Influence of supermassive primordial black holes on ultraviolet luminosity of high-redshift galaxies


Abstract

Recently James Webb Space Telescope (JWST) have observed an excess of luminous galaxies at high redshifts (\(z \gtrsim 10\)). In this work, we investigate whether supermassive primordial black holes (SMPBHs) can explain it by their influence on the ultraviolet luminosity function (UV LF) of high-redshift galaxies. Through Markov Chain Monte Carlo analysis, we constrain the parameters relevant with SMPBHs against current JWST observational data. The results reveal that SMPBHs with masses \(M_{\rm PBH} \sim 10^{6.3\text{-}8.3} M_\odot\), abundances \(f_{\rm PBH} \sim 10^{-7}\text{-}10^{-5}\), and sub-Eddington ratios \(\lambda_E \ll 1\) can effectively enhance the bright end of the UV LF, consistent with JWST observations.

1 Introduction↩︎

The James Webb Space Telescope (JWST) has opened an unprecedented observational window into the early Universe, enabling detailed investigations of the birth of the first galaxies and stars. JWST have uncovered a surprisingly abundant population of massive galaxies at high redshifts (\(z \gtrsim 10\)), significantly exceeding the predictions of standard galaxy formation model [1][5]. In particular, the observed excess at the bright end of the ultraviolet luminosity function (UV LF) presents a notable challenge. [6][14] Reconciling these observations with standard models would require an unrealistically high star formation efficiency (SFE) [15], [16], or alternatively, explaining the data within the \(\Lambda\)CDM framework by allowing the SFE to evolve with redshift [17].

It is intriguing to consider the potential role of primordial black holes (PBHs) [18][36], which have been extensively studied as viable candidates for dark matter, especially supermassive PBHs (SMPBHs) with \(M_{\rm PBH}\gtrsim 10^6M_\odot\). PBHs, especially SMPBHs, might be explanations for the supermassive galaxies[37][39] and "Little Red Dots" (LRDs)[40] recently discovered by the JWST. It has been showed that accreting PBHs can contribute additional ultraviolet luminosity, boosting the number density of bright galaxies [41], [42], while the Poisson fluctuations in spatial distribution of PBHs can modulate the halo mass function (HMF), enhancing the abundance of collapsed structures at high redshift [43], see also the impact of initial clustering of SMPBHs [39].

These SMPBHs could help to bridge the gap between the standard \(\Lambda\)CDM model and JWST observations. The mass range of PBHs can extend from \(10^{-18}\rm~M_\odot\) to \(10^{16}\rm~M_\odot\) 4, although current observations indicate that SMBHs in galactic nuclei typically have masses extending up to only nearly \(10^{11}\rm~M_\odot\) [47]. In the standard scenario that PBHs were sourced by the collapse of large density fluctuations [48][56], massive PBHs with \(M\gtrsim 10^5M_\odot\) is strictly constrained by CMB \(\mu\)-distortion observations [57][60]. However, it can be expected that significant non-Gaussianity of primordial perturbations [61][69] might be helpful for overcoming this difficulty, or alternative mechanisms, such as PBHs that the supercritical bubbles nucleated during inflation developed into (which are not constrained by \(\mu\) distortion, e.g.[64]), must be considered. In the latter case, the resulting SMPBHs can have a (multiple) peak-like mass spectrum [70], [71]. Therefor, it is significant to further investigate the role of SMPBHs in shaping the early Universe.

This work focuses on how SMPBHs can influence the UV LF of high-redshift galaxies through both Poisson effects and accretion-induced emission, potentially offering an explanation for the recent JWST observations. The values of cosmological parameters adopted in this paper are the bestfit values of Planck based on the \(\Lambda\)CDM model [72]5.

2 Influence of SMPBHs on UV luminosity↩︎

It has been showed in Ref.[70] that in string landscape scenario with multiple metastable vacua (usually modelled as a multi-dimensional potential), when the inflaton slowly passes by a neighboring vacuum, the nucleating rate of supercritical bubbles would inevitably present a peak, so that the resulting PBHs have a non-negligible distinctive peak-like mass distribution [80]: \[\label{eq:psi95m1} \psi_{1}(m) = e^{-\sigma^2/8} \cdot \sqrt{\frac{M_{PBH}}{2\pi \sigma^2 m^3}} \cdot \exp\left[ -\frac{\ln ^2 (m / M_{PBH})}{2\sigma^2} \right],\tag{1}\] where \(M_{PBH}\) is the characteristic mass of PBHs, and \(\sigma\) is the width of mass peak. This power-law term causes the distribution to go down more rapidly at larger masses. The corresponding mean mass of the distribution is: \(\langle m \rangle = M_{PBH} e^{-\sigma^2}\)

Here, a conversion relation is required to connect Eq. (1 ) with the number-density-related mass function of PBHs: \[\label{eq:psi95m3} \psi_{3}(m) = \frac{\langle m\rangle}{m} \psi_{1} = e^{-9\sigma^{2}/8} \sqrt{\frac{M_{PBH}^{3}}{2\pi\sigma^{2}m^{5}}} \exp\left[-\frac{\ln^{2}(m/M_{PBH})}{2\sigma^{2}}\right].\tag{2}\] This distribution differs from the standard log-normal distribution by including an extra \(m^{-3/2}\) factor. The interrelations between various definitions of mass distribution and the corresponding expectation values are summarized in Table 3. Thus we have \[\label{eq:dn95dm95PBH} \frac{dn}{n_0 dm} = \psi_3,\tag{3}\] with the comoving number density of PBHs \(n_{0} = \frac{ \rho_{c}\Omega_{dm}f_{\mathrm{PBH}}}{\langle m\rangle} = \frac{\rho_{c}\Omega_{dm}f_{\mathrm{PBH}}}{M_{PBH}} e^{\sigma^{2}}\), where \(n\) is the number density of PBHs, \(\Omega_{dm}\) is the dark matter density parameter and \(\rho_{c}\) is the critical density of the Universe.

The SMPBHs sourced by such inflationary vacuum bubbles can avoid constraint from spectral distortions in the CMB, and thus can be supermassive, \(M_{PBH}\gtrsim 10^6M_\odot\). This mechanism offers a natural route to SMPBHs coming into being without requiring large curvature perturbations.

It can be expected that SMPBHs would enhance galaxy luminosity through the accretion of matter and subsequent emission of radiation. This process could potentially boost the bright end of the UV LF. Here, we quantify the contribution of SMPBHs to the luminosity using the Eddington ratio, \(\lambda_E\). Specifically, the bolometric luminosity of a PBH is6 \(L_{\mathrm{bol}}(m_{\mathrm{PBH}}) = \lambda_E L_E(m_{\mathrm{PBH}})\). Here, \(L_E\) represents the Eddington luminosity, defined as: \[L_E(m_{\mathrm{PBH}}) = \frac{4\pi G m_p c}{\sigma_T} m_{\mathrm{PBH}} = 3.28 \times 10^4 \frac{m_{\mathrm{PBH}}}{M_{\odot}} L_{\odot},\] where \(m_p\) denotes the proton mass, \(c\) is the speed of light, \(\sigma_T\) signifies the Thomson scattering cross-section, \(m_{\mathrm{PBH}}\) is the mass of PBHs, and solar Luminosity is \(L_{\odot} \approx 3.828 \times 10^{33} \, \text{erg s}^{-1}\).

