Reality conditions for the sine-Gordon equation
and quasi-periodic solutions in finite phase spaces
January 14, 2025
Quasi-periodic solutions to the sine-Gordon equation are expressed in terms of \(\wp_{1,2g-1}\)-function, and reality conditions are completely specified. This new result leads to computation and graphical representation of non-linear wave solutions. A way of obtaining the finite-gap solutions by means of algebro-geometric integration is exposed in detail, as well as the construction of the sine-Gordon hierarchy on coadjoint orbits in the loop algebra of \(\mathfrak{su}(2)\).
The present paper is a continuation of the research started in [1], and focuses on the sine-Gordon equation \[\label{SGEq} \phi_{\mathrm{t}\mathrm{x}} = - 4\sin \phi,\tag{1}\] which is known to be completely integrable, and possess soliton solutions. The equation has various applications in physics, see [2].
In [3], multi-soliton solutions of the sine-Gordon equation are obtained by Hirota’s method; and interaction of two solitons is analyzed in detail. In [4], a similar multi-soliton solution was obtained by the inverse scattering method.
The sine-Gordon equation is associated with a hierarchy of integrable hamiltonian systems. Each system is finite, and produces a finite-gap solution of the equation. Quasi-periodic solutions of 1 , expressed in terms of theta functions, are suggested in [5], where the reality conditions are also addressed. These solutions have the form, see [6], \[\phi(\mathrm{x}, \mathrm{t}) = 2 \imath \log \frac{\theta( \imath (\boldsymbol{U}\mathrm{x}+ \boldsymbol{W} \mathrm{t}) + \boldsymbol{D} + \imath \pi \Delta)}{\theta( \imath(\boldsymbol{U}\mathrm{x}+ \boldsymbol{W} \mathrm{t}) + \boldsymbol{D} )},\] where \(\boldsymbol{U}\), \(\boldsymbol{W}\), \(\boldsymbol{D}\), \(\Delta\) are vectors defined through periods of the corresponding spectral curve. In [6] a derivation of such a solution for an integrable system of the sine-Gordon hierarchy is shown.
Recently, some improvement on computing multi-soliton solutions by the inverse scattering method was suggested in [7]; a review of solutions expressed in elementary and elliptic functions can be found therein. In addition to what mentioned in [7], two- and three-gap elliptic solutions were constructed on the spectral curves which are two- and three-sheeted coverings of the elliptic curve, see [8], [9].
In the present paper we review the method of constructing the sine-Gordon hierarchy on coadjoint orbits of a loop group. This method differs from the one used in [6], and leads straight to algebraic integration in terms of \(\wp\)-functions. As mentioned in [10], a finite-gap solution of the sine-Gordon equation is given by the function \(\wp_{1,2g-1}\), one of \(\wp\)-functions which generalize the Weierstrass \(\wp\)-function. This solution is accurately derived below. Though a similarity in the structure with [1] can be observed, the sine-Gordon hierarchy arises on different coadjoint orbits, and so the seeming repetition presents an essentially different exposition.
The new results are given by the reality conditions for the sine-Gordon equation, which provide real-valued solutions in terms of the particular \(\wp\)-function. The obtained reality conditions are more narrow than the conditions presented in [5]. Actually, hamiltonian systems of the sine-Gordon hierarchy arise on hyperelliptic curves with fixed branch points at \((0,0)\) and infinity, and all other pairwise conjugate branch points. On hyperelliptic curves with all real branch points hamiltonian systems of the sinh-Gordon hierarchy arise.
The obtained real-valued quasi-periodic solutions are easily computed, as illustrated by examples in genera one and two. The proposed method enables to analyze every hamiltonian system in the hierarchy in question by investigating how different regimes of wave propagation depend on values of integrals of motion.
The paper is organized as follows. In Preliminaries we recall basic knowledge on homologies and cohomologies of hyperelliptic curves, definitions of theta, sigma, and \(\wp\)-functions, and also representation of characteristics in terms of partitions of the set of indices of branch points. In Section 3 integrable systems of the sine(sinh)-Gordon hierarchy are constructed on coadjoint orbits in an affine Lie algebra. In Section 4 variables of separation are derived and proved to be quasi-canonical. Section 5 is devoted to algebraic integration, and expressions in terms of \(\wp\)-functions are obtained for all dynamical variables of any hamiltonian system in the hierarchy. Also relations between \(\mathrm{x}\), \(\mathrm{t}\) on the one hand, and coordinates of the Jacobian variety of the spectral curve, which serve as arguments of \(\wp\)-functions, on the other hand, are discovered. In Section 6 behaviour of \(\wp\)-functions on the Jacobian variety is analyzed, and a particular subspace which serves as the domain of the corresponding finite-gap solution is singled out. Finally, in Section 7 examples of systems with spectral curves of genera one and two are presented, with analyses of phase spaces, and computation of non-linear waves corresponding to different values of hamiltonians.
We work with the canonical form of a hyperelliptic curve \(\mathcal{V}\) of genus \(g\), namely \[\label{V22g1Eq} f(x,y) \equiv -y^2 + x^{2 g+1} + \sum_{i=0}^{2g} \lambda_{2i+2} x^{2g-i} = 0.\tag{2}\] In terms of branch points \((e_i,0)\), or simply \(e_i\), \(i=1\), …, \(2g+1\), \(f\) has the form \[\label{V22g1EqBP} f(x,y) = -y^2 + \prod_{i=1}^{2g+1} (x- e_i).\tag{3}\] One more branch point \(e_0\) is located at infinity, and serves as the basepoint. We assume that all branch points are distinct, and so the curve is not degenerate, that is, the genus equals \(g\). Finite branch points are enumerated in the ascending order of real and imaginary parts. The Riemann surface of \(\mathcal{V}\) is constructed by means of the monodromy path through all branch points, according to the order; the path starts at infinity and ends at infinity, see the orange line on fig. 1. For more details on constructing the Riemann surfaces of hyperelliptic curves suitable for computation see [11].
A homology basis is defined after H. Baker [12]. Cuts are made between points \(e_{2k-1}\) and \(e_{2k}\) with \(k\) from \(1\) to \(g\). One more cut starts at \(e_{2g+1}\) and ends at infinity. Canonical homology cycles are defined as follows. Each \(\mathfrak{a}_k\)-cycle, \(k=1\), …\(g\), encircles the cut \((e_{2k-1},e_{2k})\) counter-clockwise, and each \(\mathfrak{b}_k\)-cycle emerges from the cut \((e_{2g+1},\infty)\) and enters the cut \((e_{2k-1},e_{2k})\), see fig.1.
Fig. 1 represents the spectral curve of a \(g\)-gap system in the sine-Gordon hierarchy, see Section 6 for more details. Parameters \(\lambda_k\) of the curve \(\mathcal{V}\) are real, and all but one finite branch points are complex conjugate.
Let first kind differentials \(\mathrm{d}u = (\mathrm{d}u_1,\mathrm{d}u_3, \dots, \mathrm{d}u_{2g-1})^t\) and second kind differentials \(\mathrm{d}r = (\mathrm{d}r_1,\mathrm{d}r_3, \dots, \mathrm{d}r_{2g-1})^t\) form a system of associated differentials, see [12], and be defined as in [12]. Actually, \[\tag{4} \begin{align} & \mathrm{d}u_{2n-1} = \frac{x^{g-n} \mathrm{d}x}{\partial_y f(x,y)},\quad n=1,\dots, g,\tag{5} \\ & \mathrm{d}r_{2n-1} = \frac{ \mathrm{d}x}{\partial_y f(x,y)} \sum_{j=1}^{2n-1} (2n-j) \lambda_{2j-2} x^{g+n-j},\; \lambda_0=1,\quad n=1,\dots, g. \tag{6} \end{align}\] Indices of \(\mathrm{d}u_{2n-1}\) display the orders of zeros at infinity, and indices of \(\mathrm{d}r_{2n-1}\) display the orders of poles, which are located at infinity.
The first kind differentials are not normalized. The corresponding periods along the canonical cycles \(\mathfrak{a}_k\), \(\mathfrak{b}_k\), \(k=1\), …, \(g\), are defined as follows \[\begin{gather} \label{FKD} \omega_k = \oint_{\mathfrak{a}_k} \mathrm{d}u,\qquad\qquad \omega'_k = \oint_{\mathfrak{b}_k} \mathrm{d}u. \end{gather}\tag{7}\] The vectors \(\omega_k\), \(\omega'_k\) form first kind period matrices \(\omega\), \(\omega'\), respectively. Similarly, second kind period matrices \(\eta\), \(\eta'\) are composed of columns \[\begin{gather} \label{SKD} \eta_k = \oint_{\mathfrak{a}_k} \mathrm{d}r,\qquad\qquad \eta'_k = \oint_{\mathfrak{b}_k} \mathrm{d}r. \end{gather}\tag{8}\]
The normalized first kind period matrices are \(1_g\), \(\tau\), where \(1_g\) denotes the identity matrix of order \(g\), and \(\tau = \omega^{-1}\omega'\). Matrix \(\tau\) is symmetric with a positive imaginary part: \(\tau^t=\tau\), \(\mathop{\mathrm{\mathrm{Im}}}\tau >0\), that is, \(\tau\) belongs to the Siegel upper half-space. The normalized holomorphic differentials are denoted by \[\begin{gather} \mathrm{d}v = \omega^{-1} \mathrm{d}u. \end{gather}\]
The vectors \(\omega_k\), \(\omega'_k\) form a period lattice \(\{\omega, \omega'\}\), and \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \,{=}\, \mathop{\mathrm{\mathbb{C}}}^g/\{\omega, \omega'\}\) is the Jacobian variety of \(\mathcal{V}\). Let \(u=(u_1\), \(u_3\), …, \(u_{2g-1})^t\) be not normalized coordinates of \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\).
The Abel map is defined by \[\begin{gather} \mathcal{A}(P) = \int_{\infty}^P \mathrm{d}u,\qquad P=(x,y)\in \mathcal{V}, \end{gather}\] and on a positive divisor \(D = \sum_{i =1}^n (x_i,y_i)\) by \(\mathcal{A}(D) = \sum_{i =1}^n \mathcal{A}(P_i)\). The Abel map is one-to-one on the \(g\)-th symmetric power of the curve.
The Riemann theta function is defined by \[\begin{gather} \theta(v;\tau) = \sum_{n\in \mathop{\mathrm{\mathbb{Z}}}^g} \exp \big(\imath \pi n^t \tau n + 2\imath \pi n^t v\big). \end{gather}\] where \(v = \omega^{-1}u\) are normalized coordinates. Theta function with characteristic \([\varepsilon]\) is defined by \[\theta[\varepsilon](v;\tau) = \exp\big(\imath \pi (\varepsilon'{}^t/2) \tau (\varepsilon'/2) + 2\imath \pi (v+\varepsilon/2)^t \varepsilon'/2\big) \theta(v+\varepsilon/2 + \tau \varepsilon'/2;\tau),\] where \([\varepsilon]= (\varepsilon', \varepsilon)^t\) is a \(2\times g\) matrix, all components of \(\varepsilon\), and \(\varepsilon'\) are real values within the interval \([0,2)\). Modulo \(2\) addition is defined on characteristics.
Every point \(u\) within the fundamental domain of \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\) can be represented by its characteristic \([\varepsilon]\) as follows \[u = \tfrac{1}{2} \omega \varepsilon + \tfrac{1}{2} \omega' \varepsilon'.\] Characteristics with values \(0\) and \(1\) correspond to half-periods, which are Abel images of divisors composed of branch points. Such a characteristic \([\varepsilon]\) is odd whenever \(\varepsilon^t \varepsilon' = 1\) (\(\mathop{\mathrm{mod}}2\)), and even whenever \(\varepsilon^t \varepsilon' = 0\) (\(\mathop{\mathrm{mod}}2\)). Theta function with characteristic has the same parity as its characteristic.
The modular invariant entire function on \(\mathop{\mathrm{\mathbb{C}}}^g \,{\supset}\, \mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\) is called the sigma function, which we define after [10]: \[\label{SigmaThetaRel} \sigma(u) = C \exp\big({-}\tfrac{1}{2} u^t \varkappa u\big) \theta[K](\omega^{-1} u; \omega^{-1} \omega'),\tag{9}\] where \([K]\) is the characteristic of the vector \(K\) of Riemann constants, and \(\varkappa = \eta \omega^{-1}\) is a symmetric matrix.
In what follows we use multiply periodic \(\wp\)-functions \[\begin{gather} \wp_{i,j}(u) = -\frac{\partial^2 \log \sigma(u) }{\partial u_i \partial u_j },\qquad \wp_{i,j,k}(u) = -\frac{\partial^3 \log \sigma(u) }{\partial u_i \partial u_j \partial u_k}, \end{gather}\] which are defined on \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \backslash \Sigma\), where \(\Sigma = \{u \mid \sigma(u)=0\}\) denotes the theta divisor, see [5], in not normalized coordinates.
A solution of the Jacobi inversion problem on a hyperelliptic curve is proposed in [12], see also [10]. Let \(u = \mathcal{A}(D )\) be the Abel image of a non-special positive divisor \(D \in \mathcal{V}^g\). Then \(D\) is uniquely defined by the system of equations \[\tag{10} \begin{align} &\mathcal{R}_{2g}(x;u) \equiv x^{g} - \sum_{i=1}^{g} x^{g-i} \wp_{1,2i-1}(u) = 0, \tag{11}\\ &\mathcal{R}_{2g+1}(x,y;u) \equiv 2 y + \sum_{i=1}^{g} x^{g-i} \wp_{1,1,2i-1}(u) = 0. \tag{12} \end{align}\]
Let \(S = \{0,1,2,\dots, 2g+1\}\) be the set of indices of all branch points of a hyperellipitic curve of genus \(g\), and \(0\) stands for the branch point at infinity. According to [12], all characteristics of half-periods are represented by partitions of \(S\) of the form \(\mathcal{I}_\mathfrak{m}\cup \mathcal{J}_\mathfrak{m}\) with \(\mathcal{I}_\mathfrak{m}= \{i_1,\,\dots,\, i_{g+1-2\mathfrak{m}}\}\) and \(\mathcal{J}_\mathfrak{m}= \{j_1,\,\dots,\, j_{g+1+2\mathfrak{m}}\}\), where \(\mathfrak{m}\) runs from \(0\) to \([(g+1)/2]\), and \([\cdot]\) denotes the integer part. Index \(0\) is usually omitted in sets, and also in computation of cardinality of a set.
Denote by \([\varepsilon(\mathcal{I})] = \sum_{i\in\mathcal{I}} [\varepsilon_i]\) \((\mathop{\mathrm{mod}}2)\) the characteristic of \[\begin{gather} \mathcal{A} (\mathcal{I}) = \sum_{i\in\mathcal{I}} \mathcal{A}(e_i) = \omega \Big(\tfrac{1}{2} \varepsilon(\mathcal{I}) + \tfrac{1}{2} \tau \varepsilon'(\mathcal{I}) \Big). \end{gather}\] Characteristics corresponding to \(2g+1\) branch points serve as a basis for constructing all \(2^{2g}\) half-period characteristics. Below, a partition is referred to by the part of less cardinality, denoted by \(\mathcal{I}\). Let \[[\mathcal{I}] = [\varepsilon(\mathcal{I})] + [K] \;(\mathop{\mathrm{mod}}2),\] and \([K]\) equals the sum of \(g\) odd characteristics of branch points. In the basis of canonical cycles introduced by fig. 1 we have \[\begin{gather} [K] = \sum_{k=1}^g [\varepsilon_{2k}]. \end{gather}\]
Let \(\mathcal{I}_\mathfrak{m}\cup \mathcal{J}_\mathfrak{m}\) be a partition introduced above, then \([\mathcal{I}_\mathfrak{m}]=[\mathcal{J}_\mathfrak{m}]\). Characteristics \([\mathcal{I}_\mathfrak{m}]\) of even \(\mathfrak{m}\) are even, and of odd \(\mathfrak{m}\) are odd. According to the Riemann vanishing theorem, \(\theta(v+\mathcal{A} (\mathcal{I}_\mathfrak{m})+K; \tau)\) vanishes to order \(\mathfrak{m}\) at \(v\,{=}\,0\). Number \(\mathfrak{m}\) is called multiplicity. Characteristics of multiplicity \(0\) are called non-singular even characteristics. Characteristics of multiplicity \(1\) are called non-singular odd. All other characteristics are called singular.
The sine-Gordon equation arises within the hierarchy of integrable hamiltonian systems on coadjoint orbits in the loop algebra of \(\mathfrak{su}(2)\). We briefly recall this construction as presented in [13] and revised in [14]. Such a construction is based on the results of [15], [16].
Let \(\widetilde{\mathfrak{g}} = \mathfrak{g} \otimes \mathfrak{L}(z,z^{-1})\), where \(\mathfrak{L}(z,z^{-1})\) denotes the algebra of Laurent series in \(z\), and \(\mathfrak{g}=\mathfrak{sl}(2,\mathop{\mathrm{\mathbb{C}}})\) has the standard basis \[\begin{gather} \textsf{H}= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},\quad \textsf{X}= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\quad \textsf{Y}= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \end{gather}\] The algebra \(\widetilde{\mathfrak{g}}\) is principally graded, with the grading operator \[\begin{gather} \label{PrGrad} \mathfrak{d} = 2 z \frac{\mathrm{d}}{\mathrm{d}z} + \mathop{\mathrm{ad}}_\textsf{H}, \end{gather}\tag{13}\] where \(\mathop{\mathrm{ad}}\) denotes the adjoint operator in \(\mathfrak{g}\), and \(\forall\, \textsf{Z}\in \mathfrak{g}\) \(\mathop{\mathrm{ad}}_\textsf{H}\textsf{Z}= [\textsf{H},\textsf{Z}]\).
