The Age Distribution of Stellar Orbit Space Clumps


Table 1: Additional AASTeXsymbols
\(\lesssim\) \lesssim, \la \(\gtrsim\) \gtrsim, \ga
\micron \sbond
\dbond \tbond
\(\sun\) \sun \(\earth\) \earth
\diameter
\arcdeg, \degr \sq
\arcmin \arcsec
\fd \fh
\fm \fs
\fdg \farcm
\farcs \fp
\onehalf \ubvr
\onethird \ub
\twothirds \bv
\onequarter \vr
\threequarters \ur
Table 2: Text-mode accents
ò \`{o} ō \={o} o͡o \t{oo}
ó \'{o} ȯ \.{o} \c{o}
ô \^{o} ŏ \u{o} \d{o}
ö \"{o} ǒ \v{o} \b{o}
õ \~{o} ő \H{o}
Table 3: National symbols
œ \oe å \aa ł \l
Œ \OE Å \AA Ł \L
æ \ae ø \o ß \ss
Æ \AE Ø \O
Table 4: Math-mode accents
\(\hat{a}\) \hat{a} \(\dot{a}\) \dot{a}
\(\check{a}\) \check{a} \(\ddot{a}\) \ddot{a}
\(\tilde{a}\) \tilde{a} \(\breve{a}\) \breve{a}
\(\acute{a}\) \acute{a} \(\bar{a}\) \bar{a}
\(\grave{a}\) \grave{a} \(\vec{a}\) \vec{a}
Table 5: Greek and Hebrew letters (math mode)
\(\alpha\) \alpha \(\nu\) \nu
\(\beta\) \beta \(\xi\) \xi
\(\gamma\) \gamma \(o\) o
\(\delta\) \delta \(\pi\) \pi
\(\epsilon\) \epsilon \(\rho\) \rho
\(\zeta\) \zeta \(\sigma\) \sigma
\(\eta\) \eta \(\tau\) \tau
\(\theta\) \theta \(\upsilon\) \upsilon
\(\iota\) \iota \(\phi\) \phi
\(\kappa\) \kappa \(\chi\) \chi
\(\lambda\) \lambda \(\psi\) \psi
\(\mu\) \mu \(\omega\) \omega
\(\digamma\) \digamma \(\varkappa\) \varkappa
\(\varepsilon\) \varepsilon \(\varsigma\) \varsigma
\(\vartheta\) \vartheta \(\varphi\) \varphi
\(\varrho\) \varrho
\(\Gamma\) \Gamma \(\Sigma\) \Sigma
\(\Delta\) \Delta \(\Upsilon\) \Upsilon
\(\Theta\) \Theta \(\Phi\) \Phi
\(\Lambda\) \Lambda \(\Psi\) \Psi
\(\Xi\) \Xi \(\Omega\) \Omega
\(\Pi\) \Pi
\(\aleph\) \aleph \(\beth\) \beth
\(\gimel\) \gimel \(\daleth\) \daleth
Table 6: Binary operators (math mode)
\(\pm\) \pm \(\cap\) \cap
\(\mp\) \mp \(\cup\) \cup
\(\setminus\) \setminus \(\uplus\) \uplus
\(\cdot\) \cdot \(\sqcap\) \sqcap
\(\times\) \times \(\sqcup\) \sqcup
\(\ast\) \ast \(\triangleleft\) \triangleleft
\(\star\) \star \(\triangleright\) \triangleright
\(\diamond\) \diamond \(\wr\) \wr
\(\circ\) \circ \(\bigcirc\) \bigcirc
\(\bullet\) \bullet \(\bigtriangleup\) \bigtriangleup
\(\div\) \div \(\bigtriangledown\) \bigtriangledown
\(\lhd\) \lhd \(\rhd\) \rhd
\(\vee\) \vee \(\odot\) \odot
\(\wedge\) \wedge \(\dagger\) \dagger
\(\oplus\) \oplus \(\ddagger\) \ddagger
\(\ominus\) \ominus \(\amalg\) \amalg
\(\otimes\) \otimes \(\unlhd\) \unlhd
\(\oslash\) \oslash \(\unrhd\) \unrhd
Table 7: AMS binary operators (math mode)
\(\dotplus\) \dotplus \(\ltimes\) \ltimes
\(\smallsetminus\) \smallsetminus \(\rtimes\) \rtimes
\(\Cap\) \Cap, \doublecap \(\leftthreetimes\) \leftthreetimes
\(\Cup\) \Cup, \doublecup \(\rightthreetimes\) \rightthreetimes
\(\barwedge\) \barwedge \(\curlywedge\) \curlywedge
\(\veebar\) \veebar \(\curlyvee\) \curlyvee
\(\doublebarwedge\) \doublebarwedge
\(\boxminus\) \boxminus \(\circleddash\) \circleddash
\(\boxtimes\) \boxtimes \(\circledast\) \circledast
\(\boxdot\) \boxdot \(\circledcirc\) \circledcirc
\(\boxplus\) \boxplus \(\centerdot\) \centerdot
\(\divideontimes\) \divideontimes \(\intercal\) \intercal