According to the prescription of [81], the bolometric luminosity can be converted into the UV luminosity, \[\label{eq:LUV-PBH} L_{\mathrm{UV, PBH}}(m_{\mathrm{PBH}}) = \frac{L_{\mathrm{bol}}(m_{\mathrm{PBH}})}{c_1 \left( \frac{L_{\mathrm{bol}}(m_{\mathrm{PBH}})}{10^{10} L_{\odot}} \right)^{k_1} + c_2 \left( \frac{L_{\mathrm{bol}}(m_{\mathrm{PBH}})}{10^{10} L_{\odot}} \right)^{k_2}},\tag{4}\] where \[\begin{pmatrix} c_1 \\ k_1 \\ c_2 \\ k_2 \end{pmatrix} = \begin{pmatrix} 1.862 \\ -0.361 \\ 4.870 \\ -0.0063 \end{pmatrix}.\] The UV luminosity \(L_{\mathrm{UV,\,PBH}}\) here refers to the band UV luminosity of AB magnitude system measured in a top-hat filter centered at rest-frame 1450 Åwith a bandwidth of 100 Å, or equivalently, the luminosity \(\nu L_\nu\) at 1450.

3 Confronting SMPBH model with JWST observations↩︎

3.1 Total UV luminosity with stars and PBHs↩︎

The UV LF: \[\label{eq:UV95LF} \Phi_{\rm UV} \equiv \frac{dn}{dM_{\rm UV}}(z,M_{\rm UV})\tag{5}\] quantifies the number density of galaxies per luminosity or absolute UV magnitude interval. It can be related to the dark matter HMF by using \(\Phi_{\rm UV}= {\left|\frac{dM_{\rm UV}}{dM_{\rm halo}}\right|}^{-1}\frac{dn}{dM_{\rm halo}}\), where the HMF \(\frac{dn}{dM_{\rm halo}}\) can be calculated with the Sheth-Tormen algorithm [82].

The monochromatic UV luminosity and AB magnitude are related by [83] \[\label{eq:MUV-LUV} M_{\rm UV} = -2.5\log\left(\frac{L_{UV}/ \nu}{\mathrm{erg\,s^{-1}\,Hz^{-1}}}\right) + 51.60.\tag{6}\] In this work, we consider the ultraviolet wavelength band at \(\nu = 1450\,\text{\AA}\). It is important to note whether the luminosity used is the monochromatic UV luminosity \(L_\nu\) or the band UV luminosity \(L_{\mathrm{UV}}\), both are approximately related by \(L_{\mathrm{UV}} \approx \nu L_\nu\).

Here, we adopt a purely empirical fit of the \(M_{\rm halo}\)-\(M_{\rm UV}\) relation [42]: \[\label{eq:mh95muv95fit} M_{\rm UV}= p_1 + \left[ p_2 \left(\frac{M_{\rm halo}}{10^{11} M_\odot}\right)^{p_3} + p_4\right] \log \left(\frac{M_{\rm halo}}{10^{11} M_\odot}\right) + p_5 z^{p_6}\tag{7}\] where \(p_i\) are set with a least-squares fit of Eq. (7 ) to the observed UV LF data [84] (see Figure 1), \[\label{eq:fit-results-muv-vs-mh} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{pmatrix}_{\rm fit} = \begin{pmatrix} -13.12 \\ -8.94 \\ -0.0355 \\ 5.78 \\ -3.84 \\ 0.341 \end{pmatrix}\tag{8}\]

Figure 1: The corresponding UV LF in Eq. (7 ) with best-fit parameters (8 ), in comparison with observational data at redshifts z = 4-9[84].

The total UV luminosity can be contributed by not only stars but also SMPBHs, when we consider the impact of SMPBHs, i.e., \[\label{eq:LUV-tot} L_{\mathrm{UV,\,tot}}(M_{\rm halo},z,m_{\mathrm{PBH}}) = L_{\mathrm{UV}}(M_{\rm halo}, z) + L_{\mathrm{UV,\,PBH}}(m_{\mathrm{PBH}}),\tag{9}\] where the stellar UV magnitude \(M_{\mathrm{UV}}\) (7 ) can be converted to the UV luminosity \(L_{\mathrm{UV}}(M_{\rm halo}, z)\) using Eq. (6 ).

3.2 Method for performing MCMC analysis↩︎

The number distribution of PBHs within dark matter halo follows a Poisson distribution with mean \(\lambda\), \[\label{Poisson} \lambda = \frac{n_0}{n_{\mathrm{halo}}} = \frac{f_{\mathrm{PBH}} \Omega_{dm} \rho_c}{n_{\mathrm{halo}} \langle m_{\mathrm{PBH}} \rangle} = \frac{f_{\mathrm{PBH}} \Omega_{dm} \rho_c}{n_{\mathrm{halo}} M_{\mathrm{PBH}}} e^{\sigma^2},\tag{10}\] where7 \[n_{\mathrm{halo}}=\int_{M_{min}(z)}^{\infty} \frac{dn}{dM_h}(M_h, z) dM_h \,\] is the comoving number density of halos.

In light of the mass function 3 of PBHs and the luminosity model 4 , we can have the luminosity distribution of a single PBH whose number density follows a Poisson distribution, see Eq.(10 ). The sum of luminosities of all PBHs follows a compound Poisson distribution. Therefore, the total luminosity function contributed by stars and PBHs is the convolution of the stellar luminosity distribution and the compound Poisson distribution of PBHs.

Here, we will perform the Markov Chain Monte Carlo (MCMC) analysis with observational data. The emcee package [85] was employed to sample the parameters \(\log M_{\mathrm{PBH}}\), \(\log f_{\mathrm{PBH}}\), and \(\sigma\) while fixing the Eddington ratio \(\lambda_E=0.01\), \(0.1\) and \(1\), respectively.

Table 1: The flat prior of relevant parameters \(\logf_{\mathrm{PBH}}\), \(\log M_{\mathrm{PBH}}/M_\odot\) and \(\sigma\).
Parameter Range
\(\log f_{\mathrm{PBH}}\) \([-10, -3]\)
\(\log \left( M_{\mathrm{PBH}} / M_\odot \right)\) \([1, 11]\)
\(\sigma\) \([0.1, 2.5]\)

Accounting for the range of the luminosity function, the log-likelihood function is defined as: \[\ln \mathcal{L} = -\frac{1}{2} \sum_{i} \left( \frac{\log \phi_{\mathrm{model},i} - \log \phi_{\mathrm{obs},i}}{\sigma_{\log,i}} \right)^2\] where \(\phi_{\mathrm{model},i}\) is the model prediction at magnitude \(M_{UV,i}\), \(\phi_{\mathrm{obs},i}\) is the observed value, and the logarithmic error is \(\sigma_{\log,i} = \sigma_i / (\phi_i \ln 10)\).

3.3 Results↩︎

The relevant model parameters are \(f_{\rm PBH}\), \(M_{\rm PBH}\), \(\lambda_{E}\), and \(\sigma\). In Table 2 and Figure 2, we present the posterior distributions of corresponding parameters.

The mass function 2 of PBHs has an additional mass correction factor of \(m^{-1.5}\) compared to the standard log-normal distribution. This results in a faster decay of the probability distribution at the high-mass end, necessitating relatively larger PBH mass parameters \(M_{\mathrm{PBH}}\) (with \(\lambda_E = 0.1\), \(M_{\mathrm{PBH}} = 10^{7.26} M_\odot\)).