Let \(\{\textsf{X}_{2m-1} \,{=}\, z^{m-1} \textsf{X},\, \textsf{Y}_{2m-1} \,{=}\, z^{m} \textsf{Y},\, \textsf{H}_{2m} \,{=}\, z^m \textsf{H}\mid m \in \mathop{\mathrm{\mathbb{Z}}}\}\) form a basis of \(\widetilde{\mathfrak{g}}\). Let \(\mathfrak{g}_{\ell}\) be the eigenspace of \(\mathfrak{d}\) of degree \(\ell\). Actually, \(\mathfrak{g}_{2m-1} = \mathop{\mathrm{span}}\{\textsf{X}_{2m-1},\, \textsf{Y}_{2m-1}\}\), and \(\mathfrak{g}_{2m} = \mathop{\mathrm{span}}\{\textsf{H}_{2m}\}\). We also denote the basis elements in \(\widetilde{\mathfrak{g}}\) by \(\textsf{Z}_{a;\ell}\), \(a=1\), \(2\), \(3\), \(\ell \in \mathop{\mathrm{\mathbb{Z}}}\), where \(\mathfrak{d} \textsf{Z}_{a;\ell} = \ell \textsf{Z}_{a;\ell}\), and \(\textsf{Z}_{1;\ell}= \textsf{H}_\ell\), \(\textsf{Z}_{2;\ell}=\textsf{Y}_\ell\), \(\textsf{Z}_{3;\ell}=\textsf{X}_\ell\).
With a fixed positive integer \(N\), let the bilinear form be defined by \[\begin{gather} \label{BiLinFSinG} \forall A(z), B(z) \in \widetilde{\mathfrak{g}} \qquad \langle A(z), B(z) \rangle = \mathop{\mathrm{res}}_{z=0} z^{-N} \mathop{\mathrm{tr}}A(z) B(z). \end{gather}\tag{14}\] By means of \(\langle \textsf{Z}_{a;\ell}, \textsf{Z}^{\ast}_{b;\ell'} \rangle = \delta_{a,b} \delta_{\ell,\ell'}\) the basis \(\{\textsf{Z}^{\ast}_{a;\ell} \mid a=1,2,3,\, \ell\in \mathop{\mathrm{\mathbb{Z}}}\}\) of the dual algebra \(\widetilde{\mathfrak{g}}^\ast\) is introduced. In more detail, \[\begin{gather} \textsf{Z}_{1;2m}^\ast = 2 \textsf{H}_{2N-2m-2},\quad \textsf{Z}_{2;2m-1}^\ast = \textsf{X}_{2N-2m-1},\quad \textsf{Z}_{3;2m-1}^\ast = \textsf{Y}_{2N-2m-1}. \end{gather}\]
According to the Adler—Kostant—Symes scheme, see [16], \(\widetilde{\mathfrak{g}}\) falls into two subalgebars \[\begin{gather} \widetilde{\mathfrak{g}}_+ = \oplus \sum_{\ell \geqslant 0} \mathfrak{g}_{\ell},\qquad \widetilde{\mathfrak{g}}_- = \oplus \sum_{\ell \leqslant -1} \mathfrak{g}_{\ell}. \end{gather}\] The dual spaces \(\widetilde{\mathfrak{g}}_+^\ast\) and \(\widetilde{\mathfrak{g}}_-^\ast\) with respect to the bilinear form 14 are \[\begin{gather} \widetilde{\mathfrak{g}}_+^\ast = \oplus \sum_{\ell \leqslant 2N-2} \mathfrak{g}_{\ell},\qquad \widetilde{\mathfrak{g}}_-^\ast = \oplus \sum_{\ell > 2N-2} \mathfrak{g}_{\ell}. \end{gather}\] Note, that \(\mathfrak{g}_{N-1}^\ast = \mathfrak{g}_{N-1}\), and \(\mathfrak{g}_{\ell}^\ast\) is dual to \(\mathfrak{g}_{2N-\ell-2}\).
The sine-Gordon hierarchy of hamiltonian systems arises on coadjoint orbits of the group \(\widetilde{G}_+ = \exp(\widetilde{\mathfrak{g}}_+)\). The subspace \(\mathcal{M}_N = \widetilde{\mathfrak{g}}^\ast_+ / \big( \sum_{\ell < -2} \mathfrak{g}_\ell \big)\) is \(\mathop{\mathrm{ad}}^\ast\)-invariant under the coadjoint action of \(\widetilde{\mathfrak{g}}_+\). Actually, \[\begin{gather} \mathcal{M}_N = \bigg\{\mathsf{L}= \sum_{\ell=-2}^{2N-2} \sum_{a=1,2,3} L_{a;\ell} \textsf{Z}_{a;2N-\ell-2}^\ast \bigg\}, \end{gather}\] where \(L_{a;\ell}\) are coordinates on \(\mathcal{M}_N\): \[L_{a;\ell} = \langle \mathsf{L}, \textsf{Z}_{a;2N-\ell-2}\rangle,\] and also serve as dynamic variables of the \(N\)-gap system of the hierarchy, Let \(L_{1;\ell}=\alpha_{\ell}\), \(L_{2;\ell} = \beta_{\ell}\), \(L_{3;\ell} = \gamma_{\ell}\), then every element \(\mathsf{L}\in \mathcal{M}_N\) has the form \[\label{SinGPhSp} \begin{align} \mathsf{L}(z) = \begin{pmatrix} \alpha(z) & \beta(z) \\ \gamma(z) & -\alpha(z) \end{pmatrix},\\\alpha(z) = \sum_{m=0}^{N} &\alpha_{2m} z^m,\quad \beta(z) = \sum_{m=0}^{N} \beta_{2m-1} z^{m-1},\quad \gamma(z) = \sum_{m=0}^{N} \gamma_{2m-1} z^{m},\\ &\alpha_{2N} = 0,\qquad \beta_{2N-1} = \gamma_{2N-1} = \mathrm{b}= \mathop{\mathrm{const}}.\end{align}\tag{15}\] The coordinates of \(\mathcal{M}_N\), of number \(3N\), are ordered as follows: \[\label{SinGDynVar} \{\beta_{2m -1}, \gamma_{2m - 1}, \alpha_{2m}\}_{m=0}^{N-1}.\tag{16}\]
The symplectic manifold \(\mathcal{M}_N\) is equipped with the Lie-Poisson bracket \[\label{LiePoiBraSinG} \begin{gather} \forall \mathcal{F}, \mathcal{H}\in \mathcal{C}^1(\mathcal{M}_N) \qquad \{\mathcal{F},\mathcal{H}\} = \sum_{i,j =-2}^{2N-2} \sum_{a, b=1,2,3} W_{i,j}^{a,b} \frac{\partial \mathcal{F}}{\partial L_{a;i}} \frac{\partial \mathcal{H}}{\partial L_{b;j}}, \\ W_{i,j}^{a,b} = \langle \mathsf{L}, [\textsf{Z}_{a,2N-i-2},\textsf{Z}_{a,2N-j-2}] \rangle, \end{gather}\tag{17}\] or in terms of the dynamic variables: \[\begin{align} \label{SinGPoiBra}&\{\beta_{2m-1}, \alpha_{2n}\} = \beta_{2(n+m-N)+1},\\ &\{\gamma_{2m-1}, \alpha_{2n}\} = - \gamma_{2(n+m-N)+1},\quad N-1 \leqslant m+n, \\ &\{\beta_{2m-1}, \gamma_{2n-1}\} = - 2 \alpha_{2(m+n-N)},\quad N \leqslant m+n.\end{align}\tag{18}\] The Lie-Poisson structure \(\textsf{W}= (W_{i,j}^{a,b})\) has the form \[\begin{align} &\textsf{W} = \begin{pmatrix} 0 & 0 & \dots & 0 & \textsf{w}_{0} \\ \vdots & \vdots & \dots & \textsf{w}_{0} & \textsf{w}_1\\ 0 & 0 & \iddots & \textsf{w}_1 & \textsf{w}_2 \\ 0 & \textsf{w}_{0} & \iddots & \vdots & \vdots \\ \textsf{w}_{0} & \textsf{w}_1 & \dots & \textsf{w}_{N-2} & \textsf{w}_{N-1} \end{pmatrix},\\ &\textsf{w}_{0} = \begin{pmatrix} 0 & 0 & \beta_{-1} \\ 0 & 0 & - \gamma_{-1} \\ - \beta_{-1} & \gamma_{-1} & 0 \\ \end{pmatrix}, \\ &\textsf{w}_n = \begin{pmatrix} 0 & - 2\alpha_{2n-2} & \beta_{2n-1} \\ 2\alpha_{2n-2}& 0 & -\gamma_{2n-1} \\ - \beta_{2n-1} & \gamma_{2n-1} & 0 \\ \end{pmatrix},\quad n = 1,\,\dots,\, N-1. \end{align}\] This Poisson bracket is degenerate, and not canonical.
The action of \(\widetilde{G}_+\) splits \(\mathcal{M}_N\) into orbits \[\mathcal{O} = \{\mathsf{L}= \mathop{\mathrm{Ad}}^\ast_{g} \mathsf{L}^{\text{in}} \mid g\in \widetilde{G}_+\},\qquad \Phi \in \mathcal{M}_N.\] An initial point \(\mathsf{L}^{\text{in}}\) belongs to the Weyl chamber of \(\widetilde{G}_+\), and is represented by a diagonal matrix, that is, spanned by \(H^{\ast}_{2m}\), \(m = 0\), …, \(N\). Orbits are of dimension \(2N\), and serve as phase spaces of hamiltonian systems.
Physically meaningful hamiltonian systems arise when \(\mathfrak{g}\) is one of the real forms of \(\mathfrak{sl}(2, \mathop{\mathrm{\mathbb{C}}})\), namely \(\mathfrak{sl}(2, \mathop{\mathrm{\mathbb{R}}})\) or \(\mathfrak{su}(2)\). In the case of \(\mathfrak{su}(2)\) the sine-Gordon hierarchy is obtained, and in the case of \(\mathfrak{sl}(2, \mathop{\mathrm{\mathbb{R}}})\) the \(\sinh\)-Gordon hierarchy.
Remark 1. In \(\mathcal{M}_N\) with \(\mathsf{L}\) of the form 15 , coadjoint orbits of \(\widetilde{G}_{-} = \exp(\widetilde{\mathfrak{g}}_-)\) serve as phase spaces for the hierarchy of the focusing mKdV equation in the case of \(\mathfrak{su}(2)\), and the defocusing mKdV equation in the case of \(\mathfrak{sl}(2, \mathop{\mathrm{\mathbb{R}}})\).
Let \[\label{InvF} \begin{align} H(z) &= \tfrac{1}{2} \mathop{\mathrm{tr}}\mathsf{L}^2(z) = \alpha(z)^2 + \beta(z) \gamma(z)\\ &= h_{2N-1} z^{2N-1} + \cdots + h_1 z + h_0 + h_{-1} z^{-1}, \end{align}\tag{19}\] where \[\begin{align} \label{hExprs}& h_{2N-1} = \mathrm{b}^2,\\ & h_{2N-2} = \alpha_{2N-2}^2 + \mathrm{b}(\beta_{2N-3} + \gamma_{2N-3}),\\ &\dots \\ & h_{0} = \alpha_0^2 + \beta_1 \gamma_{-1} + \beta_{-1} \gamma_{1},\\ & h_{-1} = \beta_{-1} \gamma_{-1}.\end{align}\tag{20}\]
Evidently, \(H(z)\) is invariant under the action of \(\widetilde{G}_{+}\). Therefore, every \(h_n\) is an integral of motion, and \(h_{2N-1} = \mathrm{b}^2\) is an absolute constant. With respect to the symplectic structure 18 , \(h_{N-1}\), …, \(h_{2N-2}\) give rise to non-trivial hamiltonian flows, we call them hamiltonians.
On the other hand, \(h_{-1}\), \(h_0\), …, \(h_{N-2}\) annihilate the Poisson bracket 17 , since \[\sum_{i =-1}^{2N-2} \sum_{a =1,2,3} W_{i,j}^{a,b} \frac{\partial h_n}{\partial L_{a;i}} = 0, \quad n=-1, 0,\dots, N-2,\] and so \(\{h_n, \mathcal{F}\} = 0\) for any \(\mathcal{F} \in \mathcal{C}^1 (\mathcal{M}_N)\). Thus, \[\begin{gather} \label{SinGConstr} h_{-1} = \mathrm{r}_{-1},\quad h_{0} = \mathrm{r}_{0},\quad \ldots,\quad h_{N-2} = \mathrm{r}_{N-2}, \end{gather}\tag{21}\] with constant \(\mathrm{r}_{-1}\), \(\mathrm{r}_{0}\), …, \(\mathrm{r}_{N-2}\), serve as constraints on the symplectic manifold \(\mathcal{M}_N\). They fix an orbit \(\mathcal{O}\) of dimension \(2N\), which serves as the phase space of the \(N\)-gap hamiltonian system in the sine(sinh)-Gordon hierarchy.
The algebra \(\mathfrak{sl}(2,\mathop{\mathrm{\mathbb{C}}})\) has two real forms: \(\mathfrak{su}(2)\), and \(\mathfrak{sl}(2,\mathop{\mathrm{\mathbb{R}}})\). In the both cases, \(h_{-1}\), \(h_0\), …, \(h_{2N-2}\), and \(h_{2N-1} = \mathrm{b}^2\) are real.
If \(\mathfrak{g} = \mathfrak{sl}(2,\mathop{\mathrm{\mathbb{R}}})\), then all coordinates \(\beta_{2m -1}\), \(\gamma_{2m - 1}\), \(\alpha_{2m}\), \(m=0\), …\(N-1\), and also \(\mathrm{b}\) are real. Thus, \(h_{2N-1} = \mathrm{b}^2 > 0\).
If \(\mathfrak{g} = \mathfrak{su}(2)\), then \(\alpha_{2m} = \imath a_{2m}\), \(a_{2m} \in \mathop{\mathrm{\mathbb{R}}}\), and \(\beta_{2m-1} = - \bar{\gamma}_{2m-1}\), \(\mathrm{b}= \imath b\), where \(b \in \mathop{\mathrm{\mathbb{R}}}\). Thus, \(h_{2N-1} = \mathrm{b}^2 = -b^2 < 0\). We also have \[\label{hm1Rel} h_{-1} = \beta_{-1} \gamma_{-1} = - |\gamma_{-1}|^2 < 0.\tag{22}\]
Let \(h_{2N-2}\) give rise to a stationary flow with a parameter \(\mathrm{x}\), and \(h_{N-1}\) give rise to an evolutionary flow with a parameter \(\mathrm{t}\): \[\begin{gather} \label{TwoFlowsEq} \frac{\mathrm{d}L_{a;\ell}}{\mathrm{d}\mathrm{x}} = \{h_{2N-2}, L_{a;\ell}\},\qquad \frac{\mathrm{d}L_{a,\ell}}{\mathrm{d}\mathrm{t}} = \{h_{N-1}, L_{a,\ell}\}. \end{gather}\tag{23}\] In more detail, the stationary flow is \[\begin{align} &\frac{\mathrm{d}\beta_{-1}}{\mathrm{d}\mathrm{x}} = 2 \alpha_{2N-2} \beta_{-1},\qquad \frac{\mathrm{d}\gamma_{-1}}{\mathrm{d}\mathrm{x}} = - 2 \alpha_{2N-2} \gamma_{-1}, \label{BetaGammaM1EqSt} \\ &\frac{\mathrm{d}\alpha_{2m}}{\mathrm{d}\mathrm{x}} = \mathrm{b}(\gamma_{2m-1} - \beta_{2m-1}),\quad m=0,\dots, N-1,\\ &\frac{\mathrm{d}\beta_{2m-1}}{\mathrm{d}\mathrm{x}} = 2 \alpha_{2N-2} \beta_{2m-1} - 2 \mathrm{b}\alpha_{2m-2},\\ &\frac{\mathrm{d}\gamma_{2m-1}}{\mathrm{d}\mathrm{x}} = - 2 \alpha_{2N-2} \gamma_{2m-1} + 2 \mathrm{b}\alpha_{2m-2}, \quad m=1,\dots, N-1. \end{align}\tag{24}\] The evolutionary flow is \[\begin{align} &\frac{\mathrm{d}\alpha_{2m-2}}{\mathrm{d}\mathrm{t}} = \gamma_{-1} \beta_{2m-1} - \beta_{-1} \gamma_{2m-1},\quad m=1,\dots, N-1, \tag{25}\\ &\frac{\mathrm{d}\beta_{2m-1}}{\mathrm{d}\mathrm{t}} = 2 \alpha_{2m} \beta_{-1}, \qquad \frac{\mathrm{d}\gamma_{2m-1}}{\mathrm{d}\mathrm{t}} = - 2 \alpha_{2m} \gamma_{-1},\quad m=0,\dots, N-1, \tag{26} \\ &\frac{\mathrm{d}\alpha_{2N-2}}{\mathrm{d}\mathrm{t}} = \mathrm{b}(\gamma_{-1} - \beta_{-1}). \tag{27} \end{align}\]
The sine(sinh)-Gordon equation is obtained from the equality \[\begin{gather} \label{SinGEqZeroCurv} \frac{\mathrm{d}\alpha_{2N-2}}{\mathrm{d}\mathrm{t}} = \frac{\mathrm{d}\alpha_{0}}{\mathrm{d}\mathrm{x}}. \end{gather}\tag{28}\] Indeed, from 24 one can see that \(\alpha_{2N-2} = \frac{1}{2} \mathrm{d}\ln \beta_{-1} / \mathrm{d}\mathrm{x}= - \frac{1}{2} \mathrm{d}\ln \gamma_{-1} / \mathrm{d}\mathrm{x}\). On the other hand, 26 implies \(\alpha_{0} = \frac{1}{2} \mathrm{d}\ln \beta_{-1} / \mathrm{d}\mathrm{t}= - \frac{1}{2} \mathrm{d}\ln \gamma_{-1} / \mathrm{d}\mathrm{t}\).
