Interplay of competing bond-order and loop-current fluctuations as a possible mechanism for superconductivity in kagome metals


Abstract

The pairing symmetry and underlying mechanism for superconducting state of (A=K, Rb, Cs) kagome metal has been a topic of intense investigation. In this work, we consider an 8-band minimal model, which includes V, and the two types of Sb, both within and above/below the kagome plane. This model captures the Fermi surface pocket with significant in-plane Sb contribution near the zone center, and also has the two types of van Hove singularities (VHS), one of which has a strong out of plane Sb weight. By including V-V and V-planar Sb nearest-neighbor Coulomb interactions, we obtain the susceptibilities for fluctuating bond-order and loop-current in both charge and spin channels, and examine the resulting superconducting instabilities. In particular, we find that the time-reversal odd (even) charge-loop-current (charge bond-order) fluctuations favor unconventional (conventional) pairing symmetry such as \(s_{+-}\) and \(d+id\) (\(s_{++}\)). Recent experimental works have highlighted the presence of \(s\)-wave pairing with two distinct gaps, one isotropic and one anisotropic. We discuss how this scenario may be compatible with either \(s_{++}\) or \(s_{+-}\) pairing, with an isotropic gap on the pocket dominated by in-plane Sb, but a highly anisotropic gap on V-dominated bands.

Introduction.– The (A=K, Rb, Cs) kagome superconductors are an exciting class of compounds which exhibit various symmetry-broken states [1][33], including charge orders and superconductivity (SC). While the presence of these broken symmetry states are well established, the nature of the mechanism driving the charge order and the SC states is still under active investigation [34][67].

A plethora of experiments support the formation of charge bond-order [5][7], [68][71], with charge density modulations on the vanadium (V) bonds. Further, time-reversal (TR) symmetry breaking has been reported in the charge-ordered [6], [9], [10], [12], [13], [69], [72][75] state, despite the absence of local-moment spin order [3], [76], thereby suggesting loop-current order as a possible origin of the TR-breaking. However, a number of other studies [8], [68], [74], [77] have been unable to detect a stable long-range loop current order, leaving its status contested. These observations, however, do not preclude the existence of fluctuating charge loop-currents, or other fluctuating modes in the spin channel. Further, applying pressure [29], [78][81] or doping [14], [82], [83] suppresses and eventually destroys the charge order. Hence, in this disordered state, various fluctuating bond-orders (BO) and loop-currents (LC) all coexist, and the effect of their competing fluctuations on SC in the presence of a realistic band structure is yet to be explored.

Figure 1: (a) The kagome plane, with V at A,B,C, in-plane-Sb at S, out-of-plane-Sb at the + positions within the grey unit cell. The green arrows \tilde{\text{w}}_{A/B/C} show the different bond directions. (b) In the Brillouin zone reciprocal lattice vectors Q_{AB}\equiv M_{C} and so on (same colour). (c) The electronic band structure of the 8-band model with the P- and M-type VHSs (blue and pink dots). (d) The 3-sheet Fermi surface for \mu=3.88 (dashed red line), the color scale denotes the weights of V-orbitals at sub-lattices A,B,C, and the in-plane-Sb orbital at S. We define, \mathbf{x}_C=\mathbf{R}_1, \mathbf{x}_A=\mathbf{R}_2-\mathbf{R}_1, \mathbf{x}_B=-\mathbf{R}_2.

In this letter, we present a microscopic study of the pairing interaction in the kagome metals mediated by fluctuations of BO and LCs in the charge and spin channels, all of which originate from nearest-neighbor Coulomb interactions. Inspired by [62], we include BO and LC order parameters between V and in-plane Sb (Sb-ip) sites as well as those between nearest neighbor V sites. First, we construct an effective microscopic model that captures the van-Hove singularities (VHS) and a Fermi surface (FS) near the zone center with appropriate orbital contents. Using this model, we compute the RPA-corrected susceptibilities in the disordered state and identify various fluctuating BO & LC channels close to the P-type VHS which are strongly enhanced near the \(M\) point in the Brillouin zone. Finally, by tuning the relative strengths of the various fluctuating channels incorporated in the RPA-corrected Cooper vertex, we show that the different fluctuations compete with each other to mediate distinct types of SC. The properties of the resulting superconducting states are discussed in light of recent experiments.

Electronic structure.– The electronic band structure of the kagome metals features multiple VHSs at the \(M\) points close to the Fermi energy [1], [2]. The VHS mostly come from the V \(3\)-d orbitals [3], [4], [45], [84][91], but a strong hybridization between the out-of-plane Sb (Sb–op) and V is responsible for forming the upper M-type VHS [45], [90], [92][94]. Close to van-Hove fillings, the approximate nesting wave vector \(\mathbf{Q}_{ab}\) (Fig. 1 (b)) enhances various susceptibilities at the charge-ordering wave vector \(M_{c}\), which has been proposed to be the driver of the charge BO formation [49], [95], [96]. It has been shown that the putative LC states may primarily emerge from the mirror-odd \(\sigma_h=-1\) orbitals [45], [54] and distinct mirror symmetries of the wavefunction at the P- and M-type VHSs help in stabilizing the LC ordered state [45], [54]. In the disordered state, this would likely enhance the LC fluctuations. In this study, we construct an 8-band tight-binding model, with orbitals in the \(\sigma_h=-1\) sub-sector. This model, based on the DFT band structure from Ref. [45], includes one effective V-\(3d\) orbital per V site, Sb-\(5p_z\) from the Sb-ip, and four linear combinations of the Sb-op \(5p\) orbitals (see Supplement [97] for details of the model). The band structure of this model in Fig. 1 (c), features the P- and M-type VHSs with the correct mirror symmetries as in [54]. It also has a circular Fermi \(\Gamma\)-pocket which is primarily composed of the Sb-ip \(p_z\) orbitals (Fig. 1 (d)). Removal of this \(\Gamma\)-pocket through a Lifshitz transition at 7.5 GPa coincides with the disappearance of superconductivity in low pressure regime of [1], [82], [98], [99], hinting towards its importance in the low-pressure SC state. Also, quasi-particle interference spectroscopy has observed a large gap on this Sb-ip dominated \(\Gamma\)-pocket in [30]. This crucial \(\Gamma\)-pocket, and the two VHSs with the correct mirror symmetries, are built into our 8-band model.

