidates to be ranked. Experiments on real-world data confirm that the proposed methods offer stability without compromising the informativeness of the output.


[688] 2506.02258

Are Mamba-based Audio Foundation Models the Best Fit for Non-Verbal Emotion Recognition?

In this work, we focus on non-verbal vocal sounds emotion recognition (NVER). We investigate mamba-based audio foundation models (MAFMs) for the first time for NVER and hypothesize that MAFMs will outperform attention-based audio foundation models (AAFMs) for NVER by leveraging its state-space modeling to capture intrinsic emotional structures more effectively. Unlike AAFMs, which may amplify irrelevant patterns due to their attention mechanisms, MAFMs will extract more stable and context-aware representations, enabling better differentiation of subtle non-verbal emotional cues. Our experiments with state-of-the-art (SOTA) AAFMs and MAFMs validates our hypothesis. Further, motivated from related research such as speech emotion recognition, synthetic speech detection, where fusion of foundation models (FMs) have showed improved performance, we also explore fusion of FMs for NVER. To this end, we propose, RENO, that uses renyi-divergence as a novel loss function for effective alignment of the FMs. It also makes use of self-attention for better intra-representation interaction of the FMs. With RENO, through the heterogeneous fusion of MAFMs and AAFMs, we show the topmost performance in comparison to individual FMs, its fusion and also setting SOTA in comparison to previous SOTA work.


[689] 2506.02260

MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements

The growing prevalence of digital health technologies has led to the generation of complex multi-modal data, such as physical activity measurements simultaneously collected from various sensors of mobile and wearable devices. These data hold immense potential for advancing health studies, but current methods predominantly rely on supervised learning, requiring extensive labeled datasets that are often expensive or impractical to obtain, especially in clinical studies. To address this limitation, we propose a self-supervised learning framework called Multi-modal Cross-masked Autoencoder (MoCA) that leverages cross-modality masking and the Transformer autoencoder architecture to utilize both temporal correlations within modalities and cross-modal correlations between data streams. We also provide theoretical guarantees to support the effectiveness of the cross-modality masking scheme in MoCA. Comprehensive experiments and ablation studies demonstrate that our method outperforms existing approaches in both reconstruction and downstream tasks. We release open-source code for data processing, pre-training, and downstream tasks in the supplementary materials. This work highlights the transformative potential of self-supervised learning in digital health and multi-modal data.


[690] 2506.02277

Parallel Repetition for Post-Quantum Arguments

In this work, we show that parallel repetition of public-coin interactive arguments reduces the soundness error at an exponential rate even in the post-quantum setting. Moreover, we generalize this result to hold for threshold verifiers, where the parallel repeated verifier accepts if and only if at least $t$ of the executions are accepted (for some threshold $t$). Prior to this work, these results were known only when the cheating prover was assumed to be classical. We also prove a similar result for three-message private-coin arguments. Previously, Bostanci, Qian, Spooner, and Yuen (STOC 2024) proved such a parallel repetition result in the more general setting of quantum protocols, where the verifier and communication may be quantum. We consider only protocols where the verifier is classical, but obtain a simplified analysis, and for the more general setting of threshold verifiers.


[691] 2506.02312

Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation

Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases. Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field, yet issues like limited training data, imbalance data distribution, and inadequate feature extraction persist, hindering both the segmentation performance and optimal model generalization. Addressing these critical issues, the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs, thereby improving both richer feature encoding and enhanced model generalization. A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion. In response to the task-specific need for higher precision where false positives are very costly, traditional skip connections are replaced with the attention-guided feature reconstructing fusion module. Additionally, innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance, further boosting the robustness and generalization of the model. With a comprehensive suite of evaluation metrics, extensive validations on four benchmark datasets (DRIVE, CHASEDB1, STARE, and HRF) and an SLO dataset (IOSTAR), demonstrate the proposed method's superiority over both baseline and state-of-the-art models. Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.


[692] 2506.02336

Large Stepsizes Accelerate Gradient Descent for Regularized Logistic Regression

We study gradient descent (GD) with a constant stepsize for $\ell_2$-regularized logistic regression with linearly separable data. Classical theory suggests small stepsizes to ensure monotonic reduction of the optimization objective, achieving exponential convergence in $\widetilde{\mathcal{O}}(\kappa)$ steps with $\kappa$ being the condition number. Surprisingly, we show that this can be accelerated to $\widetilde{\mathcal{O}}(\sqrt{\kappa})$ by simply using a large stepsize -- for which the objective evolves nonmonotonically. The acceleration brought by large stepsizes extends to minimizing the population risk for separable distributions, improving on the best-known upper bounds on the number of steps to reach a near-optimum. Finally, we characterize the largest stepsize for the local convergence of GD, which also determines the global convergence in special scenarios. Our results extend the analysis of Wu et al. (2024) from convex settings with minimizers at infinity to strongly convex cases with finite minimizers.


[693] 2506.02339

Enhancing Lyrics Transcription on Music Mixtures with Consistency Loss

Automatic Lyrics Transcription (ALT) aims to recognize lyrics from singing voices, similar to Automatic Speech Recognition (ASR) for spoken language, but faces added complexity due to domain-specific properties of the singing voice. While foundation ASR models show robustness in various speech tasks, their performance degrades on singing voice, especially in the presence of musical accompaniment. This work focuses on this performance gap and explores Low-Rank Adaptation (LoRA) for ALT, investigating both single-domain and dual-domain fine-tuning strategies. We propose using a consistency loss to better align vocal and mixture encoder representations, improving transcription on mixture without relying on singing voice separation. Our results show that while na\"ive dual-domain fine-tuning underperforms, structured training with consistency loss yields modest but consistent gains, demonstrating the potential of adapting ASR foundation models for music.


[694] 2506.02381

Unrolling Nonconvex Graph Total Variation for Image Denoising

Conventional model-based image denoising optimizations employ convex regularization terms, such as total variation (TV) that convexifies the $\ell_0$-norm to promote sparse signal representation. Instead, we propose a new non-convex total variation term in a graph setting (NC-GTV), such that when combined with an $\ell_2$-norm fidelity term for denoising, leads to a convex objective with no extraneous local minima. We define NC-GTV using a new graph variant of the Huber function, interpretable as a Moreau envelope. The crux is the selection of a parameter $a$ characterizing the graph Huber function that ensures overall objective convexity; we efficiently compute $a$ via an adaptation of Gershgorin Circle Theorem (GCT). To minimize the convex objective, we design a linear-time algorithm based on Alternating Direction Method of Multipliers (ADMM) and unroll it into a lightweight feed-forward network for data-driven parameter learning. Experiments show that our method outperforms unrolled GTV and other representative image denoising schemes, while employing far fewer network parameters.