In the case of \(\mathfrak{g} = \mathfrak{su}(2)\), we have \(\beta_{-1} = - \bar{\gamma}_{-1}\), and so \(- |\gamma_{-1}|^2 = \mathrm{r}_{-1} = \mathop{\mathrm{const}}\), cf. 22 . This means that \(\gamma_{-1}\) runs along a circle of radius \(-\mathrm{r}_{-1}\) if \(\mathrm{r}_{-1}<0\). Let \(\gamma_{-1} = \imath r \exp (\imath \phi)\), and \(\beta_{-1} = \imath r \exp (- \imath \phi)\), where \(r = \sqrt{-\mathrm{r}_{-1}}\), and \(\phi\) is a function of \(\mathrm{x}\) and \(\mathrm{t}\). Then 24 and 26 imply, respectively, \[\begin{gather} \alpha_{2N-2} = \frac{\imath}{2} \frac{\mathrm{d}\phi}{\mathrm{d}\mathrm{x}},\qquad \alpha_{0} = \frac{\imath}{2} \frac{\mathrm{d}\phi}{\mathrm{d}\mathrm{t}}. \end{gather}\] Finally, 27 gives the sine-Gordon equation (\(\mathrm{b}= \imath b\), \(b \in \mathop{\mathrm{\mathbb{R}}}\)) \[\label{SinGEqBeta} \frac{\mathrm{d}^2 \phi}{\mathrm{d}\mathrm{t}\mathrm{d}\mathrm{x}} = 4 b r \sin \phi.\tag{29}\]
In the case of \(\mathfrak{g} = \mathfrak{sl}(2,\mathop{\mathrm{\mathbb{R}}})\), let \(\gamma_{-1} = r \exp ( \phi)\), \(\beta_{-1} = r \exp (- \phi)\), where \(\phi\) is a function of \(\mathrm{x}\) and \(\mathrm{t}\), and \(r = \sqrt{\mathrm{r}_{-1}} = \mathop{\mathrm{const}}\), \(\mathrm{r}_{-1}\) is supposed to be positive. Then 27 gives the sinh-Gordon equation (\(\mathrm{b}\in \mathop{\mathrm{\mathbb{R}}}\)): \[\label{SinhGEqBeta} \frac{\mathrm{d}^2 \phi}{\mathrm{d}\mathrm{t}\mathrm{d}\mathrm{x}} = - 4 \mathrm{b}r \sinh \phi.\tag{30}\]
Remark 2. Note, that the sine(sinh)-Gordon equation arises when \(N \geqslant 2\). If \(N=1\), there exists the only hamiltonian \(h_{0} = \alpha_0^2 + \mathrm{b}(\beta_{-1} + \gamma_{-1})\), which produces the stationary flow \[\begin{align} &\frac{\mathrm{d}\beta_{-1}}{\mathrm{d}\mathrm{x}} = 2 \alpha_{0} \beta_{-1},& &\frac{\mathrm{d}\gamma_{-1}}{\mathrm{d}\mathrm{x}} = - 2 \alpha_{0} \gamma_{-1}, & &\frac{\mathrm{d}\alpha_{0}}{\mathrm{d}\mathrm{x}} = \mathrm{b}(\gamma_{-1} - \beta_{-1}). \end{align}\] From the flow of \(h_0\) we find: \(\alpha_{0} = \frac{1}{2} \mathrm{d}\ln \beta_{-1} / \mathrm{d}\mathrm{x}= - \frac{1}{2} \mathrm{d}\ln \gamma_{-1} / \mathrm{d}\mathrm{x}\). With the same substitution for \(\gamma_{-1}\) and \(\beta_{-1}\), where \(\phi\) is a function of \(\mathrm{x}\), we come to the stationary equation, which is the equation of motion of a simple pendulum if \(\mathfrak{g} = \mathfrak{su}(2)\): \[\begin{gather} \frac{\mathrm{d}^2 \phi}{\mathrm{d}\mathrm{x}^2} = 4 b r \sin \phi. \end{gather}\]
The system of dynamic equations 23 admits the matrix form \[\begin{gather} \frac{\mathrm{d}\mathsf{L}}{\partial \mathrm{x}} = [\mathsf{L}, \nabla h_{2N-2}], \qquad \frac{\mathrm{d}\mathsf{L}}{\partial \mathrm{t}} = [\mathsf{L}, \nabla h_{N-1}], \end{gather}\] where \(\nabla h_n\) denotes the matrix gradient of \(h_n\), namely, \[\begin{gather} \nabla h_n = \sum_{i =-1}^{2N-1} \sum_{a =1,2,3} \frac{\partial h_n}{\partial L_{a;i}} \textsf{Z}_{a,2N-i-2}. \end{gather}\] The matrix gradient of each flow has a complementary matrix \(\mathrm{A}\), such that \[[\mathsf{L}, \nabla h_{n}] = [\mathsf{L}, \mathrm{A}].\] Unlike \(\nabla h_n\), the complementary matrix \(\mathrm{A}\) is defined uniquely for all \(N\), that is for all hamiltonian systems in the hierarchy. Actually, \[\begin{align} \label{PsiMatrEqs} \frac{\mathrm{d}\mathsf{L}}{\partial \mathrm{x}} = [\mathsf{L}, \mathrm{A}_\text{st}], \qquad \frac{\mathrm{d}\mathsf{L}}{\partial \mathrm{t}} = [\mathsf{L}, \mathrm{A}_\text{ev}], \\& \mathrm{A}_\text{st} = - \begin{pmatrix} \alpha_{2N-2} & \mathrm{b}\\ \mathrm{b}z & -\alpha_{2N-2} \end{pmatrix},\qquad \mathrm{A}_\text{ev} = \begin{pmatrix} 0 & \frac{1}{z} \beta_{-1} \\ \gamma_{-1} & 0 \end{pmatrix}.\notag \end{align}\tag{31}\] The zero curvature representation for the sine(sinh)-Gordon hierarchy has the form \[\begin{gather} \frac{\mathrm{d}\mathrm{A}_\text{st}}{\partial \mathrm{t}} - \frac{\mathrm{d}\mathrm{A}_\text{ev}}{\partial \mathrm{x}} = [ \mathrm{A}_\text{st}, \mathrm{A}_\text{ev}]. \end{gather}\]
The affine algebra \(\widetilde{\mathfrak{g}} \,{=}\, \mathfrak{su}(2) \otimes \mathcal{L}(z,z^{-1})\) with the principal grading 13 and the bilinear form 14 is associated with the sine-Gordon hierarchy. Let \(\mathcal{M}_N\) be the manifold \(\widetilde{\mathfrak{g}}^\ast_+ / \big( \sum_{\ell < -2} \mathfrak{g}_\ell \big)\), \(\dim \mathcal{M}_N \,{=}\, 3N\), \(N\,{\in}\, \mathop{\mathrm{\mathbb{N}}}\). Evidently, \(\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots \subset \mathcal{M}_N \subset \mathcal{M}_{N+1} \subset \cdots\). Each manifold \(\mathcal{M}_N\) is equipped with the symplectic structure 18 . Under the action of the loop group \(\widetilde{G}_+ \,{=}\, \exp(\widetilde{\mathfrak{g}}_+)\) a manifold \(\mathcal{M}_N\) splits into orbits \(\mathcal{O}\), each defined by the system of \(N\) constraints 21 . Each orbit serves as a phase space of dimension \(2N\) for a hamiltonian system integrable in the Liouville sense. On orbits within \(\mathcal{M}_N\), \(N \geqslant 2\), there exist two hamiltonians whose flows give rise to the sine-Gordon equation 29 . We call these flows stationary and evolutionary with parameters \(\mathrm{x}\) and \(\mathrm{t}\), correspondingly.
In a similar way, the affine algebra \(\widetilde{\mathfrak{g}} = \mathfrak{sl}(2,\mathop{\mathrm{\mathbb{R}}}) \otimes \mathcal{L}(z,z^{-1})\) is associated with the sinh-Gordon hierarchy, cf. 30 .
The sine(sinh)-Gordon hierarchy is associated with the family of hyperelliptic curves \[\label{SpectrCurve} - w^2 + z^2 H(z) = 0,\tag{32}\] where \(H\) is defined by 19 . This equation of a genus \(N\) curve is obtained from the characteristic polynomial of \(\mathsf{L}\), namely \(\det \big(\mathsf{L}(z) - (w/z)\big) = 0\). All parameters of the curve are integrals of motion: hamiltonians \(h_{N-1}\), …, \(h_{2N-2}\), constraints \(h_{-1}\), …, \(h_{N-2}\), and \(h_{2N-1} = \mathrm{b}^2 = \mathop{\mathrm{const}}\).
As shown in [17], variables of separation in the sine-Gordon hierarchy are given by a positive non-special1 divisor of degree equal to the genus \(N\) of the spectral curve. In fact, pairs of coordinates of \(N\) points from the support of such a divisor serve as quasi-canonical variables, and so lead to separation of variables. Below, we briefly explain how the required points can be obtained from the dynamic variables of the \(N\)-gap system in the sine-Gordon hierarchy, and prove that pairs of coordinates of the \(N\) points serve as quasi-canonical variables.
Recall, that the symplectic manifold \(\mathcal{M}_N\), with \(3N\) coordinates 16 on it, splits into orbits \(\mathcal{O}\) fixed by \(N\) constraints, and so \(\dim \mathcal{O}= 2N\). Then, \(\beta_{2m-1}\), \(m=0\), …, \(N-1\), are eliminated with the help of the constraints. Since the expressions 20 are linear with respect to \(\beta_{2m-1}\), it is convenient to present them in the matrix form. The constraints are written as \[\begin{gather} \label{Constr} \Gamma_{\text{c}} \boldsymbol{\beta} + \textsf{A}_{\text{c}} = \boldsymbol{r},\\ \intertext{where} \Gamma_{\text{c}} = \begin{pmatrix} \mathrm{b}& 0 & 0 &\dots & 0 \\ 0& \gamma_{-1} & \gamma_{1} & \dots & \gamma_{2N-3} \\ \vdots & 0 & \gamma_{-1} & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & \gamma_{1} \\ 0 & 0& \dots & 0 & \gamma_{-1} \end{pmatrix},\qquad \boldsymbol{\beta} = \begin{pmatrix} \mathrm{b}\\ \beta_{2N-3} \\ \vdots \\ \beta_1 \\ \beta_{-1} \end{pmatrix}, \notag \\ \textsf{A}_{\text{c}} = \begin{pmatrix} 0 \\ \sum_{k=0}^{N-2} \alpha_{2(N-2-k)} \alpha_{2k} \\ \vdots \\ \sum_{k=0}^{n} \alpha_{2(n-k)} \alpha_{2k} \\ \vdots\\ \alpha_0^2 \\ 0 \end{pmatrix},\qquad \boldsymbol{r} = \begin{pmatrix} \mathrm{b}^2 \\ \mathrm{r}_{N-2} \\ \vdots \\ \mathrm{r}_{n} \\ \vdots \\ \mathrm{r}_{0} \\ \mathrm{r}_{-1} \end{pmatrix}. \notag \end{gather}\tag{33}\] The first equation is an identity. From 33 we find \[\label{GammaFromConstr} \boldsymbol{\beta} = \Gamma_{\text{c}}^{-1}(\boldsymbol{r} - \textsf{A}_{\text{c}}).\tag{34}\]
Let values of the hamiltonians be denoted by \(\mathrm{h}_{N-1}\), \(\mathrm{h}_N\), …, \(\mathrm{h}_{2N-2}\). Expressions for the hamiltonians admit the matrix form \[\begin{gather} \label{Hams} \Gamma_{\text{h}} \boldsymbol{\beta} + \textsf{A}_{\text{h}} = \boldsymbol{h},\\ \intertext{where} \Gamma_{\text{h}} = \begin{pmatrix} \gamma_{2N-3} & \mathrm{b}& 0 & \dots & 0 \\ \vdots & \gamma_{2N-3} & \ddots & \ddots & \vdots \\ \gamma_1 & \vdots & \ddots & \mathrm{b}& 0 \\ \gamma_{-1} & \gamma_1 & \dots & \gamma_{2N-3} & \mathrm{b} \end{pmatrix}, \notag \\ \textsf{A}_{\text{h}} = \begin{pmatrix} \alpha_{2N-2}^2 \\ \vdots \\ \sum_{k=n}^{N-1} \alpha_{2(N-1-k+n)} \alpha_{2k} \\ \vdots \\ \sum_{k=0}^{N-1} \alpha_{2(N-1-k)} \alpha_{2k} \end{pmatrix},\qquad \boldsymbol{h} = \begin{pmatrix} \mathrm{h}_{2N-2} \\ \vdots \\ \mathrm{h}_{N-1+n} \\ \vdots \\ \mathrm{h}_{N-1} \end{pmatrix}. \notag \end{gather}\tag{35}\] Substituting 34 into 35 , we obtain \[\label{HamsBeta} \boldsymbol{h} = \Gamma_{\text{h}} \Gamma_{\text{c}}^{-1}(\boldsymbol{r} - \textsf{A}_{\text{c}})+ \textsf{A}_{\text{h}}.\tag{36}\]
On the other hand, values of hamiltonians \(\mathrm{h}_{2N-2}\), …, \(\mathrm{h}_{N-1}\) can be found from the equation 32 of the spectral curve taken at points \(\{(z_i,w_i)\}_{i=1}^N\) which form a non-special divisor. Namely, with \(i=1\), …, \(N\), \[- w_i^2 + \mathrm{b}^2 z_i^{2N+1} + \mathrm{h}_{2N-2} z_i^{2N} + \cdots + \mathrm{h}_{N-1} z_i^{N+1} + \mathrm{r}_{N-2} z_i^{N} + \dots + \mathrm{r}_{-1} z_i = 0,\] or in the matrix form \[- \boldsymbol{w} + \mathrm{Z}_{\text{h}} \boldsymbol{h} + \mathrm{Z}_{\text{c}} \boldsymbol{r} = 0,\] where \[\begin{gather} \mathrm{Z}_{\text{c}} = \begin{pmatrix} z_1^{2N+1} & z_1^{N} & \dots & z_1 \\ z_2^{2N+1} & z_2^{N} & \dots & z_2 \\ \vdots & \vdots & \ddots & \vdots \\ z_N^{2N+1} & z_N^{N} & \dots & z_N \end{pmatrix},\quad \mathrm{Z}_{\text{h}} = \begin{pmatrix} z_1^{2N} & \dots & z_1^{N+2} & z_1^{N+1} \\ z_2^{2N} & \dots & z_2^{N+2} & z_2^{N+1} \\ \vdots & \ddots & \vdots & \vdots \\ z_N^{2N} & \dots & z_N^{N+2} & z_N^{N+1} \end{pmatrix},\quad \boldsymbol{w} = \begin{pmatrix} w_1^2 \\ w_2^2 \\ \vdots \\ w_N^2 \end{pmatrix}. \end{gather}\] The matrix \(\mathrm{Z}_{\text{h}}\) is square and invertible. Thus, \[\label{HamsSpectrC} \boldsymbol{h} = \mathrm{Z}_{\text{h}}^{-1} \big(\boldsymbol{w} - \mathrm{Z}_{\text{c}} \boldsymbol{r}\big).\tag{37}\]
Equations 36 and 37 define the same hamiltonians. Therefore, \[\begin{gather} \Gamma_{\text{h}} \Gamma_{\text{c}}^{-1}(\boldsymbol{r} - \textsf{A}_{\text{c}})+ \textsf{A}_{\text{h}} = \mathrm{Z}_{\text{h}}^{-1} \big(\boldsymbol{w} - \mathrm{Z}_{\text{c}} \boldsymbol{r}\big). \end{gather}\] Moreover, constants \(\boldsymbol{c}\) can be taken arbitrarily, and so the corresponding coefficients coincide, as well as the remaining terms: \[\begin{gather} \Gamma_{\text{h}} \Gamma_{\text{c}}^{-1} = - \mathrm{Z}_{\text{h}}^{-1} \mathrm{Z}_{\text{c}}, \tag{38} \\ -\Gamma_{\text{h}} \Gamma_{\text{c}}^{-1}\textsf{A}_{\text{c}} + \textsf{A}_{\text{h}} = \mathrm{Z}_{\text{h}}^{-1} \boldsymbol{w}. \tag{39} \end{gather}\] From 38 we find \[\mathrm{Z}_{\text{h}} \Gamma_{\text{h}} + \mathrm{Z}_{\text{c}} \Gamma_{\text{c}} = 0,\] which is equivalent to \(\gamma(z_i) = 0\). Then from 39 we obtain \[\mathrm{Z}_{\text{c}} \textsf{A}_{\text{c}} + \mathrm{Z}_{\text{h}}\textsf{A}_{\text{h}} = \boldsymbol{w},\] which produces \(w_i^2 - z_i^2 \alpha(z_i)^2 = 0\). Thus, the points \((z_i,w_i)\) are defined by \[\label{PointsDef2} \gamma(z_i) = 0,\qquad w_i^2 - z_i^2 \alpha(z_i)^2 = 0, \quad i=1,\dots, N.\tag{40}\] This result was firstly discovered in [17].