Interaction Hamiltonian.- We choose the chemical potential \(\mu\) to be close to a P-type VHS (see Figs. 1 (c, d)) so that effects of the on-site Hubbard-U are suppressed due to sub-lattice interference [95], [100]. We therefore focus on two kinds of nearest-neighbor (NN) Coulomb repulsions: \(\mathcal{V}_{\text{vv}}\) between the V (v) sites and \(\mathcal{V}_{\text{sv}}\) between the V and Sb-ip (s) sites (for details, see Supplement [97]), \[\begin{gather} H_{\text{int}} =\mathcal{V}_{\text{vv}} \sum_{\mathcal{\mathbf{r}}_j,(a,b,c)} \left(n^{\text{v}}_{\mathcal{\mathbf{r}}_j,a} n^{\text{v}}_{\mathcal{\mathbf{r}}_j,b}+n^{\text{v}}_{\mathcal{\mathbf{r}}_j,a} n^{\text{v}}_{\mathcal{\mathbf{r}}_j-\mathbf{x}_{c},b}\right)\nonumber\\ + \mathcal{V}_{\text{sv}} \sum_{\mathcal{\mathbf{r}}_j,(a,b,c)} n^{\text{s}}_{\mathcal{\mathbf{r}}_j+\mathbf{\tilde{x}}_{a}} \left(n^{\text{v}}_{\mathcal{\mathbf{r}}_j,b}+ n^{\text{v}}_{\mathcal{\mathbf{r}}_j,c} \right) \label{eq:NN95Coulomb95interacting95ham}, \end{gather}\tag{1}\] where \((a,b,c)\) denotes cyclic permutations of the \((A,B,C)\) and \((\mathbf{{\tilde{x}}}_A, \mathbf{{\tilde{x}}}_B, \mathbf{{\tilde{x}}}_C) = (0, -\mathbf{x}_C, \mathbf{x}_B)\). \(\mathbf{x}_A, \mathbf{x}_B, \mathbf{x}_C\) are defined in Fig.1 caption. In the unit cell \(\mathcal{\mathbf{r}}_j\), \(n^{\text{v}}_{\mathcal{\mathbf{r}}_j,a}\) is the local density of V at sub-lattice \(a\), and \(n^{\text{s}}_{\mathcal{\mathbf{r}}_j}\) is the local density of the Sb-ip. We can reorganize Eq. 1 as an interaction between different types of bond-order and loop-current channels. In this decomposition, in addition to the conventionally studied charge bond-order (cBO) and charge loop-current (cLC) channels [34], [45], [49], [54], spin bond-order (sBO) and spin loop-current (sLC) channels are also present. We define four distinct types of order parameters: charge bond-orders: \(\mathcal{\hat{B}}^{\text{c,vv}}_{ \mathbf{q}}\), \(\mathcal{\hat{B}}^{\text{c,sv}}_{ \mathbf{q}}\); charge loop-currents: \(\mathcal{\hat{J}}^{\text{c,vv}}_{ \mathbf{q}}\), \(\mathcal{\hat{J}}^{\text{c,sv}}_{ \mathbf{q}}\); spin bond-orders: \(\mathcal{\hat{B}^{\text{s,vv}}_{ \mathbf{q}}}\), \(\mathcal{\hat{B}^{\text{s,sv}}_{ \mathbf{q}}}\); and spin loop-currents: \(\mathcal{\hat{J}^{\text{s,vv}}_{ \mathbf{q}}}\), \(\mathcal{\hat{J}^{\text{s,sv}}_{ \mathbf{q}}}\), with each type allowed between either V-V (vv) or V-Sb-ip (sv). Each order parameter is composed of three components, e.g. \(\mathcal{\hat{B}}^{\text{c,vv}}_{ \mathbf{q}}=\left(\mathcal{\hat{B}}^{\text{c,vv}}_{\mathbf{q},A},\mathcal{\hat{B}}^{\text{c,vv}}_{\mathbf{q},B},\mathcal{\hat{B}}^{\text{c,vv}}_{\mathbf{q},C}\right)\), along the three bond directions (\(\hat{\text{w}}\)) shown in Fig. 1 (a). For each component, condensation or ordering may occur for a different momentum \(\mathbf{q}=\mathbf{q}_A, \mathbf{q}_B, \mathbf{q}_C\). The V-V BO & LC order-parameter along the \(\hat{\text{w}}_C\) direction in Fig. 1 (a) is, \[\begin{align} \mathcal{\hat{B}}^{\texttt{i}\text{,vv}}_{ \mathbf{q},C}=\sum_{\mathbf{k}\sigma\sigma'}\left[X^{A\sigma,B\sigma'}_{\mathbf{k},\mathbf{k+q}}f^{\text{vv}}_{C,\mathbf{k+q}}+X^{B\sigma,A\sigma'}_{\mathbf{k},\mathbf{k+q}}f^{\text{vv}}_{C,\mathbf{-k}} \right]\frac{\Gamma^\texttt{i}_{\sigma\sigma'}}{2}\tag{2}\\ \mathcal{\hat{J}}^{\texttt{i}\text{,vv}}_{\mathbf{q},C}=i\sum_{\mathbf{k}\sigma\sigma'} \left[ X^{B\sigma,A\sigma'}_{\mathbf{k},\mathbf{k+q}}f^{\text{vv}}_{C,\mathbf{-k}} -X^{A\sigma,B\sigma'}_{\mathbf{k},\mathbf{k+q}}f^{\text{vv}}_{C,\mathbf{k+q}}\right]\frac{\Gamma^\texttt{i}_{\sigma\sigma'}}{2}\tag{3} \end{align}\] where, \(X^{A\sigma,B\sigma'}_{\mathbf{\mathbf{p},q}}=c^{\dagger}_{\mathbf{p},{\cal O}(A),\sigma}c_{\mathbf{q}, {\cal O}(B),\sigma'}\) with \({\cal{O}}(A),{\cal{O}}(B)\) referring to the V orbitals at the sublattice sites \(A, B\) (one effective \(d\)-orbital per V sub-lattice site) and spin indices \(\sigma,\sigma'\). \(f^{\text{vv}}_{C,\mathbf{k}}=1-e^{-i\mathbf{k}\cdot \mathbf{x}_C}\) is a form factor associated with the order parameter along the \(\hat{\text{w}}_C\) direction (see Fig. 1 (a)). In Eqs. 23 , \(\texttt{i}\in \{c,s\}\) specify the charge (\(\mathbb{1}\)) and spin (\(\Vec{\boldsymbol{\sigma}}\)) channels respectively, i.e. \((\Gamma^{\text{c}}, \Gamma^{\text{s}}) = (\mathbb{1}, \Vec{\boldsymbol{\sigma}})\). The order parameters along the other bond directions, or in V-Sb-ip channels (sv) can be defined similarly (see Supplement [97]). The bare interaction Hamiltonian can be rewritten as \[\begin{align} H_{\text{int}}=-&\frac{\mathcal{V}_{\text{vv}}}{2N}\sum_{\mathbf{q},\texttt{i}\in \{c,s\}} \left(\mathcal{\hat{B}}^{\texttt{i},\text{vv}}_{\mathbf{q}}\cdot\mathcal{\hat{B}}^{\texttt{i},\text{vv}}_{\mathbf{-q}}+ \mathcal{\hat{J}}^{\texttt{i},\text{vv}}_{\mathbf{q}}\cdot\mathcal{\hat{J}}^{\texttt{i},\text{vv}}_{\mathbf{-q}} \right)\nonumber\\ -&\frac{\mathcal{V}_{\text{sv}}}{2N}\sum_{\mathbf{q},\texttt{i}\in \{c,s\}}\left( \mathcal{\hat{B}}^{\texttt{i},\text{sv}}_{\mathbf{q}}\cdot\mathcal{\hat{B}}^{\texttt{i},\text{sv}}_{\mathbf{-q}}+ \mathcal{\hat{J}}^{\texttt{i},\text{sv}}_{\mathbf{q}}\cdot\mathcal{\hat{J}}^{\texttt{i},\text{sv}}_{\mathbf{-q}} \right).\label{eq:final95interaction95ham95split} \end{align}\tag{4}\] In the subsequent sections, we obtain the RPA-corrected effective interaction, which incorporates FS features into the vertex.

Figure 2: The RPA corrected susceptibilities (at \mu=3.88) for: bond-orders \chi_{\mathcal{BB}}(\mathbf{q}) ((a) between V-V, (e) between V-Sbip), and loop-currents \chi_{\mathcal{JJ}}(\mathbf{q}) ((c) between V-V, (g) between V-Sbip). Columns 1-5 show the susceptibilities in the charge and spin channels (different color scales) with increasing interaction strengths (shades of colors) as the relative strength of the charge and spin vertex is tuned by \alpha. Only the \chi’s in the disordered state are shown, some larger interaction strengths (or darker color shades) are omitted as those channels would condense. In (a,c) \chi_{\mathcal{BB}}^{\texttt{i},\text{vv}} exceeds \chi_{\mathcal{JJ}}^{\texttt{i},\text{vv}}, and in (e,g) \chi_{\mathcal{JJ}}^{\texttt{i},\text{sv}} exceeds \chi_{\mathcal{BB}}^{\texttt{i},\text{sv}}, when compared at the same interaction strengths (having same color shade). The ordered state resulting from condensation at the three \mathbf{q}=M_{c} (or 3\mathbf{Q} states) for each BO & LC channel is shown on the right in (b,d,f,h). (i) A charge (spin) current corresponds to a locally conserved density \mathbb{1} (spin S^{\textsf{a}}), with spin up/down (in \textsf{a}-basis) flowing in the same (opposite) directions. (j) Fluctuations computed in the disordered state (blue arrow) where r is pressure/doping axis.

Susceptibilities.– We compute the static (\(\omega=0\)) RPA-corrected susceptibilities for bond-orders \(\chi^{\texttt{i}}_{\mathcal{BB}}(\mathbf{q})=\left \langle \mathcal{\hat{B}}_{\mathbf{q}}^{\texttt{i}} \mathcal{\hat{B}}_{\mathbf{-q}}^{\texttt{i}} \right\rangle\) and loop-currents \(\chi^{\texttt{i}}_{\mathcal{JJ}}(\mathbf{q})=\left \langle \mathcal{\hat{J}}_{\mathbf{q}}^{\texttt{i}} \mathcal{\hat{J}}_{\mathbf{-q}}^{\texttt{i}} \right\rangle\), for both the V-V and V-Sb-ip channels in the disordered state (see Fig. 2 (j)). To gain more insight, we have parameterized the charge-spin sector of the vertex by, \(V_{\text{charge-spin}}(\alpha)=(1-\alpha)\Gamma^{\text{c}}\Gamma^{\text{c}}+\alpha\Gamma^{\text{s}}\cdot \Gamma^{\text{s}}\), where \(\alpha\) tunes the relative strengths of the charge and spin channels. While the NN-Coulomb interaction fixes \(\alpha=\frac{1}{2}\), electron–phonon couplings [101][104] can potentially renormalize \(\alpha\). The orbital-sector of the vertex remains unchanged.