[695] 2506.02394

Joint Modeling for Learning Decision-Making Dynamics in Behavioral Experiments

Major depressive disorder (MDD), a leading cause of disability and mortality, is associated with reward-processing abnormalities and concentration issues. Motivated by the probabilistic reward task from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel framework that integrates the reinforcement learning (RL) model and drift-diffusion model (DDM) to jointly analyze reward-based decision-making with response times. To account for emerging evidence suggesting that decision-making may alternate between multiple interleaved strategies, we model latent state switching using a hidden Markov model (HMM). In the ''engaged'' state, decisions follow an RL-DDM, simultaneously capturing reward processing, decision dynamics, and temporal structure. In contrast, in the ''lapsed'' state, decision-making is modeled using a simplified DDM, where specific parameters are fixed to approximate random guessing with equal probability. The proposed method is implemented using a computationally efficient generalized expectation-maximization algorithm with forward-backward procedures. Through extensive numerical studies, we demonstrate that our proposed method outperforms competing approaches under various reward-generating distributions, both with and without strategy switching. When applied to the EMBARC study, our framework reveals that MDD patients exhibit lower overall engagement than healthy controls and experience longer decision times when they do engage. Additionally, we show that neuroimaging measures of brain activities are associated with decision-making characteristics in the ''engaged'' state but not in the ''lapsed'' state, providing evidence of brain-behavioral association specific to the ''engaged'' state.


[696] 2506.02411

Baseband-Free End-to-End Communication System Based on Diffractive Deep Neural Network

Diffractive deep neural network (D2NN), also referred to as reconfigurable intelligent metasurface based deep neural networks (Rb-DNNs) or stacked intelligent metasurfaces (SIMs) in the field of wireless communications, has emerged as a promising signal processing paradigm that enables computing-by-propagation. However, existing architectures are limited to implementing specific functions such as precoding and combining, while still relying on digital baseband modules for other essential tasks like modulation and detection. In this work, we propose a baseband-free end-to-end (BBF-E2E) wireless communication system where modulation, beamforming, and detection are jointly realized through the propagation of electromagnetic (EM) waves. The BBF-E2E system employs D2NNs at both the transmitter and the receiver, forming an autoencoder architecture optimized as a complex-valued neural network. The transmission coefficients of each metasurface layer are trained using the mini-batch stochastic gradient descent method to minimize the cross-entropy loss. To reduce computational complexity during diffraction calculation, the angular spectrum method (ASM) is adopted in place of the Rayleigh-Sommerfeld formula. Extensive simulations demonstrate that BBF-E2E achieves robust symbol transmission under challenging channel conditions with significantly reduced hardware requirements. In particular, the proposed system matches the performance of a conventional multi-antenna system with 81 RF chains while requiring only a single RF chain and 1024 passive elements of metasurfaces. These results highlight the potential of wave-domain neural computing to replace digital baseband modules in future wireless transceivers.


[697] 2506.02413

Tensor State Space-based Dynamic Multilayer Network Modeling

Understanding the complex interactions within dynamic multilayer networks is critical for advancements in various scientific domains. Existing models often fail to capture such networks' temporal and cross-layer dynamics. This paper introduces a novel Tensor State Space Model for Dynamic Multilayer Networks (TSSDMN), utilizing a latent space model framework. TSSDMN employs a symmetric Tucker decomposition to represent latent node features, their interaction patterns, and layer transitions. Then by fixing the latent features and allowing the interaction patterns to evolve over time, TSSDMN uniquely captures both the temporal dynamics within layers and across different layers. The model identifiability conditions are discussed. By treating latent features as variables whose posterior distributions are approximated using a mean-field variational inference approach, a variational Expectation Maximization algorithm is developed for efficient model inference. Numerical simulations and case studies demonstrate the efficacy of TSSDMN for understanding dynamic multilayer networks.


[698] 2506.02467

Multi-modal brain MRI synthesis based on SwinUNETR

Multi-modal brain magnetic resonance imaging (MRI) plays a crucial role in clinical diagnostics by providing complementary information across different imaging modalities. However, a common challenge in clinical practice is missing MRI modalities. In this paper, we apply SwinUNETR to the synthesize of missing modalities in brain MRI. SwinUNETR is a novel neural network architecture designed for medical image analysis, integrating the strengths of Swin Transformer and convolutional neural networks (CNNs). The Swin Transformer, a variant of the Vision Transformer (ViT), incorporates hierarchical feature extraction and window-based self-attention mechanisms, enabling it to capture both local and global contextual information effectively. By combining the Swin Transformer with CNNs, SwinUNETR merges global context awareness with detailed spatial resolution. This hybrid approach addresses the challenges posed by the varying modality characteristics and complex brain structures, facilitating the generation of accurate and realistic synthetic images. We evaluate the performance of SwinUNETR on brain MRI datasets and demonstrate its superior capability in generating clinically valuable images. Our results show significant improvements in image quality, anatomical consistency, and diagnostic value.


[699] 2506.02505

Adaptive Differential Denoising for Respiratory Sounds Classification

Automated respiratory sound classification faces practical challenges from background noise and insufficient denoising in existing systems. We propose Adaptive Differential Denoising network, that integrates noise suppression and pathological feature preservation via three innovations: 1) Adaptive Frequency Filter with learnable spectral masks and soft shrink to eliminate noise while retaining diagnostic high-frequency components; 2) A Differential Denoise Layer using differential attention to reduce noise-induced variations through augmented sample comparisons; 3) A bias denoising loss jointly optimizing classification and robustness without clean labels. Experiments on the ICBHI2017 dataset show that our method achieves 65.53\% of the Score, which is improved by 1.99\% over the previous sota method. The code is available in https://github.com/deegy666/ADD-RSC


[700] 2506.02574

Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding

Accurate remote sensing geographic mapping depends heavily on representative and timely sample data. However, rapid changes in land surface dynamics necessitate frequent updates, quickly rendering previously collected samples obsolete and imposing significant labor demands for continuous manual updates. In this study, we aim to address this problem by dynamic sample generation using existing single-date static labeled samples. We introduce TasGen, a two-stage automated framework to automatically generate dynamic samples, designed to simultaneously model spectral and temporal dependencies in time-series remote sensing imagery via temporal-spectral embedding, capturing land surface changes without additional manual annotations.