Theorem 1. Suppose, an orbit \(\mathcal{O} \subset \mathcal{M}_N\) is described in terms of the coordinates \((\gamma_{2m-1}, \alpha_{2m})\), \(m=0\), …, \(N-1\), introduced in 15 . Then the new coordinates \((z_i, w_i)\), \(i=1\), …, \(N\), defined by the formulas \[\label{PointsDef1} \gamma(z_i) = 0,\qquad w_i = \epsilon z_i \alpha(z_i), \quad i=1,\dots, N,\qquad{(1)}\] where \(\epsilon^2 = 1\), have the following properties:
a pair \((z_i, w_i)\) is a point of the spectral curve 32 .
a pair \((z_i, w_i)\) is quasi-canonically conjugate with respect to the Lie-Poisson bracket 18 : \[\label{CanonCoord} \{z_i, z_j\} = 0,\qquad \{z_i, w_j\} = \epsilon\, z_i^N\, \delta_{i,j},\qquad \{w_i, w_j\} = 0.\qquad{(2)}\]
the canonical \(1\)-form is \[\label{Liouv1Form} \epsilon \sum_{i=1}^N z_i^{-N} w_i \mathrm{d}z_i.\qquad{(3)}\]
Proof. Since \(z_i\), \(i=1\), …, \(N\), depend only on \(\gamma_{2m-1}\), \(m=0\), …, \(N-1\), and the latter commute, we have \(\{z_i, z_j\} = 0\). Next, \[\begin{gather} \{z_i, w_j\} = \sum_{n+m=N-1}^{2N-2} \bigg(\frac{\partial z_i}{\gamma_{2m-1}} \frac{\partial w_j}{\alpha_{2n}} - \frac{\partial z_i}{\alpha_{2n}} \frac{\partial w_j}{\gamma_{2m-1}} \bigg) \{\gamma_{2m-1}, \alpha_{2n}\} \\ = \frac{\epsilon}{\gamma'(z_i)} \sum_{m+n =N-1}^{2N-2} z_i^m z_j^{n+1} \gamma_{2(m+n-N)+1} = \frac{\epsilon z_j}{\gamma'(z_i)} \frac{z_i^{N-1} \gamma(z_i) - z_j^{N-1} \gamma(z_j)}{z_i - z_j}, \end{gather}\] since from ?? we have \[\begin{gather} \frac{\partial z_i}{\gamma_{2m-1}} = - \frac{z_i^m}{\gamma'(z_i)},\qquad \frac{\partial z_i}{\alpha_{2n}} = 0,\qquad \frac{\partial w_i}{\alpha_{2n}} = \epsilon z_i^{n+1},\\ \frac{\partial w_i}{\gamma_{2m-1}} = - \frac{\epsilon z_i^m}{\gamma'(z_i)} \big(\alpha(z_i) + z_i \alpha'(z_i) \big). \end{gather}\] As \(i \neq j\), it is evident that \(\{z_i, w_j\} = 0\), due to \(\gamma(z_i)=\gamma(z_j)=0\). As \(i=j\), we get \[\{z_i, w_i\} = \lim_{z_j \to z_i} \frac{\epsilon z_j}{\gamma'(z_i)} \frac{z_i^{N-1} \gamma(z_i) - z_j^{N-1} \gamma(z_j)}{z_i - z_j} = \epsilon\, z_i^N.\] Finally, we find \[\begin{gather} \{w_i, w_j\} = \sum_{n+m=N-1}^{2N-2} \bigg(\frac{\partial w_i}{\gamma_{2m-1}} \frac{\partial w_j}{\alpha_{2n}} - \frac{\partial w_i}{\alpha_{2n}} \frac{\partial w_j}{\gamma_{2m-1}} \bigg) \{\gamma_{2m-1}, \alpha_{2n}\} \\ = \epsilon^2 \sum_{m+n = N-1}^{2N-2} \bigg(z_i^m z_j^{n+1} \frac{ \alpha(z_i) + z_i \alpha'(z_i) }{\gamma'(z_i)} - z_i^{n+1} z_j^m \frac{ \alpha(z_j) + z_j \alpha'(z_j) }{\gamma'(z_j)} \bigg) \gamma_{2(m+n-N)+1} \\ = \epsilon^2 \frac{z_i^{N-1} \gamma(z_i) - z_j^{N-1} \gamma(z_j)}{z_i - z_j} \bigg(z_j \frac{ \alpha(z_i) + z_i \alpha'(z_i) }{\gamma'(z_i)} - z_i \frac{ \alpha(z_j) + z_j \alpha'(z_j) }{\gamma'(z_j)} \bigg). \end{gather}\] Thus, \(\{w_i, w_j\} = 0\), due to \(\gamma(z_i)=\gamma(z_j)=0\).
Then, ?? follows from the fact that pairs \((z_i, w_i)\), \(i=1\), …, \(N\), obey ?? . ◻
In what follows we assign \(\epsilon = 1\).
An orbit \(\mathcal{O} \subset \mathcal{M}_N\), which serves as a phase space of dimension \(2N\), is completely parameterized by non-canonical variables \(\gamma_{2m-1}\), \(\alpha_{2m}\), \(m=0\), …, \(N-1\). Points \(\{(z_i,w_i)\}_{i=1}^N\) of the spectral curve 32 serve as variables of separation, which are quasi-canonical, see Theorem 1. The relation ?? between non-canonical and quasi-canonical variables is closely connected to the solution 10 of the Jacobi inversion problem. Indeed, the both systems of equations define the same point in the fundamental domain of the Jacobian variety of the spectral curve, as we see below.
Separation of variables provides a solution of the Jacobi inversion problem on the spectral curve 32 , which is a hyperelliptic curve of genus \(N\): \[\begin{gather} \label{CurveGN} 0 = F(z,w) \equiv - w^2 + \mathrm{b}^2 z^{2N+1} + \mathrm{h}_{2N-2} z^{2N} + \cdots + \mathrm{h}_{N-1} z^{N+1} \\ + \mathrm{r}_{N-2} z^{N} + \dots + \mathrm{r}_0 z^2 + \mathrm{r}_{-1} z. \end{gather}\tag{41}\]
The spectral curve is reduced to the canonical form 2 , which we continue to denote by \(\mathcal{V}\), by applying the transformation (\(N\equiv g\)) \[\label{SectrCToCanonC} \begin{align} z &\mapsto x,\qquad w \mapsto y = w/\mathrm{b},\qquad F(x, \mathrm{b}y) = \mathrm{b}^2 f(x,y),\\ &\mathrm{h}_{n}\; (\text{or } \mathrm{r}_n)= \mathrm{b}^2 \lambda_{4g-2-2n},\;\;n=-1,\,\dots,\, 2N-2. \end{align}\tag{42}\] Note, that one of the branch points of 41 is fixed at \(0\), and so the corresponding canonical form has \(\lambda_{4g+2}=0\).
We will work with \(\wp\)-functions associated with \(\mathcal{V}\), and use the coordinates \(u = (u_1,\dots,u_{2g-1})^t\) of \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\). The not normalized differentials of the first and second kinds defined by 4 are expressed in terms of coordinates of 41 as follows \[\begin{align} & \mathrm{d}u_{2n-1} = \frac{\mathrm{b}z^{N-n} \mathrm{d}z}{\partial_w F(z,w)},\quad n=1,\dots, N,\tag{43} \\ & \mathrm{d}r_{2n-1} = \frac{ \mathrm{d}z}{\mathrm{b}\partial_w F(z,w)} \sum_{j=1}^{2n-1} (2n-j) \mathrm{h}_{2N-j} z^{N+n-j}, \quad n=1,\dots, N, \tag{44} \end{align}\] where the notation \(\mathrm{h}_n\) is used for \(\mathrm{h}_n\) and \(\mathrm{r}_n\), and \(\mathrm{h}_{2N-1} = \mathrm{b}^2\).
Applying the transformation 42 to 10 , we are able to find the pre-image \(D = \sum_{i=1}^N (z_i,w_i)\) of any \(u\in \mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \backslash \Sigma\). On the other hand, the \(N\) values \(z_i\) are zeros of the polynomial \(\gamma(z)\), and the \(N\) values \(w_i\) are obtained from \(w_i = z_i \alpha(z_i)\), cf. ?? . Thus, \[\tag{45} \begin{align} &\gamma_{2(N-k)-1} = - \mathrm{b}\wp_{1,2k-1}(u), \quad k=1,\dots, N; \tag{46}\\ &\alpha_{2N-2} = - \frac{\mathrm{b}\wp_{1,1,2N-1}(u)}{2 \wp_{1,2N-1}(u)}, \\ &\alpha_{2(N-k)} = - \frac{\mathrm{b}}{2} \Big(\wp_{1,1,2k-3}(u) - \frac{\wp_{1,2k-3}(u) \wp_{1,1,2N-1}(u)}{\wp_{1,2N-1}(u)} \Big), \;\; k=2,\dots, N. \tag{47} \end{align} Taking into account the relations between \wp-functions obtained from \eqref{BetaGammaM1EqEv}, we find \begin{aligned}\tag{48} &\alpha_{2(N-k)} = - \frac{\mathrm{b}\wp_{1,2k-1,2N-1}(u)}{2 \wp_{1,2N-1}(u)}, \quad k=1,\dots, N, '} \end{aligned} and also \begin{align}\tag{49} &\beta_{-1} = \frac{- c_{-1}}{\mathrm{b}\wp_{1,2N-1}(u)},\\ &\beta_{2(N-k)-1} = \mathrm{b}\frac{ \wp_{2k-1,2N-1}(u)}{\wp_{1,2N-1}(u)}, \quad k=1,\dots, N-1. \end{align}\]
Finally, we obtain \[\label{SinGSolGamma} \gamma_{-1} = \imath r \exp (-\imath \phi) = - \mathrm{b}\wp_{1,2N-1}(u),\tag{50}\] which produces the \(N\)-gap solution \(\phi\) of the sine-Gordon equation 29 in the \(2N\)-dimensional phase space. This solution coincides with the one proposed in [10].
Remark 3. The sine-Gordon equation comes from 27 , which in terms of \(\wp\)-functions acquires the form \[\begin{gather} \label{SinGWPEq} \frac{\mathrm{d}}{\mathrm{d}u_{2N-1}} \frac{\wp_{1,1,2N-1}(u)}{\wp_{1,2N-1}(u)} = 2 \Big(\wp_{1,2N-1}(u) - \frac{\lambda_{4 N}}{\wp_{1,2N-1}(u) }\Big). \end{gather}\tag{51}\] This identity is associated with a curve of the form 2 with \(\lambda_{4N+2}=0\).
Remark 4. Parameters \(\lambda_2\), …, \(\lambda_{2N}\) of 2 serve as values \(\mathrm{h}_{2N-2}\), …, \(\mathrm{h}_{N-1}\) of hamiltonians, since \(\mathrm{h}_{n} \,{=}\, \mathrm{b}^2 \lambda_{4N-2-2n}\). Let \(J_{2N+2+2n}\) be functions of \(\wp_{1,2i-1}\), \(\wp_{1,1,2i-1}\), \(i=1\), …, \(N\), and \(\lambda_{2k}\), \(k=1\), …, \(2N+1\), such that the equations \[\label{JacEqs} J_{2N+2+2n} = 0,\qquad n=1, \dots, N,\tag{52}\] give an algebraic model of \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\) of the curve 2 , see [18]. Then the hamiltonians, given by 20 , expressed in terms of \(\wp\)-functions by means of 45 , coincide with 52 , provided \(\lambda_{4N+2}=0\).
From 31 we find \[\begin{align*} &\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}} \gamma(z) = - 2 \alpha_{2N-2} \gamma(z) + 2 \mathrm{b}z \alpha(z),\\ &\frac{\mathrm{d}}{\mathrm{d}\mathrm{t}} \gamma(z) = - 2 \gamma_{-1} \alpha(z), \end{align*}\] where all dynamic variables are functions of \(\mathrm{x}\) and \(\mathrm{t}\). Therefore, zeros of \(\gamma(z)\) are functions of \(\mathrm{x}\) and \(\mathrm{t}\) as well, namely \(\gamma(z) = \mathrm{b}\prod_{i=1}^N (z-z_i(\mathrm{x},\mathrm{t}))\). Then \[\begin{align*} &\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}} \log \gamma(z) = - \sum_{j=1}^N \frac{1}{z-z_j}\frac{\mathrm{d}z_j}{\mathrm{d}\mathrm{x}} = - 2 \alpha_{2N-2} + 2 \mathrm{b}z \frac{\alpha(z)}{\gamma(z)},\\ &\frac{\mathrm{d}}{\mathrm{d}\mathrm{t}} \log \gamma(z) = - \sum_{j=1}^N \frac{1}{z-z_j}\frac{\mathrm{d}z_j}{\mathrm{d}\mathrm{t}} = - 2 \gamma_{-1} \frac{\alpha(z)}{\gamma(z)}. \end{align*}\] Taking into account ?? , we find as \(z\to z_i\), \(i=1\), …, \(N\), \[\begin{gather} \label{DzDxEqs} \frac{\mathrm{d}z_i}{\mathrm{d}\mathrm{x}} = - \frac{2 w_i}{\prod_{j\neq i}^N (z_i - z_j)},\qquad \frac{\mathrm{d}z_i}{\mathrm{d}\mathrm{t}} = - \frac{2 w_i \prod_{j\neq i} (-z_j)}{\prod_{j\neq i} (z_i - z_j) }. \end{gather}\tag{53}\]
Let \(D = \sum_{i=1}^N (z_i,w_i)\), and the \(N\) points satisfy ?? . The Abel image of \(D\) \[u = \mathcal{A}(D) = \sum_{i=1}^N \int_{\infty}^{(z_i,w_i)} \mathrm{d}u = \sum_{i=1}^N \int_{\infty}^{(z_i,w_i)} \begin{pmatrix} z^{N-1} \\ \vdots \\ z \\ 1 \end{pmatrix} \frac{\mathrm{b}\mathrm{d}z}{-2w}\] depends on \(\mathrm{x}\) and \(\mathrm{t}\). Applying 53 , we find \[\begin{align*} &\frac{\mathrm{d}u_{2n-1}}{\mathrm{d}\mathrm{x}} = \sum_{i=1}^N \frac{\mathrm{b}z_i^{N-n}}{-2w_i} \frac{\mathrm{d}z_i}{\mathrm{d}\mathrm{x}} = \sum_{i=1}^N \frac{\mathrm{b}z_i^{N-n}}{\prod_{j\neq i}^N (z_i - z_j)} = \mathrm{b}\delta_{n,1}, \\ & \frac{\mathrm{d}u_{2n-1}}{\mathrm{d}\mathrm{t}} = \sum_{i=1}^N \frac{\mathrm{b}z_i^{N-n}}{-2w_i} \frac{\mathrm{d}z_i}{\mathrm{d}\mathrm{t}} = \sum_{i=1}^N \frac{\mathrm{b}z_i^{N-n}\prod_{j\neq i} (-z_j)}{\prod_{j\neq i} (z_i - z_j) } = \mathrm{b}\delta_{n,N}. \end{align*}\] And so, we obtain \[\begin{align}u_{1} &= \mathrm{b}\mathrm{x}+ C_1,\\ u_{2n-1} &= \mathrm{b}\mathrm{c}_{2n-1} + C_{2n-1} = \mathop{\mathrm{const}},\quad n=2, \ldots, N-1, \\ u_{2N-1} &= \mathrm{b}\mathrm{t}+ C_{2N-1}.\end{align}\] Here \(\mathrm{c}_{2n-1}\), \(n=2, \ldots, N-1\), are arbitrary real constants, and \(\boldsymbol{C} = (C_1\), \(C_3\), …, \(C_{2N-1})\) is a constant vector, chosen in such a way that \(\gamma_{-1} \,{=}\, {-} \mathrm{b}\wp_{1,2N-1}(u)\) has the desired property, see subsection 3.5. Thus, 50 acquires the form \[\label{KdVSolRealCond} \gamma_{-1}(\mathrm{x}, \mathrm{t}) = - \mathrm{b}\wp_{1,2N-1}\big(\mathrm{b}(\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2N-3}, \mathrm{t})^t + \boldsymbol{C}\big),\tag{54}\] which produces a finite-gap solution of the sine(sinh)-Gordon equation.
In the sine-Gordon hierarchy, we have \(\mathrm{b}= \imath b\), \(b \in \mathop{\mathrm{\mathbb{R}}}\), and \(r=\sqrt{-\mathrm{r}_{-1}}\), and so \(r/b = \sqrt{\lambda_{4N}}\). According to 22 , values of \(\gamma_{-1}\) draw a circle of radius \(\sqrt{\lambda_{4N}}\). Recalling the substitution for \(\gamma_{-1}\), we find \[\tag{55} \begin{equation}\tag{56} \phi(\mathrm{x},\mathrm{t}) = \imath \log \Big({-} \frac{b}{r} \wp_{1,2N-1}\big(\imath b (\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2N-3}, \mathrm{t})^t + \boldsymbol{C}\big) \Big). \end{equation} In the \sinh-Gordon hierarchy, \mathrm{b}\in \mathop{\mathrm{\mathbb{R}}}, and r=\sqrt{\mathrm{r}_{-1}}, and so r/ \mathrm{b}\,{=}\, \sqrt{\lambda_{4N}}. Recalling the substitution for \gamma_{-1}, we find \begin{equation}\tag{57} \phi(\mathrm{x},\mathrm{t}) = \log \Big({-} \frac{\mathrm{b}}{r} \wp_{1,2N-1}\big( \mathrm{b}(\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2N-3}, \mathrm{t})^t + \boldsymbol{C}\big) \Big). \end{equation}\]
The spectral curve 41 is uniformized by means of \(\wp\)-functions associated with the corresponding canonical curve \(\mathcal{V}\), obtained by the transformation 42 . Explicit expressions 45 for the dynamic variables \(\gamma_{2n-1}\), \(\alpha_{2n}\), \(\beta_{2n-1}\), \(n=0\), …, \(N-1\), in terms of \(\wp\)-functions on \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \backslash \Sigma\) are obtained. In particular, the finite-gap solution 55 of the sine(sinh)-Gordon equation expressed through \(\wp_{1,2N-1}\) is found as a function of \(\mathrm{x}\) and \(\mathrm{t}\). Coordinates \(u_1\) and \(u_{2N-1}\) of \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\), up to the constant multiple \(\mathrm{b}\), serve as the parameters \(\mathrm{x}\) and \(\mathrm{t}\) of the stationary and evolutionary flows, correspondingly, in the \(N\)-gap hamiltonian system of the sine(sinh)-Gordon hierarchy.
In what follows, we work with the canonical curve \(\mathcal{V}\) of the form 2 , corresponding to the spectral curve 41 of the \(N\)-gap hamiltonian system of the sine(sinh)-Gordon hierarchy. All parameters \(\lambda_k\) of 2 are real, since integrals of motion \(h_n\), \(c_n\) in 41 are required to be real. Two of branch points of the curve \(\mathcal{V}\) in question are fixed at \((0,0)\) and infinity, and so \(\lambda_{4g+2}\equiv 0\). Moreover,
Theorem 2. In the sine-Gordon hierarchy, the finite-gap solution 56 is real-valued if all finite non-zero branch points are complex conjugate.
In the sinh-Gordon hierarchy, the finite-gap solution 57 is real-valued if all finite non-zero branch points are real.
The reality conditions for the sinh-Gordon hierarchy, associated with the affine algebra \(\mathfrak{sl}(2,\mathop{\mathrm{\mathbb{R}}}) \otimes \mathfrak{L}(z,z^{-1})\), are similar to the ones for the KdV hierarchy, see [1]. The reality conditions for the sine-Gordon hierarchy are discussed in detail below.
In this section, we will find the constant vector \(\boldsymbol{C}\) such that \(\wp_{1,2N-1}\) is bounded, and with the arguments as in 56 runs along the circle of radius \(\sqrt{\lambda_{4g}}\). In the sine-Gordon hierarchy, the parametrization of \(\gamma_{-1}\) introduced in subsection 3.5 implies \(\lambda_{4g}\,{>}\,0\).