Table 8: Miscellaneous symbols
\dag § \S
© \copyright \ddag
\P £ \pounds
# \# $ \$
% \% & \&
_ \_ { \{
} \}
Table 9: Miscellaneous symbols (math mode)
\(\aleph\) \aleph \(\prime\) \prime
\(\hbar\) \hbar \(\emptyset\) \emptyset
\(\imath\) \imath \(\nabla\) \nabla
\(\jmath\) \jmath \(\surd\) \surd
\(\ell\) \ell \(\top\) \top
\(\wp\) \wp \(\bot\) \bot
\(\Re\) \Re \(\|\) \|
\(\Im\) \Im \(\angle\) \angle
\(\partial\) \partial \(\triangle\) \triangle
\(\infty\) \infty \(\backslash\) \backslash
\(\Box\) \Box \(\Diamond\) \Diamond
\(\forall\) \forall \(\sharp\) \sharp
\(\exists\) \exists \(\clubsuit\) \clubsuit
\(\neg\) \neg \(\diamondsuit\) \diamondsuit
\(\flat\) \flat \(\heartsuit\) \heartsuit
\(\natural\) \natural \(\spadesuit\) \spadesuit
\(\mho\) \mho
Table 10: AMS miscellaneous symbols (math mode)
\(\hbar\) \hbar \(\backprime\) \backprime
\(\hslash\) \hslash \(\varnothing\) \varnothing
\(\vartriangle\) \vartriangle \(\blacktriangle\) \blacktriangle
\(\triangledown\) \triangledown \(\blacktriangledown\) \blacktriangledown
\(\square\) \square \(\blacksquare\) \blacksquare
\(\lozenge\) \lozenge \(\blacklozenge\) \blacklozenge
\(\circledS\) \circledS \(\bigstar\) \bigstar
\(\angle\) \angle \(\sphericalangle\) \sphericalangle
\(\measuredangle\) \measuredangle
\(\nexists\) \nexists \(\complement\) \complement
\(\mho\) \mho \(\eth\) \eth
\(\Finv\) \Finv \(\diagup\) \diagup
\(\Game\) \Game \(\diagdown\) \diagdown
\(\Bbbk\) \Bbbk \(\restriction\) \restriction
Table 11: Arrows (math mode)
\(\leftarrow\) \leftarrow \(\longleftarrow\) \longleftarrow
\(\Leftarrow\) \Leftarrow \(\Longleftarrow\) \Longleftarrow
\(\rightarrow\) \rightarrow \(\longrightarrow\) \longrightarrow
\(\Rightarrow\) \Rightarrow \(\Longrightarrow\) \Longrightarrow
\(\leftrightarrow\) \leftrightarrow \(\longleftrightarrow\) \longleftrightarrow
\(\Leftrightarrow\) \Leftrightarrow \(\Longleftrightarrow\) \Longleftrightarrow
\(\mapsto\) \mapsto \(\longmapsto\) \longmapsto
\(\hookleftarrow\) \hookleftarrow \(\hookrightarrow\) \hookrightarrow
\(\leftharpoonup\) \leftharpoonup \(\rightharpoonup\) \rightharpoonup
\(\leftharpoondown\) \leftharpoondown \(\rightharpoondown\) \rightharpoondown
\(\rightleftharpoons\) \rightleftharpoons \(\leadsto\) \leadsto
\(\uparrow\) \uparrow \(\Updownarrow\) \Updownarrow
\(\Uparrow\) \Uparrow \(\nearrow\) \nearrow
\(\downarrow\) \downarrow \(\searrow\) \searrow
\(\Downarrow\) \Downarrow \(\swarrow\) \swarrow
\(\updownarrow\) \updownarrow \(\nwarrow\) \nwarrow
Table 12: AMS arrows (math mode)
\(\dashleftarrow\) \dashleftarrow \(\dashrightarrow\) \dashrightarrow
\(\leftleftarrows\) \leftleftarrows \(\rightrightarrows\) \rightrightarrows
\(\leftrightarrows\) \leftrightarrows \(\rightleftarrows\) \rightleftarrows
\(\Lleftarrow\) \Lleftarrow \(\Rrightarrow\) \Rrightarrow
\(\twoheadleftarrow\) \twoheadleftarrow \(\twoheadrightarrow\) \twoheadrightarrow
\(\leftarrowtail\) \leftarrowtail \(\rightarrowtail\) \rightarrowtail
\(\looparrowleft\) \looparrowleft \(\looparrowright\) \looparrowright
\(\leftrightharpoons\) \leftrightharpoons \(\rightleftharpoons\) \rightleftharpoons