Table 2: Posterior constraints on the model parameters for different fixed Eddington ratios \(\lambda_E\), derived from MCMC sampling. The table lists the median values and 68% credible intervals for \(\log f_{\mathrm{PBH}}\), \(\log M_{\mathrm{PBH}}/M_\odot\), and \(\sigma\).
\(\lambda_E\) \(\log f_{\mathrm{PBH}}\) \(\log M_{\mathrm{PBH}}/M_\odot\) \(\sigma\)
0.010 \(-5.60^{+0.15}_{-0.14}\) \(8.26^{+0.13}_{-0.15}\) \(1.42^{+0.17}_{-0.20}\)
0.100 \(-6.59^{+0.14}_{-0.14}\) \(7.26^{+0.13}_{-0.14}\) \(1.41^{+0.17}_{-0.20}\)
1.000 \(-7.59^{+0.14}_{-0.14}\) \(6.26^{+0.13}_{-0.14}\) \(1.42^{+0.16}_{-0.19}\)

In Figure 2, a positive correlation between peak values of \(f_{\mathrm{PBH}}\) and \(M_{\mathrm{PBH}}\) is revealed, which physically originates from the requirement that the number density of PBHs is approximately constant. This conserved number density ensures statistically significant enhancement of the UV LF. In the vicinity of peak, \(M_{\mathrm{PBH}}\) and \(f_{\mathrm{PBH}}\) exhibit a negative correlation, while a corresponding negative correlation exists between peak \(M_{\mathrm{PBH}}\) and \(\lambda_E\): \[\label{M-lambda} M_{\mathrm{PBH}} \lambda_E \approx 10^{6.26} M_\odot.\tag{11}\] This arises because, under relatively constant number density conditions, \(L_{\mathrm{PBH}}\) maintains a positive correlation with both \(M_{\mathrm{PBH}}\) and \(f_{\mathrm{PBH}}\). It can be also seen that lower PBH masses necessitate broader mass distribution widths to offer sufficient massive PBHs that impact the observational data range, notably the width parameter \(\sigma\) shows nearly no changes across different Eddington ratios.

Figure 2: The MCMC posterior distributions at redshift z=11 for fixed Eddington ratios \lambda_E = 0.100 (red) , \lambda_E = 1.000 (blue) and \lambda_E = 0.010 (gray).

Therefore our result (11 ) suggests that the PBHs must be supermassive for \(\lambda_E<1\). In Figure 3, we compare the UV LF of the \(\Lambda\)CDM+SMPBH model with the standard \(\Lambda\)CDM scenario at \(z=11\). The results show that the inclusion of SMPBHs, especially with accretion emission, leads to a significantly improved fit to the observed data at the bright end [6], [14]. This demonstrates that our SMPBHs model can account for the excess of luminous galaxies detected by JWST.

Figure 3: Influence of SMPBHs with the mass spectrum (2 ) on the UV LF at z=11, where \lambda_E =
0.1. The model parameters are labelled in the Table 2. Data points from [6] and [14] are also shown for comparison. Compared to the standard \LambdaCDM result (black dashed line), the UV LF from the \LambdaCDM+SMPBH model is notably boosted by both the Poisson effect and the intrinsic UV emission of SMPBHs (blue solid line).

4 DISCUSSION↩︎

In this work, we explore how SMPBHs in different mass ranges, sourced by inflationary vacuum bubbles, can influence the UV LF of high-redshift galaxies. It is found that the high-redshift galaxy UV LF can be notably boosted by the intrinsic UV emission of SMPBHs (\(M\gtrsim 10^6M_\odot\)), with the bright-end excess primarily driven by sub-Edington accreting SMPBHs, see (11 ). The bright-end enhancement observed in Figure 3 can originate from the high-mass tail of the contribution (2 ) of SMPBHs, which requires the distribution to have a relatively large width parameter \(\sigma\).

However, our discussion has not yet considered the possible mass growth of PBHs with redshift. It seems that if this effect is taken into account, the corresponding initial mass for PBHs would be relatively smaller, however, for SMPBHs the case might be different, the SMPBHs \((\gtrsim 10^6M_\odot)\) can follow the self-similar accretion, so that their mass growth during pregalactic era might be negligible, e.g.[38]. According to our results, SMPBHs sourced by the inflationary vacuum bubbles are very likely to be regarded as SMBHs when the redshift \(z\lesssim 20\), which can accelerate seeding high-redshift galaxies and their baryonic content. It will be interesting to further explore precise constraints on the mass distribution parameters (such as the characteristic mass \(M_{PBH}\) and width \(\sigma\)) of SMPBHs with more upcoming observations from JWST.

This work is supported by National Key Research and Development Program of China, No.2021YFC2203004, and NSFC, No.12475064, and the Fundamental Research Funds for the Central Universities.

5 Definitions of normalized PBH mass distributions in different references↩︎

Table 3: Definitions of normalized PBH mass distributions proposedin different literatures, along with their interconversionrelations, normalization rules, and corresponding expectationvalues \(\langle m \rangle\) and \(\langle m^2 \rangle\). The table is adapted from [86], presented in[87].
[86] [88]
[89] [90] [91] [92]
[93] [94]
\(f\equiv \dfrac{1}{\rho_{\rm PBH}} \dfrac{{\rm d} \rho_{\rm PBH} }{{\rm d}\ln m}\) \(\psi_{1} \equiv \dfrac{1}{\rho_{\rm PBH}} \dfrac{{\rm d} \rho_{\rm PBH} }{{\rm d} m}\) \(\psi_{2} \equiv \dfrac{1}{n_{\rm PBH}} \dfrac{{\rm d} n_{\rm PBH} }{{\rm d} \ln m}\) \(\psi_{3}\equiv \dfrac{1}{n_{\rm PBH}} \dfrac{{\rm d} n_{\rm PBH} }{{\rm d} m}\)
\(f = m \psi_1\) \(\psi_1 = f/m\) \(\psi_2 = f \langle m \rangle /m\) \(\psi_3= \langle m \rangle f / m^2\)
\(= m \psi_2 / \langle m \rangle\) \(= \psi_2 / \langle m \rangle\) \(= \langle m \rangle \psi_1\) \(= \langle m \rangle \psi_1 /m\)
\(= m^2 \psi_3 / \langle m \rangle\) \(= m \psi_3 / \langle m \rangle\) \(= m \psi_3\) \(= \psi_2/m\)
\(\int f {\rm d} \ln m = 1\) \(\int \psi_1 {\rm d} m = 1\) \(\int \psi_2 {\rm d} \ln m = 1\) \(\int \psi_3 {\rm d} m = 1\)
\(\langle m \rangle = \left( \int \dfrac{f}{m}{\rm d} \ln m \right)^{-1}\) \(\left( \int \dfrac{\psi_1}{m}{\rm d} m \right)^{-1}\) \(\int m \psi_2 {\rm d} \ln m\) \(\int m \psi_3 {\rm d} m\)
\(\langle m^2 \rangle = \langle m \rangle \int m f {\rm d} \ln m\) \(\langle m \rangle \int m \psi_1 {\rm d } m\) \(\int m^2 \psi_2 {\rm d} \ln m\) \(\int m^2 \psi_3 {\rm d}{m }\)

6 Influence of the PBH mass distribution on the power spectrum↩︎

The influence of the Poisson effect [95] induced by PBHs with a monochromatic mass distribution on the matter power spectrum is [96]: \[\label{eq:P95tot} P_{\mathrm{tot}} = P_{\Lambda \mathrm{CDM}} + P_{\mathrm{PBH}},\tag{12}\] with \[\label{eq:P95PBH} P_{\mathrm{PBH}} = \frac{f_{\mathrm{PBH}}^2}{n_{\mathrm{PBH}}} D_0^2 \, \Theta(k_{\mathrm{cut}} - k) \qquad for \quad k>k_{eq}\tag{13}\] The PBH contribution depends on the PBH dark matter fraction \(f_{\mathrm{PBH}}\) and the comoving number density \[n_{\mathrm{PBH}} = \frac{f_{\mathrm{PBH}}}{M_{\mathrm{PBH}}} \left( \Omega_{\mathrm{m}} - \Omega_{\mathrm{b}} \right) \frac{3 H_0^2}{8 \pi G}\] where \(M_{\mathrm{PBH}}\) is the mass of PBHs, \(\Omega_{\mathrm{m}}\) represents the total matter density parameter (including both dark and baryonic matter), \(\Omega_{\mathrm{b}}\) denotes the baryonic matter density parameter, \(H_0\) is the Hubble constant.