We assume that all non-zero branch points of \(\mathcal{V}\) are complex conjugate, and enumerate branch points in the ascending order of real and imaginary parts, as shown on fig. 1.
Proposition 1. Let a curve \(\mathcal{V}\) of the form 2 possesses the branch points \(\{(e_k,0)\}_{k=1}^{2g+1}\) such that \(e_{2n+1}=0\), and \(g\) pairs \(\{e_{2i-1}, e_{2i} \mid i=1, \dots, n\}\), \(\{e_{2i}, e_{2i+1} \mid i=n+1,\dots, g\}\) are complex conjugate. Then \[\label{Lambda4g} \lambda_{4g} = \prod_{i=1}^n e_{2i-1} e_{2i} \prod_{i=n+1}^{g} e_{2i} e_{2i+1} = \prod_{i=1}^g |e_{2i}|^2.\qquad{(4)}\]
Proof. The equality is obtained by direct computations. Let the equation of \(\mathcal{V}\) has the form \(y^2 = \Lambda(x)\), and \(\{e_k\}_{k=1}^{2g+1}\) be roots of \(\Lambda\). Note, that each pair of complex conjugate roots contains a root with an even index, say \(e_{2i}\). The other root in each pair has an odd index, namely, \(e_{2i-1} = \bar{e}_{2i}\) as \(i=1\), …, \(n\), and \(e_{2i+1} = \bar{e}_{2i}\) as \(i=n+1\), …, \(g\). Thus, the product of roots in the \(i\)-th pair equals \(|e_{2i}|^2\). ◻
In the sine-Gordon hierarchy, the parameter \(\lambda_{4g} = c_{-1}/ \mathrm{b}^2\) is positive, since \(\mathfrak{su}(2)\)-algebra implies \(c_{-1}= -r^2\) and \(\mathrm{b}^2 = -b^2\), \(r\), \(b\in \mathop{\mathrm{\mathbb{R}}}\). Then \[\label{SqLambda4g} \sqrt{\lambda_{4g}} = \prod_{i=1}^g |e_{2i}|.\tag{58}\] At the same time, each \(e_{2i}\) in the product on the right hand side can be replaced with its complex conjugate counterpart. Thus, we obtain \(2^g\) collections of \(g\) non-zero roots which compose the same product.
Proposition 2. There exist \(2^g\) ways to compose the product 58 from \(g\) pairs of complex conjugate roots of \(\Lambda\): by choosing one point from each pair. These \(2^g\) collections of \(g\) branch points form \(2^g\) non-special divisors.
The branch point divisors singled out by Proposition 2, by necessity, belong to the domain of \(\wp_{1,2g-1}\) in 56 . Indeed, a \(g\)-gap hamiltonian system in terms of variables of separation \((z_i,w_i)\) splits into \(g\) independent systems, each with the coordinate \(z_i\), the momentum \(w_i\), and the hamiltonian given by the spectral curve equation 41 . Finite trajectories contain branch points as turning points.
Remark 5. The \(2^g\) collections \(\mathcal{I}\) of \(g\) branch points defined by Proposition 2 correspond to the half-periods \(\Omega_{\mathcal{I}}\) such that \[\label{HPwp} |\wp_{1,2g-1}(\Omega_{\mathcal{I}})| = \sqrt{\lambda_{4g}}.\tag{59}\] The equality follows from the solution of the Jacobi inversion problem given by 10 . Note, if \(\mathcal{V}\) remains real, but not all non-zero branch points are complex conjugate, then 59 does not hold, and so the property 22 fails.
Each collection of \(g\) branch points form a divisor whose Abel image is an even non-singular half-period. Odd non-singular and singular half-periods are Abel images of divisors of degrees less than \(g\). As explained in subsection 2.6, each half-period is associated with a partition \(\mathcal{I}\cup \mathcal{J}\) of indices of all branch points, where cardinality of \(\mathcal{I}\) is equal to or less than \(g\), that is \(|\mathcal{I}|\leqslant g\). \(\wp\)-Functions have singularities at all half-periods with \(|\mathcal{I}| < g\). Therefore, at half-periods corresponding to collections of \(g\) distinct branch points \(\wp\)-functions have finite values.
Theorem 3. Let a curve \(\mathcal{V}\) of the form 2 have branch points as defined in Proposition 1. Then with a choice of cycles as on fig. 1 and the standard not normalized holomorphic differentials 5 , the period lattice formed by each pair of periods \(\omega_{k}\), \(\omega'_{k}\) is rhombic, with generators:
Proof. Let the equation of \(\mathcal{V}\) be \(y^2 = \Lambda(x)\). If branch points are as described in Proposition 1, then \(\Lambda(x)<0\) at \(x<e_{2n+1}\equiv 0\) and \(\Lambda(x)>0\) at \(x>e_{2n+1}\).
(I) For \(k=1\), …, \(n\) we have \(\tfrac{1}{2} \omega_k \,{=}\, \mathcal{A} (e_{2k}) \,{-}\, \mathcal{A} (\bar{e}_{2k})\), where \(\mathcal{A}\) is computed along the monodromy path which goes below and counter-clockwise all cuts, as explained in [11]. Expanding \(\mathcal{A} (e_{2k})\) and \(\mathcal{A} (\bar{e}_{2k})\) in the Taylor series about \(\mathop{\mathrm{\mathrm{Re}}}e_{2k}\), and taking into account that the first kind integral to \(\mathop{\mathrm{\mathrm{Re}}}e_{2k}\) along the real axis is purely imaginary, since \(\Lambda(x)<0\) to the left of \(\mathop{\mathrm{\mathrm{Re}}}e_{2k}\), we find that \(\mathop{\mathrm{\mathrm{Im}}}\mathcal{A} (\bar{e}_{2k}) = \mathop{\mathrm{\mathrm{Im}}}\mathcal{A} (e_{2k})\). Thus, \(\omega_k\) is real.
(II) Next, we consider \(\tfrac{1}{2} \omega'_k \,{=}\, {-}\sum_{i=k}^g \big(\mathcal{A}(\bar{e}_{2i}) - \mathcal{A} (e_{2i})\big)\) for \(k=n+1\), …, \(g\). Since \(\Lambda(x) > 0\) to the right of \(\mathop{\mathrm{\mathrm{Re}}}e_{2k}\), we find that \(\mathop{\mathrm{\mathrm{Re}}}\mathcal{A} (\bar{e}_{2k}) = \mathop{\mathrm{\mathrm{Re}}}\mathcal{A} (e_{2k})\), which implies \(\omega'_k \in \imath \mathop{\mathrm{\mathbb{R}}}\).
(III) For \(k=1\), …, \(n\) we have \[\label{FKprim} \tfrac{1}{2} \omega'_k = - \sum_{j=k}^n \big(\mathcal{A}(e_{2j+1}) - \mathcal{A}( e_{2j}) \big) - \sum_{j=n+1}^g \big( \mathcal{A}(\bar{e}_{2j}) - \mathcal{A} (e_{2j})\big).\tag{60}\] The second sum is purely imaginary, as shown above. Each term of the first sum is computed as follows \[\begin{gather} \label{eeInt} \mathcal{A}(e_{2j+1}) - \mathcal{A} (e_{2j}) = \big(\mathcal{A} ( e_{2j+1}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j+1}) \big) \\ + \big( \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j+1}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j}) \big) + \big(\mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j}) - \mathcal{A} (e_{2j}) \big). \end{gather}\tag{61}\] The middle term on the right hand side has purely imaginary values. Taking into account (I), we find \[\begin{align} &\mathop{\mathrm{\mathrm{Re}}}\big(\mathcal{A} ( e_{2j+1}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j+1}) \big) = - \tfrac{1}{4} \omega_{j+1},& & j=k,\dots, n-1,\\ &\mathop{\mathrm{\mathrm{Re}}}\big(\mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2j}) - \mathcal{A} (e_{2j}) \big) = - \tfrac{1}{4} \omega_{j},& & j=k,\dots, n, \end{align}\] and \(\mathcal{A} ( e_{2n+1}) \,{-}\, \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2n+1}) \,{=}\, 0\) due to \(e_{2n+1}=0\). Thus, \(\mathop{\mathrm{\mathrm{Re}}}\omega'_k = \frac{1}{2} \mathop{\mathrm{\mathrm{Re}}}\omega_k\), cf.@eq:ImRels .
(IV) Finally, for \(k\,{=}\,n+1\), …, \(g\) we have \(\tfrac{1}{2} \omega_k = \mathcal{A} (e_{2k}) - \mathcal{A} (e_{2k-1})\), which is computed similarly to 61 . Namely, \[\begin{gather} \mathcal{A} (e_{2k}) - \mathcal{A} (e_{2k-1}) = \big(\mathcal{A} ( e_{2k}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k}) \big) + \big( \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k-1}) \big) \\ + \big(\mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k-1}) - \mathcal{A} (e_{2k-1}) \big). \end{gather}\] The middle term on the right hand side is real, since \(\Lambda(x)\,{>}\,0\) on the interval \([\mathop{\mathrm{\mathrm{Re}}}e_{2k-1},\mathop{\mathrm{\mathrm{Re}}}e_{2k}]\). The first kind integral \(\mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k-1}) - \mathcal{A} (e_{2k-1})\) vanishes at \(k=n+1\), and for \(k>n+1\) is taken along the right edge of the cut \([e_{2k-2},e_{2k-1}]\), that is, in the negative direction. Then, \(\mathcal{A} ( e_{2k}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k})\) is taken along the left edge of the cut \([e_{2k},e_{2k+1}]\), which coincides with the positive direction of the monodromy path. Taking into account (II), we find \[\begin{align} &\mathop{\mathrm{\mathrm{Im}}}\big(\mathcal{A} ( e_{2k}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k}) \big) = - \tfrac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\big(\omega'_k - \omega'_{k+1}\big),\quad j=n+1,\dots, g-1,\\ &\mathop{\mathrm{\mathrm{Im}}}\big(\mathcal{A} ( e_{2g}) - \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2g}) \big) = - \tfrac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\omega'_g,\\ &\mathop{\mathrm{\mathrm{Im}}}\big( \mathcal{A} (\mathop{\mathrm{\mathrm{Re}}}e_{2k-1}) - \mathcal{A} ( e_{2k-1}) \big) = \tfrac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\big(\omega'_{k-1} - \omega'_{k}\big),\quad j=n+2,\dots, g. \end{align}\] This implies ?? .
The relations ?? guarantee that the period lattice formed by each pair of periods \(\omega_{k}\), \(\omega'_{k}\) is rhombic, with the indicated generators. ◻
Let ‘\(\sim\)’ denote the congruence relation on \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\).
Corollary 1. Under the conditions of Theorem 3 we have \[\label{ReImOmega0} \begin{align} & \mathop{\mathrm{\mathrm{Re}}}\Omega \sim 0,\quad \text{if} \quad \Omega = \tfrac{1}{2}\omega_k,\quad k=1,\,\dots,\,n, \label{ReOmega0} \\ & \mathop{\mathrm{\mathrm{Im}}}\Omega \sim 0,\quad \text{if} \quad \Omega = \tfrac{1}{2}\omega'_k, \quad k=n+1,\,\dots,\,g. \label{ImOmega0} \end{align}\] {#eq: sublabel=eq:ReImOmega0,eq:ReOmega0,eq:ImOmega0}
Proof. Evidently, ?? follows from ?? Next, recurrence relations for \(\tfrac{1}{2} \omega'_k\), \(k=n+1\), …, \(g\) are obtained from ?? , namely \[\begin{align}& \tfrac{1}{2} \omega'_g = \imath \textstyle \sum_{j=n+1}^g \mathop{\mathrm{\mathrm{Im}}}\omega_j,\\ & \tfrac{1}{2} \omega'_{g-1} = \omega'_g + \imath \mathop{\mathrm{\mathrm{Im}}}\omega'_g,\\ & \tfrac{1}{2} \omega'_{j} = \omega'_{j+1} + \imath \mathop{\mathrm{\mathrm{Im}}}\omega_{j+1} - \tfrac{1}{2} \omega'_{j+2}, \quad j=g-2,\, \dots,\, n+2,\\ & \tfrac{1}{2} \omega'_{n+1} = \tfrac{1}{2} \omega'_{n+2} - \imath \mathop{\mathrm{\mathrm{Im}}}\omega_{n+1} .\end{align}\] which implies ?? . ◻
Let \(\mathfrak{J}= \mathop{\mathrm{\mathbb{C}}}^g\) be the vector space where \(\mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\) is embedded. Let \(\mathop{\mathrm{\mathrm{Re}}}\mathfrak{J}\sim \mathop{\mathrm{\mathbb{R}}}^g\) be the span of real axes of \(\mathfrak{J}\) over \(\mathop{\mathrm{\mathbb{R}}}\), and \(\mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\sim \mathop{\mathrm{\mathbb{R}}}^g\) be the span of imaginary axes of \(\mathfrak{J}\) over \(\mathop{\mathrm{\mathbb{R}}}\). Then \(\mathfrak{J}= \mathop{\mathrm{\mathrm{Re}}}\mathfrak{J}\oplus \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\). As seen from 56 , the domain of \(\wp_{1,2N-1}\) is a subspace of \(\mathfrak{J}\) parallel to \(\mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) where \(\wp\)-functions are bounded.
Theorem 4. The \(2^g\) half-periods obtained from the divisors singled out by Proposition 2 are located on the subspace \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\), where \[\label{CDef} \boldsymbol{C} = \sum_{i=0}^{[(g-1)/2]} \tfrac{1}{2} \omega_{g-2i} + \sum_{k=1}^g \tfrac{1}{2} \omega'_k = \mathcal{A} \Big(\sum_{i=1}^g e_{2i} \Big).\qquad{(5)}\] At the same time, these \(2^g\) half-periods are located on subspace \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Re}}}\mathfrak{J}\).
Proof. With the choice of cycles as on fig. 1, we have the following correspondence between sets \(\mathcal{I}\) of cardinality \(1\) and half-periods: \[\begin{align} \label{HPchar}&\mathcal{A}(\{2k-1\}) \sim \tfrac{1}{2} \omega'_{k} + \sum_{i=1}^{k-1} \tfrac{1}{2} \omega_i,\quad \mathcal{A}(\{2k\}) \sim \tfrac{1}{2} \omega'_k + \sum_{i=1}^k \tfrac{1}{2} \omega_i,\quad k=1,\dots, g, \\ &\mathcal{A}(\{2g+1\}) \sim \sum_{i=1}^g \tfrac{1}{2} \omega_i.\end{align}\tag{62}\] Eq. 62 implies \[\{2,4,\dots,2g\} \sim \sum_{i=0}^{[(g-1)/2]} \tfrac{1}{2} \omega_{g-2i} + \sum_{k=1}^g \tfrac{1}{2} \omega'_k,\] which proves ?? .
Analyzing 62 , and taking into account ?? , we find the following:
if \(k=1\), …\(n\), then \[\begin{align} &\mathop{\mathrm{\mathrm{Re}}}\mathcal{A}(\{2k\}) \sim \mathop{\mathrm{\mathrm{Re}}}\mathcal{A}(\{2k-1\}) \sim \tfrac{1}{2} \mathop{\mathrm{\mathrm{Re}}}\omega'_k,& \\ &\mathop{\mathrm{\mathrm{Im}}}\mathcal{A}(\{2k\}) \sim \mathop{\mathrm{\mathrm{Im}}}\mathcal{A}(\{2k-1\}) \sim \tfrac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\omega'_k,& \end{align}\] since \(\tfrac{1}{2} \mathop{\mathrm{\mathrm{Re}}}\omega_k \sim \mathop{\mathrm{\mathrm{Re}}}\omega'_k \sim 0\), and \(\tfrac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\omega_k =0\) for \(k=1\), …, \(n\);
if \(k=n+1\), …\(g\), then \[\begin{align} &\mathop{\mathrm{\mathrm{Re}}}\mathcal{A}(\{2k\}) \sim \mathop{\mathrm{\mathrm{Re}}}\mathcal{A}(\{2k+1\}) \sim \tfrac{1}{2} \textstyle \sum_{i=n+1}^{k} \mathop{\mathrm{\mathrm{Re}}}\omega_i,& \\ &\mathop{\mathrm{\mathrm{Im}}}\mathcal{A}(\{2k\}) \sim \mathop{\mathrm{\mathrm{Im}}}\mathcal{A}(\{2k+1\}) \sim \tfrac{1}{2} \textstyle \sum_{i=n+1}^{k} \mathop{\mathrm{\mathrm{Im}}}\omega_i,& \end{align}\] which follows from ?? , and ?? .
This implies, that any even number in the set \(\mathcal{I}= \{2,4,\dots,2g\}\) can be replaced with its odd counterpart, namely \(2i-1\) for \(i=1\), …\(n\), or \(2i+1\) for \(i=n+1\), …, \(g\), and \(\mathcal{A}(\mathcal{I})\) remains unchanged and congruent to \(\boldsymbol{C}\). ◻
Remark 6. All \(2^{2g}\) half-periods of a hyperelliptic curve \(\mathcal{V}\) split between \(2^g\) subspaces parallel to \(\mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) and obtained by shifts generated from \(\{\frac{1}{2}\omega_k \mid k=1,\, \dots,\,n\}\), \(\{\frac{1}{2}\mathop{\mathrm{\mathrm{Re}}}\omega_k \mid k=n+1,\, \dots,\, g\}\). Each subspace contains \(2^{g}\) half-periods. If \(\mathcal{V}\) is defined by Proposition 1, the half-periods on \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) are defined by Proposition 2, as proven by Theorem 4. Other subspaces parallel to \(\mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) contain half-periods corresponding to special divisors, that is half-periods which belong to \(\Sigma\).
At the same time, the \(2^{2g}\) half-periods split between \(2^g\) subspaces parallel to \(\mathop{\mathrm{\mathrm{Re}}}\mathfrak{J}\), obtained by shifts generated from \(\{\frac{1}{2} \mathop{\mathrm{\mathrm{Im}}}\omega'_k \mid k=1,\, \dots,\,n\}\), \(\{\frac{1}{2} \omega'_k \mid k=n+1,\, \dots,\, g\}\). Each subspace contains \(2^{g}\) half-periods. The half-periods on \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Re}}}\mathfrak{J}\) are even non-singular. Other subspaces contain half-periods which belong to \(\Sigma\).