\(\curvearrowleft\) \curvearrowleft \(\curvearrowright\) \curvearrowright
\(\circlearrowleft\) \circlearrowleft \(\circlearrowright\) \circlearrowright
\(\Lsh\) \Lsh \(\Rsh\) \Rsh
\(\upuparrows\) \upuparrows \(\downdownarrows\) \downdownarrows
\(\upharpoonleft\) \upharpoonleft \(\upharpoonright\) \upharpoonright
\(\downharpoonleft\) \downharpoonleft \(\downharpoonright\) \downharpoonright
\(\multimap\) \multimap \(\rightsquigarrow\) \rightsquigarrow
\(\leftrightsquigarrow\) \leftrightsquigarrow
\(\nleftarrow\) \nleftarrow \(\nrightarrow\) \nrightarrow
\(\nLeftarrow\) \nLeftarrow \(\nRightarrow\) \nRightarrow
\(\nleftrightarrow\) \nleftrightarrow \(\nLeftrightarrow\) \nLeftrightarrow
Table 13: Relations (math mode)
\(\leq\) \leq \(\geq\) \geq
\(\prec\) \prec \(\succ\) \succ
\(\preceq\) \preceq \(\succeq\) \succeq
\(\ll\) \ll \(\gg\) \gg
\(\subset\) \subset \(\supset\) \supset
\(\subseteq\) \subseteq \(\supseteq\) \supseteq
\(\sqsubset\) \sqsubset \(\sqsupset\) \sqsupset
\(\sqsubseteq\) \sqsubseteq \(\sqsupseteq\) \sqsupseteq
\(\in\) \in \(\ni\) \ni
\(\vdash\) \vdash \(\dashv\) \dashv
\(\smile\) \smile \(\mid\) \mid
\(\frown\) \frown \(\parallel\) \parallel
\(\neq\) \neq \(\perp\) \perp
\(\equiv\) \equiv \(\cong\) \cong
\(\sim\) \sim \(\bowtie\) \bowtie
\(\simeq\) \simeq \(\propto\) \propto
\(\asymp\) \asymp \(\models\) \models
\(\approx\) \approx \(\doteq\) \doteq
\(\Join\) \Join
Table 14: AMS binary relations (math mode)
\(\leqq\) \leqq \(\geqq\) \geqq
\(\leqslant\) \leqslant \(\geqslant\) \geqslant
\(\eqslantless\) \eqslantless \(\eqslantgtr\) \eqslantgtr
\(\lesssim\) \lesssim \(\gtrsim\) \gtrsim
\(\lessapprox\) \lessapprox \(\gtrapprox\) \gtrapprox
\(\approxeq\) \approxeq \(\eqsim\) \eqsim
\(\lessdot\) \lessdot \(\gtrdot\) \gtrdot
\(\lll\) \lll, \llless \(\ggg\) \ggg, \gggtr
\(\lessgtr\) \lessgtr \(\gtrless\) \gtrless
\(\lesseqgtr\) \lesseqgtr \(\gtreqless\) \gtreqless
\(\lesseqqgtr\) \lesseqqgtr \(\gtreqqless\) \gtreqqless
\(\doteqdot\) \doteqdot, \Doteq \(\eqcirc\) \eqcirc
\(\risingdotseq\) \risingdotseq \(\circeq\) \circeq
\(\fallingdotseq\) \fallingdotseq \(\triangleq\) \triangleq
\(\backsim\) \backsim \(\thicksim\) \thicksim
\(\backsimeq\) \backsimeq \(\thickapprox\) \thickapprox
\(\subseteqq\) \subseteqq \(\supseteqq\) \supseteqq
\(\Subset\) \Subset \(\Supset\) \Supset
\(\sqsubset\) \sqsubset \(\sqsupset\) \sqsupset
\(\preccurlyeq\) \preccurlyeq \(\succcurlyeq\) \succcurlyeq
\(\curlyeqprec\) \curlyeqprec \(\curlyeqsucc\) \curlyeqsucc
\(\precsim\) \precsim \(\succsim\) \succsim
\(\precapprox\) \precapprox \(\succapprox\) \succapprox
\(\vartriangleleft\) \vartriangleleft \(\vartriangleright\) \vartriangleright
\(\trianglelefteq\) \trianglelefteq \(\trianglerighteq\) \trianglerighteq
\(\vDash\) \vDash \(\Vdash\) \Vdash
\(\Vvdash\) \Vvdash
\(\smallsmile\) \smallsmile \(\shortmid\) \shortmid
\(\smallfrown\) \smallfrown \(\shortparallel\) \shortparallel
\(\bumpeq\) \bumpeq \(\between\) \between
\(\Bumpeq\) \Bumpeq \(\pitchfork\) \pitchfork
\(\varpropto\) \varpropto \(\backepsilon\) \backepsilon