Figure 3: SC phase diagram: (a) as a function of the strength of the different fluctuating channels parameterized by \alpha (charge \leftrightarrow spin), \beta (bond-order \leftrightarrow loop-current), \gamma (V-V \leftrightarrow V-Sbip) for an interaction scale \xi=4. (b) Sub-classification of the A_{1g} phase into the s_{++} type and s_{+-} type based on the value of \tilde{\Delta}_{\text{in}}/\tilde{\Delta}_{\text{out}} (defined in text). (c) The leading and sub-leading SC instabilities for two different interaction scales \xi=4 (circles), \xi=5 (squares). The gap structure of the leading SC instability for fluctuations of: (d) V-V cBO (\alpha=\beta=\gamma=0), (e) V-V cLC (\alpha=\gamma=0, \beta=1), (f) V-Sbip cBO (\alpha=\beta=0, \gamma=1), (g) V-Sbip cLC (\alpha=0, \beta=\gamma=1).

In Figs. 2 (a,c,e,g), we show the BO & LC susceptibilities, i.e. \(\chi_{\mathcal{BB}}\) and \(\chi_{\mathcal{JJ}}\) respectively in both V-V (vv) and the V-Sbip (sv) channels for \(\mu=3.88\) near the P-type VHS. As seen from the columns in Fig. 2, tuning the interaction vertex \(\alpha\) between the charge and spin channels respectively enhances the charge (\(\mathtt{i}=c\)) and spin (\(\mathtt{i}=s\)) susceptibilities (shown with different color scales in each panel in Fig. 2). Additionally, as a general trend we see that both the BO & LC susceptibilities in all the channels become most strongly peaked close to all the three \(M_c\)-points (see Fig. 1 (b), where \(c\in \{A,B,C\}\)) with increasing interaction strengths. Further, the strengths of the fluctuations are roughly comparable as evident from the peak heights. For V-V charge orders (see Fig. 2 (a1)), this \(M_{c}\)-ordering tendency is in agreement with experiments [6], [7], [9] which detect the formation of a \(2\times 2\) charge order on the V kagome net. Further, in Figs. 1 (a,c) we find that the V-V BO susceptibilities \(\chi^{\texttt{i},\text{vv}}_{\mathcal{BB}}(\mathbf{q})\) are larger than the V-V LC susceptibility \(\chi^{\texttt{i},\text{vv}}_{\mathcal{JJ}}(\mathbf{q})\), in agreement with previous studies which find BO phase close to the P-type VHS [42], [49], [54]. We also find that moving \(\mu\) closer to the M-type VHS results in an increase in the ratio of the LC to BO susceptibility or \(\chi^{\texttt{i},\text{vv}}_{\mathcal{JJ}}(\mathbf{q})\)/\(\chi^{\texttt{i},\text{vv}}_{\mathcal{BB}}(\mathbf{q})\) at \(\mathbf{q}=M_{c}\) which is caused by enhanced LC fluctuations. This is expected as Refs. [45], [54] found the mean-field LC-order to be stabilized close to the M-type VHS. However, on the V-Sb-ip bonds, the \(M_{c}\)-peaked V-Sb-ip LC susceptibility \(\chi_{\mathcal{JJ}}^{\texttt{i},\text{sv}}(\mathbf{q})\) is stronger than the V-Sb-ip BO susceptibility \(\chi_{\mathcal{BB}}^{\texttt{i},\text{sv}}(\mathbf{q})\) for the same interaction strength (see Figs. 2 (e,g)). We show in Figs.  2 (b, d, f, h), the pattern of the different long-range ordered states if they were allowed to condense at all the three \(\mathbf{q}=M_{c}\), resulting in a \(3\mathbf{Q}\) ordered state (i.e. for the three components: \(\mathbf{q}_A=M_A\), \(\mathbf{q}_B=M_B\), and \(\mathbf{q}_C=M_C\) respectively). The cBOs have modulations of bond charge densities, and the sBOs have alternating bonds of increased spin-up and spin-down occupation [95], [105]. The LCs (in Figs. 2 (d, h)) preserve Kirchhoff’s law and also the Bloch’s global-current constraint [62], [106], [107]. Additionally, the cLCs conserve the local density \(n_{\mathcal{\mathbf{r}}_j}\), and the sLCs conserve the local spin \(S^a_{\mathcal{\mathbf{r}}_j}\) (see Fig. 2 (i)). In Fig. 2 (a,c,e,g) , the spin and charge susceptibilities are equal for \(\alpha=0.5\). However, inclusion of beyond RPA-bubble diagrams are expected to comparatively strengthen the charge channels [41]. This would be equivalent to reducing \(\alpha\), while leaving the other results unchanged.

Since each kind of fluctuation can act as a pairing glue to potentially distinct kind of SC [62], [106], we henceforth study the phase diagram as we tune between different fluctuating channels, by adjusting their relative strengths using \(\{\alpha,\beta, \gamma\}\). As defined earlier, \(\alpha\) tunes between the charge and spin channels. The relative strength of the bond-order and loop-current channel is tuned by \(\beta\): \(V_{\text{BO+LC}}(\beta)=(1-\beta)V_{\text{BO}}+\beta V_{\text{LC}}\). We do not consider mixing among the BO and LC channels in the RPA susceptibility [97]. \(\gamma\) tunes between the V-V and V-Sb-ip interactions: \(\mathcal{V}_{\text{vv}}=(1-\gamma)\xi\) and \(\mathcal{V}_{\text{sv}}=\gamma\xi\) in Eq. 4 , here \(\xi\) fixes the overall interaction scale.

SC phase diagram.– The leading SC instability is found by solving a linearized gap equation using the RPA-corrected Cooper vertex incorporating the different fluctuating modes. Since we only focus on the competition between different channels, we set the overall interaction scale \(\xi=4\). See End Matter for more details. The various SC instabilities at \(\mu=3.88\), as a function of the three parameters \(\{\alpha, \beta, \gamma\}\) are shown in Fig. 3 (a). Most of the parameter space is dominated by singlet \(A_{1g}\) (\(s\)-wave) and \(E_{2g}\) (\(d\)-wave) channels. This is in agreement with experiments which report evidence of singlet pairing [108], although the actual pairing symmetry is still under debate [1], [2].

First, we discuss the SC driven by fluctuations produced by V-V interactions, i.e. the \(\gamma=0\) plane in Fig. 3 (a). We see that fluctuations of V-V cBO or sLC lead to \(s\)-wave (\(A_{1g}\)) pairing with a large amplitude on the outer two FSs, but a small amplitude on the \(\Gamma\)-pocket, as shown in Fig. 3 (d). This is due to a small projection of the V-V channel interactions on the \(\Gamma\)-pocket. In Fig. 3 (e) we see a qualitatively similar distribution of gaps across the FSs for the \(d\)-wave (\(E_{2g}\)) pairing driven by V-V cLC or sBO (see Figs. 3 (a)). Upon including non-linear corrections to the gap equation, the two-fold degenerate \(E_{2g}\) state can break time-reversal symmetry to become a chiral \(d_{x^2-y^2}\pm i d_{xy}\) [109] to maximize condensation energy.

On the other hand, as seen in Fig. 3 (a), the V-Sb-ip channel fluctuations always mediate \(s\)-wave (\(A_{1g}\)) pairing. We find in Figs. 3 (f,g) that fluctuating V-Sb-ip channels (close to \(\gamma\approx 1\)) induce a large gap across the \(\Gamma\)-pocket, in addition to comparably large gaps on the outer two FSs. This may be consistent with experiments that suggest sizable gaps on the \(\Gamma\)-pocket [30]. We can further sub-classify the \(A_{1g}\) region in Fig. 3 (b), by the relative sign of the average pairing gap across the inner \(\Gamma\)-pocket (in) and the outer two FS (out). We quantify this by the ratio of angular summed gaps on the inner and outer FSs, i.e. \(\tilde{\Delta}_{\text{in}}/\tilde{\Delta}_{\text{out}}=\oint _{\text{in}}\Delta_{\text{in}}(k) dk/\oint_{\text{out}} \Delta_{\text{out}}(k) dk\), and it is shown in Fig. 3 (b). Fluctuations of V-Sb-ip cLC or sBO channels create a gap with different signs across the outer two FS and inner \(\Gamma\)-pocket as shown in Fig. 3 (g), resulting in \(\tilde{\Delta}_{\text{in}}/\tilde{\Delta}_{\text{out}}<0\) in Fig. 3 (b). This is due to a large repulsion in these channels between the outer V-dominated and inner-Sb-ip dominated FSs, leading to a \(s_{+-}\) pairing. The opposite behavior is seen for the V-Sb-ip cBO or sLC channels which is always attractive, leading to an \(s_{++}\) pairing as shown in Fig. 3 (f), or \(\tilde{\Delta}_{\text{in}}/\tilde{\Delta}_{\text{out}}>0\) in Fig. 3 (b).