Corollary 2. \(\wp\)-Functions are bounded on the subspace \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) with \(\boldsymbol{C}\) defined by ?? .
Remark 7. Note, that \(\boldsymbol{C} \,{=}\, \tfrac{1}{2} \omega K\), where \(K\) denotes the vector of Riemann constants, and corresponds to the divisor of branch points \(\{e_{2i}\}_{i=1}^g\).
Below, we briefly recall the addition laws on hyperelliptic curves, formulated in [19].
The addition operation on the Jacobian variety of a plane algebraic curve is defined by the polynomial function \(\mathcal{R}_{3g}\) of weight \(3g\). On a hyperelliptic curve \(\mathcal{V}\) of genus \(g\) it has the form \[\begin{align} \mathcal{R}_{3g}(x,y) \equiv y \nu_y(x) + \nu_x(x), \\&\nu_y(x) \equiv \sum_{i=1}^{\mathfrak{k}} \nu_{2i-2} x^{\mathfrak{k}-i},\quad \nu_x(x) \equiv \sum_{i=1}^{3\mathfrak{k}-1} \nu_{2i-1} x^{3\mathfrak{k}- 1 - i},\quad \text{if } g = 2\mathfrak{k}-1,\;\;\text{or} \\ &\nu_y(x) \equiv \sum_{i=1}^{\mathfrak{k}} \nu_{2i-1} x^{\mathfrak{k}-i},\quad \nu_x(x) \equiv \sum_{i=1}^{3\mathfrak{k}+1} \nu_{2i-2} x^{3\mathfrak{k}+1-i},\quad \text{if } g = 2\mathfrak{k},\end{align}\] where \(\nu_0=1\) and \(\mathfrak{k}\in \mathop{\mathrm{\mathbb{N}}}\). The polynomial function \(\mathcal{R}_{3g}\) contains \(2g\) arbitrary coefficients, and so is uniquely defined by fixing \(2g\) points in its divisor of zeros. Let \(2g\) points of \(\mathcal{V}\) with no pairs of points in involution form two non-special divisors \(D_\text{I}\) and \(D_\text{II}\), and \(\mathcal{A}(D_\text{I}) = u_\text{I}\), \(\mathcal{A}(D_\text{II}) = u_\text{II}\). Let \(D_\text{III}\) be such a divisor that \((\mathcal{R}_{3g})_0 = D_\text{I} + D_\text{II} + D_\text{III}\), and \(\mathcal{A}(D_\text{III}) = u_\text{III}\). This implies \(u_\text{I}+u_\text{II}+u_\text{III}=0\).
Equations 10 allow to reduce \(\mathcal{R}_{3g}\) to a degree \(g-1\) polynomial in \(x\) with coefficients expressed in terms of \(\nu_k\) and basis \(\wp\)-functions, namely: \(\wp_{1,2i-1}\), \(\wp_{1,1,2i-1}\), \(i=1\), …, \(g\). Since the pre-images of \(u_\text{I}\), \(u_\text{II}\), \(u_\text{III}\) form the divisor of zeros of \(\mathcal{R}_{3g}\), we have \[\begin{gather} \label{AddLawEqs} \begin{pmatrix} 1_g & \textsf{Q}(u_\text{I}) \\ 1_g & \textsf{Q}(u_\text{II}) \\ 1_g & \textsf{Q}(u_\text{III}) \end{pmatrix} \begin{pmatrix} \bar{\nu} \\ \nu \end{pmatrix} = - \begin{pmatrix} \mathbf{q}(u_\text{I}) \\ \mathbf{q}(u_\text{II}) \\ \mathbf{q}(u_\text{III}) \end{pmatrix}, \end{gather}\tag{63}\] where \(\bar{\nu} = (\nu_{g+2}, \nu_{g+4}, \dots, \nu_{3g} )^t\), \(\nu = (\nu_g, \dots, \nu_2, \nu_1)^t\), and \(\textsf{Q}\), \(\mathbf{q}\) are defined as in [1].
Let \(u_\text{I}\) and \(u_\text{II}\) be given, then \(u_\text{III} = - u_\text{I} - u_\text{II}\). Thus, equations for \(u_\text{I}\) and \(u_\text{II}\) in 63 are used to find \(\nu\) and \(\bar{\nu}\) by means of Cramer’s rule. Values \(\wp_{1,2i-1}(u_\text{III})\) are obtained from the equality \[\nu_y^2 f(x,- \nu_x / \nu_y) = \mathcal{R}_{2g}(x,y;u_\text{I}) \mathcal{R}_{2g}(x,y;u_\text{II}) \mathcal{R}_{2g}(x,y;u_\text{III}),\] explicit expressions can be found in [1]. Next, values \(\wp_{1,1,2i-1}(u_\text{III})\) are computed from the equations for \(u_\text{III}\) in 63 . A more general approach to the addition laws can be found in [19], with hyperelliptic addition laws as an illustration.
For our purpose, we need an expression for \(\wp_{1,2g-1}\)-function of the form \[\label{wp12gm1} \wp_{1,2g-1}(u_\text{III}) = (-1)^{g-1} \frac{\nu_{3g}^2 - \lambda_{4g+2} \nu_{g-1}^2 }{\wp_{1,2g-1}(u_\text{I})\wp_{1,2g-1}(u_\text{II})}.\tag{64}\] Note, that \(\lambda_{4g+2} = 0\) in the sine(sinh)-Gordon hierarchy.
Recall, that the function 54 in the sine-Gordon hierarchy satisfies the constraint 22 , which is equivalent to \[\label{AbsWPLambda4g} |\wp_{1,2g-1}\big(\imath b (\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2g-3}, \mathrm{t})^t + \boldsymbol{C}\big)|^2 = \lambda_{4g},\tag{65}\] where \(g\,{\equiv}\, N\). Below we prove, that 65 holds if the spectral curve of the system in question has the canonical form \(\mathcal{V}\) described in Proposition 1, and \(\boldsymbol{C}\) is defined by ?? . We work with \(\wp\)-functions associated with \(\mathcal{V}\). Then, \(\wp_{i,j}(s)\), \(\wp_{i,j,k}(s)\), \(\wp_{i,j}(\imath s)\) as \(s \in \mathop{\mathrm{\mathbb{R}}}^g\) are real-valued, and \(\wp_{i,j,k}(\imath s)\) have purely imaginary values. Values of \(\wp_{1,2i-1}(\boldsymbol{C})\) are symmetric functions in \(\{e_{2i}\}_{i=1}^g\) computed from 11 , and \(\wp_{1,1,2i-1}(\boldsymbol{C})=0\) as follows from 12 . Let \(u_\text{I} \equiv \boldsymbol{C}\), and \(u_\text{II} = \imath b (\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2N-3}, \mathrm{t})^t \equiv \imath s\), where \(s \in \mathop{\mathrm{\mathbb{R}}}^g\).
Lemma 1. Let \(\boldsymbol{C}\) be defined by ?? , and \(s \in \mathop{\mathrm{\mathbb{R}}}^g\). Then \[\label{etaSqRe} \nu_{3g} \bar{\nu}_{3g} = (-1)^{g-1} \lambda_{4g} \wp_{1,2g-1}(s).\tag{66}\]
Proof. By Cramer’s rule, from 63 we find \[\begin{gather} \label{eta3gGen} \nu_{3g} = \frac{\begin{vmatrix} \textsf{C}_g(\boldsymbol{C}) & \textsf{Q}(\boldsymbol{C}) \\ \textsf{C}_g (s) & \textsf{Q}(s) \end{vmatrix}}{\begin{vmatrix} 1_g & \textsf{Q}(\boldsymbol{C}) \\ 1_g & \textsf{Q}(s) \end{vmatrix}} = \frac{\begin{vmatrix} \textsf{C}_g(\boldsymbol{C}) & \textsf{P}(\boldsymbol{C}) & 0 \\ \textsf{C}_g (s) & \textsf{P}(s) & \textsf{R}(s) \end{vmatrix}}{\begin{vmatrix} 1_g & \textsf{P}(\boldsymbol{C}) & 0 \\ 1_g & \textsf{P}(s) & \textsf{R}(s) \end{vmatrix}} = \frac{|\textsf{N}|}{|\textsf{D}|}. \end{gather}\tag{67}\] where \(\textsf{C}_g(u)\) is the identity matrix with the last column replaced with \(- \mathbf{q}(u)\), \(\textsf{N}\) and \(\textsf{D}\) denote the matrices in the numerator and denominator, respectively. The matrix \(\textsf{Q}(u)\) contains \([\frac{1}{2}g]\) columns linear in functions \(\wp_{1,1,2i-1}(u)\) — we denote this block by \(\textsf{R}(u)\), and \(g-[\frac{1}{2}g]\) columns which contain only functions \(\wp_{1,2i-1}(u)\) — this block is denoted by \(\textsf{P}(u)\). Entries of \(\textsf{P}(\boldsymbol{C})\), \(\textsf{C}_g(\boldsymbol{C})\) are expressed in terms of elementary symmetric functions in \(\{e_{2i}\}_{i=1}^g\), and \(\textsf{R}(\boldsymbol{C}) = 0\), since \(\wp_{1,1,2i-1}\) vanish at half-periods.
Note, that the numerator and the denominator in 67 contain the same block \(\textsf{R}(s)\) of size \(g\times [\frac{1}{2}g]\). Let \([\textsf{R}]_{I}\) denote a principal minor of \(\textsf{R}(s)\) of order \([\frac{1}{2}g]\), where \(I\) shows selected rows and runs over all combinations of \([\frac{1}{2}g]\) from \(g\). Each block \([\textsf{R}]_{I}\) contains full columns of \(\textsf{R}\). Let \((\mathop{\mathrm{adj}}\textsf{N})_{I}\) be the cofactor of \(\textsf{N}\) complementary to \([\textsf{R}]_{I}\), and \((\mathop{\mathrm{adj}}\textsf{D})_{I}\) be the cofactor of \(\textsf{D}\) complementary to \([\textsf{R}]_{I}\). The both numerator and denominator are computed by means of the Cauchy—Binet formula: \[\begin{gather} \label{NDexpans} |\textsf{N}| = \sum_{I} \big(\mathop{\mathrm{adj}}\textsf{N}\big)_{I}[\textsf{R}]_{I}, \qquad |\textsf{D}| = \sum_{I} \big(\mathop{\mathrm{adj}}\textsf{D}\big)_{I}[\textsf{R}]_{I}. \end{gather}\tag{68}\]
Next, we compute \[\begin{gather} \nu_{3g} \bar{\nu}_{3g} = \frac{|\textsf{N}| |\bar{\textsf{N}}|}{|\textsf{D}| |\bar{\textsf{D}}|}, \end{gather}\] where the bar denotes the complex conjugate, which effects only entries of \(\textsf{P}(\boldsymbol{C})\), and \(\textsf{C}_g(\boldsymbol{C})\), where values \(e_i\) are replaced with the complex conjugate \(\bar{e}_i\). Recall, that \(\textsf{P}(s)\), \(\textsf{C}_g(s)\), \(\textsf{R}(s)\) are real-valued.
Note, that \(|\textsf{N}| |\bar{\textsf{N}}|\) and \(|\textsf{D}| |\bar{\textsf{D}}|\) are homogeneous in \(\wp_{1,1,2i-1}\) of degrees \(2[\frac{1}{2}(g+1)]\), and \(2[\frac{1}{2}g]\), respectively. Then, we apply the fundamental cubic relations, see [10], (the argument \(s\) of \(\wp\)-functions is omitted for simplicity): \[\begin{gather} \label{WP3IndSqRel} \wp_{1,1,2i-1} \wp_{1,1,2j-1} = 4(\wp_{1,1}+\lambda_2) \wp_{1,2i-1} \wp_{1,2j-1} \\ + 4 (\wp_{1,2i-1} \wp_{1,2j+1} + \wp_{1,2i+1} \wp_{1,2j-1}) + 4 \wp_{2i+1,2j+1} \\ - 2 (\wp_{3,2i-1} \wp_{1,2j-1} + \wp_{1,2i-1} \wp_{3,2j-1}) - 2 (\wp_{2i-1,2j+3} + \wp_{2i+3,2j-1}) \\ + \lambda_4 (\wp_{1,2j-1} \delta_{1,i} + \wp_{1,2i-1}\delta_{1,j} ) + 4 \lambda_{2+4i} \delta_{i,j} + 2 (\lambda_{4i} \delta_{i-1,j} + \lambda_{4j} \delta_{i,j-1}). \end{gather}\tag{69}\] This completely eliminates \(\wp_{1,1,2i-1}\) from the expression for \(\nu_{3g} \bar{\nu}_{3g}\), and leads to the identity \[\label{NNDDRel} |\textsf{N}| |\bar{\textsf{N}}| + (-1)^g \lambda_{4g} \wp_{1,2g-1}(s) |\textsf{D}| |\bar{\textsf{D}}| = 0,\tag{70}\] which proves 67 . The direct computation of 70 in genera greater than \(2\) uses identities which define the Kummer variety of \(\mathcal{V}\), see [10], [18]. Computations are done in genera \(1\), \(2\), \(3\), see Appendix 8. The identity 70 holds in higher genera as well. ◻
Lemma 2. Let \(\boldsymbol{C}\) be defined by ?? , and \(s \in \mathop{\mathrm{\mathbb{R}}}^g\). Then \[\label{etaSqIm} \nu_{3g} \bar{\nu}_{3g} = (-1)^{g-1} \lambda_{4g} \wp_{1,2g-1}(\imath s).\tag{71}\]
Proof. The statement of the Lemma follows immediately from the identity \[\label{NNDDRelIm} |\textsf{N}| |\bar{\textsf{N}}| + (-1)^g \lambda_{4g} \wp_{1,2g-1}(\imath s) |\textsf{D}| |\bar{\textsf{D}}| = 0,\tag{72}\] obtained in the same way as 70 with the argument \(\imath s\) instead of \(s\). Recall, that \(\wp_{i,j}(\imath s)\) are even functions, and so real-valued; \(\wp_{i,j,k}(\imath s)\) are odd functions, and have purely imaginary values. All terms in the fundamental cubic relations 69 remain real-valued after the substitution \(s \mapsto \imath s\), as well as the identities which define the Kummer variety of \(\mathcal{V}\). The proof of Lemma 1 works for Lemma 2. ◻
Theorem 5. Let \(\boldsymbol{C}\) be defined by ?? , and \(s \in \mathop{\mathrm{\mathbb{R}}}^g\). Then \[\begin{align} \label{Abswp12gm1Sq}&| \wp_{1,2g-1}\big(s + \boldsymbol{C}\big) |^2 = \lambda_{4g},\\ &| \wp_{1,2g-1}\big(\imath s + \boldsymbol{C}\big) |^2 = \lambda_{4g}.\end{align}\qquad{(6)}\]
Proof. Using 64 with \(- u_{\text{III}} = s + \boldsymbol{C}\), \(u_{\text{I}} = \boldsymbol{C}\), \(u_{\text{II}} = s\), and \(\lambda_{4g+2} = 0\), taking into account that \(\wp_{1,2g-1}(\boldsymbol{C}) = \prod_{i=1}^g e_{2i}\), and so \(\wp_{1,2g-1}(\boldsymbol{C}) \wp_{1,2g-1}(\bar{\boldsymbol{C}}) = \lambda_{4g}\), cf.@eq:Lambda4g , we find \[\begin{gather} | \wp_{1,2g-1}\big(s + \boldsymbol{C}\big) |^2 = \frac{(\nu_{3g} \bar{\nu}_{3g} )^2 }{\lambda_{4g} \wp_{1,2g-1}^2(s)}. \end{gather}\] Similarly, with \(- u_{\text{III}} = \imath s + \boldsymbol{C}\), \(u_{\text{I}} = \boldsymbol{C}\), \(u_{\text{II}} = \imath s\), we get \[\begin{gather} | \wp_{1,2g-1}\big(\imath s + \boldsymbol{C}\big) |^2 = \frac{(\nu_{3g} \bar{\nu}_{3g} )^2 }{\lambda_{4g} \wp_{1,2g-1}^2(\imath s)}. \end{gather}\] Then, applying 66 and 71 , respectively, we immediately obtain ?? . ◻
Quasi-periodic solutions of the sine-Gordon equation arise on the canonical curve \(\mathcal{V}\) with \(\lambda_{4g+2}=0\), positive \(\lambda_{4g}\), and all finite non-zero branch points pairwise conjugate. In \(\bar{\mathfrak{J}} = \mathop{\mathrm{\mathbb{C}}}^g \supset \mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V})\) all half-periods split, up to congruence, between \(2^g\) affine subspaces parallel to the imaginary axes subspace \(\mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\). There exists one subspace \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\), with \(\boldsymbol{C}\) defined by ?? , where \(\wp_{1,2g-1}\)-function is bounded, and has the range on the circle of radius \(\sqrt{\lambda_{4g}}\). The subspace \(\boldsymbol{C} + \mathop{\mathrm{\mathrm{Im}}}\mathfrak{J}\) serves as the domain of the finite-gap solution of the sine-Gordon equation in the \(2g\)-dimensional phase space, namely \[\label{SinGSol} \phi(\mathrm{x},\mathrm{t}) = \imath \log \Big({-} \lambda_{4g}^{-1/2} \wp_{1,2g-1} \big(\imath b (\mathrm{x}, \mathrm{c}_{3}, \dots, \mathrm{c}_{2N-3}, \mathrm{t})^t + \boldsymbol{C} \big) \Big).\tag{73}\]
Quasi-periodic solutions of the \(\sinh\)-Gordon equation arise on the canonical curve \(\mathcal{V}\) with all real branch points, \(\lambda_{4g+2}=0\). Reality conditions in this case are the same as in the KdV hierarchy, see [1].
In this section we present effective computation of quasi-periodic finite-gap solutions of the sine-Gordon equation.