The linear growth function \(D_0=D(a=1)\) is approximated using the analytic form provided by [96]. \[D_{\mathrm{PBH}}(a) \approx \left(1 + \frac{3 \gamma a}{2 a_{-} a_{\mathrm{eq}}} \right)^{a_{-}}, \quad \gamma = \frac{\Omega_{\mathrm{m}} - \Omega_{\mathrm{b}}}{\Omega_{\mathrm{m}}}\]

\[a_{-} = \frac{1}{4} \left( \sqrt{1 + 24 \gamma} - 1 \right),\] where \(a_{\mathrm{eq}} \approx \frac{1}{3400}\) denotes the scale factor at the epoch of matter-radiation equality. At the epoch of matter-radiation equality, Poisson fluctuations become significant on scales \(k > k_{\rm eq} \approx 0.01\;\mathrm{Mpc}^{-1}\,.\)[72], And a small-scale cutoff is applied with a step function \(\Theta(k_{\mathrm{cut}} - k)\) for \(k > k_{cut} = \left( 2 \pi^2 n_{\text{PBH}}/{f_{\text{PBH}}} \right)^{1/3}\), following [43]. The power spectrum in Eq. (12 ) is normalized by matching to \(\sigma(R = 8\, h^{-1}\mathrm{Mpc}) = \sigma_8\)[72].

In the case with extended mass spectrum, the mass fraction function is correspondingly expressed as: \[f(m) = \frac{m}{ \Omega_{dm} \rho_{c}} \frac{dn}{dm}\] The relation between the mass of PBHs and the wavenumber of the power spectrum can be naturally written as: \[m(k) \equiv 2\pi^{2} \Omega_{dm} \frac{\rho_{c}}{k^{3}}\] The influence of the mass function (3 ) of SMPBHs originating from inflationary vacuum bubbles on the matter power spectrum can be derived from Eq.@eq:eq:P95PBH as follows: \[\label{eq:P95PBH95mf} \begin{align} P_{\mathrm{PBH}}(k) &= \int_{0}^{m(k)} \frac{f(m) m}{\Omega_{dm} \rho_{c}} D^{2} dm \\ &= \frac{D^{2}}{\Omega_{dm}^{2} \rho_{c}^{2}} n_{0} \int_{0}^{m(k)} m^{2} \psi_{3}(m) dm \\ &= \frac{D^{2}}{\Omega_{dm} \rho_{c}} \frac{f_{\mathrm{PBH}}}{M_{c}} e^{\sigma^{2}} \cdot \frac{M_{c}^{2} e^{-\sigma^{2}}}{2}\left[1+\operatorname{erf}\left(\frac{\ln \left(m / M_{c}\right)-\frac{\sigma^{2}}{2}}{\sqrt{2} \sigma}\right)\right] \\ &= \frac{D^{2} f_{\mathrm{PBH}}}{2 \Omega_{dm} \rho_{c}} M_{c}\left[1+\operatorname{erf}\left(\frac{\ln \left(m / M_{c}\right)-\frac{\sigma^{2}}{2}}{\sqrt{2} \sigma}\right)\right]. \end{align}\tag{14}\] Mathematically, it can be rigorously verified that (14 ) reduces to the monochromatic mass spectrum in the limit \(\sigma \to 0\).

Figure 4: Left panel: Matter power spectra at z = 0 computedfor the standard \LambdaCDM model and for variantsincorporating SMPBHs with distinct mass distribution functions corresponding to different values of the parameter \sigma shown here for a specific PBH mass parameter M_{\mathrm{PBH}} = 10^{10} \mathrm{M_{\odot}} and fractional abundance f_{\mathrm{PBH}} = 10^{-5}. Right panel: corresponding HMF at z=11. The black dashed line shows the \LambdaCDM result. The blue line corresponds to the inclusion of SMPBHs with a monochromatic mass function, while the orange and green lines represent those with our extended mass functions (3 ) with width parameters \sigma=2.0 and \sigma=1.0, respectively.