All the \(s\)-wave states in Fig. 3 (a) have an anisotropic gap, whose angular distribution is shown in Fig. 4 (a). Further, in Figs. 3 (a,c) we see a change in the pairing symmetry occurs on tuning \(\alpha\) for a given mode (BOs or LCs), between \(\alpha\sim 0.25-0.3\). This is because the spin vertex, with three components, contributes more than the charge vertex (details in Supplement [97]). In Fig. 3 (a), we also see a small region of a triplet \(p\)-wave (\(E_{1u}\)) for \(\beta\approx 0.5\). However, this weak triplet phase, with small \(\lambda_{\text{max}}\) values compared to the nearby singlet states, disappears on increasing the interaction scale \(\xi\) as shown in Fig. 4 (b). Additionally, for each value of \(\gamma\) we find that cLC and sBO fluctuations favor the same pairing symmetry (see Fig. 3 (a)), as do cBO and sLC fluctuations.

Time-reversal parity of fluctuating mode and SC.- The leading singlet pairing instability is closely tied to the time-reversal parity of the fluctuating modes [110]. TRS even modes lead to conventional \(s\)-wave pairing, and TRS odd modes favor unconventional \(s_{+-}\) or chiral \(d+id\) pairing with sign-changing gaps. Since the BO & LC channels each have definite TR parities, the pairing symmetry of the singlet states in Figs. 3 (a,b) can be understood qualitatively based on the TR parity of the strongest fluctuating mode. See End Matter for a more detailed discussion.

Figure 4: (a1-a3) The s-wave (A_{1g}) gaps \Delta_{\phi} of Figs. 3 (d, f, g), as a function of angle on the three Fermi sheets (see inset). (b) Triplet p-wave (E_{1u}) disappears on increasing \xi.

Discussions.– In summary, by considering an electron model which incorporates nearest neighbor V-V and V-planar Sb interactions and the appropriate band structure effects, we have shown that \(s_{++}\), \(s_{+-}\), or \(d+id\) superconductivity can arise from the competition between bond-order and loop-current fluctuations. All of these are consistent with experimental observations of a full gap in the SC state [12], [14], [111][114] at low pressures.

Recent experiments probing the SC gap structure using electron-irradiation techniques [112], ARPES [114], penetration depth measurements [111], and point-contact Andreev-reflection spectroscopy (PCARS) [113] have all reported the presence of highly anisotropic gaps. Further, the ARPES [114] observed the gap on the Sb-ip dominated \(\Gamma\)-pocket to be isotropic, with most of the anisotropy residing on the outer FSs. A similar coexistence of isotropic and anisotropic gaps was reported in the PCARS study [113]. In the absence of TRS breaking, both the \(s_{++}\) or \(s_{+-}\) gaps in Figs. 4 (a2,a3) can naturally explain this scenario. These states also have a large gap on the \(\Gamma\)-pocket (in the presence of a sufficiently large V-planar Sb interaction), consistent with quasi-particle interference spectroscopy measurements [30]. Distinguishing \(s_{+-}\) and \(s_{++}\) would require a carefully designed phase sensitive measurement. There have been various reports of time-reversal symmetry breaking [12], [14], [26], which may favor \(d+id\) state. However, this issue is still under debate as the impact of the extrinsic effects such as impurities and defects have yet to be clarified.

Recently, Schultz et. al [62] investigated the pairing mediated by charge-LC fluctuations between V-V and V-Sb-ip by incorporating a phenomenological LC propagator in the Cooper vertex, which introduced \(M_{c}\)-fluctuations without specifying its origin. Our results are consistent with these findings when we restrict our computations to the cLC sector.

Acknowledgements.– DJS and YBK thank G. Palle, R.M. Fernandes, J. Schmalian for earlier collaboration on a related subject and helpful discussions. This work was supported by the Natural Science and Engineering Council of Canada (NSERC) and the Center for Quantum Materials at the University of Toronto. Computations were performed on the Cedar cluster hosted by WestGrid and SciNet in partnership with the Digital Research Alliance of Canada. This work was further supported by the German Research Foundation (DFG) through CRC TRR 288 “Elasto-Q-Mat,” project A07 (D.J.S.).

1 END MATTER↩︎

1.1 Superconducting Instabilities↩︎

To include the effect of the different fluctuating modes (present across all \(\mathbf{q}\)) in the interaction vertex, we compute the RPA-corrected vertex: \(V=V_0+V_{\text{RPA}}\), by summing over all bubble-diagrams (more details in [97]). \[\begin{gather} \left[V_{\text{RPA}}(\mathbf{k},\mathbf{k'})\right]^{\tilde{\mu}_1\tilde{\mu}_2}_{\tilde{\mu}_3\tilde{\mu}_4}=-\left[ V_0 (1+\chi_0 V_0)^{-1} \chi_0 V_0 (\mathbf{k},\mathbf{k'})\right]^{\tilde{\mu}_1\tilde{\mu}_2}_{\tilde{\mu}_3\tilde{\mu}_4},\label{eq:RPA95correction95to95V} \end{gather}\tag{5}\] where \(\tilde{\mu}=(\mu,s)\) is a combined orbital-spin index. Eq. 5 includes a static orbital-resolved susceptibility \(\chi_0(\mathbf{q},\omega=0)\) (defined in [97]) and no dynamical effects to the pairing are considered. Eq. 5 is then projected onto the Cooper channel and anti-symmetrized. This results in an effective pairing interaction of the form, \[\begin{gather} H_{\text{eff}}=\frac{1}{2N}\sum_{\mathbf{k},\mathbf{k'},\{\tilde{\mu}\}}V(\mathbf{k},\mathbf{k'})^{\tilde{\mu}_1\tilde{\mu}_2}_{\tilde{\mu}_3\tilde{\mu}_4}c_{\mathbf{k}\tilde{\mu}_1}^{\dagger}c_{\mathbf{-k}\tilde{\mu}_3}^{\dagger} c_{-\mathbf{k'}\tilde{\mu}_2}c_{\mathbf{k'}\tilde{\mu}_4}.\label{eq:Cooper95195mt} \end{gather}\tag{6}\] We find the leading and sub-leading SC instabilities, with intra-band pairing, by solving a linearized gap equation for the Cooper vertex in the singlet \((\eta=0)\) and triplet (\(\eta=\{x,y,z\}\)) channels, \[\begin{gather} \lambda_{\eta}\Delta_{\eta}(n_1\mathbf{k})= - \sum_{n_2}\oint_{\mathbf{k'}\in \text{FS}_{n_2}} \frac{\tilde{V}_{\eta}(n_1\mathbf{k},n_2\mathbf{k'}) \Delta_{\eta} (n_2\mathbf{k'}) d\mathbf{k'}}{\left|\nabla_{\mathbf{k'}}\xi_{\mathbf{k'}n_2}\right| \left(2\pi \right)^2}. \label{eq:LGE} \end{gather}\tag{7}\] Here, \(n\mathbf{k}\) denotes a FS momenta \(\mathbf{k}\) of band \(n\). The triplet channels are degenerate because of unbroken spin-rotation symmetry in the disordered state and the absence of spin-orbit coupling. The eigenvector \(\Delta_{\text{max}}(n\mathbf{k})\) of the leading SC instability with the largest eigenvalue \(\lambda_{\text{max}}\), encodes its gap structure across the FS. We classify the gap functions based on lattice harmonics and irreps of the \(D_{6h}\) point group. Since in this study we primarily focus on the competition between different fluctuating channels, we set the overall interaction scale \(\xi=4\). For reference, the average band-width of the V-\(d\) bands near the VHS is \(W_{\text{band}}\sim 12\) (here, we set \(t_{\text{V-V}}/2=1\), see [97]). Small changes to \(\xi\) do not qualitatively change the leading SC instability (see Fig. 3 (c)). All our results are obtained at \(T/t_{\text{V-V}}\sim 0.005\), representative of the low-temperature limit.