We will use the explicit formula 73 . All computations are made in Wolfram Mathematica 12. Integrals between branch points are computed with the help of NIntegrate
with WorkingPrecision
equal to, or
greater than \(30\). The canonical curve 2 is defined through its parameters \(\lambda_k\), and roots of the polynomial \(\Lambda\)
are computed by means of NSolve
, with the same WorkingPrecision
.
\(\wp\)-Functions are computed by the formulas \[\begin{align} \label{WPdefComp}&\wp_{i,j}(u) = \varkappa_{i,j} - \frac{\partial^2}{\partial u_i \partial u_j } \theta[K](\omega^{-1} u; \omega^{-1} \omega'),\\ & \wp_{i,j,k}(u) =- \frac{\partial^3}{\partial u_i \partial u_j \partial u_k} \theta[K](\omega^{-1} u; \omega^{-1} \omega'),\end{align}\tag{74}\] where \(\varkappa_{i,j}\) are entries of the symmetric matrix \(\varkappa = \eta \omega^{-1}\), and the period matrices \(\omega\), \(\omega'\), \(\eta\) are obtained from the differentials 5 , 6 along the canonical cycles, see fig. 1. Actually, columns of the matrices \(\omega\), \(\omega'\), \(\eta\) are computed as follows \[\begin{align}&\omega_k = 2\int_{e_{2k-1}}^{e_{2k}} \mathrm{d}u,\qquad\quad \eta_k = 2\int_{e_{2k-1}}^{e_{2k}} \mathrm{d}r,\\ &\omega'_k = - 2 \sum_{i=1}^k \int_{e_{2i-2}}^{e_{2i-1}} \mathrm{d}u = 2 \sum_{i=k}^g \int_{e_{2i}}^{e_{2i+1}} \mathrm{d}u.\end{align}\]
The hamiltonian system of the sine-Gordon equation in \(\mathcal{M}_1\) with variables \(\gamma_{-1}\), \(\beta_{-1}\), \(\alpha_0\), (\(\beta_{-1} \,{=}\,{-} \bar{\gamma}_{-1}\), \(\alpha_0 \,{=}\, \imath a_0\)) lives on the submanifold defined by the constraint \[|\gamma_{-1}|^2 = r^2 = - \mathrm{r}_{-1}.\] The system is governed by the hamiltonian \[h_0 = \alpha_0^2 + \mathrm{b}(\gamma_{-1} - \bar{\gamma}_{-1}) = - a_0^2 - 2 b \mathop{\mathrm{\mathrm{Im}}}\gamma_{-1},\] and possesses the spectral curve \[\label{G1HamCanon} -w^2 - b^2 z^3 + \mathrm{h}_0 z^2 + \mathrm{r}_{-1} z = 0,\tag{75}\] which has complex conjugate branch points if \(|\mathrm{h}_0| < 2 b r\).
On fig.2 (a)a several trajectories of the sine-Gordon equation in \(\mathcal{M}_1\) are displayed, \(b=1/2\), \(r=1/2\). In the \(3\)-dimensional space with \(\mathop{\mathrm{\mathrm{Re}}}\gamma_{-1}\), \(\mathop{\mathrm{\mathrm{Im}}}\gamma_{-1}\), \(a_0\)-axes, the reader can see a vertical circular cylinder \(|\gamma_{-1}| = r\), and several parabolic cylinders which represent different level surfaces \(h_0=\mathrm{h}_0\) of the hamiltonian \(h_0\). Dark lines show trajectories, which arise in the intersection. When \(|\mathrm{h}_0| < 2 b r\), each trajectory is a one loop (marked by green on fig.2 (a)b). At \(\mathrm{h}_0 \,{=}\, 2 b r\) the intersection collapses to the point \(\gamma_{-1} \,{=}\, {-}\imath r\), \(a_0 \,{=}\, 0\). When \(\mathrm{h}_0 \,{>}\, 2 b r\), there is no intersection, that is, no solution exists. When \(\mathrm{h}_0\) approaches \(-2 b r\), the trajectory twists so that two points with \(\mathop{\mathrm{\mathrm{Im}}}\gamma_{-1} \,{=}\, {-}\mathrm{h}_0/(2b)\), \(a_0=0\) coincide at \(\gamma_{-1} = \imath r\), \(a_0 = 0\) (marked by blue on fig.2 (a)b). At \(\mathrm{h}_0 \,{<}\, {-}2 b r\) one loop splits into two (marked by orange on fig.2 (a)b).
Figure 2: No caption. a — Phase portrait
Recall that \(\gamma_{-1} \,{=}\, \imath r \exp(\imath \phi)\), where \(\phi\) obeys the sine-Gordon equation, which, in this case, coincides with the equation of motion of a simple pendulum. On fig. 2 (a)b the reader can see a phase portrait of the \(1\)-gap system from the sine-Gordon hierarchy, with the hamiltonian \[h_0 = - a_0^2 - 2 b r \cos \phi.\]
According to 45 , we have \[\begin{gather} \label{UniformG1} \gamma_{-1} = - \imath b \wp_{1,1}(u),\qquad a_0 = - \frac{b}{2} \frac{\wp_{1,1,1}(u)}{\wp_{1,1}(u)}, \end{gather}\tag{76}\] where \(u = \imath b \mathrm{x}+ \frac{1}{2} \omega + \frac{1}{2} \omega'\) as we combine 56 and ?? . Therefore, the phase \(\phi\) is defined by \[\label{SinGSolN1} \phi(\mathrm{x}) = \imath \log \big({-}(b / r) \wp_{1,1}( \imath b \mathrm{x}+ \tfrac{1}{2} \omega + \tfrac{1}{2} \omega')\big).\tag{77}\]
As an example, we choose five values of \(\mathrm{h}_0\), which produce different mutual positions of branch points:
\(\mathrm{h}_0 = -0.49\) \(\phantom{\quad}\) \(\phantom{\quad}\) |
\(e_1 = -0.98 - 0.199 \imath\), \(e_2= -0.98 + 0.199 \imath\), \(e_3 = 0\) |
\(\qquad\) |
\(\mathrm{h}_0 = -0.17\) \(\phantom{\quad}\) \(\phantom{\quad}\) |
\(e_1 = -0.33 - 0.943 \imath\), \(e_2 = -0.33 + 0.943 \imath\), \(e_3 = 0\) |
|
\(\mathrm{h}_0 = 0\) \(\phantom{\quad}\) \(\phantom{\quad}\) |
\(e_1 = -\imath\), \(e_2 = \imath\), \(e_3 = 0\) |
|
\(\mathrm{h}_0 = 0.17\) \(\phantom{\quad}\) \(\phantom{\quad}\) |
\(e_1 = 0\), \(e_2 = 0.33 - 0.943 \imath\), \(e_3 = 0.33 + 0.943 \imath\) |
|
\(\mathrm{h}_0 = 0.49\) \(\phantom{\quad}\) \(\phantom{\quad}\) |
\(e_1 = 0\), \(e_2 = 0.98 - 0.199 \imath\), \(e_3 = 0.98 + 0.199 \imath\) |
The corresponding fundamental domains and shapes of \(\phi\) with \(r = 1/2\) , \(b = 1/2\) are shown on fig.3 (a).
Figure 3: No caption.
The \(2\)-gap hamiltonian system of the sine-Gordon hierarchy arises in \(\mathcal{M}_2\) with variables \(\gamma_{-1}\), \(\beta_{-1}\), \(\alpha_0\), \(\gamma_{1}\), \(\beta_{1}\), \(\alpha_2\). In fact, the system lives in the submanifold defined by two constraints \[\begin{align} &\gamma_{-1} \beta_{-1} = \mathrm{r}_{-1},\\ &\alpha_0^2 + \gamma_{-1} \beta_{1} + \beta_{-1} \gamma_{1} = \mathrm{r}_0, \end{align}\] which we solve for \(\beta_{-1}\) and \(\beta_{1}\). The system is governed by the two hamiltonians \[\begin{align} &h_1 = 2 \alpha_0 \alpha_2 + \mathrm{b}\gamma_{-1} + (\mathrm{r}_0 - \alpha_0^2) \frac{\gamma_1}{\gamma_{-1}} + \mathrm{r}_{-1} \Big( \frac{\mathrm{b}}{\gamma_{-1}} - \frac{\gamma_1^2}{\gamma_{-1}^2} \Big),\\ &h_2 = \alpha_2^2 + \mathrm{b}\gamma_{1} + (\mathrm{r}_0 - \alpha_0^2) \frac{\mathrm{b}}{\gamma_{-1}} - \mathrm{r}_{-1} \frac{\mathrm{b}\gamma_1}{\gamma_{-1}^2} . \end{align}\] After the substitution \[\begin{align} &\gamma_{-1} = \mathrm{b}z_1 z_2,& &\gamma_1 = - \mathrm{b}(z_1+z_2),& \\ &\alpha_0 = - \frac{w_1 z_2^2 - w_2 z_1^2}{z_1 z_2 (z_1 z_2)},& &\alpha_2 = \frac{w_1 z_2 - w_2 z_1}{z_1 z_2 (z_1 z_2)},& \end{align}\] induced by ?? , the hamiltonians acquire the form \[\begin{align} &h_1 = - \frac{z_2}{z_1^3(z_1-z_2)}\big(w_1^2 - \mathrm{b}^2 z_1^5 - \mathrm{r}_0 z_1^2 - \mathrm{r}_{-1} z_1 \big) \\ &\qquad + \frac{z_1}{z_2^3(z_1-z_2)}\big(w_2^2 - \mathrm{b}^2 z_2^5 - \mathrm{r}_0 z_2^2 - \mathrm{r}_{-1} z_2 \big),\\ &h_2 = \frac{1}{z_1^3(z_1-z_2)}\big(w_1^2 - \mathrm{b}^2 z_1^5 - \mathrm{r}_0 z_1^2 - \mathrm{r}_{-1} z_1 \big) \\ &\qquad - \frac{1}{z_2^3(z_1-z_2)}\big(w_2^2 - \mathrm{b}^2 z_2^5 - \mathrm{r}_0 z_2^2 - \mathrm{r}_{-1} z_2 \big). \end{align}\] In the new variables \(z_1\), \(z_2\), \(w_1\), \(w_2\), separation into two samples of the spectral curve is achieved: \[\begin{gather} - w_i^2 + \mathrm{b}^2 z_i^5 + \mathrm{h}_2 z_i^4 + \mathrm{h}_1 z_i^3 + \mathrm{r}_0 z_i^2 + \mathrm{r}_{-1} z_i = 0,\qquad i=1,\,2, \end{gather}\] where \(\mathrm{h}_1\), \(\mathrm{h}_2\) denote values of the hamiltonians \(h_1\), \(h_2\).
Taking into account, that \(\beta_{2i-1} = - \bar{\gamma}_{2i-1}\), \(\alpha_{2i} = \imath a_{2i}\), \(i=0\), \(1\), and \(\mathrm{b}= \imath b\), we obtain the constraints in the form \[\begin{align} \label{ConstrSinG2}&|\gamma_{-1}|^2 = r^2 = - \mathrm{r}_{-1},\\ &a_0^2 + 2 \mathop{\mathrm{\mathrm{Im}}}\gamma_{1} \mathop{\mathrm{\mathrm{Im}}}\gamma_{-1} + 2 \mathop{\mathrm{\mathrm{Re}}}\gamma_{1} \mathop{\mathrm{\mathrm{Re}}}\gamma_{-1} = - \mathrm{r}_0.\end{align}\tag{78}\] In the projection to the plane \((\mathop{\mathrm{\mathrm{Re}}}\gamma_{-1}) O (\mathop{\mathrm{\mathrm{Im}}}\gamma_{-1})\) the first equation is a circle of radius \(r = \sqrt{-\mathrm{r}_{-1}}\); the second one is a line with the normal \(2(\mathop{\mathrm{\mathrm{Re}}}\gamma_{1}, \mathop{\mathrm{\mathrm{Im}}}\gamma_{1})\) at the distance \(-\frac{1}{2}(\mathrm{r}_0 + a_0^2)/|\gamma_1|\) from the origin. Therefore, an intersection exists if \[-\mathrm{r}_{-1} |\gamma_1|^2 \geqslant \tfrac{1}{4} |\mathrm{r}_0 + a_0^2|^2.\]
The hamiltonians acquire the form \[\begin{align} \label{HamSinG2}&h_1 = - 2a_0 a_2 - 2 b \mathop{\mathrm{\mathrm{Im}}}\gamma_{-1} - |\gamma_1|^2,\\ &h_2 = -a_2^2 - 2 b \mathop{\mathrm{\mathrm{Im}}}\gamma_{1}.\end{align}\tag{79}\] Equations 79 together with 78 define a \(2\)-dimensional surface parametrized by real variables \((\mathrm{x},\mathrm{t})^t = s\). Let \(u = \imath b s + \boldsymbol{C}\) with \(\boldsymbol{C} = \frac{1}{2} \omega_2 + \frac{1}{2} \omega'_1 + \frac{1}{2} \omega'_2\) as follows from 56 and ?? . Then 45 gives a parametrization of the surface: \[\begin{align} &\gamma_{-1} = - \imath b \wp_{1,3}(u),& &\gamma_{1} = - \imath b \wp_{1,1}(u),& \\ &a_0 = - \frac{b}{2} \frac{\wp_{1,3,3}(u)}{\wp_{1,3}(u)},& &a_2 = - \frac{b}{2} \frac{\wp_{1,1,3}(u)}{\wp_{1,3}(u)}.& \end{align}\]
The spectral curve of the system has the canonical form \[\label{G2CanonC} y^2 + x^5 + \lambda_{2} x^4 + \lambda_{4} x^3 + \lambda_{6} x^2 + \lambda_{8} x = 0,\tag{80}\] where \(\lambda_8 \,{=}\, {-}\mathrm{r}_{-1}/ b^2\), \(\lambda_6 \,{=}\, {-}\mathrm{r}_{0}/ b^2\), \(\lambda_4 \,{=}\, {-}\mathrm{h}_{1}/ b^2\), \(\lambda_2 \,{=}\, {-}\mathrm{h}_{2}/ b^2\). By fixing \(\mathrm{r}_{-1}\), \(\mathrm{r}_0\) we choose an orbit where a \(2\)-gap hamiltonian system lives. The hamiltonians \(h_1\), \(h_2\) acquire such values \(\mathrm{h}_1\), \(\mathrm{h}_2\) that all non-zero branch points of 80 are complex conjugate. Each pair \(\mathrm{h}_1\), \(\mathrm{h}_2\) defines a phase trajectory of the hamiltonian system on the fixed orbit. The corresponding \(2\)-gap solution of the sine-Gordon equation is given by \[\label{SinGSolN2} \phi(\mathrm{x}, \mathrm{t}) = \imath \log \Big({-} \lambda_8^{-1/2} \wp_{1,3} \big( \imath b (\mathrm{x},\mathrm{t})^t + \tfrac{1}{2} \omega_2 + \tfrac{1}{2} \omega'_1 + \tfrac{1}{2} \omega'_2 \big) \Big).\tag{81}\]
Let \(b=1/2\), and an orbit be fixed by \(\mathrm{r}_{-1} \,{=}\, {-}1/4\), \(\mathrm{r}_0\,{=}\,{-}3\). The values of \(h_1\) and \(h_2\) permitted within this hamiltonian system are shown as a marigold region on fig.4 (a).
Figure 4: No caption. a — The region of permitted pairs \((\mathrm{h}_1,\mathrm{h}_2)\)
within the 2-gap hamiltonian system with \(\mathrm{r}_{-1} \,{=}\, {-}1/4\), \(\mathrm{r}_0\,{=}\,{-}3\)
At the several points marked on the region, \(2\)-gap solutions of the sine Grodon equation are computed below.
A surface of \(\phi\) is displayed over \(\mathrm{x}\,{\in}\, [0,8]\), \(\mathrm{t}\,{\in}\, [0,8]\), with black contours representing cuts \(\phi(x, t_k)\) at \(t_k = 0.5 k\), \(k=0\), …, \(17\).
\(\begin{array}{l} \mathrm{h}_1 = -9, \quad \mathrm{h}_2 = 2 \\ \quad \\
e_1 = -0.15821-0.02955 \imath \\
e_2 = -0.15821+0.02955 \imath \\
e_3 = 0 \\
e_4 = 4.1582-4.6168 \imath \\
e_5 = 4.1582+4.6168 \imath
\end{array}\) \(\phantom{\quad}\) |
\(\quad\) | |
\(\begin{array}{l} \mathrm{h}_1 = -10, \quad \mathrm{h}_2 = -2.5 \\ \quad \\ e_1 = -4.8409-3.6685 \imath \\ e_2 = -4.8409+3.6685 \imath \\ e_3 = -0.15908-0.04243 \imath \\ e_4 = -0.15908+0.04243 \imath \\ e_5 = 0 \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -18, \quad \mathrm{h}_2 = 3.5 \\ \quad \\ e_1 = -0.082025-0.082030 \imath \\ e_2 = -0.082025+0.082030 \imath \\ e_3 = 0 \\ e_4 = 7.0820-4.9148 \imath \\ e_5 = 7.0820+4.9148 \imath \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -18, \quad \mathrm{h}_2 = -1 \\ \quad \\ e_1 = -1.9163 - 8.2263 \imath \\ e_2 = -1.9163 + 8.2263 \imath \\ e_3 = -0.083723 - 0.083708 \\ e_4 = -0.083723 + 0.083708 \imath \\ e_5 = 0 \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -18, \quad \mathrm{h}_2 = -3.8 \\ \quad \\ e_1 = -7.5151 - 3.5996 \imath \\ e_2 = -7.5151 + 3.5996 \imath \\ e_3 = -0.084853 - 0.084864 \\ e_4 = -0.084853 + 0.084864 \imath \\ e_5 = 0 \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -143, \quad \mathrm{h}_2 = 10 \\ \quad \\ e_1 = -0.010535 - 0.040431 \imath \\ e_2 = -0.010535 + 0.040431 \imath \\ e_3 = 0 \\ e_4 = 22.011 - 13.131 \imath \\ e_5 = 22.011 + 13.131 \imath \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -143, \quad \mathrm{h}_2 = 1 \\ \quad \\ e_1 = -0.010494 - 0.040471 \imath \\ e_2 = -0.010494 + 0.040471 \imath \\ e_3 = 0 \\ e_4 = 2.010 - 23.834 \imath \\ e_5 = 2.010 + 23.834 \imath \end{array}\) | \(\quad\) | |
\(\begin{array}{l} \quad \\ \mathrm{h}_1 = -143, \quad \mathrm{h}_2 = -11 \\ \quad \\ e_1 = -21.990 - 9.356 \imath \\ e_2 = -21.990 + 9.356 \imath \\ e_3 = -0.010439 - 0.040523 \\ e_4 = -0.010439 + 0.040523 \imath \\ e_5 = 0 \end{array}\) | \(\quad\) |
Analyzing the plots at different values of \(\mathrm{h}_1\) and \(\mathrm{h}_2\) within the region shown on fig.4 (a), we find the following. As \(\mathrm{h}_2\) decreases at a fixed \(\mathrm{h}_1\), the length of waves (described by \(\phi(\mathrm{x},0)\)), the swing along \(\mathrm{t}= 0\), and the swing along \(\mathrm{x}= 0\) increase, while the period of waves (described by \(\phi(0,\mathrm{t})\)) remains almost unchanged. When a point \((\mathrm{h}_1,\mathrm{h}_2)\) moves from the right to the left near the upper boundary, or near the lower boundary of the region, the length and the period of waves decrease, and the swing shrinks slowly.