References↩︎

[1]
I. Labbé, P. van Dokkum, E. Nelson, R. Bezanson, K. A. Suess, J. Leja, G. Brammer, K. Whitaker, E. Mathews, M. Stefanon, and B. Wang, A population of red candidate massive galaxies 600 Myr after the Big Bang, https://doi.org/10.1038/s41586-023-05786-2, https://arxiv.org/abs/2207.12446.
[2]
B. E. Robertson, S. Tacchella, B. D. Johnson, K. Hainline, L. Whitler, D. J. Eisenstein, R. Endsley, M. Rieke, D. P. Stark, S. Alberts, A. Dressler, E. Egami, R. Hausen, G. Rieke, I. Shivaei, C. C. Williams, C. N. A. Willmer, S. Arribas, N. Bonaventura, A. Bunker, A. J. Cameron, S. Carniani, S. Charlot, J. Chevallard, M. Curti, E. Curtis-Lake, F. D’Eugenio, P. Jakobsen, T. J. Looser, N. Lützgendorf, R. Maiolino, M. V. Maseda, T. Rawle, H. W. Rix, R. Smit, H. Übler, C. Willott, J. Witstok, S. Baum, R. Bhatawdekar, K. Boyett, Z. Chen, A. de Graaff, M. Florian, J. M. Helton, R. E. Hviding, Z. Ji, N. Kumari, J. Lyu, E. Nelson, L. Sandles, A. Saxena, K. A. Suess, F. Sun, M. Topping, and I. E. B. Wallace, Identification and properties of intense star-forming galaxies at redshifts z\(>\)10, https://doi.org/10.1038/s41550-023-01921-1, https://arxiv.org/abs/2212.04480.
[3]
B. Robertson, B. D. Johnson, S. Tacchella, D. J. Eisenstein, K. Hainline, S. Arribas, W. M. Baker, A. J. Bunker, S. Carniani, P. A. Cargile, C. Carreira, S. Charlot, J. Chevallard, M. Curti, E. Curtis-Lake, F. D’Eugenio, E. Egami, R. Hausen, J. M. Helton, P. Jakobsen, Z. Ji, G. C. Jones, R. Maiolino, M. V. Maseda, E. Nelson, P. G. Pérez-González, D. Puskás, M. Rieke, R. Smit, F. Sun, H. Übler, L. Whitler, C. C. Williams, C. N. A. Willmer, C. Willott, and J. Witstok, Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic Star Formation Rate Density 300 Myr after the Big Bang, https://doi.org/10.3847/1538-4357/ad463d, https://arxiv.org/abs/2312.10033.
[4]
C. M. Casey, H. B. Akins, M. Shuntov, O. Ilbert, L. Paquereau, M. Franco, C. C. Hayward, S. L. Finkelstein, M. Boylan-Kolchin, B. E. Robertson, N. Allen, M. Brinch, O. R. Cooper, X. Ding, N. E. Drakos, A. L. Faisst, S. Fujimoto, S. Gillman, S. Harish, M. Hirschmann, S. Jin, J. S. Kartaltepe, A. M. Koekemoer, V. Kokorev, D. Liu, A. S. Long, G. Magdis, C. Maraston, C. L. Martin, H. J. McCracken, J. McKinney, B. Mobasher, J. Rhodes, R. M. Rich, D. B. Sanders, J. D. Silverman, S. Toft, A. P. Vijayan, J. R. Weaver, S. M. Wilkins, L. Yang, and J. A. Zavala, COSMOS-Web: Intrinsically Luminous z \(\gtrsim\) 10 Galaxy Candidates Test Early Stellar Mass Assembly, https://doi.org/10.3847/1538-4357/ad2075, https://arxiv.org/abs/2308.10932.
[5]
P. G. Pérez-González, L. Costantin, D. Langeroodi, P. Rinaldi, M. Annunziatella, O. Ilbert, L. Colina, H. U. Nørgaard-Nielsen, T. R. Greve, G. Östlin, G. Wright, A. Alonso-Herrero, J. Álvarez-Márquez, K. I. Caputi, A. Eckart, O. Le Fèvre, ÁLabiano, M. Garcı́a-Marı́n, J. Hjorth, S. Kendrew, J. P. Pye, T. Tikkanen, P. van der Werf, F. Walter, M. Ward, A. Bik, L. Boogaard, S. E. I. Bosman, A. C. Gómez, S. Gillman, E. Iani, I. Jermann, J. Melinder, R. A. Meyer, T. Moutard, E. van Dishoek, T. Henning, P.-O. Lagage, M. Guedel, F. Peissker, T. Ray, B. Vandenbussche, ÁGarcı́a-Argumánez, and R. Marı́a Mérida, Life beyond 30: Probing the -20 < M \(_{UV}\) < -17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey, https://doi.org/10.3847/2041-8213/acd9d0, https://arxiv.org/abs/2302.02429.
[6]
D. J. McLeod, C. T. Donnan, R. J. McLure, J. S. Dunlop, D. Magee, R. Begley, A. C. Carnall, F. Cullen, R. S. Ellis, M. L. Hamadouche, and T. M. Stanton, The galaxy UV luminosity function at \(\mathbf{z \simeq 11}\) from a suite of public JWST ERS, ERO, and Cycle-1 programs, https://doi.org/10.1093/mnras/stad3471, https://arxiv.org/abs/2304.14469.
[7]
R. Bouwens, G. Illingworth, P. Oesch, M. Stefanon, R. Naidu, I. van Leeuwen, and D. Magee, UV luminosity density results at \(z > 8\) from the first JWST/NIRCam fields: limitations of early data sets and the need for spectroscopy, https://doi.org/10.1093/mnras/stad1014, https://arxiv.org/abs/2212.06683.
[8]
N. J. Adams, C. J. Conselice, D. Austin, T. Harvey, L. Ferreira, J. Trussler, I. Juodžbalis, Q. Li, R. Windhorst, S. H. Cohen, R. A. Jansen, J. Summers, S. Tompkins, S. P. Driver, A. Robotham, J. C. J. D’Silva, H. Yan, D. Coe, B. Frye, N. A. Grogin, A. M. Koekemoer, M. A. Marshall, N. Pirzkal, R. E. Ryan, W. P. Maksym, M. J. Rutkowski, C. N. A. Willmer, H. B. Hammel, M. Nonino, R. Bhatawdekar, S. M. Wilkins, L. D. Bradley, T. Broadhurst, C. Cheng, H. Dole, N. P. Hathi, and A. Zitrin, EPOCHS. II. The Ultraviolet Luminosity Function from \(7.5 < z < 13.5\) Using 180 arcmin\(^{2}\) of Deep, Blank Fields from the PEARLS Survey and Public JWST Data, https://doi.org/10.3847/1538-4357/ad2a7b, https://arxiv.org/abs/2304.13721.
[9]
Y. Harikane, M. Ouchi, M. Oguri, Y. Ono, K. Nakajima, Y. Isobe, H. Umeda, K. Mawatari, and Y. Zhang, A Comprehensive Study of Galaxies at \(z \sim 9\)\(16\) Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch, https://doi.org/10.3847/1538-4365/acaaa9, https://arxiv.org/abs/2208.01612.
[10]
Y. Harikane, A. K. Inoue, R. S. Ellis, M. Ouchi, Y. Nakazato, N. Yoshida, Y. Ono, F. Sun, R. A. Sato, G. Ferrami, S. Fujimoto, N. Kashikawa, D. J. McLeod, P. G. Pérez-González, M. Sawicki, Y. Sugahara, Y. Xu, S. Yamanaka, A. C. Carnall, F. Cullen, J. S. Dunlop, E. Egami, N. Grogin, Y. Isobe, A. M. Koekemoer, N. Laporte, C.-H. Lee, D. Magee, H. Matsuo, Y. Matsuoka, K. Mawatari, K. Nakajima, M. Nakane, Y. Tamura, H. Umeda, and H. Yanagisawa, JWST, ALMA, and Keck Spectroscopic Constraints on the UV Luminosity Functions at z \(\sim\) 714: Clumpiness and Compactness of the Brightest Galaxies in the Early Universe, https://doi.org/10.3847/1538-4357/ad9b2c, https://arxiv.org/abs/2406.18352.
[11]
S. L. Finkelstein, M. B. Bagley, H. C. Ferguson, S. M. Wilkins, J. S. Kartaltepe, C. Papovich, L. Y. A. Yung, P. Arrabal Haro, P. Behroozi, M. Dickinson, D. D. Kocevski, A. M. Koekemoer, R. L. Larson, A. Le Bail, A. M. Morales, P. G. Pérez-González, D. Burgarella, R. Davé, M. Hirschmann, R. S. Somerville, S. Wuyts, V. Bromm, C. M. Casey, A. Fontana, S. Fujimoto, J. P. Gardner, M. Giavalisco, A. Grazian, N. A. Grogin, N. P. Hathi, T. A. Hutchison, S. W. Jha, S. Jogee, L. J. Kewley, A. Kirkpatrick, A. S. Long, J. M. Lotz, L. Pentericci, J. D. R. Pierel, N. Pirzkal, S. Ravindranath, R. E. Ryan, J. R. Trump, G. Yang, R. Bhatawdekar, L. Bisigello, V. Buat, A. Calabrò, M. Castellano, N. J. Cleri, M. C. Cooper, D. Croton, E. Daddi, A. Dekel, D. Elbaz, M. Franco, E. Gawiser, B. W. Holwerda, M. Huertas-Company, A. E. Jaskot, G. C. K. Leung, R. A. Lucas, B. Mobasher, V. Pandya, S. Tacchella, B. J. Weiner, and J. A. Zavala, CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST, https://doi.org/10.3847/2041-8213/acade4, https://arxiv.org/abs/2211.05792.