1.2 Time-reversal parity of fluctuating mode and SC↩︎

The singlet-channel Cooper vertex for a fluctuating mode of TR parity \(P_T\) can be expressed as \[\begin{gather} \tilde{V}_{\eta=0}(n_1\mathbf{k},n_2\mathbf{k'})=\frac{-g^2P_T}{2}\left( \left|\mathcal{O}^{n_1,n_2}_{\mathbf{k},\mathbf{k'}}\right|^2 +\left|\mathcal{O}^{n_1,n_2}_{\mathbf{k},\mathbf{-k'}}\right|^2 \right)\label{eq:main95singlet95parity}, \end{gather}\tag{8}\] where \(\mathcal{O}^{n_1,n_2}_{\mathbf{k},\mathbf{k'}}\) is the fluctuating mode in the band-basis (a simple proof presented in [97]). Eq. 8 shows that the \(P_T = 1\) singlet channels are attractive (\(\tilde{V}_{\eta=0}(\mathbf{k},\mathbf{k}') < 0\)) across the entire FS, leading to conventional \(s\)-wave pairing. \(P_T = -1\) modes are repulsive (\(\tilde{V}_{\eta=0}(\mathbf{k},\mathbf{k}') > 0\)), therefore favoring unconventional sign-changing gaps. The BO & LC channels each have definite TR parities and therefore the pairing symmetry of the singlet states in Figs. 3 (a,b) can be understood qualitatively based on the TR parity of the strongest fluctuating mode. For example, focusing on the charge sector (\(\alpha=0\)) in Fig. 3 (a), dominant TRS even cBO fluctuations (at large \(\beta\)) drive \(s_{++}\)-wave pairing. On the other hand, dominant cLC fluctuations (at small \(\beta\)) drive unconventional chiral \(d+id\) or \(s_{+-}\) pairing. These conclusions remain valid after incorporating RPA corrections to Eq. 8 . However, this argument alone does not specify whether the leading pairing state is singlet or triplet.