Genus 1. Let an elliptic curve \(\mathcal{V}\) of the form 2 have branch points located at \(e_2\), \(\bar{e}_2\), \(0\), and \(\wp\) be associated with this curve. That is, \(\wp_{1,1}(u) \equiv \wp(u)\), \(\wp_{1,1,1}(u) \equiv \wp'(u)\) satisfy the cubic relation \[\forall u\in \mathop{\mathrm{\mathbb{C}}}\backslash\{0\} \qquad \tfrac{1}{4} \wp_{1,1,1}(u)^2 = \wp_{1,1}(u)^3 + \lambda_2 \wp_{1,1}(u)^2 + \lambda_4 \wp_{1,1}(u).\] Let \(\nu_3\) be defined by 67 with \[\begin{gather} \label{NDG1} |\textsf{D}| = \wp_{1,1}(s) - e_2,\qquad |\textsf{N}| = -\tfrac{1}{2} e_2 \wp_{1,1,1}(s), \quad s\in\mathop{\mathrm{\mathbb{R}}}. \end{gather}\tag{82}\] Then 70 acquires the form \[\begin{gather} \label{nuRelG1} \tfrac{1}{4} e_2 \bar{e}_2 \wp_{1,1,1}(s)^2 - \lambda_{4} \wp_{1,1}(s) (\wp_{1,1}(s) - e_2)(\wp_{1,1}(s) - \bar{e}_2) \\ = (e_2 \bar{e}_2 - \lambda_{4}) \wp_{1,1}(s)^3 + \big(e_2 \bar{e}_2 \lambda_2 + \lambda_{4}(e_2+\bar{e}_2) \big) \wp_{1,1}(s)^2 = 0, \end{gather}\tag{83}\] where the cubic relation is applied, and the equalities \(\lambda_4 = e_2 \bar{e}_2\), \(\lambda_2 = - (e_2+\bar{e}_2)\) are taken into account.
Genus 2. Let a genus two curve \(\mathcal{V}\) of the form 2 have branch points located at \(e_2\), \(\bar{e}_2\), \(e_4\), \(\bar{e}_4\), \(0\). Functions \(\wp_{1,2i-1}\), \(\wp_{1,1,2i-1}\), \(i=1\), \(2\), associated with this curve satisfy the fundamental cubic relations: \(\forall u\in \mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \backslash \Sigma\) \[\begin{align} &\tfrac{1}{4} \wp_{1,1,1}(u)^2 = \wp_{1,1}(u)^2 (\wp_{1,1}(u) +\lambda_2) + \wp_{1,1}(u) \wp_{1,3}(u) \notag \\ &\phantom{mmmmmmmmmmmmma} + \wp_{3,3}(u) + \lambda_4 \wp_{1,1}(u) + \lambda_6, \notag\\ &\tfrac{1}{4} \wp_{1,1,1}(u) \wp_{1,1,3}(u) = \wp_{1,1}(u) \wp_{1,3}(u) (\wp_{1,1}(u) +\lambda_2) \label{FundRelsG2} \\ &\phantom{mmmm} + \tfrac{1}{2} \big(\wp_{1,3}(u)^2 - \wp_{1,1}(u) \wp_{3,3}(u) + \lambda_4 \wp_{1,3}(u) + \lambda_8\big), \notag\\ &\tfrac{1}{4} \wp_{1,1,3}(u)^2 = \wp_{1,3}(u)^2 (\wp_{1,1}(u) +\lambda_2) - \wp_{1,3}(u) \wp_{3,3}(u). \notag \end{align}\tag{84}\]
Recalling that \(\nu_6\) is defined by 67 with \[\begin{align} &|\textsf{D}| = \tfrac{1}{2} \wp_{1,1,1}(s) (\wp_{1,3}(s) + e_2 e_4) - \tfrac{1}{2} \wp_{1,1,3}(s) (\wp_{1,1}(s) - e_2 - e_4),&\\ &|\textsf{N}| = - \tfrac{1}{2} \wp_{1,1,1}(s) e_2 e_4 \wp_{1,3}(s) (\wp_{1,1}(s) - e_2 - e_4)\\ &\qquad\qquad\quad + \tfrac{1}{2} \wp_{1,1,3}(s) e_2 e_4 \big( \wp_{1,1}(s)(\wp_{1,1}(s) - e_2 - e_4)+ \wp_{1,3}(s) + e_2 e_4 \big), & \end{align}\] \(s\in \mathop{\mathrm{\mathbb{R}}}^2\), and substituting into 70 , we obtain \[\begin{gather} \lambda_{8}^{-1} |\textsf{N}| |\bar{\textsf{N}}| + \wp_{1,3} |\textsf{D}| |\bar{\textsf{D}}| = \tfrac{1}{4} \wp_{1,1,1}^2 \big( 2 \wp_{1,3} \mathrm{a}_{1,3} - \wp_{1,1} \mathrm{a}_{3,3} \big) \\ - \tfrac{1}{2} \wp_{1,1,1} \wp_{1,1,3} \big( \wp_{1,3} \mathrm{a}_{1,1} + \mathrm{a}_{3,3} \big) + \tfrac{1}{4} \wp_{1,1,3}^2 \big( \wp_{1,1} \mathrm{a}_{1,1} + 2 \mathrm{a}_{1,3} \big) = 0, \end{gather}\] where the argument \(s\) of \(\wp\)-functions and \(\mathrm{a}_{i,j}\) is omitted for brevity, and \(\mathrm{a}_{i,j}(u) \equiv \tfrac{1}{4} \wp_{1,1,2i-1}(u) \wp_{1,1,2j-1}(u)\).
Genus 3. Let a genus three curve \(\mathcal{V}\) of the form 2 possess the branch points \(e_2\), \(\bar{e}_2\), \(e_4\), \(\bar{e}_4\), \(e_6\), \(\bar{e}_6\), \(0\), and \(\wp\)-functions be associated with this curve. Then, the fundamental cubic relations hold: \(\forall u\in \mathop{\mathrm{\mathrm{Jac}}}(\mathcal{V}) \backslash \Sigma\) \[\begin{align} &\tfrac{1}{4} \wp_{1,1,1}(u)^2 = \wp_{1,1}(u)^2 (\wp_{1,1}(u) +\lambda_2) + \wp_{1,1}(u) \wp_{1,3}(u) \notag \\ &\phantom{mmmmmmmmmmmmm} + \wp_{3,3}(u) - \wp_{1,5}(u) + \lambda_4 \wp_{1,1}(u) + \lambda_6, \notag\\ &\tfrac{1}{4} \wp_{1,1,1}(u) \wp_{1,1,3}(u) = \wp_{1,1}(u) \wp_{1,3}(u) (\wp_{1,1}(u) +\lambda_2) + \wp_{3,5}(u) \notag \\ &\phantom{mmmm} + \wp_{1,1}(u) \wp_{1,5}(u) + \tfrac{1}{2} \big( \wp_{1,3}(u)^2 - \wp_{1,1}(u) \wp_{3,3}(u) + \lambda_4 \wp_{1,3}(u) + \lambda_8\big), \notag\\ &\tfrac{1}{4} \wp_{1,1,1}(u) \wp_{1,1,5}(u) = \wp_{1,1}(u) \wp_{1,5}(u) (\wp_{1,1}(u) +\lambda_2) \notag \\ &\phantom{mmmm} + \tfrac{1}{2} \big( \wp_{1,3}(u) \wp_{1,5}(u) - \wp_{1,1}(u) \wp_{3,5}(u) - \wp_{5,5}(u) + \lambda_4 \wp_{1,5}(u)\big), \label{FundRelsG3} \\ &\tfrac{1}{4} \wp_{1,1,3}(u)^2 = \wp_{1,3}(u)^2 (\wp_{1,1}(u) +\lambda_2) + 2 \wp_{1,3}(u) \wp_{1,5}(u) \notag \\ &\phantom{mmmmmmmmmmmmmm} - \wp_{1,3}(u) \wp_{3,3}(u) + \wp_{5,5}(u) + \lambda_{10}, \notag \\ &\tfrac{1}{4} \wp_{1,1,3}(u) \wp_{1,1,5}(u) = \wp_{1,3}(u) \wp_{1,5}(u) (\wp_{1,1}(u) +\lambda_2) \notag\\ &\phantom{mmmm} + \wp_{1,5}(u)^2 + \tfrac{1}{2} \big( {-}\wp_{1,5}(u) \wp_{3,3}(u) - \wp_{1,3}(u) \wp_{3,5}(u) + \lambda_{12}\big), \notag \\ &\tfrac{1}{4} \wp_{1,1,5}(u)^2 = \wp_{1,5}(u)^2 (\wp_{1,1}(u) +\lambda_2) - \wp_{1,5}(u) \wp_{3,5}(u). \notag \end{align}\tag{85}\]
In the definition 67 of \(\nu_9\) we have, \(s\in \mathop{\mathrm{\mathbb{R}}}^3\), \[\begin{align} &\textsf{P}(s) = \begin{pmatrix} \wp_{1,1}(s) & \wp_{1,1}(s)^2 + \wp_{1,3}(s) \\ \wp_{1,3}(s) & \wp_{1,1}(s)\wp_{1,3}(s) + \wp_{1,5}(s) \\ \wp_{1,5}(s) & \wp_{1,1}(s) \wp_{1,5}(s) \end{pmatrix},\quad \textsf{R}(s) = \begin{pmatrix} -\tfrac{1}{2} \wp_{1,1,1}(s)\\ -\tfrac{1}{2} \wp_{1,1,3}(s) \\ -\tfrac{1}{2} \wp_{1,1,5}(s) \end{pmatrix} \\ &{-}\boldsymbol{q}(s) = \begin{pmatrix} \tfrac{1}{2} \wp_{1,1,3}(s) + \tfrac{1}{2} \wp_{1,1,1}(s) \wp_{1,1}(s) \\ \tfrac{1}{2} \wp_{1,1,5}(s) + \tfrac{1}{2} \wp_{1,1,1}(s) \wp_{1,3}(s) \\ \tfrac{1}{2} \wp_{1,1,1}(s) \wp_{1,5}(s) \end{pmatrix}, \quad \begin{array}{l} \wp_{1,1}(\boldsymbol{C}) = e_2 + e_4 + e_6,\\ \wp_{1,3}(\boldsymbol{C}) = - e_2 e_4 - e_2 e_6 - e_4 e_6, \\ \wp_{1,5}(\boldsymbol{C}) = e_2 e_4 e_6, \end{array} \end{align}\] and \(\wp_{1,1,2i-1}(\boldsymbol{C}) = 0\), \(i=1\), \(2\), \(3\). By means of \(\mathrm{a}_{i,j}(u) \equiv \tfrac{1}{4} \wp_{1,1,2i-1}(u) \wp_{1,1,2j-1}(u)\) we eliminate all \(3\)-index \(\wp\)-functions in 70 , and expand in \(\mathrm{a}_{i,j} \mathrm{a}_{k,l} - \mathrm{a}_{i,k} \mathrm{a}_{j,l}\), which vanish. Actually, \[\begin{gather} \lambda_{12}^{-1} |\textsf{N}| |\bar{\textsf{N}}| - \wp_{1,5} |\textsf{D}| |\bar{\textsf{D}}| = C_{1,1;3,3}(\mathrm{a}_{1,1} \mathrm{a}_{3,3} - \mathrm{a}_{1,3}^2 ) \\ + C_{1,1;3,5}(\mathrm{a}_{1,1} \mathrm{a}_{3,5} - \mathrm{a}_{1,3} \mathrm{a}_{1,5}) + C_{1,1;5,5}(\mathrm{a}_{1,1} \mathrm{a}_{5,5} - \mathrm{a}_{1,5}^2 ) \\ + C_{1,3;3,5}(\mathrm{a}_{1,3} \mathrm{a}_{3,5} - \mathrm{a}_{1,5} \mathrm{a}_{3,3}) + C_{1,3;5,5}(\mathrm{a}_{1,3} \mathrm{a}_{5,5} - \mathrm{a}_{1,5} \mathrm{a}_{3,5} )\\ + C_{3,3;5,5}(\mathrm{a}_{3,3} \mathrm{a}_{5,5} - \mathrm{a}_{3,5}^2 ) = 0, \end{gather}\] where \[\begin{align} C_{1,1;3,3} =&\; \wp_{1,5}(s)^3 (2\wp_{1,1}(s) +\lambda_2) \\ &+ \wp_{1,5}(s)^2 \big( \wp_{1,3}(\boldsymbol{C}) \wp_{1,3}(\bar{\boldsymbol{C}}) - (\wp_{1,5}(\boldsymbol{C}) + \wp_{1,5}(\bar{\boldsymbol{C}}))\wp_{1,1}(u) + \lambda_8 \big),\\ C_{1,1;3,5} = &\;{-}2 \wp_{1,5}(s)^3 - 2\wp_{1,5}(s)^2 \big( \wp_{1,3}(s) (2\wp_{1,1}(s) +\lambda_2) + \wp_{1,5}(\boldsymbol{C}) + \wp_{1,5}(\bar{\boldsymbol{C}})\\ &+ (\wp_{1,3}(\boldsymbol{C}) + \wp_{1,3}(\bar{\boldsymbol{C}}) ) \wp_{1,1}(s) - \lambda_6 \big) + \wp_{1,5}(s) \wp_{1,3}(s) \big(\wp_{1,3}(\boldsymbol{C}) \wp_{1,3}(\bar{\boldsymbol{C}}) \\ & +(\wp_{1,5}(\boldsymbol{C}) + \wp_{1,5}(\bar{\boldsymbol{C}}) ) \wp_{1,1}(s) - \lambda_8 \big) - 2 \lambda_{12} \wp_{1,5}(s),\\ C_{1,1;5,5} = &\; \wp_{1,5}(s)^2 \big( 2\wp_{1,3}(s) - \wp_{1,3}(\boldsymbol{C}) - \wp_{1,3}(\bar{\boldsymbol{C}})\big) + \wp_{1,5}(s) \big( \wp_{1,3}(s)^2 (2\wp_{1,1}(s) +\lambda_2) \\ & + \wp_{1,3}(s) \big({-} (\wp_{1,3}(\boldsymbol{C}) + \wp_{1,3}(\bar{\boldsymbol{C}}))\wp_{1,1}(s) + \lambda_6 \big) + \lambda_{10} \big),\\ C_{1,3;3,5} = &\; \wp_{1,5}(s)^2 \big(2 \wp_{1,3}(s)+ \wp_{1,1}(s) (4\wp_{1,1}(s) + 3\lambda_2) + \wp_{1,1}(\boldsymbol{C}) \wp_{1,1}(\bar{\boldsymbol{C}}) + \lambda_4\big) \\ &+ \wp_{1,5}(s) \big({-} (\wp_{1,5}(\boldsymbol{C}) + \wp_{1,5}(\bar{\boldsymbol{C}})) ( \wp_{1,1}(s)^2 + \wp_{1,3}(s) ) \\ & + (\wp_{1,3}(\boldsymbol{C}) \wp_{1,3}(\bar{\boldsymbol{C}}) + \lambda_8) \wp_{1,1}(s) \big),\\ C_{1,3;5,5} =&\; {-} \wp_{1,5}(s)^2 (2\wp_{1,1}(s) +\lambda_2) - \wp_{1,5}(s) \wp_{1,3}(s) \big(2 \wp_{1,3}(s) \\ &+ \wp_{1,1}(s) (4\wp_{1,1}(s) + 3\lambda_2) + 2 \lambda_4\big) - \wp_{1,5}(s) \big((\wp_{1,3}(\boldsymbol{C}) + \wp_{1,3}(\bar{\boldsymbol{C}}))\wp_{1,1}(s)^2 \\ & + \lambda_6 \wp_{1,1}(s) + \wp_{1,3}(\boldsymbol{C}) \wp_{1,3}(\bar{\boldsymbol{C}}) + \lambda_8\big),\\ C_{3,3;5,5} = &\; \wp_{1,5}(s) \wp_{1,3}(s) (2\wp_{1,1}(s) +\lambda_2) + \wp_{1,5}(s) \big(2 \wp_{1,1}(s)^3 + 2 \lambda_2 \wp_{1,1}(s)^2 \\ & + (\wp_{1,1}(\boldsymbol{C}) \wp_{1,1}(\bar{\boldsymbol{C}}) + \lambda_4 ) \wp_{1,1}(s) + \wp_{1,5}(\boldsymbol{C}) + \wp_{1,5}(\bar{\boldsymbol{C}}) + \lambda_6 \big). \end{align}\] The identities \(\mathrm{a}_{i,j} \mathrm{a}_{k,l} - \mathrm{a}_{i,k} \mathrm{a}_{j,l} = 0\) expressed in terms of \(2\)-index \(\wp\)-functions define the Kummer variety of \(\mathcal{V}\).
This completes the proof of Lemma 1.
A non-special divisor on a hyperelliptic curve of genus \(g\) is a degree \(g\) positive divisor which contains no pairs of points in involution.↩︎