[701] 2506.02585

A Tree-guided CNN for image super-resolution

Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, it is not easy to find effect of important layers in a single network architecture to decrease performance of super-resolution. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information for improving the ability of recovering images. To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to extract cross-domain information to improve the performance of image super-resolution. Adaptive Nesterov momentum optimizer (Adan) is applied to optimize parameters to boost effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet.


[702] 2506.02644

Non-exchangeable evolutionary and mean field games and their applications

A replicator dynamic for non-exchangeable agents in a continuous action space is formulated and its well-posedness is proven in a space of probability measures. The non-exchangeability allows for the analysis of evolutionary games involving agents with distinct (and possibly infinitely many) types. We also explicitly connect this replicator dynamic to a stationary mean field game, which determines the pairwise actions of the heterogeneous agents. Moreover, as a byproduct of our theoretical results, we show that a class of nonlinear voter models, recently the subject of increasing interest, called q-voter models, can be viewed as a replicator dynamic driven by a utility that is a power of the probability density. This implies that non-exchangeable and/or mean-field game formulations of these models can also be constructed. We also present computational examples of evolutionary and mean field game models using a finite difference method, focusing on tragedy of the commons and the q-voter model with non-exchangeable agents, of which are interesting cases from theoretical and computational perspectives.


[703] 2506.02647

Multilevel Stochastic Gradient Descent for Optimal Control Under Uncertainty

We present a multilevel stochastic gradient descent method for the optimal control of systems governed by partial differential equations under uncertain input data. The gradient descent method used to find the optimal control leverages a parallel multilevel Monte Carlo method as stochastic gradient estimator. As a result, we achieve precise control over the stochastic gradient's bias, introduced by numerical approximation, and its sampling error, arising from the use of incomplete gradients, while optimally managing computational resources. We show that the method exhibits linear convergence in the number of optimization steps while avoiding the cost of computing the full gradient at the highest fidelity. Numerical experiments demonstrate that the method significantly outperforms the standard (mini-) batched stochastic gradient descent method in terms of convergence speed and accuracy. The method is particularly well-suited for high-dimensional control problems, taking advantage of parallel computing resources and a distributed multilevel data structure. Additionally, we evaluate and implement different step size strategies, optimizer schemes, and budgeting techniques. The method's performance is studied using a two-dimensional elliptic subsurface diffusion problem with log-normal coefficients and Mat\'ern covariance.


[704] 2506.02651

Asymptotics of SGD in Sequence-Single Index Models and Single-Layer Attention Networks

We study the dynamics of stochastic gradient descent (SGD) for a class of sequence models termed Sequence Single-Index (SSI) models, where the target depends on a single direction in input space applied to a sequence of tokens. This setting generalizes classical single-index models to the sequential domain, encompassing simplified one-layer attention architectures. We derive a closed-form expression for the population loss in terms of a pair of sufficient statistics capturing semantic and positional alignment, and characterize the induced high-dimensional SGD dynamics for these coordinates. Our analysis reveals two distinct training phases: escape from uninformative initialization and alignment with the target subspace, and demonstrates how the sequence length and positional encoding influence convergence speed and learning trajectories. These results provide a rigorous and interpretable foundation for understanding how sequential structure in data can be beneficial for learning with attention-based models.


[705] 2506.02664

Computational Thresholds in Multi-Modal Learning via the Spiked Matrix-Tensor Model

We study the recovery of multiple high-dimensional signals from two noisy, correlated modalities: a spiked matrix and a spiked tensor sharing a common low-rank structure. This setting generalizes classical spiked matrix and tensor models, unveiling intricate interactions between inference channels and surprising algorithmic behaviors. Notably, while the spiked tensor model is typically intractable at low signal-to-noise ratios, its correlation with the matrix enables efficient recovery via Bayesian Approximate Message Passing, inducing staircase-like phase transitions reminiscent of neural network phenomena. In contrast, empirical risk minimization for joint learning fails: the tensor component obstructs effective matrix recovery, and joint optimization significantly degrades performance, highlighting the limitations of naive multi-modal learning. We show that a simple Sequential Curriculum Learning strategy-first recovering the matrix, then leveraging it to guide tensor recovery-resolves this bottleneck and achieves optimal weak recovery thresholds. This strategy, implementable with spectral methods, emphasizes the critical role of structural correlation and learning order in multi-modal high-dimensional inference.


[706] 2506.02685

Symmetry-Aware GFlowNets

Generative Flow Networks (GFlowNets) offer a powerful framework for sampling graphs in proportion to their rewards. However, existing approaches suffer from systematic biases due to inaccuracies in state transition probability computations. These biases, rooted in the inherent symmetries of graphs, impact both atom-based and fragment-based generation schemes. To address this challenge, we introduce Symmetry-Aware GFlowNets (SA-GFN), a method that incorporates symmetry corrections into the learning process through reward scaling. By integrating bias correction directly into the reward structure, SA-GFN eliminates the need for explicit state transition computations. Empirical results show that SA-GFN enables unbiased sampling while enhancing diversity and consistently generating high-reward graphs that closely match the target distribution.


[707] 2506.02710

Online Bayesian system identification in multivariate autoregressive models via message passing

We propose a recursive Bayesian estimation procedure for multivariate autoregressive models with exogenous inputs based on message passing in a factor graph. Unlike recursive least-squares, our method produces full posterior distributions for both the autoregressive coefficients and noise precision. The uncertainties regarding these estimates propagate into the uncertainties on predictions for future system outputs, and support online model evidence calculations. We demonstrate convergence empirically on a synthetic autoregressive system and competitive performance on a double mass-spring-damper system.