[12]
S. L. Finkelstein, G. C. K. Leung, M. B. Bagley, M. Dickinson, H. C. Ferguson, C. Papovich, H. B. Akins, P. Arrabal Haro, R. Davé, A. Dekel, J. S. Kartaltepe, D. D. Kocevski, A. M. Koekemoer, N. Pirzkal, R. S. Somerville, L. Y. A. Yung, R. O. Amorı́n, B. E. Backhaus, P. Behroozi, L. Bisigello, V. Bromm, C. M. Casey, Ó. A. Chávez Ortiz, Y. Cheng, K. Chworowsky, N. J. Cleri, M. C. Cooper, K. Davis, A. de la Vega, D. Elbaz, M. Franco, A. Fontana, S. Fujimoto, M. Giavalisco, N. A. Grogin, B. W. Holwerda, M. Huertas-Company, M. Hirschmann, K. G. Iyer, S. Jogee, I. Jung, R. L. Larson, R. A. Lucas, B. Mobasher, A. M. Morales, C. V. Morley, S. Mukherjee, P. G. Pérez-González, S. Ravindranath, G. Rodighiero, M. J. Rowland, S. Tacchella, A. J. Taylor, J. R. Trump, and S. M. Wilkins, The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at z \(\sim\) 8.514.5, https://doi.org/10.3847/2041-8213/ad4495, https://arxiv.org/abs/2311.04279.
[13]
C. T. Donnan, D. J. McLeod, R. J. McLure, J. S. Dunlop, A. C. Carnall, F. Cullen, and D. Magee, The abundance of z \(\gtrsim\) 10 galaxy candidates in the HUDF using deep JWST NIRCam medium-band imaging, https://doi.org/10.1093/mnras/stad471, https://arxiv.org/abs/2212.10126.
[14]
C. T. Donnan, R. J. McLure, J. S. Dunlop, D. J. McLeod, D. Magee, K. Z. Arellano-Córdova, L. Barrufet, R. Begley, R. A. A. Bowler, A. C. Carnall, F. Cullen, R. S. Ellis, A. Fontana, G. D. Illingworth, N. A. Grogin, M. L. Hamadouche, A. M. Koekemoer, F. Y. Liu, C. Mason, P. Santini, and T. M. Stanton, JWST PRIMER: a new multifield determination of the evolving galaxy UV luminosity function at redshifts \(\mathbf{z \simeq 9-15}\), https://doi.org/10.1093/mnras/stae2037, https://arxiv.org/abs/2403.03171.
[15]
R. J. Bouwens, M. Stefanon, G. Brammer, P. A. Oesch, T. Herard-Demanche, G. D. Illingworth, J. Matthee, R. P. Naidu, P. G. van Dokkum, and I. F. van Leeuwen, Evolution of the UV LF from z \(\sim\) 15 to z \(\sim\) 8 using new JWST NIRCam medium-band observations over the HUDF/XDF, https://doi.org/10.1093/mnras/stad1145, https://arxiv.org/abs/2211.02607.
[16]
P. A. Oesch, R. J. Bouwens, G. D. Illingworth, I. Labbé, and M. Stefanon, The Dearth of z \(\sim\) 10 Galaxies in All HST Legacy FieldsThe Rapid Evolution of the Galaxy Population in the First 500 Myr, https://doi.org/10.3847/1538-4357/aab03f, https://arxiv.org/abs/1710.11131.
[17]
Y.-Y. Wang, L. Lei, G.-W. Yuan, and Y.-Z. Fan, Modeling the JWST High-redshift Galaxies with a General Formation Scenario and the Consistency with the \(\Lambda\)CDM Model, https://doi.org/10.3847/2041-8213/acf46c, https://arxiv.org/abs/2307.12487.
[18]
B. J. Carr and S. W. Hawking, Black holes in the early Universe, https://doi.org/10.1093/mnras/168.2.399.
[19]
Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, 10, 602 (1967).
[20]
S. Hawking, Gravitationally collapsed objects of very low mass, https://doi.org/10.1093/mnras/152.1.75.
[21]
B. J. Carr, The primordial black hole mass spectrum., https://doi.org/10.1086/153853.
[22]
G. F. Chapline, Cosmological effects of primordial black holes, https://doi.org/10.1038/253251a0.
[23]
B. J. Carr and J. E. Lidsey, Primordial black holes and generalized constraints on chaotic inflation, https://doi.org/10.1103/PhysRevD.48.543.
[24]
P. Ivanov, P. Naselsky, and I. Novikov, Inflation and primordial black holes as dark matter, https://doi.org/10.1103/PhysRevD.50.7173.
[25]
J. Garcı́a-Bellido, A. Linde, and D. Wands, Density perturbations and black hole formation in hybrid inflation, https://doi.org/10.1103/PhysRevD.54.6040, https://arxiv.org/abs/astro-ph/9605094.
[26]
L. Randall, M. SoljačiĆ, and A. H. Guth, Supernatural inflation: inflation from supersymmetry with no (very) small parameters, https://doi.org/10.1016/0550-3213(96)00174-5, https://arxiv.org/abs/hep-ph/9512439.
[27]
R. Murgia, G. Scelfo, M. Viel, and A. Raccanelli, Lyman-\(\alpha\) Forest Constraints on Primordial Black Holes as Dark Matter, https://doi.org/10.1103/PhysRevLett.123.071102, https://arxiv.org/abs/1903.10509.
[28]
S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haı̈moud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G. Riess, Did LIGO Detect Dark Matter?, https://doi.org/10.1103/PhysRevLett.116.201301, https://arxiv.org/abs/1603.00464.
[29]
M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914, https://doi.org/10.1103/PhysRevLett.117.061101, https://arxiv.org/abs/1603.08338.
[30]
S. G. Rubin, A. S. Sakharov, and M. Y. Khlopov, The Formation of Primary Galactic Nuclei during Phase Transitions in the Early Universe, https://doi.org/10.1134/1.1385631, https://arxiv.org/abs/hep-ph/0106187.
[31]
M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, Strong Primordial Inhomogeneities and Galaxy Formation, https://doi.org/10.48550/arXiv.astro-ph/0202505, https://arxiv.org/abs/astro-ph/0202505.
[32]
M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, Primordial structure of massive black hole clusters, https://doi.org/10.1016/j.astropartphys.2004.12.002, https://arxiv.org/abs/astro-ph/0401532.
[33]
M. Khlopov, Primordial nonlinear structures and massive black holes from early universe, https://doi.org/10.1088/1742-6596/66/1/012032.
[34]
M. Y. Khlopov, Primordial black holes, https://doi.org/10.1088/1674-4527/10/6/001, https://arxiv.org/abs/0801.0116.
[35]
K. M. Belotsky, V. I. Dokuchaev, Y. N. Eroshenko, E. A. Esipova, M. Y. Khlopov, L. A. Khromykh, A. A. Kirillov, V. V. Nikulin, S. G. Rubin, and I. V. Svadkovsky, Clusters of Primordial Black Holes, https://doi.org/10.1140/epjc/s10052-019-6741-4, https://arxiv.org/abs/1807.06590.
[36]
S.-Y. Guo, M. Khlopov, X. Liu, L. Wu, Y. Wu, and B. Zhu, Footprints of axion-like particle in pulsar timing array data and James Webb Space Telescope observations, https://doi.org/10.1007/s11433-024-2445-1, https://arxiv.org/abs/2306.17022.
[37]
G.-W. Yuan, L. Lei, Y.-Z. Wang, B. Wang, Y.-Y. Wang, C. Chen, Z.-Q. Shen, Y.-F. Cai, and Y.-Z. Fan, Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies, https://doi.org/10.1007/s11433-024-2433-3, https://arxiv.org/abs/2303.09391.
[38]
H.-L. Huang, J.-Q. Jiang, J. He, Y.-T. Wang, and Y.-S. Piao, Sub-Eddington accreting supermassive primordial black holes explain Little Red Dots(2024), https://arxiv.org/abs/2410.20663.
[39]
H.-L. Huang, Y.-T. Wang, and Y.-S. Piao, Supermassive primordial black holes for the GHZ9 and UHZ1 observed by the JWST(2024), https://arxiv.org/abs/2410.05891.
[40]
H.-L. Huang, J.-Q. Jiang, and Y.-S. Piao, High-redshift JWST massive galaxies and the initial clustering of supermassive primordial black holes, https://doi.org/10.1103/PhysRevD.110.103540, https://arxiv.org/abs/2407.15781.