References↩︎

[1]
S. D. Wilson and B. R. Ortiz, Av3sb5 kagome superconductors, https://doi.org/10.1038/s41578-024-00677-y.
[2]
K. Jiang, T. Wu, J.-X. Yin, Z. Wang, M. Z. Hasan, S. D. Wilson, X. Chen, and J. Hu, Kagome superconductors av3sb5 (a = k, rb, cs), https://doi.org/10.1093/nsr/nwac199.
[3]
B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, New kagome prototype materials: discovery of \({\mathrm{kv}}_{3}{\mathrm{sb}}_{5},{\mathrm{rbv}}_{3}{\mathrm{sb}}_{5}\), and \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevMaterials.3.094407.
[4]
B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, \(\mathrm{Cs}{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\): A \({\mathbb{z}}_{2}\) topological kagome metal with a superconducting ground state, https://doi.org/10.1103/PhysRevLett.125.247002.
[5]
H. Zhao, H. Li, B. R. Ortiz, S. M. L. Teicher, T. Park, M. Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic, Cascade of correlated electron states in the kagome superconductor csv3sb5, https://doi.org/10.1038/s41586-021-03946-w.
[6]
Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Unconventional chiral charge order in kagome superconductor kv3sb5, https://doi.org/10.1038/s41563-021-01034-y.
[7]
H. Li, H. Zhao, B. R. Ortiz, T. Park, M. Ye, L. Balents, Z. Wang, S. D. Wilson, and I. Zeljkovic, Rotation symmetry breaking in the normal state of a kagome superconductor kv3sb5, https://doi.org/10.1038/s41567-021-01479-7.
[8]
W. Liège, Y. Xie, D. Bounoua, Y. Sidis, F. Bourdarot, Y. Li, Z. Wang, J.-X. Yin, P. Dai, and P. Bourges, Search for orbital magnetism in the kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\) using neutron diffraction, https://doi.org/10.1103/PhysRevB.110.195109.
[9]
Z. Wang, Y.-X. Jiang, J.-X. Yin, Y. Li, G.-Y. Wang, H.-L. Huang, S. Shao, J. Liu, P. Zhu, N. Shumiya, M. S. Hossain, H. Liu, Y. Shi, J. Duan, X. Li, G. Chang, P. Dai, Z. Ye, G. Xu, Y. Wang, H. Zheng, J. Jia, M. Z. Hasan, and Y. Yao, Electronic nature of chiral charge order in the kagome superconductor \(\mathrm{Cs}{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.104.075148.
[10]
C. Mielke, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang, M. Medarde, X. Wu, H. C. Lei, J. Chang, P. Dai, Q. Si, H. Miao, R. Thomale, T. Neupert, Y. Shi, R. Khasanov, M. Z. Hasan, H. Luetkens, and Z. Guguchia, Time-reversal symmetry-breaking charge order in a kagome superconductor, https://doi.org/10.1038/s41586-021-04327-z.
[11]
G. Liu, X. Ma, K. He, Q. Li, H. Tan, Y. Liu, J. Xu, W. Tang, K. Watanabe, T. Taniguchi, L. Gao, Y. Dai, H.-H. Wen, B. Yan, and X. Xi, Observation of anomalous amplitude modes in the kagome metal csv3sb5, https://doi.org/10.1038/s41467-022-31162-1.
[12]
Z. Guguchia, C. Mielke, D. Das, R. Gupta, J.-X. Yin, H. Liu, Q. Yin, M. H. Christensen, Z. Tu, C. Gong, N. Shumiya, M. S. Hossain, T. Gamsakhurdashvili, M. Elender, P. Dai, A. Amato, Y. Shi, H. C. Lei, R. M. Fernandes, M. Z. Hasan, H. Luetkens, and R. Khasanov, Tunable unconventional kagome superconductivity in charge ordered rbv\(_3\)sb\(_5\) and kv\(_3\)sb\(_5\), https://doi.org/10.1038/s41467-022-35718-z.
[13]
T. Asaba, A. Onishi, Y. Kageyama, T. Kiyosue, K. Ohtsuka, S. Suetsugu, Y. Kohsaka, T. Gaggl, Y. Kasahara, H. Murayama, K. Hashimoto, R. Tazai, H. Kontani, B. R. Ortiz, S. D. Wilson, Q. Li, H.-H. Wen, T. Shibauchi, and Y. Matsuda, Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal, https://doi.org/10.1038/s41567-023-02272-4.
[14]
H. Deng, G. Liu, Z. Guguchia, T. Yang, J. Liu, Z. Wang, Y. Xie, S. Shao, H. Ma, W. Liège, F. Bourdarot, X.-Y. Yan, H. Qin, C. Mielke, R. Khasanov, H. Luetkens, X. Wu, G. Chang, J. Liu, M. H. Christensen, A. Kreisel, B. M. Andersen, W. Huang, Y. Zhao, P. Bourges, Y. Yao, P. Dai, and J.-X. Yin, Evidence for time-reversal symmetry-breaking kagome superconductivity, https://doi.org/10.1038/s41563-024-01995-w.
[15]
S. Wu, B. R. Ortiz, H. Tan, S. D. Wilson, B. Yan, T. Birol, and G. Blumberg, Charge density wave order in the kagome metal \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) \((a=\mathrm{Cs},\mathrm{Rb},\mathrm{K})\), https://doi.org/10.1103/PhysRevB.105.155106.
[16]
N. Ratcliff, L. Hallett, B. R. Ortiz, S. D. Wilson, and J. W. Harter, Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevMaterials.5.L111801.
[17]
Y. Luo, Y. Han, J. Liu, H. Chen, Z. Huang, L. Huai, H. Li, B. Wang, J. Shen, S. Ding, Z. Li, S. Peng, Z. Wei, Y. Miao, X. Sun, Z. Ou, Z. Xiang, M. Hashimoto, D. Lu, Y. Yao, H. Yang, X. Chen, H.-J. Gao, Z. Qiao, Z. Wang, and J. He, A unique van hove singularity in kagome superconductor csv3-xtaxsb5 with enhanced superconductivity, https://doi.org/10.1038/s41467-023-39500-7.
[18]
J. Ge, P. Wang, Y. Xing, Q. Yin, A. Wang, J. Shen, H. Lei, Z. Wang, and J. Wang, Charge-\(4e\) and charge-\(6e\) flux quantization and higher charge superconductivity in kagome superconductor ring devices, https://doi.org/10.1103/PhysRevX.14.021025.
[19]
R. Lou, A. Fedorov, Q. Yin, A. Kuibarov, Z. Tu, C. Gong, E. F. Schwier, B. Büchner, H. Lei, and S. Borisenko, Charge-density-wave-induced peak-dip-hump structure and the multiband superconductivity in a kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevLett.128.036402.
[20]
M. Frachet, L. Wang, W. Xia, Y. Guo, M. He, N. Maraytta, R. Heid, A.-A. Haghighirad, M. Merz, C. Meingast, and F. Hardy, Colossal \(c\)-axis response and lack of rotational symmetry breaking within the kagome planes of the \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\) superconductor, https://doi.org/10.1103/PhysRevLett.132.186001.
[21]
Z. Xu, T. Le, and X. Lin, Av3sb5 kagome superconductors: A review with transport measurements, https://doi.org/10.1088/0256-307X/42/3/037304.
[22]
Q. Xiao, Y. Lin, Q. Li, X. Zheng, S. Francoual, C. Plueckthun, W. Xia, Q. Qiu, S. Zhang, Y. Guo, J. Feng, and Y. Peng, Coexistence of multiple stacking charge density waves in kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevResearch.5.L012032.
[23]
H. Li, G. Fabbris, A. H. Said, J. P. Sun, Y.-X. Jiang, J.-X. Yin, Y.-Y. Pai, S. Yoon, A. R. Lupini, C. S. Nelson, Q. W. Yin, C. S. Gong, Z. J. Tu, H. C. Lei, J.-G. Cheng, M. Z. Hasan, Z. Wang, B. Yan, R. Thomale, H. N. Lee, and H. Miao, Discovery of conjoined charge density waves in the kagome superconductor csv3sb5, https://doi.org/10.1038/s41467-022-33995-2.
[24]
W. Zhang, X. Liu, L. Wang, C. W. Tsang, Z. Wang, S. T. Lam, W. Wang, J. Xie, X. Zhou, Y. Zhao, S. Wang, J. Tallon, K. T. Lai, and S. K. Goh, Nodeless superconductivity in kagome metal csv3sb5 with and without time reversal symmetry breaking, https://doi.org/10.1021/acs.nanolett.2c04103, pMID: 36662599.
[25]
Z. Guguchia, R. Khasanov, and H. Luetkens, Unconventional charge order and superconductivity in kagome-lattice systems as seen by muon-spin rotation, https://doi.org/10.1038/s41535-023-00574-7.
[26]
R. Gupta, D. Das, C. Mielke, E. T. Ritz, F. Hotz, Q. Yin, Z. Tu, C. Gong, H. Lei, T. Birol, R. M. Fernandes, Z. Guguchia, H. Luetkens, and R. Khasanov, Two types of charge order with distinct interplay with superconductivity in the kagome material csv3sb5, https://doi.org/10.1038/s42005-022-01011-0.
[27]
B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Superconductivity in the \({\mathbb{z}}_{2}\) kagome metal \({\mathrm{kv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevMaterials.5.034801.
[28]
Y. Wang, H. Wu, G. T. McCandless, J. Y. Chan, and M. N. Ali, Quantum states and intertwining phases in kagome materials, https://doi.org/10.1038/s42254-023-00635-7.
[29]
W. Wang, L. Wang, X. Liu, C. W. Tsang, Z. Wang, T. F. Poon, S. Wang, K. T. Lai, W. Zhang, J. L. Tallon, and S. K. Goh, Quantum phase transition as a promising route to enhance the critical current in kagome superconductor csv3sb5, https://doi.org/https://doi.org/10.1002/advs.202410099.
[30]
H. Deng, H. Qin, G. Liu, T. Yang, R. Fu, Z. Zhang, X. Wu, Z. Wang, Y. Shi, J. Liu, H. Liu, X.-Y. Yan, W. Song, X. Xu, Y. Zhao, M. Yi, G. Xu, H. Hohmann, S. C. Holbæk, M. Dürrnagel, S. Zhou, G. Chang, Y. Yao, Q. Wang, Z. Guguchia, T. Neupert, R. Thomale, M. H. Fischer, and J.-X. Yin, Chiral kagome superconductivity modulations with residual fermi arcs, https://doi.org/10.1038/s41586-024-07798-y.
[31]
C. Li, X. Wu, H. Liu, C. Polley, Q. Guo, Y. Wang, X. Han, M. Dendzik, M. H. Berntsen, B. Thiagarajan, Y. Shi, A. P. Schnyder, and O. Tjernberg, Coexistence of two intertwined charge density waves in a kagome system, https://doi.org/10.1103/PhysRevResearch.4.033072.
[32]
T. Qian, M. H. Christensen, C. Hu, A. Saha, B. M. Andersen, R. M. Fernandes, T. Birol, and N. Ni, Revealing the competition between charge density wave and superconductivity in \({{\mathrm{CsV}}_{3}\mathrm{Sb}}_{5}\) through uniaxial strain, https://doi.org/10.1103/PhysRevB.104.144506.