[708] 2506.02730

An Exploratory Framework for Future SETI Applications: Detecting Generative Reactivity via Language Models

We present an exploratory framework to test whether noise-like input can induce structured responses in language models. Instead of assuming that extraterrestrial signals must be decoded, we evaluate whether inputs can trigger linguistic behavior in generative systems. This shifts the focus from decoding to viewing structured output as a sign of underlying regularity in the input. We tested GPT-2 small, a 117M-parameter model trained on English text, using four types of acoustic input: human speech, humpback whale vocalizations, Phylloscopus trochilus birdsong, and algorithmically generated white noise. All inputs were treated as noise-like, without any assumed symbolic encoding. To assess reactivity, we defined a composite score called Semantic Induction Potential (SIP), combining entropy, syntax coherence, compression gain, and repetition penalty. Results showed that whale and bird vocalizations had higher SIP scores than white noise, while human speech triggered only moderate responses. This suggests that language models may detect latent structure even in data without conventional semantics. We propose that this approach could complement traditional SETI methods, especially in cases where communicative intent is unknown. Generative reactivity may offer a different way to identify data worth closer attention.


[709] 2506.02742

Prompt-Unseen-Emotion: Zero-shot Expressive Speech Synthesis with Prompt-LLM Contextual Knowledge for Mixed Emotions

Existing expressive text-to-speech (TTS) systems primarily model a limited set of categorical emotions, whereas human conversations extend far beyond these predefined emotions, making it essential to explore more diverse emotional speech generation for more natural interactions. To bridge this gap, this paper proposes a novel prompt-unseen-emotion (PUE) approach to generate unseen emotional speech via emotion-guided prompt learning. PUE is trained utilizing an LLM-TTS architecture to ensure emotional consistency between categorical emotion-relevant prompts and emotional speech, allowing the model to quantitatively capture different emotion weightings per utterance. During inference, mixed emotional speech can be generated by flexibly adjusting emotion proportions and leveraging LLM contextual knowledge, enabling the model to quantify different emotional styles. Our proposed PUE successfully facilitates expressive speech synthesis of unseen emotions in a zero-shot setting.


[710] 2506.02747

A priori error estimates for the $θ$-method for the flow of nonsmooth velocity fields

Velocity fields with low regularity (below the Lipschitz threshold) naturally arise in many models from mathematical physics, such as the inhomogeneous incompressible Navier-Stokes equations, and play a fundamental role in the analysis of nonlinear PDEs. The DiPerna-Lions theory ensures existence and uniqueness of the flow associated with a divergence-free velocity field with Sobolev regularity. In this paper, we establish a priori error estimates showing a logarithmic rate of convergence of numerical solutions, constructed via the $\theta$-method, towards the exact (analytic) flow for a velocity field with Sobolev regularity. In addition, we derive analogous a priori error estimates for Lagrangian solutions of the associated transport equation, exhibiting the same logarithmic rate of convergence. Our theoretical results are supported by numerical experiments, which confirm the predicted logarithmic behavior.


[711] 2506.02754

Safely Learning Controlled Stochastic Dynamics

We address the problem of safely learning controlled stochastic dynamics from discrete-time trajectory observations, ensuring system trajectories remain within predefined safe regions during both training and deployment. Safety-critical constraints of this kind are crucial in applications such as autonomous robotics, finance, and biomedicine. We introduce a method that ensures safe exploration and efficient estimation of system dynamics by iteratively expanding an initial known safe control set using kernel-based confidence bounds. After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control. Our approach requires only mild smoothness assumptions and access to an initial safe control set, enabling broad applicability to complex real-world systems. We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics. Experimental evaluations demonstrate the practical effectiveness of our method in terms of safety, estimation accuracy, and computational efficiency.


[712] 2506.02756

A Hierarchical Integer Linear Programming Approach for Optimizing Team Formation in Education

Teamwork is integral to higher education, fostering students' interpersonal skills, improving learning outcomes, and preparing them for professional collaboration later in their careers. While team formation has traditionally been managed by humans, either instructors or students, algorithmic approaches have recently emerged to optimize this process. However, existing algorithmic team formation methods often focus on expert teams, overlook agency in choosing one's teammates, and are limited to a single team formation setting. These limitations make them less suitable for education, where no student can be left out, student agency is crucial for motivation, and team formation needs vary across courses and programs. In this paper, we introduce the EDUCATIONAL TEAM FORMATION problem (EDU-TF), a partitioning optimization problem model tailored to the unique needs of education, integrating both teacher and student requirements. To solve EDU-TF, we propose a modular optimization approach, one of the first to allow the flexible adjustment of objectives according to educational needs, enhancing the method's applicability across various classroom settings rather than just research environments. Results from evaluating ten strategies derived from our model on real-world university datasets indicate that our approach outperforms heuristic teacher-assigned teams by better accommodating student preferences. Our study contributes a new modular approach to partition-based algorithmic team formation and provides valuable insights for future research on team formation in educational settings.


[713] 2506.02773

AuralNet: Hierarchical Attention-based 3D Binaural Localization of Overlapping Speakers

We propose AuralNet, a novel 3D multi-source binaural sound source localization approach that localizes overlapping sources in both azimuth and elevation without prior knowledge of the number of sources. AuralNet employs a gated coarse-tofine architecture, combining a coarse classification stage with a fine-grained regression stage, allowing for flexible spatial resolution through sector partitioning. The model incorporates a multi-head self-attention mechanism to capture spatial cues in binaural signals, enhancing robustness in noisy-reverberant environments. A masked multi-task loss function is designed to jointly optimize sound detection, azimuth, and elevation estimation. Extensive experiments in noisy-reverberant conditions demonstrate the superiority of AuralNet over recent methods


[714] 2506.02776

A mesoscale phase-field model of intergranular liquid lithium corrosion of ferritic/martensitic steels

A phase-field model is developed to simulate intergranular corrosion of ferritic/martensitic steels exposed to liquid lithium. The chromium concentration of the material is used to track the mass transport within the metal and liquid (corrosive) phase. The framework naturally captures intergranular corrosion by enhancing the diffusion of chromium along grain boundaries relative to the grain bulk with no special treatment for the corrosion front evolution. The formulation applies to arbitrary 2D and 3D polycrystalline geometries. The framework reproduces experimental measurements of weight loss and corrosion depth for a 9 wt\% Cr ferritic/martensitic steel exposed to static lithium at 600 $^\circ$C. A sensitivity analysis, varying near-surface grain density, grain size, and chromium depletion thickness, highlights the microstructural influence in the corrosion process. Moreover, the significance of saturation is considered and evaluated. Simulation results show that near-surface grain density is a deciding factor, whereas grain size dictates the susceptibility to intergranular corrosion.