[41]
A. Matteri, A. Ferrara, and A. Pallottini, Beyond the first galaxies primordial black holes shine(2025), https://arxiv.org/abs/2503.18850.
[42]
A. Matteri, A. Pallottini, and A. Ferrara, Can primordial black holes explain the overabundance of bright super-early galaxies?, https://doi.org/10.1051/0004-6361/202553701, https://arxiv.org/abs/2503.01968.
[43]
B. Liu and V. Bromm, Accelerating Early Massive Galaxy Formation with Primordial Black Holes, https://doi.org/10.3847/2041-8213/ac927f, https://arxiv.org/abs/2208.13178.
[44]
M. Calzà, D. Pedrotti, and S. Vagnozzi, Primordial regular black holes as all the dark matter. I. Time-radial-symmetric metrics, https://doi.org/10.1103/PhysRevD.111.024009, https://arxiv.org/abs/2409.02804.
[45]
M. Calzà, D. Pedrotti, and S. Vagnozzi, Primordial regular black holes as all the dark matter. II. Non-time-radial-symmetric and loop quantum gravity-inspired metrics, https://doi.org/10.1103/PhysRevD.111.024010, https://arxiv.org/abs/2409.02807.
[46]
M. Calzà, D. Pedrotti, G.-W. Yuan, and S. Vagnozzi, Primordial regular black holes as all the dark matter. III. Covariant canonical quantum gravity models(2025), https://arxiv.org/abs/2507.02396.
[47]
N. J. McConnell, C.-P. Ma, K. Gebhardt, S. A. Wright, J. D. Murphy, T. R. Lauer, J. R. Graham, and D. O. Richstone, Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies, https://doi.org/10.1038/nature10636, https://arxiv.org/abs/1112.1078.
[48]
B. Carr, F. Kühnel, and M. Sandstad, Primordial black holes as dark matter, https://doi.org/10.1103/PhysRevD.94.083504, https://arxiv.org/abs/1607.06077.
[49]
J. Garcı́a-Bellido, Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves, https://doi.org/10.1088/1742-6596/840/1/012032, https://arxiv.org/abs/1702.08275.
[50]
B. Carr and F. Kühnel, Primordial Black Holes as Dark Matter: Recent Developments, https://doi.org/10.1146/annurev-nucl-050520-125911, https://arxiv.org/abs/2006.02838.
[51]
B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Constraints on primordial black holes, https://doi.org/10.1088/1361-6633/ac1e31, https://arxiv.org/abs/2002.12778.
[52]
A. M. Green and B. J. Kavanagh, Primordial black holes as a dark matter candidate, https://doi.org/10.1088/1361-6471/abc534, https://arxiv.org/abs/2007.10722.
[53]
B. Carr and F. Kuhnel, Primordial black holes as dark matter candidates, https://doi.org/10.21468/SciPostPhysLectNotes.48, https://arxiv.org/abs/2110.02821.
[54]
A. Escrivà, F. Kühnel, and Y. Tada, Primordial black holes, in https://doi.org/10.1016/B978-0-32-395636-9.00012-8, edited by M. Arca Sedda, E. Bortolas, and M. Spera(2024) pp. 261–377.
[55]
M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Primordial black holesperspectives in gravitational wave astronomy, https://doi.org/10.1088/1361-6382/aaa7b4, https://arxiv.org/abs/1801.05235.
[56]
G. Domènech and M. Sasaki, Probing primordial black hole scenarios with terrestrial gravitational wave detectors, https://doi.org/10.1088/1361-6382/ad5488, https://arxiv.org/abs/2401.07615.
[57]
K. Kohri, T. Nakama, and T. Suyama, Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB \(\mu\) distortions, https://doi.org/10.1103/PhysRevD.90.083514, https://arxiv.org/abs/1405.5999.
[58]
V. De Luca, G. Franciolini, and A. Riotto, Heavy Primordial Black Holes from Strongly Clustered Light Black Holes, https://doi.org/10.1103/PhysRevLett.130.171401, https://arxiv.org/abs/2210.14171.
[59]
T. Nakama, B. Carr, and J. Silk, Limits on primordial black holes from \(\mu\) distortions in cosmic microwave background, https://doi.org/10.1103/PhysRevD.97.043525, https://arxiv.org/abs/1710.06945.
[60]
V. De Luca, G. Franciolini, and A. Riotto, Constraining the initial primordial black hole clustering with CMB distortion, https://doi.org/10.1103/PhysRevD.104.063526, https://arxiv.org/abs/2103.16369.
[61]
C. Ünal, E. D. Kovetz, and S. P. Patil, Multimessenger probes of inflationary fluctuations and primordial black holes, https://doi.org/10.1103/PhysRevD.103.063519, https://arxiv.org/abs/2008.11184.
[62]
A. D. Gow, H. Assadullahi, J. H. P. Jackson, K. Koyama, V. Vennin, and D. Wands, Non-perturbative non-Gaussianity and primordial black holes, https://doi.org/10.1209/0295-5075/acd417, https://arxiv.org/abs/2211.08348.
[63]
D. Hooper, A. Ireland, G. Krnjaic, and A. Stebbins, Supermassive primordial black holes from inflation, https://doi.org/10.1088/1475-7516/2024/04/021https://arxiv.org/abs/2308.00756.
[64]
C. T. Byrnes, J. Lesgourgues, and D. Sharma, Robust \(\mu\)-distortion constraints on primordial supermassive black holes from non-Gaussian perturbations, https://doi.org/10.1088/1475-7516/2024/09/012, https://arxiv.org/abs/2404.18475.
[65]
D. Sharma, J. Lesgourgues, and C. T. Byrnes, Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations, https://doi.org/10.1088/1475-7516/2024/07/090, https://arxiv.org/abs/2404.18474.
[66]
Y. Cai, M. Zhu, and Y.-S. Piao, Primordial Black Holes from Null Energy Condition Violation during Inflation, https://doi.org/10.1103/PhysRevLett.133.021001, https://arxiv.org/abs/2305.10933.
[67]
A. J. Iovino, G. Perna, A. Riotto, and H. Veermäe, Curbing PBHs with PTAs, https://doi.org/10.1088/1475-7516/2024/10/050, https://arxiv.org/abs/2406.20089.
[68]
Z.-H. Wang, H.-L. Huang, and Y.-S. Piao, Broad primordial power spectrum and \(\mu\)-distortion constraints on primordial black holes, https://doi.org/10.1103/PhysRevD.111.083553, https://arxiv.org/abs/2501.08542.
[69]
X. Pritchard, C. T. Byrnes, J. Lesgourgues, and D. Sharma, Robust \(\mu\)-distortion constraints on primordial supermassive black holes from cubic (g\(_{NL}\) ) non-Gaussian perturbations, https://doi.org/10.1088/1475-7516/2025/07/079, https://arxiv.org/abs/2505.08442.
[70]
H.-L. Huang, Y. Cai, J.-Q. Jiang, J. Zhang, and Y.-S. Piao, Supermassive Primordial Black Holes for Nano-Hertz Gravitational Waves and High-redshift JWST Galaxies, https://doi.org/10.1088/1674-4527/ad683d, https://arxiv.org/abs/2306.17577.
[71]
H.-L. Huang and Y.-S. Piao, Toward supermassive primordial black holes from inflationary bubbles, https://doi.org/10.1103/PhysRevD.110.023501, https://arxiv.org/abs/2312.11982.
[72]
Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, J. Carron, A. Challinor, H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J. M. Delouis, E. Di Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gruppuso, J. E. Gudmundsson, J. Hamann, W. Handley, F. K. Hansen, D. Herranz, S. R. Hildebrandt, E. Hivon, Z. Huang, A. H. Jaffe, W. C. Jones, A. Karakci, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T. S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. López-Caniego, P. M. Lubin, Y. Z. Ma, J. F. Macı́as-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P. G. Martin, M. Martinelli, E. Martı́nez-González, S. Matarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli, H. U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, H. V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J. L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J. A. Rubiño-Martı́n, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E. P. S. Shellard, C. Sirignano, G. Sirri, L. D. Spencer, R. Sunyaev, A. S. Suur-Uski, J. A. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Zacchei, and A. Zonca, Planck 2018 results. VI. Cosmological parameters, https://doi.org/10.1051/0004-6361/201833910, https://arxiv.org/abs/1807.06209.
[73]
G. Ye and Y.-S. Piao, Is the Hubble tension a hint of AdS phase around recombination?, https://doi.org/10.1103/PhysRevD.101.083507, https://arxiv.org/abs/2001.02451.
[74]
G. Ye, B. Hu, and Y.-S. Piao, Implication of the Hubble tension for the primordial Universe in light of recent cosmological data, https://doi.org/10.1103/PhysRevD.104.063510, https://arxiv.org/abs/2103.09729.
[75]
J.-Q. Jiang and Y.-S. Piao, Toward early dark energy and n\(_{s}\)=1 with Planck , ACT, and SPT observations, https://doi.org/10.1103/PhysRevD.105.103514, https://arxiv.org/abs/2202.13379.
[76]
J.-Q. Jiang, G. Ye, and Y.-S. Piao, Return of Harrison-Zeldovich spectrum in light of recent cosmological tensions, https://doi.org/10.1093/mnrasl/slad137, https://arxiv.org/abs/2210.06125.
[77]
J.-Q. Jiang, G. Ye, and Y.-S. Piao, Impact of the Hubble tension on the r - n\(_{s}\) contour, https://doi.org/10.1016/j.physletb.2024.138588, https://arxiv.org/abs/2303.12345.
[78]
H. Wang and Y.-S. Piao, Dark energy in light of recent DESI BAO and Hubble tension(2024), https://arxiv.org/abs/2404.18579.
[79]
H. Wang, G. Ye, J.-Q. Jiang, and Y.-S. Piao, Toward primordial gravitational waves and ns=1 in light of BICEP/Keck and DESI BAO data and the Hubble tension, https://doi.org/10.1103/w19x-trrq, https://arxiv.org/abs/2409.17879.
[80]
H.-L. Huang, J.-Q. Jiang, and Y.-S. Piao, Merger rate of supermassive primordial black hole binaries, https://doi.org/10.1103/PhysRevD.109.063515, https://arxiv.org/abs/2312.00338.
[81]
X. Shen, P. F. Hopkins, C.-A. Faucher-Giguère, D. M. Alexander, G. T. Richards, N. P. Ross, and R. C. Hickox, The bolometric quasar luminosity function at z = 0-7, https://doi.org/10.1093/mnras/staa1381, https://arxiv.org/abs/2001.02696.
[82]
R. K. Sheth and G. Tormen, Large-scale bias and the peak background split, https://doi.org/10.1046/j.1365-8711.1999.02692.x, https://arxiv.org/abs/astro-ph/9901122.
[83]
J. B. Oke and J. E. Gunn, Secondary standard stars for absolute spectrophotometry., https://doi.org/10.1086/160817.
[84]
R. J. Bouwens, P. A. Oesch, M. Stefanon, G. Illingworth, I. Labbé, N. Reddy, H. Atek, M. Montes, R. Naidu, T. Nanayakkara, E. Nelson, and S. Wilkins, New Determinations of the UV Luminosity Functions from z 9 to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency, https://doi.org/10.3847/1538-3881/abf83e, https://arxiv.org/abs/2102.07775.
[85]
D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, emcee: The MCMC Hammer, https://doi.org/10.1086/670067, https://arxiv.org/abs/1202.3665.
[86]
A. Escrivà, E. Bagui, and S. Clesse, Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog, https://doi.org/10.1088/1475-7516/2023/05/004, https://arxiv.org/abs/2209.06196.
[87]
E. Bagui, S. Clesse, V. De Luca, J. M. Ezquiaga, G. Franciolini, J. Garcı́a-Bellido, C. Joana, R. Kumar Jain, S. Kuroyanagi, I. Musco, T. Papanikolaou, A. Raccanelli, S. Renaux-Petel, A. Riotto, E. Ruiz Morales, M. Scalisi, O. Sergijenko, C. Ünal, V. Vennin, D. Wands, and LISA Cosmology Working Group, Primordial black holes and their gravitational-wave signatures, https://doi.org/10.1007/s41114-024-00053-w, https://arxiv.org/abs/2310.19857.
[88]
M. Raidal, V. Vaskonen, and H. Veermäe, Formation of Primordial Black Hole Binaries and Their Merger Rates, in https://doi.org/10.1007/978-981-97-8887-3_16, edited by C. Byrnes, G. Franciolini, T. Harada, P. Pani, and M. Sasaki(2025) https://arxiv.org/abs/2404.08416.
[89]
S. Clesse and J. Garcı́a-Bellido, GW190425, GW190521 and GW190814: Three candidate mergers of primordial black holes from the QCD epoch, https://doi.org/10.1016/j.dark.2022.101111, https://arxiv.org/abs/2007.06481.
[90]
G. Franciolini, I. Musco, P. Pani, and A. Urbano, From inflation to black hole mergers and back again: Gravitational-wave data-driven constraints on inflationary scenarios with a first-principle model of primordial black holes across the QCD epoch, https://doi.org/10.1103/PhysRevD.106.123526, https://arxiv.org/abs/2209.05959.
[91]
G. Hütsi, M. Raidal, V. Vaskonen, and H. Veermäe, Two populations of LIGO-Virgo black holes, https://doi.org/10.1088/1475-7516/2021/03/068, https://arxiv.org/abs/2012.02786.
[92]
B. Kocsis, T. Suyama, T. Tanaka, and S. Yokoyama, Hidden Universality in the Merger Rate Distribution in the Primordial Black Hole Scenario, https://doi.org/10.3847/1538-4357/aaa7f4, https://arxiv.org/abs/1709.09007.
[93]
E. Bagui and S. Clesse, A boosted gravitational wave background for primordial black holes with broad mass distributions and thermal features, https://doi.org/10.1016/j.dark.2022.101115, https://arxiv.org/abs/2110.07487.
[94]
A. Hall, A. D. Gow, and C. T. Byrnes, Bayesian analysis of LIGO-Virgo mergers: Primordial versus astrophysical black hole populations, https://doi.org/10.1103/PhysRevD.102.123524, https://arxiv.org/abs/2008.13704.
[95]
B. Carr and J. Silk, Primordial black holes as generators of cosmic structures, https://doi.org/10.1093/mnras/sty1204, https://arxiv.org/abs/1801.00672.
[96]
D. Inman and Y. Ali-Haı̈moud, Early structure formation in primordial black hole cosmologies, https://doi.org/10.1103/PhysRevD.100.083528, https://arxiv.org/abs/1907.08129.

  1. liyiyang20@mails.ucas.ac.cn↩︎

  2. huanghailong18@mails.ucas.ac.cn↩︎

  3. yspiao@ucas.ac.cn↩︎

  4. Those smaller than \(\sim10^{-18}\rm~M_\odot\) would have evaporated by now due to Hawking radiation, or see recent [44][46].↩︎

  5. Here, we do not consider the potential impact of the resolution of Hubble tension on the bestfit values of relevant cosmological parameters, e.g.[73][79], which might be actually negligible.↩︎

  6. Here, all PBHs are assumed to have the same Eddington ratio \(\lambda_E\), although in reality \(\lambda_E\) may follow a broad distribution. The case of \(\lambda_E = 0\) corresponds to considering only the Poisson effect.↩︎

  7. Here, we have assumed that PBHs are only distributed in dark matter halos with \(M_{\rm halo}>M_{\min}\). Due to the exponential span in mass, low-mass halos only significantly affect the case that the luminosity from PBHs far exceeds the stellar component.↩︎