\(\blacktriangleleft\) \blacktriangleleft \(\blacktriangleright\) \blacktriangleright
\(\therefore\) \therefore \(\because\) \because
Table 15: AMS negated relations (math mode)
\(\nless\) \nless \(\ngtr\) \ngtr
\(\nleq\) \nleq \(\ngeq\) \ngeq
\(\nleqslant\) \nleqslant \(\ngeqslant\) \ngeqslant
\(\nleqq\) \nleqq \(\ngeqq\) \ngeqq
\(\lneq\) \lneq \(\gneq\) \gneq
\(\lneqq\) \lneqq \(\gneqq\) \gneqq
\(\lvertneqq\) \lvertneqq \(\gvertneqq\) \gvertneqq
\(\lnsim\) \lnsim \(\gnsim\) \gnsim
\(\lnapprox\) \lnapprox \(\gnapprox\) \gnapprox
\(\nprec\) \nprec \(\nsucc\) \nsucc
\(\npreceq\) \npreceq \(\nsucceq\) \nsucceq
\(\precneqq\) \precneqq \(\succneqq\) \succneqq
\(\precnsim\) \precnsim \(\succnsim\) \succnsim
\(\precnapprox\) \precnapprox \(\succnapprox\) \succnapprox
\(\nsim\) \nsim \(\ncong\) \ncong
\(\nshortmid\) \nshortmid \(\nshortparallel\) \nshortparallel
\(\nmid\) \nmid \(\nparallel\) \nparallel
\(\nvdash\) \nvdash \(\nvDash\) \nvDash
\(\nVdash\) \nVdash \(\nVDash\) \nVDash
\(\ntriangleleft\) \ntriangleleft \(\ntriangleright\) \ntriangleright
\(\ntrianglelefteq\) \ntrianglelefteq \(\ntrianglerighteq\) \ntrianglerighteq
\(\nsubseteq\) \nsubseteq \(\nsupseteq\) \nsupseteq
\(\nsubseteqq\) \nsubseteqq \(\nsupseteqq\) \nsupseteqq
\(\subsetneq\) \subsetneq \(\supsetneq\) \supsetneq
\(\varsubsetneq\) \varsubsetneq \(\varsupsetneq\) \varsupsetneq
\(\subsetneqq\) \subsetneqq \(\supsetneqq\) \supsetneqq
\(\varsubsetneqq\) \varsubsetneqq \(\varsupsetneqq\) \varsupsetneqq

\[\begin{array}{ccl@{}ccl} \sum & \displaystyle \sum & \verb"\sum" & \bigcap & \displaystyle \bigcap & \verb"\bigcap" \\ \prod & \displaystyle \prod & \verb"\prod" & \bigcup & \displaystyle \bigcup & \verb"\bigcup" \\ \coprod & \displaystyle \coprod & \verb"\coprod" & \bigsqcup & \displaystyle \bigsqcup & \verb"\bigsqcup" \\ \int & \displaystyle \int & \verb"\int" & \bigvee & \displaystyle \bigvee & \verb"\bigvee" \\ \oint & \displaystyle \oint & \verb"\oint" & \bigwedge & \displaystyle \bigwedge & \verb"\bigwedge" \\ \bigodot & \displaystyle \bigodot & \verb"\bigodot" & \bigotimes & \displaystyle \bigotimes & \verb"\bigotimes" \\ \bigoplus & \displaystyle \bigoplus & \verb"\bigoplus" & \biguplus & \displaystyle \biguplus & \verb"\biguplus" \\ \end{array}\]

Table 16: Delimiters (math mode)
\((\) ( \()\) )
\([\) [ \(]\) ]
\(\{\) \{ \(\}\) \}
\(\lfloor\) \lfloor \(\rfloor\) \rfloor
\(\lceil\) \lceil \(\rceil\) \rceil
\(\langle\) \langle \(\rangle\) \rangle
\(/\) / \(\backslash\) \backslash
\(\vert\) \vert \(\Vert\) \Vert
\(\uparrow\) \uparrow \(\Uparrow\) \Uparrow
\(\downarrow\) \downarrow \(\Downarrow\) \Downarrow
\(\updownarrow\) \updownarrow \(\Updownarrow\) \Updownarrow
\(\ulcorner\) \ulcorner \(\urcorner\) \urcorner
\(\llcorner\) \llcorner \(\lrcorner\) \lrcorner
  \arccos   \csc    \ker      \min
  \arcsin   \deg    \lg       \Pr
  \arctan   \det    \lim      \sec
  \arg      \dim    \liminf   \sin
  \cos      \exp    \limsup   \sinh
  \cosh     \gcd    \ln       \sup
  \cot      \hom    \log      \tan
  \coth     \inf    \max      \tanh