[715] 2506.02777

On the influence of language similarity in non-target speaker verification trials

In this paper, we investigate the influence of language similarity in cross-lingual non-target speaker verification trials using a state-of-the-art speaker verification system, ECAPA-TDNN, trained on multilingual and monolingual variants of the VoxCeleb dataset. Our analysis of the score distribution patterns on multilingual Globalphone and LDC CTS reveals a clustering effect in speaker comparisons involving a training language, whereby the choice of comparison language only minimally impacts scores. Conversely, we observe a language similarity effect in trials involving languages not included in the training set of the speaker verification system, with scores correlating with language similarity measured by a language classification system, especially when using multilingual training data.


[716] 2506.02782

Stacking the Odds: Full-Stack Quantum System Design Space Exploration

Design space exploration (DSE) plays an important role in optimising quantum circuit execution by systematically evaluating different configurations of compilation strategies and hardware settings. In this work, we study the impact of layout methods, qubit routing techniques, compiler optimization levels, and hardware-specific properties, including noise characteristics, topological structures, connectivity densities, and device sizes. By traversing these dimensions, we aim to understand how compilation choices interact with hardware features. A central question in our study is whether carefully selected device parameters and mapping strategies, including initial layouts and routing heuristics, can mitigate hardware-induced errors beyond standard error mitigation methods. Our results show that choosing the right software strategies (e.g., layout and routing) and tailoring hardware properties (e.g., reducing noise or leveraging connectivity) significantly enhances the fidelity of quantum circuit executions. We provide performance estimates using metrics such as circuit depth, gate count, and expected fidelity. These findings highlight the value of hardware-software co-design, especially as quantum systems scale and move toward error-corrected computing. Our simulations, though noisy, include quantum error correction (QEC) scenarios, revealing similar sensitivities to layout and connectivity. This suggests that co-design principles will be vital for integrating QEC in future devices. Overall, we offer practical guidance for co-optimizing mapping, routing, and hardware configuration in real-world quantum computing.


[717] 2506.02793

Doubly-Robust Estimation of Counterfactual Policy Mean Embeddings

Estimating the distribution of outcomes under counterfactual policies is critical for decision-making in domains such as recommendation, advertising, and healthcare. We analyze a novel framework-Counterfactual Policy Mean Embedding (CPME)-that represents the entire counterfactual outcome distribution in a reproducing kernel Hilbert space (RKHS), enabling flexible and nonparametric distributional off-policy evaluation. We introduce both a plug-in estimator and a doubly robust estimator; the latter enjoys improved uniform convergence rates by correcting for bias in both the outcome embedding and propensity models. Building on this, we develop a doubly robust kernel test statistic for hypothesis testing, which achieves asymptotic normality and thus enables computationally efficient testing and straightforward construction of confidence intervals. Our framework also supports sampling from the counterfactual distribution. Numerical simulations illustrate the practical benefits of CPME over existing methods.


[718] 2506.02795

Optimization of Robotic Liquid Handling as a Capacitated Vehicle Routing Problem

We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (e.g., well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.


[719] 2506.02796

Deep Learning Enhanced Multivariate GARCH

This paper introduces a novel multivariate volatility modeling framework, named Long Short-Term Memory enhanced BEKK (LSTM-BEKK), that integrates deep learning into multivariate GARCH processes. By combining the flexibility of recurrent neural networks with the econometric structure of BEKK models, our approach is designed to better capture nonlinear, dynamic, and high-dimensional dependence structures in financial return data. The proposed model addresses key limitations of traditional multivariate GARCH-based methods, particularly in capturing persistent volatility clustering and asymmetric co-movement across assets. Leveraging the data-driven nature of LSTMs, the framework adapts effectively to time-varying market conditions, offering improved robustness and forecasting performance. Empirical results across multiple equity markets confirm that the LSTM-BEKK model achieves superior performance in terms of out-of-sample portfolio risk forecast, while maintaining the interpretability from the BEKK models. These findings highlight the potential of hybrid econometric-deep learning models in advancing financial risk management and multivariate volatility forecasting.


[720] 2506.02797

Fast-Converging Distributed Signal Estimation in Topology-Unconstrained Wireless Acoustic Sensor Networks

This paper focuses on distributed signal estimation in topology-unconstrained wireless acoustic sensor networks (WASNs) where sensor nodes only transmit fused versions of their local sensor signals. For this task, the topology-independent (TI) distributed adaptive node-specific signal estimation (DANSE) algorithm (TI-DANSE) has previously been proposed. It converges towards the centralized signal estimation solution in non-fully connected and time-varying network topologies. However, the applicability of TI-DANSE in real-world scenarios is limited due to its slow convergence. The latter results from the fact that, in TI-DANSE, nodes only have access to the in-network sum of all fused signals in the WASN. We address this low convergence speed by introducing an improved TI-DANSE algorithm, referred to as TI-DANSE+, in which updating nodes separately use the partial in-network sums of fused signals coming from each of their neighbors. Nodes can maximize the number of available degrees of freedom in their local optimization problem, leading to faster convergence. This is further exploited by combining TI-DANSE+ with a tree-pruning strategy that maximizes the number of neighbors at the updating node. In fully connected WASNs, TI-DANSE+ converges as fast as the original DANSE algorithm (the latter only defined for fully connected WASNs) while using peer-to-peer data transmission instead of broadcasting and thus saving communication bandwidth. If link failures occur, the convergence of TI-DANSE+ towards the centralized solution is preserved without any change in its formulation. Altogether, the proposed TI-DANSE+ algorithm can be viewed as an all-round alternative to DANSE and TI-DANSE which (i) merges the advantages of both, (ii) reconciliates their differences into a single formulation, and (iii) shows advantages of its own in terms of communication bandwidth usage.


[721] 2506.02813

Brain-Like Processing Pathways Form in Models With Heterogeneous Experts

The brain is made up of a vast set of heterogeneous regions that dynamically organize into pathways as a function of task demands. Examples of such pathways can be seen in the interactions between cortical and subcortical networks during learning. This raises the question of how exactly brain regions organize into these dynamic groups. In this work, we use an extension of the Heterogeneous Mixture-of-Experts architecture, to show that heterogeneous regions do not form processing pathways by themselves, implying that the brain likely implements specific constraints which result in reliable formation of pathways. We identify three biologically relevant inductive biases that encourage pathway formation: a routing cost imposed on the use of more complex regions, a scaling factor that reduces this cost when task performance is low, and randomized expert dropout. When comparing our resulting Mixture-of-Pathways model with the brain, we observe that the artificial pathways match how the brain uses cortical and subcortical systems to learn and solve tasks of varying difficulty. In summary, we introduce a novel framework for investigating how the brain forms task-specific pathways through inductive biases which may make Mixture-of-Experts architectures in general more adaptive.