[33]
X. Y. Feng, Z. Zhao, J. Luo, Y. Z. Zhou, J. Yang, A. F. Fang, H. T. Yang, H.-J. Gao, R. Zhou, and G.-q. Zheng, Fully-gapped superconductivity with rotational symmetry breaking in pressurized kagome metal csv3sb5, https://doi.org/10.1038/s41467-025-58941-w.
[34]
M. M. Denner, R. Thomale, and T. Neupert, Analysis of charge order in the kagome metal \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) (\(a=\mathrm{K},\mathrm{Rb},\mathrm{Cs}\)), https://doi.org/10.1103/PhysRevLett.127.217601.
[35]
X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G. Sangiovanni, D. Di Sante, Y. Iqbal, W. Hanke, A. P. Schnyder, M. M. Denner, M. H. Fischer, T. Neupert, and R. Thomale, Nature of unconventional pairing in the kagome superconductors \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) (\(a=\mathrm{K},\mathrm{Rb},\mathrm{Cs}\)), https://doi.org/10.1103/PhysRevLett.127.177001.
[36]
M. H. Christensen, T. Birol, B. M. Andersen, and R. M. Fernandes, Theory of the charge density wave in \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) kagome metals, https://doi.org/10.1103/PhysRevB.104.214513.
[37]
Y.-P. Lin and R. M. Nandkishore, Complex charge density waves at van hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals \(a{V}_{3}{\mathrm{sb}}_{5}\) (\(a\)=k, rb, cs), https://doi.org/10.1103/PhysRevB.104.045122.
[38]
T. Park, M. Ye, and L. Balents, Electronic instabilities of kagome metals: Saddle points and landau theory, https://doi.org/10.1103/PhysRevB.104.035142.
[39]
X. Feng, K. Jiang, Z. Wang, and J. Hu, Chiral flux phase in the kagome superconductor av3sb5, https://doi.org/https://doi.org/10.1016/j.scib.2021.04.043.
[40]
M. H. Christensen, T. Birol, B. M. Andersen, and R. M. Fernandes, Loop currents in \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) kagome metals: Multipolar and toroidal magnetic orders, https://doi.org/10.1103/PhysRevB.106.144504.
[41]
A. T. Rømer, S. Bhattacharyya, R. Valentı́, M. H. Christensen, and B. M. Andersen, Superconductivity from repulsive interactions on the kagome lattice, https://doi.org/10.1103/PhysRevB.106.174514.
[42]
F. Ferrari, F. Becca, and R. Valentı́, Charge density waves in kagome-lattice extended hubbard models at the van hove filling, https://doi.org/10.1103/PhysRevB.106.L081107.
[43]
Y.-P. Lin and R. M. Nandkishore, Multidome superconductivity in charge density wave kagome metals, https://doi.org/10.1103/PhysRevB.106.L060507.
[44]
R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani, Mechanism of exotic density-wave and beyond-migdal unconventional superconductivity in kagome metal \(\mathrm{AV_{3}Sb_{5}}\) (a = k, rb, cs), https://doi.org/10.1126/sciadv.abl4108.
[45]
H. Li, X. Liu, Y. B. Kim, and H.-Y. Kee, Origin of \(\ensuremath{\pi}\)-shifted three-dimensional charge density waves in the kagomé metal \({A\mathrm{V}}_{3}{\mathrm{sb}}_{5}\) \((a=\mathrm{Cs}, \mathrm{Rb}, \mathrm{K})\), https://doi.org/10.1103/PhysRevB.108.075102.
[46]
S. C. Holbæk, M. H. Christensen, A. Kreisel, and B. M. Andersen, Unconventional superconductivity protected from disorder on the kagome lattice, https://doi.org/10.1103/PhysRevB.108.144508.
[47]
H.-M. Jiang, M.-X. Liu, and S.-L. Yu, Impact of the orbital current order on the superconducting properties of the kagome superconductors, https://doi.org/10.1103/PhysRevB.107.064506.
[48]
S.-L. Yu and J.-X. Li, Chiral superconducting phase and chiral spin-density-wave phase in a hubbard model on the kagome lattice, https://doi.org/10.1103/PhysRevB.85.144402.
[49]
J.-W. Dong, Z. Wang, and S. Zhou, Loop-current charge density wave driven by long-range coulomb repulsion on the kagomé lattice, https://doi.org/10.1103/PhysRevB.107.045127.
[50]
Y.-M. Wu, R. Thomale, and S. Raghu, Sublattice interference promotes pair density wave order in kagome metals, https://doi.org/10.1103/PhysRevB.108.L081117.
[51]
G. Wagner, C. Guo, P. J. W. Moll, T. Neupert, and M. H. Fischer, Phenomenology of bond and flux orders in kagome metals, https://doi.org/10.1103/PhysRevB.108.125136.
[52]
E. T. Ritz, H. S. Røising, M. H. Christensen, T. Birol, B. M. Andersen, and R. M. Fernandes, Superconductivity from orbital-selective electron-phonon coupling in \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.108.L100510.
[53]
R. Tazai, Y. Yamakawa, and H. Kontani, Charge-loop current order and z3 nematicity mediated by bond order fluctuations in kagome metals, https://doi.org/10.1038/s41467-023-42952-6.
[54]
H. Li, Y. B. Kim, and H.-Y. Kee, Intertwined van hove singularities as a mechanism for loop current order in kagome metals, https://doi.org/10.1103/PhysRevLett.132.146501.
[55]
R.-Q. Fu, J. Zhan, M. Dürrnagel, H. Hohmann, R. Thomale, J. Hu, Z. Wang, S. Zhou, and X. Wu, https://arxiv.org/abs/2405.09451(2024), https://arxiv.org/abs/2405.09451.
[56]
Y. Dai, A. Kreisel, and B. M. Andersen, Existence of hebel-slichter peak in unconventional kagome superconductors, https://doi.org/10.1103/PhysRevB.110.144516.
[57]
T. Schwemmer, H. Hohmann, M. Dürrnagel, J. Potten, J. Beyer, S. Rachel, Y.-M. Wu, S. Raghu, T. Müller, W. Hanke, and R. Thomale, Sublattice modulated superconductivity in the kagome hubbard model, https://doi.org/10.1103/PhysRevB.110.024501.
[58]
X. Lin, J. Huang, and T. Zhou, Impact of charge density waves on superconductivity and topological properties in kagome superconductors, https://doi.org/10.1103/PhysRevB.110.134502.
[59]
S. Sim, M. Y. Jeong, H. Lee, D. H. D. Lee, and M. J. Han, Chemical effect on the van hove singularity in superconducting kagome metal av3sb5 (a = k, rb, and cs), https://doi.org/10.1039/D4CP00517A.
[60]
Q.-F. Li, G. Pan, X. Zhang, S. Nakatsuji, W. Jiang, X. Y. Xu, and X. Wu, Loop-current fluctuations mediated chiral d-wave pairing in kagome lattice, https://doi.org/10.1088/0256-307X/42/5/057302.
[61]
Y. Tian and S. Y. Savrasov, Unconventional superconductivity via charge fluctuations in the kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.111.134507.
[62]
D. J. Schultz, G. Palle, Y. B. Kim, R. M. Fernandes, and J. Schmalian, https://arxiv.org/abs/2507.16892(2025), https://arxiv.org/abs/2507.16892.
[63]
S. C. Holbæk and M. H. Fischer, Interplay of superconductivity and charge-density-wave order in kagome materials, https://doi.org/10.1103/PhysRevResearch.7.023129.
[64]
J.-H. Han and S. Lee, https://arxiv.org/abs/2503.17121(2025), https://arxiv.org/abs/2503.17121.
[65]
R. Tazai, Y. Yamakawa, and H. Kontani, https://arxiv.org/abs/2508.04433(2025), https://arxiv.org/abs/2508.04433.
[66]
B. E. Lüscher and M. H. Fischer, https://arxiv.org/abs/2506.16508(2025), https://arxiv.org/abs/2506.16508.
[67]
P. Das, P. Bahuguna, T. Maitra, and N. Mohanta, https://arxiv.org/abs/2509.04571(2025), https://arxiv.org/abs/2509.04571.
[68]
H. Li, S. Wan, H. Li, Q. Li, Q. Gu, H. Yang, Y. Li, Z. Wang, Y. Yao, and H.-H. Wen, No observation of chiral flux current in the topological kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.105.045102.
[69]
N. Shumiya, M. S. Hossain, J.-X. Yin, Y.-X. Jiang, B. R. Ortiz, H. Liu, Y. Shi, Q. Yin, H. Lei, S. S. Zhang, G. Chang, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Guguchia, S. D. Wilson, and M. Z. Hasan, Intrinsic nature of chiral charge order in the kagome superconductor \(\mathrm{Rb}{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.104.035131.
[70]
Q. Chen, D. Chen, W. Schnelle, C. Felser, and B. D. Gaulin, Charge density wave order and fluctuations above \({T}_{\mathrm{cdw}}\) and below superconducting \({T}_{c}\) in the kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevLett.129.056401.
[71]
H. Li, T. T. Zhang, T. Yilmaz, Y. Y. Pai, C. E. Marvinney, A. Said, Q. W. Yin, C. S. Gong, Z. J. Tu, E. Vescovo, C. S. Nelson, R. G. Moore, S. Murakami, H. C. Lei, H. N. Lee, B. J. Lawrie, and H. Miao, Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors \({A\mathrm{V}}_{3}{\mathrm{sb}}_{5}\) (\(a=\mathrm{Rb}\), cs), https://doi.org/10.1103/PhysRevX.11.031050.
[72]
Q. Wu, Z. X. Wang, Q. M. Liu, R. S. Li, S. X. Xu, Q. W. Yin, C. S. Gong, Z. J. Tu, H. C. Lei, T. Dong, and N. L. Wang, Simultaneous formation of two-fold rotation symmetry with charge order in the kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\) by optical polarization rotation measurement, https://doi.org/10.1103/PhysRevB.106.205109.
[73]
R. Khasanov, D. Das, R. Gupta, C. Mielke, M. Elender, Q. Yin, Z. Tu, C. Gong, H. Lei, E. T. Ritz, R. M. Fernandes, T. Birol, Z. Guguchia, and H. Luetkens, Time-reversal symmetry broken by charge order in \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevResearch.4.023244.
[74]