[722] 2506.02825

Asymptotically perfect seeded graph matching without edge correlation (and applications to inference)

We present the OmniMatch algorithm for seeded multiple graph matching. In the setting of $d$-dimensional Random Dot Product Graphs (RDPG), we prove that under mild assumptions, OmniMatch with $s$ seeds asymptotically and efficiently perfectly aligns $O(s^{\alpha})$ unseeded vertices -- for $\alpha<2\wedge d/4$ -- across multiple networks even in the presence of no edge correlation. We demonstrate the effectiveness of our algorithm across numerous simulations and in the context of shuffled graph hypothesis testing. In the shuffled testing setting, testing power is lost due to the misalignment/shuffling of vertices across graphs, and we demonstrate the capacity of OmniMatch to correct for misaligned vertices prior to testing and hence recover the lost testing power. We further demonstrate the algorithm on a pair of data examples from connectomics and machine translation.


[723] 2506.02863

CapSpeech: Enabling Downstream Applications in Style-Captioned Text-to-Speech

Recent advancements in generative artificial intelligence have significantly transformed the field of style-captioned text-to-speech synthesis (CapTTS). However, adapting CapTTS to real-world applications remains challenging due to the lack of standardized, comprehensive datasets and limited research on downstream tasks built upon CapTTS. To address these gaps, we introduce CapSpeech, a new benchmark designed for a series of CapTTS-related tasks, including style-captioned text-to-speech synthesis with sound events (CapTTS-SE), accent-captioned TTS (AccCapTTS), emotion-captioned TTS (EmoCapTTS), and text-to-speech synthesis for chat agent (AgentTTS). CapSpeech comprises over 10 million machine-annotated audio-caption pairs and nearly 0.36 million human-annotated audio-caption pairs. In addition, we introduce two new datasets collected and recorded by a professional voice actor and experienced audio engineers, specifically for the AgentTTS and CapTTS-SE tasks. Alongside the datasets, we conduct comprehensive experiments using both autoregressive and non-autoregressive models on CapSpeech. Our results demonstrate high-fidelity and highly intelligible speech synthesis across a diverse range of speaking styles. To the best of our knowledge, CapSpeech is the largest available dataset offering comprehensive annotations for CapTTS-related tasks. The experiments and findings further provide valuable insights into the challenges of developing CapTTS systems.


[724] 2506.02881

Simulation-Based Inference for Adaptive Experiments

Multi-arm bandit experimental designs are increasingly being adopted over standard randomized trials due to their potential to improve outcomes for study participants, enable faster identification of the best-performing options, and/or enhance the precision of estimating key parameters. Current approaches for inference after adaptive sampling either rely on asymptotic normality under restricted experiment designs or underpowered martingale concentration inequalities that lead to weak power in practice. To bypass these limitations, we propose a simulation-based approach for conducting hypothesis tests and constructing confidence intervals for arm specific means and their differences. Our simulation-based approach uses positively biased nuisances to generate additional trajectories of the experiment, which we call \textit{simulation with optimism}. Using these simulations, we characterize the distribution potentially non-normal sample mean test statistic to conduct inference. We provide guarantees for (i) asymptotic type I error control, (ii) convergence of our confidence intervals, and (iii) asymptotic strong consistency of our estimator over a wide variety of common bandit designs. Our empirical results show that our approach achieves the desired coverage while reducing confidence interval widths by up to 50%, with drastic improvements for arms not targeted by the design.


[725] 2506.02908

Diffusion Buffer: Online Diffusion-based Speech Enhancement with Sub-Second Latency

Diffusion models are a class of generative models that have been recently used for speech enhancement with remarkable success but are computationally expensive at inference time. Therefore, these models are impractical for processing streaming data in real-time. In this work, we adapt a sliding window diffusion framework to the speech enhancement task. Our approach progressively corrupts speech signals through time, assigning more noise to frames close to the present in a buffer. This approach outputs denoised frames with a delay proportional to the chosen buffer size, enabling a trade-off between performance and latency. Empirical results demonstrate that our method outperforms standard diffusion models and runs efficiently on a GPU, achieving an input-output latency in the order of 0.3 to 1 seconds. This marks the first practical diffusion-based solution for online speech enhancement.


[726] 2506.02920

Quantum Data Centers: Why Entanglement Changes Everything

The Quantum Internet is key for distributed quantum computing, by interconnecting multiple quantum processors into a virtual quantum computation system. This allows to scale the number of qubits, by overcoming the inherent limitations of noisy-intermediate-scale quantum (NISQ) devices. Thus, the Quantum Internet is the foundation for large-scale, fault-tolerant quantum computation. Among the distributed architectures, Quantum Data Centers emerge as the most viable in the medium-term, since they integrate multiple quantum processors within a localized network infrastructure, by allowing modular design of quantum networking. We analyze the physical and topological constraints of Quantum Data Centers, by emphasizing the role of entanglement orchestrators in dynamically reconfiguring network topologies through local operations. We examine the major hardware challenge of quantum transduction, essential for interfacing heterogeneous quantum systems. Furthermore, we explore how interconnecting multiple Quantum Data Centers could enable large-scale quantum networks. We discuss the topological constraints of such a scaling and identify open challenges, including entanglement routing and synchronization. The carried analysis positions Quantum Data Centers as both a practical implementation platform and strategic framework for the future Quantum Internet.


[727] 2506.02958

PartialEdit: Identifying Partial Deepfakes in the Era of Neural Speech Editing

Neural speech editing enables seamless partial edits to speech utterances, allowing modifications to selected content while preserving the rest of the audio unchanged. This useful technique, however, also poses new risks of deepfakes. To encourage research on detecting such partially edited deepfake speech, we introduce PartialEdit, a deepfake speech dataset curated using advanced neural editing techniques. We explore both detection and localization tasks on PartialEdit. Our experiments reveal that models trained on the existing PartialSpoof dataset fail to detect partially edited speech generated by neural speech editing models. As recent speech editing models almost all involve neural audio codecs, we also provide insights into the artifacts the model learned on detecting these deepfakes. Further information about the PartialEdit dataset and audio samples can be found on the project page: https://yzyouzhang.com/PartialEdit/index.html.


[728] 2506.02980

Non-stationary Bandit Convex Optimization: A Comprehensive Study

Bandit Convex Optimization is a fundamental class of sequential decision-making problems, where the learner selects actions from a continuous domain and observes a loss (but not its gradient) at only one point per round. We study this problem in non-stationary environments, and aim to minimize the regret under three standard measures of non-stationarity: the number of switches $S$ in the comparator sequence, the total variation $\Delta$ of the loss functions, and the path-length $P$ of the comparator sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts framework from online convex optimization to the bandit setting. For strongly convex losses, we prove that TEWA-SE is minimax-optimal with respect to known $S$ and $\Delta$ by establishing matching upper and lower bounds. By equipping TEWA-SE with the Bandit-over-Bandit framework, we extend our analysis to environments with unknown non-stationarity measures. For general convex losses, we introduce a second algorithm, clipped Exploration by Optimization (cExO), based on exponential weights over a discretized action space. While not polynomial-time computable, this method achieves minimax-optimal regret with respect to known $S$ and $\Delta$, and improves on the best existing bounds with respect to $P$.


[729] 2506.02982

Bounded Discrete Bridges

In 2010 Banderier and Nicodeme consider the height of bounded discrete bridges and conclude to a limiting Rayleigh distribution. This result is correct although their proof is partly erroneous. They make asymptotic simplifications based upon dominance properties of the roots of the kernel of the walk within a disk centered at the origin, but these dominance properties apply only upon a positive real segment. However the very good agreement of simulations with their asymptotic expansion of the probability distribution in case of {\L}ukasiewicz bridges let us think that their proof could be corrected. This is the scope of the present article which provides a proof using the dominance property only in its domain of validity. We also consider the case of periodic walks, a topic not considered in Banderier-Nicodeme2010. We limit ourselves to walks whose characteristic polynomial decomposes over $\bC$ without repeated factors.


[730] 2506.03014

Convergence and efficiency proof of quantum imaginary time evolution for bounded order systems

Many current and near-future applications of quantum computing utilise parametric families of quantum circuits and variational methods to find optimal values for these parameters. Solving a quantum computational problem with such variational methods relies on minimising some cost function, e.g., the energy of a physical system. As such, this is similar to the training process in machine learning and variational quantum simulations can therefore suffer from similar problems encountered in machine learning training. This includes non-convergence to the global minimum due to local minima as well as critical slowing down. In this article, we analyse the imaginary time evolution as a means of compiling parametric quantum circuits and finding optimal parameters, and show that it guarantees convergence to the global minimum without critical slowing down. We also show that the compilation process, including the task of finding optimal parameters, can be performed efficiently up to an arbitrary error threshold if the underlying physical system is of bounded order. This includes many relevant computational problems, e.g., local physical theories and combinatorial optimisation problems such as the flight-to-gate assignment problem. In particular, we show a priori estimates on the success probability for these combinatorial optimisation problems. There seem to be no known classical methods with similar efficiency and convergence guarantees. Meanwhile the imaginary time evolution method can be implemented on current quantum computers.


[731] 2506.03044

On the Benefits of Accelerated Optimization in Robust and Private Estimation

We study the advantages of accelerated gradient methods, specifically based on the Frank-Wolfe method and projected gradient descent, for privacy and heavy-tailed robustness. Our approaches are as follows: For the Frank-Wolfe method, our technique is based on a tailored learning rate and a uniform lower bound on the gradient of the $\ell_2$-norm over the constraint set. For accelerating projected gradient descent, we use the popular variant based on Nesterov's momentum, and we optimize our objective over $\mathbb{R}^p$. These accelerations reduce iteration complexity, translating into stronger statistical guarantees for empirical and population risk minimization. Our analysis covers three settings: non-random data, random model-free data, and parametric models (linear regression and generalized linear models). Methodologically, we approach both privacy and robustness based on noisy gradients. We ensure differential privacy via the Gaussian mechanism and advanced composition, and we achieve heavy-tailed robustness using a geometric median-of-means estimator, which also sharpens the dependency on the dimension of the covariates. Finally, we compare our rates to existing bounds and identify scenarios where our methods attain optimal convergence.


[732] 2506.03049

Torsion in Persistent Homology and Neural Networks

We explore the role of torsion in hybrid deep learning models that incorporate topological data analysis, focusing on autoencoders. While most TDA tools use field coefficients, this conceals torsional features present in integer homology. We show that torsion can be lost during encoding, altered in the latent space, and in many cases, not reconstructed by standard decoders. Using both synthetic and high-dimensional data, we evaluate torsion sensitivity to perturbations and assess its recoverability across several autoencoder architectures. Our findings reveal key limitations of field-based approaches and underline the need for architectures or loss terms that preserve torsional information for robust data representation.


[733] 2506.03060

Adversarial quantum channel discrimination

We introduce a new framework for quantum channel discrimination in an adversarial setting, where the tester plays against an adversary who accesses the environmental system and possesses internal quantum memory to perform adaptive strategies. We show that in asymmetric hypothesis testing, the optimal type-II error exponent is precisely characterized by the minimum output channel divergence, a new notion of quantum channel divergence in the worst-case scenario. This serves as a direct analog of the quantum Stein's lemma in the adversarial channel discrimination. Notably, the optimal error exponent can be achieved via simple non-adaptive strategies by the adversary, and its value can be efficiently computed despite its regularization. The strong converse property for quantum channel discrimination also holds in general. This adversarial quantum Stein's lemma is proved by new chain rules for measured and sandwiched relative entropies. Moreover, we derive a generalized version of the entropy accumulation theorem between two arbitrary sequences of quantum channels, extending the existing results from entropy to divergence and providing a solution to the dual formulation of the open problem presented in [IEEE FOCS, pp. 844-850 (2022)].