J. N. Graham, C. Mielke III, D. Das, T. Morresi, V. Sazgari, A. Suter, T. Prokscha, H. Deng, R. Khasanov, S. D. Wilson, A. C. Salinas, M. M. Martins, Y. Zhong, K. Okazaki, Z. Wang, M. Z. Hasan, M. H. Fischer, T. Neupert, J.-X. Yin, S. Sanna, H. Luetkens, Z. Salman, P. Bonfà, and Z. Guguchia, Depth-dependent study of time-reversal symmetry-breaking in the kagome superconductor av3sb5, https://doi.org/10.1038/s41467-024-52688-6.
[75]
Y. Xu, Z. Ni, Y. Liu, B. R. Ortiz, Q. Deng, S. D. Wilson, B. Yan, L. Balents, and L. Wu, Three-state nematicity and magneto-optical kerr effect in the charge density waves in kagome superconductors, https://doi.org/10.1038/s41567-022-01805-7.
[76]
E. M. Kenney, B. R. Ortiz, C. Wang, S. D. Wilson, and M. J. Graf, Absence of local moments in the kagome metal kv3sb5 as determined by muon spin spectroscopy, https://doi.org/10.1088/1361-648X/abe8f9.
[77]
C. Guo, G. Wagner, C. Putzke, D. Chen, K. Wang, L. Zhang, M. Gutierrez-Amigo, I. Errea, M. G. Vergniory, C. Felser, M. H. Fischer, T. Neupert, and P. J. W. Moll, Correlated order at the tipping point in the kagome metal csv3sb5, https://doi.org/10.1038/s41567-023-02374-z.
[78]
A. A. Tsirlin, B. R. Ortiz, M. Dressel, S. D. Wilson, S. Winnerl, and E. Uykur, Effect of nonhydrostatic pressure on the superconducting kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.107.174107.
[79]
F. Stier, A.-A. Haghighirad, G. Garbarino, S. Mishra, N. Stilkerich, D. Chen, C. Shekhar, T. Lacmann, C. Felser, T. Ritschel, J. Geck, and M. Le Tacon, Pressure-dependent electronic superlattice in the kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevLett.133.236503.
[80]
F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B. Lei, J. J. Ying, and X. H. Chen, Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal, https://doi.org/10.1038/s41467-021-23928-w.
[81]
K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu, and J.-G. Cheng, Double superconducting dome and triple enhancement of \({T}_{c}\) in the kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\) under high pressure, https://doi.org/10.1103/PhysRevLett.126.247001.
[82]
Y. M. Oey, B. R. Ortiz, F. Kaboudvand, J. Frassineti, E. Garcia, R. Cong, S. Sanna, V. F. Mitrovi ć, R. Seshadri, and S. D. Wilson, Fermi level tuning and double-dome superconductivity in the kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5\ensuremath{-}x}{\mathrm{sn}}_{x}\), https://doi.org/10.1103/PhysRevMaterials.6.L041801.
[83]
L. Kautzsch, Y. M. Oey, H. Li, Z. Ren, B. R. Ortiz, G. Pokharel, R. Seshadri, J. Ruff, T. Kongruengkit, J. W. Harter, Z. Wang, I. Zeljkovic, and S. D. Wilson, Incommensurate charge-stripe correlations in the kagome superconductor \(\mathrm{CsV_{3}Sb_{5-x}Sn_{x}}\), https://doi.org/10.1038/s41535-023-00570-x.
[84]
K. Nakayama, Y. Li, T. Kato, M. Liu, Z. Wang, T. Takahashi, Y. Yao, and T. Sato, Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.104.L161112.
[85]
H. Tan, Y. Liu, Z. Wang, and B. Yan, Charge density waves and electronic properties of superconducting kagome metals, https://doi.org/10.1103/PhysRevLett.127.046401.
[86]
H. LaBollita and A. S. Botana, Tuning the van hove singularities in \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) \((a=\mathrm{K},\mathrm{Rb},\mathrm{Cs})\) via pressure and doping, https://doi.org/10.1103/PhysRevB.104.205129.
[87]
M. Kang, S. Fang, J.-K. Kim, B. R. Ortiz, S. H. Ryu, J. Kim, J. Yoo, G. Sangiovanni, D. D. Sante, B.-G. Park, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, S. D. Wilson, J.-H. Park, and R. Comin, Twofold van hove singularity and origin of charge order in topological kagome superconductor csv\(_3\)sb\(_5\), https://doi.org/10.1038/s41567-021-01451-5.
[88]
H. Luo, Q. Gao, H. Liu, Y. Gu, D. Wu, C. Yi, J. Jia, S. Wu, X. Luo, Y. Xu, L. Zhao, Q. Wang, H. Mao, G. Liu, Z. Zhu, Y. Shi, K. Jiang, J. Hu, Z. Xu, and X. J. Zhou, Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor kv3sb5, https://doi.org/10.1038/s41467-021-27946-6.
[89]
Y. Hu, X. Wu, B. R. Ortiz, S. Ju, X. Han, J. Ma, N. C. Plumb, M. Radovic, R. Thomale, S. D. Wilson, A. P. Schnyder, and M. Shi, Rich nature of van hove singularities in kagome superconductor csv3sb5, https://doi.org/10.1038/s41467-022-29828-x.
[90]
M. Y. Jeong, H.-J. Yang, H. S. Kim, Y. B. Kim, S. Lee, and M. J. Han, Crucial role of out-of-plane sb \(p\) orbitals in van hove singularity formation and electronic correlations in the superconducting kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.105.235145.
[91]
K. Zeng, Z. Wang, K. Jiang, and Z. Wang, Electronic structure of \(a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\) kagome metals, https://doi.org/10.1103/PhysRevB.111.235114.
[92]
A. A. Tsirlin, P. Fertey, B. R. Ortiz, B. Klis, V. Merkl, M. Dressel, S. D. Wilson, and E. Uykur, Role of Sb in the superconducting kagome metal CsV\(_3\)Sb\(_5\) revealed by its anisotropic compression, https://doi.org/10.21468/SciPostPhys.12.2.049.
[93]
E. T. Ritz, R. M. Fernandes, and T. Birol, Impact of sb degrees of freedom on the charge density wave phase diagram of the kagome metal \({\mathrm{csv}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.107.205131.
[94]
A. A. Tsirlin and E. Uykur, https://arxiv.org/abs/2505.00796(2025), https://arxiv.org/abs/2505.00796.
[95]
M. L. Kiesel, C. Platt, and R. Thomale, Unconventional fermi surface instabilities in the kagome hubbard model, https://doi.org/10.1103/PhysRevLett.110.126405.
[96]
W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, Competing electronic orders on kagome lattices at van hove filling, https://doi.org/10.1103/PhysRevB.87.115135.
[97]
URL to be added.
[98]
X. Chen, X. Zhan, X. Wang, J. Deng, X.-B. Liu, X. Chen, J.-G. Guo, and X. Chen, Highly robust reentrant superconductivity in csv3sb5 under pressure, https://doi.org/10.1088/0256-307X/38/5/057402.
[99]
Z. Zhang, Z. Chen, Y. Zhou, Y. Yuan, S. Wang, J. Wang, H. Yang, C. An, L. Zhang, X. Zhu, Y. Zhou, X. Chen, J. Zhou, and Z. Yang, Pressure-induced reemergence of superconductivity in the topological kagome metal \(\mathrm{Cs}{\mathrm{v}}_{3}{\mathrm{sb}}_{5}\), https://doi.org/10.1103/PhysRevB.103.224513.
[100]
M. L. Kiesel and R. Thomale, Sublattice interference in the kagome hubbard model, https://doi.org/10.1103/PhysRevB.86.121105.
[101]
X. Wu, D. Chakraborty, A. P. Schnyder, and A. Greco, Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice, https://doi.org/10.1103/PhysRevB.109.014517.
[102]
J.-Y. You, C.-E. Hsu, M. Del Ben, and Z. Li, Diverse manifestations of electron-phonon coupling in a kagome superconductor, https://doi.org/10.1103/PhysRevLett.134.106401.
[103]
Y. Zhong, S. Li, H. Liu, Y. Dong, K. Aido, Y. Arai, H. Li, W. Zhang, Y. Shi, Z. Wang, S. Shin, H. N. Lee, H. Miao, T. Kondo, and K. Okazaki, Testing electron–phonon coupling for the superconductivity in kagome metal csv3sb5, https://doi.org/10.1038/s41467-023-37605-7.
[104]
Q.-G. Yang, M. Yao, D. Wang, and Q.-H. Wang, Charge bond order and \(s\)-wave superconductivity in the kagome lattice with electron-phonon coupling and electron-electron interaction, https://doi.org/10.1103/PhysRevB.109.075130.
[105]
J. B. Profe, L. Klebl, F. Grandi, H. Hohmann, M. Dürrnagel, T. Schwemmer, R. Thomale, and D. M. Kennes, Kagome hubbard model from a functional renormalization group perspective, https://doi.org/10.1103/PhysRevResearch.6.043078.
[106]
G. Palle, R. Ojajärvi, R. M. Fernandes, and J. Schmalian, Superconductivity due to fluctuating loop currents, https://doi.org/10.1126/sciadv.adn3662.
[107]
G. Palle, https://doi.org/10.5445/IR/1000177228(2024).
[108]
C. Mu, Q. Yin, Z. Tu, C. Gong, H. Lei, Z. Li, and J. Luo, S-wave superconductivity in kagome metal csv3sb5 revealed by 121/123sb nqr and 51v nmr measurements, https://doi.org/10.1088/0256-307X/38/7/077402.
[109]
M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, https://doi.org/10.1103/RevModPhys.63.239.
[110]
M. S. Scheurer, Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems, https://doi.org/10.1103/PhysRevB.93.174509.
[111]
M. J. Grant, Y. Liu, G.-H. Cao, J. A. Wilcox, Y. Guo, X. Xu, and A. Carrington, Superconducting energy gap structure of csv3sb5 from magnetic penetration depth measurements, https://doi.org/10.1088/1361-648X/ad8d2b.
[112]
M. Roppongi, K. Ishihara, Y. Tanaka, K. Ogawa, K. Okada, S. Liu, K. Mukasa, Y. Mizukami, Y. Uwatoko, R. Grasset, M. Konczykowski, B. R. Ortiz, S. D. Wilson, K. Hashimoto, and T. Shibauchi, Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor csv3sb5, https://doi.org/10.1038/s41467-023-36273-x.
[113]
Y.-Q. Zhao, Z.-F. Wu, H.-Y. Zuo, W. Lao, W. Yang, Q. Chen, Y. He, H. Wang, Q. Yin, Q. Wang, Y. peng Qi, G. Mu, H. chang Lei, and C. Ren, https://arxiv.org/abs/2509.06066(2025), https://arxiv.org/abs/2509.06066.
[114]
A. Mine, Y. Zhong, J. Liu, T. Suzuki, S. Najafzadeh, T. Uchiyama, J.-X. Yin, X. Wu, X. Shi, Z. Wang, Y. Yao, and K. Okazaki, https://arxiv.org/abs/2404.18472(2024), https://arxiv.org/abs/2404.18472.