[734] 2506.03068

Causal Explainability of Machine Learning in Heart Failure Prediction from Electronic Health Records

The importance of clinical variables in the prognosis of the disease is explained using statistical correlation or machine learning (ML). However, the predictive importance of these variables may not represent their causal relationships with diseases. This paper uses clinical variables from a heart failure (HF) patient cohort to investigate the causal explainability of important variables obtained in statistical and ML contexts. Due to inherent regression modeling, popular causal discovery methods strictly assume that the cause and effect variables are numerical and continuous. This paper proposes a new computational framework to enable causal structure discovery (CSD) and score the causal strength of mixed-type (categorical, numerical, binary) clinical variables for binary disease outcomes. In HF classification, we investigate the association between the importance rank order of three feature types: correlated features, features important for ML predictions, and causal features. Our results demonstrate that CSD modeling for nonlinear causal relationships is more meaningful than its linear counterparts. Feature importance obtained from nonlinear classifiers (e.g., gradient-boosting trees) strongly correlates with the causal strength of variables without differentiating cause and effect variables. Correlated variables can be causal for HF, but they are rarely identified as effect variables. These results can be used to add the causal explanation of variables important for ML-based prediction modeling.


[735] 2506.03074

GL-LowPopArt: A Nearly Instance-Wise Minimax Estimator for Generalized Low-Rank Trace Regression

We present `GL-LowPopArt`, a novel Catoni-style estimator for generalized low-rank trace regression. Building on `LowPopArt` (Jang et al., 2024), it employs a two-stage approach: nuclear norm regularization followed by matrix Catoni estimation. We establish state-of-the-art estimation error bounds, surpassing existing guarantees (Fan et al., 2019; Kang et al., 2022), and reveal a novel experimental design objective, $\mathrm{GL}(\pi)$. The key technical challenge is controlling bias from the nonlinear inverse link function, which we address by our two-stage approach. We prove a *local* minimax lower bound, showing that our `GL-LowPopArt` enjoys instance-wise optimality up to the condition number of the ground-truth Hessian. Applications include generalized linear matrix completion, where `GL-LowPopArt` achieves a state-of-the-art Frobenius error guarantee, and **bilinear dueling bandits**, a novel setting inspired by general preference learning (Zhang et al., 2024). Our analysis of a `GL-LowPopArt`-based explore-then-commit algorithm reveals a new, potentially interesting problem-dependent quantity, along with improved Borda regret bound than vectorization (Wu et al., 2024).


[736] 2506.03088

Modelling the Effects of Hearing Loss on Neural Coding in the Auditory Midbrain with Variational Conditioning

The mapping from sound to neural activity that underlies hearing is highly non-linear. The first few stages of this mapping in the cochlea have been modelled successfully, with biophysical models built by hand and, more recently, with DNN models trained on datasets simulated by biophysical models. Modelling the auditory brain has been a challenge because central auditory processing is too complex for models to be built by hand, and datasets for training DNN models directly have not been available. Recent work has taken advantage of large-scale high resolution neural recordings from the auditory midbrain to build a DNN model of normal hearing with great success. But this model assumes that auditory processing is the same in all brains, and therefore it cannot capture the widely varying effects of hearing loss. We propose a novel variational-conditional model to learn to encode the space of hearing loss directly from recordings of neural activity in the auditory midbrain of healthy and noise exposed animals. With hearing loss parametrised by only 6 free parameters per animal, our model accurately predicts 62\% of the explainable variance in neural responses from normal hearing animals and 68% for hearing impaired animals, within a few percentage points of state of the art animal specific models. We demonstrate that the model can be used to simulate realistic activity from out of sample animals by fitting only the learned conditioning parameters with Bayesian optimisation, achieving crossentropy loss within 2% of the optimum in 15-30 iterations. Including more animals in the training data slightly improved the performance on unseen animals. This model will enable future development of parametrised hearing loss compensation models trained to directly restore normal neural coding in hearing impaired brains, which can be quickly fitted for a new user by human in the loop optimisation.


[737] 2506.03120

Validating remotely sensed biomass estimates with forest inventory data in the western US

Monitoring aboveground biomass (AGB) and its density (AGBD) at high resolution is essential for carbon accounting and ecosystem management. While NASA's spaceborne Global Ecosystem Dynamics Investigation (GEDI) LiDAR mission provides globally distributed reference measurements for AGBD estimation, the majority of commercial remote sensing products based on GEDI remain without rigorous or independent validation. Here, we present an independent regional validation of an AGBD dataset offered by terraPulse, Inc., based on independent reference data from the US Forest Service Forest Inventory and Analysis (FIA) program. Aggregated to 64,000-hectare hexagons and US counties across the US states of Utah, Nevada, and Washington, we found very strong agreement between terraPulse and FIA estimates. At the hexagon scale, we report R2 = 0.88, RMSE = 26.68 Mg/ha, and a correlation coefficient (r) of 0.94. At the county scale, agreement improves to R2 = 0.90, RMSE =32.62 Mg/ha, slope = 1.07, and r = 0.95. Spatial and statistical analyses indicated that terraPulse AGBD values tended to exceed FIA estimates in non-forest areas, likely due to FIA's limited sampling of non-forest vegetation. The terraPulse AGBD estimates also exhibited lower values in high-biomass forests, likely due to saturation effects in its optical remote-sensing covariates. This study advances operational carbon monitoring by delivering a scalable framework for comprehensive AGBD validation using independent FIA data, as well as a benchmark validation of a new commercial dataset for global biomass monitoring.


[738] 2506.03134

Simulate Any Radar: Attribute-Controllable Radar Simulation via Waveform Parameter Embedding

We present SA-Radar (Simulate Any Radar), a radar simulation approach that enables controllable and efficient generation of radar cubes conditioned on customizable radar attributes. Unlike prior generative or physics-based simulators, SA-Radar integrates both paradigms through a waveform-parameterized attribute embedding. We design ICFAR-Net, a 3D U-Net conditioned on radar attributes encoded via waveform parameters, which captures signal variations induced by different radar configurations. This formulation bypasses the need for detailed radar hardware specifications and allows efficient simulation of range-azimuth-Doppler (RAD) tensors across diverse sensor settings. We further construct a mixed real-simulated dataset with attribute annotations to robustly train the network. Extensive evaluations on multiple downstream tasks-including 2D/3D object detection and radar semantic segmentation-demonstrate that SA-Radar's simulated data is both realistic and effective, consistently improving model performance when used standalone or in combination with real data. Our framework also supports simulation in novel sensor viewpoints and edited scenes, showcasing its potential as a general-purpose radar data engine for autonomous driving applications. Code and additional materials are available at https://zhuxing0.github.io/projects/SA-Radar.